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Abstract

Upper-lower and left-right approaches coincide for semi-Fredholm
operators on Hilbert spaces but, in general, they are distinct for operators
on a Banach space. The purpose of this paper is to investigate the difference
between the upper-lower and left-right approaches for semi-Fredholm oper-
ators on a Banach space and, in particular, to verify when these
approaches coincide. The program is based on the classes ΓR[X ] and ΓN[X ]
of all operators on a Banach space X with complemented range and com-
plemented kernel. It is shown that the intersection ΓR[X ] ∩ ΓN[X ] is alge-
braically and topologically large, and also that if ΓR[X ] and ΓN[X ] are
either open, or closed, or if they coincide, then there is no difference between
the upper-lower and left-right approaches for semi-Fredholm operators on a
Banach space.

Introduction

Fredholm operators comprise a crucial class of Banach space operators which
play a central role in operator theory, being rather relevant in many areas of anal-
ysis, both from theoretical and applied points of view. For a survey on Fredholm
theory in Hilbert space the reader is referred to [10]. Semi-Fredholm
operators are defined either as the union of the class of all upper semi-Fredholm
and the class of all lower semi-Fredholm operators on the one hand or, on the
other hand, as the union of the class of all left semi-Fredholm and the class of all
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right semi-Fredholm operators. These two ways of handling semi-Fredholm op-
erators are referred to as the upper-lower and left-right approaches. On a Hilbert
space these approaches are coincident, and the reason for such a coincidence is
that in a Hilbert space every (closed) subspace is complemented. Such a com-
plementation property may fail in an arbitrary Banach space, and this is the rea-
son why the upper-lower and left-right approaches may not coincide for semi-
Fredholm operators on a Banach space.

The purpose of this paper is to draw a parallel between upper-lower and left-
right approaches for semi-Fredholm operators on a Banach space. The difference
between them is investigated, and it is shown when the upper-lower and left-
right approaches coincide. In particular, it isshown when these approaches coin-
cide as far as the existence of pseudoholes of the essential (Fredholm) spectrum is
concerned. The main results appear in Theorems 4.1 and 5.1, and an application
is discussed in Section 6 and summarized in Corollary 6.1.

Let B[X ] be the Banach algebra of all bounded linear operators on a Banach
space X , and consider the class ΓR[X ] of all operators with complemented range
and the class ΓN [X ] of all operators with complemented kernel. Since in a Hilbert
space every subspace is complemented, it follows that ΓR[X ] = ΓN [X ] = B[X ] if
X is a Hilbert space, and this is sufficient (but not necessary) to ensure that there
is no difference between the upper-lower and left-right approaches. However,
such an identity does not hold in general. The program for investigating when
the upper-lower and left-right approaches coincide starts by showing that the
intersection ΓR[X ] ∩ ΓN [X ] is algebraically and topologically large, and then it is
shown that if ΓR[X ] and ΓN [X ] are either open, or closed, or if they coincide, then
there is no difference between the upper-lower and left-right approaches.

The paper is organized as follows. Section 1 contains notation, terminology,
and only the basic results that will be frequently required in the sequel. Let T be a
bounded linear operator acting on a Banach space X . Section 2 shows in Theorem
2.1 that the classes of all operators with complemented range ΓR[X ] and comple-
mented kernel ΓN [X ] are algebraically and topologically large. The relationship
between the classes of upper or lower and left or right semi-Fredholm operators
is discussed in Section 3. Section 4 paves the way to compare upper and lower
semi-Fredholm spectra, σe+(T) and σe−(T), with left and right essential spectra,
σℓe(T) and σre(T), which differ by the sets ζR(T) = {λ ∈ C : λI − T 6∈ ΓR[X ]}
and ζN(T) = {λ ∈ C : λI − T 6∈ ΓN [X ]}, as carried out in Section 5. Theorem
4.1 says that if ΓR[X ] and ΓN [X ] are closed, so that ζR(T) and ζN(T) are open,
then the left and right essential spectra coincide with the upper and lower semi-
Fredholm spectra. Theorem 5.1 says that if either ΓR[X ] and ΓN [X ] are open (are
they always open?) so that ζR(T) and ζN(T) are closed, or if ζR(T) and ζN(T)
coincide, then the essential spectrum has no pseudoholes if and only if the left
and right essential spectra coincide. An application in Section 6 shows when the
previous results ensure that biquasitriangularity in a Banach space boils down to
the same thing as its Hilbert space counterpart.
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1 Preliminaries

Let X be a linear space, let I : X → X be the identity transformation, and let M
be a linear manifold of X . For any linear transformation L : X → X let N (L) =
L−1({0}) be the kernel of L and R(L) = L(X ) the range of L, which are lin-
ear manifolds of X . An algebraic complement of M is any linear manifold N
of X such that M∩N = {0} and M+N = X . Every linear manifold M
has an algebraic complement; every algebraic complement of M has the same
dimension, referred to as the codimension of M. If E : X → X is a projection
(an idempotent linear transformation), then R(E) and N (E) are complementary
linear manifolds; conversely, if M and N are complementary linear manifolds,
then there is a unique projection E : X → X with R(E) = M = N (I−E) and
N (E) = N = R(I−E), where I − E : X → X is the complementary projection of
E. Let X/M be the quotient space of X modulo M : the linear space of all cosets
[x] = x +M of x modulo M. Every algebraic complement of M is isomorphic to
the quotient space X/M, and codimM = dimX/M : codimension of a linear
manifold is the dimension of any algebraic complement of it, which is constant
and coincides with the dimension of the quotient space (see, e.g., [11, Sections 2.8
and 2.9]).

Suppose X and Y are (complex) normed spaces. A subspace of a normed
space is a closed linear manifold; the closure M− of a linear manifold M is a
subspace. Let B[X ,Y ] denote the normed space of all linear bounded (i.e., con-
tinuous) transformations of X into Y . For any T ∈ B[X ,Y ], its kernel N (T) is a
subspace (i.e., a closed linear manifold) of X , and its range R(T) is a linear man-
ifold of Y . By an operator we mean a bounded linear transformation of X into
itself. Set B[X ] = B[X ,X ], the normed algebra of all operators on X , which is a
Banach algebra if X is a Banach space. Take the map ‖ · ‖ : X/M → R such that
‖[x]‖ = infu∈M ‖x + u‖ = d(x,M), the distance of x to M. This is a seminorm
that becomes the usual norm on X/M if M is closed. If M is a subspace, then
equip X/M with its usual norm.

A subspace M of a normed space X is complemented if it has a subspace as an
algebraic complement; that is, a closed linear manifold M of a normed space X is
complemented if there is a closed linear manifold N of X such that M and N are
algebraic complements. In this case, M and N are complementary subspaces.

Remark 1.1. If X is a normed space and E : X → X is a continuous projection,
then R(E) and N (E) are complementary subspaces of X . Conversely, if M and
N are complementary subspaces of a Banach space X , then the (unique) projec-
tion E : X → X with R(E) = M and N (E) = N is continuous (in fact, a projec-
tion with closed range and closed kernel on a Banach space is continuous). See,
e.g., [11, Problem 4.35]. So, if X is a Banach space, then the assertions below are
equivalent.

(a) A subspace M of X is complemented.

(b) There exists a projection E ∈ B[X ] with R(E) = M.

(c) There exists a projection I − E ∈ B[X ] with N (I − E) = M.
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Therefore, in a finite-dimensional normed space every subspace is complemented
(in a finite-dimensional normed space every linear manifold is a subspace).

Proposition 1.1.Finite-dimensional subspaces of a Banach space are complemented. If a
subspace of a Banach space has finite codimension, then it is complemented.

Proof. See, e.g., [16, Theorem A.1.25(i,ii)].

Remark 1.2. The above result does not hold if the normed space X is not Banach.
For instance, let C[0, 1] be the linear space of all real-valued continuous func-
tion on the interval [0, 1] equipped with the norm ‖ · ‖1. Take a discontinuous
function, say, v(t) = 0 for t ∈ [0, 1

2) and v(t) = 1 for t ∈ [ 1
2 , 1], and consider the

normed space X = C[0, 1] + span{v}, again equipped the norm ‖ · ‖1, which is
not Banach (reason: C[0, 1] is dense in L1[0, 1] and so is X $ L1[0, 1]). C[0, 1] is not
closed in X (there are sequences of continuous functions converging to v in the
norm ‖ · ‖1).

Proposition 1.2. Let M and N be subspaces of a normed space X . If dimN <∞, then
M+N is closed.

Proof. See, e.g., [5, Proposition III.4.3].

Consider the converse to Proposition 1.2: is it true that if M+N is closed and
dimN < ∞, then M is closed? If M is the range of a bounded linear transforma-
tion between Banach spaces X and Y , then the answer is yes.

Proposition 1.3. Suppose X and Y are Banach spaces, take T ∈ B[X ,Y ], and let N be
a finite-dimensional subspace of Y . If R(T) +N is closed, then so is R(T).

Proof. See, e.g., [16, Lemma 16.2].

Corollary 1.1. Suppose X and Y are Banach spaces. If T ∈ B[X ,Y ] is such that
codimR(T) < ∞, then R(T) is closed.

Proof. Apply Proposition 1.3.

Remark 1.3. This does not ensure that R(T) is closed if codimR(T)− is finite.
There are T ∈ B[X ,Y ] between Banach spaces X and Y such that codimR(T)−=
0 and R(T) is not closed. Example: if T = diag{1

k} on X = ℓ2, then 0 lies in
the continuous spectrum σC(T) of T, and hence R(T) is not closed but is dense
in ℓ2 so that the unique algebraic complement of R(T)− = ℓ2 is {0}, and so
codimR(T)−= 0.

2 Range-Kernel Complemented

Recall that if a Banach space X is complemented (i.e., if every subspace of X is
complemented), then it is isomorphic (i.e., topologically isomorphic) to a Hilbert
space [15]. Thus complemented Banach spaces are identified with Hilbert spaces
— only Hilbert spaces (up to an isomorphism) are complemented.
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Definition 2.1. Given a Banach space X , consider the following subsets of B[X ].

ΓR[X ] =
{

T ∈ B[X ] : R(T)− is complemented
}

,

ΓN [X ] =
{

T ∈ B[X ] : N (T) is complemented
}

,

Γ[X ] = ΓR[X ] ∩ ΓN [X ] =
{

T ∈ B[X ] : R(T)− and N (T) are complemented
}

.

(Note: The class ΓR[X ] has been denoted by ζ̃(X ) in [4].)

We say that a Banach space X is range complemented if ΓR[X ] = B[X ], kernel
complemented if ΓN [X ] = B[X ], and range-kernel complemented if Γ[X ] = B[X ]
(i.e., if ΓR[X ] = ΓN [X ] = B[X ]). Hilbert spaces are complemented, and conse-
quently they are range-kernel complemented. Actually, if a Banach space X is
complemented (i.e., if X is essentially a Hilbert space), then it is trivially range-
kernel complemented. Is the converse true? However, for an arbitrary Banach
space X , the set Γ[X ] = ΓR[X ] ∩ ΓN [X ] is algebraically and topologically large
in the sense that it includes nonempty open groups. Indeed, the group G[X ] of all
invertible operators from B[X ] (i.e., of all operators from B[X ] with a bounded
inverse) is open in B[X ] and is included in Γ[X ]. In fact, as we shall see later
in Section 3, ΓR[X ] and ΓN[X ] include open regularities, namely the lower and
upper semi-Fredholm operators Φ−[X ] and Φ+[X ], which include G[X ].

Theorem 2.1. Consider operators on a Banach space X .

(a) Every finite-rank operator lies in ΓR[X ], and every operator with finite-dimensional
kernel lies in ΓN [X ].

(b) An operator whose range has a finite codimension lies in ΓR[X ]; an operator whose
kernel has a finite codimension lies in ΓN [X ].

(c) Every invertible operator has closed and complemented range and kernel, so that
G[X ] ⊆ Γ[X ] = ΓR[X ] ∩ ΓN [X ], and G[X ] is open in B[X ].

(d) If T ∈ ΓR[X ] is bounded below, then R(T+ K) is closed and T+ K ∈ Γ[X ] =
ΓR[X ] ∩ ΓN [X ] for every compact K ∈ B[X ].

(e) If T ∈ G[X ], then R(T+ K) is closed and T+ K ∈ Γ[X ] = ΓR[X ] ∩ ΓN [X ] for
every compact K ∈ B[X ].

(f) If T is a compact operator on a reflexive Banach space X with a Schauder basis, then
T ∈ ΓR[X ] and its adjoint T∗∈ ΓR[X

∗].

Proof. (a,b) Clear by Proposition 1.1 and Corollary 1.1.

(c) If T ∈ G[X ], then R(T) = X and N (T) = {0}. Moreover, G[X] is open in the
uniform topology of B[X ] (see, e.g., [11, Problem 4.48]).

(d) As for the range issue (i.e., T+ K∈ ΓR[X ]), see [9, Theorem 2]. As for the ker-
nel issue (i.e., T+ K∈ ΓN [X ]), this is straightforward by the forthcoming Section
3 (which is independent of Theorem 2.1), since bounded below are injective with
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closed range (see e.g., [11, Corollary 4.24]) and so lie in Fℓ[X ] ⊆ ΓN [X ] (Proposi-
tion 3.1), and Fℓ[X ] is invariant under compact perturbation by its very definition
(Definition 3.2), since the compact operators comprise an ideal of B[X ].

(e) Particular case of (d). (Also see [9, Proposition 1].)

(f) If T is finite-rank, then the result follows from item (a). Thus suppose T∈ B[X ]
is not finite-rank but compact, and X has a Schauder basis, so that there exists a
sequence {Tn} of finite-rank operators Tn ∈ B[X ] such that {Tn} converges uni-
formly (thus strongly) to T (see, e.g., [11, Problem 4.58]) and R(Tn) ⊆ R(T)−.
Since each Tn is finite-rank, it follows that R(Tn) = R(Tn)− and, from item (a),
Tn ∈ ΓR[X ], which means that there exist continuous projections En ∈ B[X ] and
I − En ∈ B[X ] such that R(En) = N (I − En) = R(Tn) (cf. Remark 1.1) and
R(I − En) = N (En) with {R(En)} is increasing. Since {R(En)} is monotone,
limn R(En) exists in the sense that limn R(En) =

⋂

n≥1
∨

k≥n R(Ek) =
(

⋃

n≥1
⋂

k≥n

R(Ek)
)

− (cf. [4, Definition 1]), so that limn R(I − En) also exists. Set R =

limn R(En) so that R ⊆ R(T)− (since R(Tn) ⊆ R(T)−). Moreover, since X has
a Schauder basis and T is compact, it follows that the sequence {En} converges
strongly (see, e.g., [11, Hint to Problem 4.58], and hence {En} is bounded. Thus,
since X is reflexive, [4, Theorem 2] ensures that T ∈ ΓR[X ]. Since reflexivity and
compactness are ∗-preserved [5, Theorems V.4.2, VI.3.4], the range of the compact
T∗ on X ∗ is complemented.

3 Fredholm Operators

Definition 3.1. (See, e.g., [16, Definition 16.1]). Let X be a Banach space.

Φ+[X ] =
{

T ∈ B[X ] : R(T) is closed and dimN (T) < ∞
}

is the class of upper semi-Fredholm operators from B[X ],

Φ−[X ] =
{

T ∈ B[X ] : codimR(T) < ∞
}

is the class of lower semi-Fredholm operators from B[X ], and

Φ[X ] = Φ+[X ] ∩ Φ−[X ]

is the class of Fredholm operators from B[X ]. Since codimR(T) = dimX/R(T),
and since codimR(T) < ∞ implies that R(T) is closed (Corollary 1.1), the class
of lower semi-Fredholm operators can be written as

Φ−[X ] =
{

T ∈ B[X ] : R(T) is closed and dimX/R(T) < ∞
}

,

and so the class of Fredholm operators can be written as

Φ[X ] =
{

T ∈ B[X ] : dimN (T) < ∞ and codimR(T) < ∞
}

=
{

T ∈ B[X ] : R(T) is closed, dimN (T) < ∞, dimX/R(T) < ∞
}

.
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The classes of operators Φ+[X ] and Φ−[X ] are open in B[X ] (see, e.g.,
[16, Proposition 16.11]), and the sets Φ+[X ]\Φ−[X ] and Φ−[X ]\Φ+[X ] are closed
in B[X ] (see, e.g., [16, Proof of Corollary 18.2]).

Definition 3.2. (See, e.g., [12, Section 5.1]). Let X be a Banach space.

Fℓ[X ] =
{

T∈B[X ] : T is left essentially invertible
}

=
{

T∈B[X ] : AT = I + K for some A ∈ B[X ] and some compact K ∈ B[X ]
}

is the class of left semi-Fredholm operators from B[X ],

Fr[X ] =
{

T∈B[X ] : T is right essentially invertible
}

=
{

T∈B[X ] : TA = I + K for some A ∈ B[X ] and some compact K ∈ B[X ]
}

is the class of right semi-Fredholm operators from B[X ], and

F [X ] = Fℓ[X ] ∩ Fr[X ] =
{

T ∈ B[X ] : T is essentially invertible
}

,

the class of Fredholm operators from B[X ]. The definitions of Fℓ[X ] and Fr[X ]
can be equivalently stated if “compact” is replaced with “finite-rank” (see e.g.,
[3, Remark 3.3.3] or [16, Theorems 16.14 and 16.15]).

The classes Fℓ[X ] and Fr[X ] are open in B[X ], since they are the inverse
images under the natural map π : B[X ] → B[X ]/B∞[X ] (which is continuous) of
the left and right invertible elements, respectively, in the Calkin algebra
B[X ]/B∞[X ] of B[X ] modulo the ideal B∞[X ] of compact operators (see e.g.,
[5, Proposition XI.2.6]).

Left and right and upper and lower semi-Fredholm operators are linked by
range and kernel complementation: T ∈ Fℓ[X ] if and only if T ∈ Φ+[X ] and
R(T) is complemented, and T ∈ Fr[X ] if and only if T ∈ Φ−[X ] and N (T) is
complemented.

Proposition 3.1. Left-right and upper-lower semi-Fredholm are related as follows.

Fℓ[X ] = Φ+[X ] ∩ ΓR[X ] =
{

T ∈ Φ+[X ] : R(T) is a complemented subspace
}

,

Fr[X ] = Φ−[X ] ∩ ΓN [X ] =
{

T ∈ Φ−[X ] : N (T) is a complemented subspace
}

.

Proof. [16, Theorems 16.14, 16.15] (since R(T)−=R(T) if T∈ Φ+[X ] ∪ Φ−[X ]).

Question 3.1. Are the sets ΓR[X ] and ΓN [X ] open in B[X ]?

In view of Proposition 3.1, operators in Fℓ[X ] and Fr[X ] are also referred to
as Atkinson operators [7, Theorem 2.3] (left and right respectively).

Lemma 3.1. The classes of operators in Definitions 2.1, 3.1, and 3.2 satisfy the following
relations.
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(a) Φ+[X ] ⊆ ΓN [X ] and Φ−[X ] ⊆ ΓR[X ], and so

Φ[X ] ⊆ Γ[X ] and Φ+[X ] ∪ Φ−[X ] ⊆ ΓR[X ] ∪ ΓN [X ];

(b) Fℓ[X ]\Fr [X ] = (Φ+[X ]\Φ−[X ])∩ ΓR [X ] = (Φ+[X ]\Φ−[X ])∩ Γ[X ], and

Fr[X ]\Fℓ[X ] = (Φ−[X ]\Φ+[X ]) ∩ ΓN [X ] = (Φ−[X ]\Φ+[X ]) ∩ Γ[X ];

(c) Fℓ[X ] ∩ Fr[X ] = F [X ] = Φ[X ] = Φ+[X ] ∩ Φ−[X ];

(d) Fℓ[X ] ∪ Fr[X ] = (Φ+[X ] ∪ Φ−[X ]) ∩ Γ[X ] ⊆ Γ[X ];

for every Banach space X . Now take a Banach space X .

(e) If Φ+[X ] = Φ−[X ], then Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ],

so that Fℓ[X ] = Fr[X ].

(f) If Fℓ[X ] = Fr[X ], then Φ+[X ] ∩ ΓR[X ] = Φ−[X ] ∩ ΓN [X ] =

Φ+[X ] ∩ Γ[X ] = Φ−[X ] ∩ Γ[X ] =

Φ+[X ] ∩ Φ−[X ] = (Φ+[X ] ∪ Φ−[X ]) ∩ Γ[X ];

and also (Φ+[X ]\Φ−[X ]) ∩ ΓR[X ] = (Φ−[X ]\Φ+[X ]) ∩ ΓN [X ] = ∅.

(g) If ΓR[X ] = ΓN [X ], then Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ].

Moreover,

(h) Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ] if and only if Φ+[X ] ∪ Φ−[X ] ⊆ Γ[X ].

Proof. The proof is elementary, mostly based on standard set-theoretical relations.

(a) If T ∈ Φ+[X ], then the subspace N (T) is finite-dimensional, and hence it is
complemented by Proposition 1.1. Thus Φ+[X ] ⊆ ΓN [X ]. On the other hand, if
T ∈ Φ−[X ], then R(T) is closed and codimR(T) < ∞, so that the subspace R(T)
is trivially complemented (codimR(T) < ∞ implies that every algebraic comple-
ment of R(T) is finite-dimensional, thus closed). Hence Φ−[X ] ⊆ ΓR[X ].

(b) By Proposition 3.1 we get FℓX ]\Fr [X ] = (Φ+[X ] ∩ ΓR[X ])\(Φ−[X ] ∩ ΓN [X ])
and FrX ]\Fℓ[X ] = (Φ−[X ] ∩ ΓN [X ])\(Φ+[X ] ∩ ΓR[X ]). By item (a) it follows
that Φ+[X ]⊆ΓN [X ] and Φ−[X ]⊆ΓR[X ]. So Fℓ[X ]\Fr[X ] = (Φ+[X ] ∩ ΓR[X ])\
Φ−[X ] = (Φ+[X ]\Φ−[X ]) ∩ ΓR[X ]. Similarly, Fr[X ]\Fℓ[X ] = (Φ−[X ]\Φ+[X ])
∩ ΓN [X ].

(c) According to Definition 3.1 (where R(T) must be closed for operators T in
Φ+[X ] ∪ Φ−[X ]) and item (a), if T ∈ Φ+[X ] ∩ Φ−[X ], then N (T) and R(T) are
complemented subspaces, which implies by Proposition 3.1 that Φ+[X ] ∩ Φ−[X ]
⊆ Fℓ[X ] ∩ Fr[X ] ⊆ Φ+[X ] ∩ Φ−[X ]. Therefore, Fℓ[X ] ∩ Fr[X ] = F [X ] = Φ[X ]
= Φ+[X ] ∩ Φ−[X ] by Definitions 3.1 and 3.2.

(d) By Proposition 3.1, Fℓ[X ] ∪ Fr[X ] = (Φ+[X ] ∩ ΓR[X ])∪ (Φ−[X ] ∩ ΓN [X ]) =
(Φ+[X ] ∪ Φ−[X ])∩ (Φ+[X ] ∪ ΓN [X ])∩ (ΓR [X ] ∪ Φ−[X ])∩ (ΓR [X ] ∪ ΓN [X ]). But
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(Φ+[X ] ∪ ΓN [X ]) ∩ (ΓR[X ] ∪ Φ−[X ]) ∩ (ΓR[X ] ∪ ΓN [X ]) = Γ[X ] according to
item (a) and Definition 2.1. The inclusion is trivial.

(e) If Φ+[X ] = Φ−[X ] then, by item(a), Φ+[X ] = Φ−[X ] ⊆ ΓR[X ] ∩ ΓN [X ], which
implies by Proposition 3.1 that Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ], and so
(since Φ+[X ] = Φ−[X ]) Fℓ[X ] = Fr[X ].

(f) If Fℓ[X ] = Fr[X ], then (by Definition 3.2) F [X ] = Fℓ[X ] ∩ Fr[X ] = Fℓ[X ] =
Fr[X ] = Fℓ[X ] ∪ Fr[X ], and so (by Proposition 3.1 and items (c) and (d)) Φ[X ] =
Φ+[X ] ∩ Φ−[X ] = Φ+[X ] ∩ ΓR[X ] = Φ−[X ] ∩ ΓN [X ] = (Φ+[X ] ∪ Φ−[X ]) ∩
Γ[X ]. But Φ+[X ] ∩ ΓR[X ] = Φ+[X ] ∩ Γ[X ] and Φ−[X ] ∩ ΓN [X ] =Φ−[X ] ∩ Γ[X ]
by (a). Moreover, in this case, Fℓ[X ]\Fr[X ] = Fr[X ]\Fℓ[X ] = ∅, thus apply
item (b).

(g) If ΓR[X ] = ΓN [X ], then Φ+[X ] ⊆ ΓN [X ] = ΓR[X ] and Φ−[X ] ⊆ ΓR[X ] =
ΓN [X ] by item (a), which implies that Fℓ[X ] = Φ+[X ] ∩ ΓR[X ] = Φ+[X ] and
Fr[X ] = Φ−[X ] ∩ ΓN [X ] = Φ−[X ] by Proposition 3.1.

(h) If Φ+[X ] = Fℓ[X ], then Φ+[X ] = Φ+[X ] ∩ ΓR[X ] (Proposition 3.1). Hence
Φ+[X ] ⊆ ΓR[X ] and so Φ+[X ] ⊆ ΓR[X ] ∩ ΓN [X ] = Γ[X ] (by item (a)). Similarly,
If Φ−[X ] = Fr[X ], then Φ−[X ] ⊆ Γ[X ]. Conversely, if Φ+[X ] ∪ Φ+[X ] ⊆ Γ[X ] =
ΓR[X ] ∩ ΓN [X ], then Fℓ[X ] = Φ+[X ] and Fr[X ] = Φ−[X ] (Proposition 3.1).

Remark 3.1. If Φ+[X ] ⊆ ΓR[X ] and Φ−[X ] ⊆ ΓN [X ] (i.e., if Φ+[X ] ∪ Φ−[X ] ⊆
Γ[X ] — in particular, if ΓR[X ] = ΓN [X ], more particularly, if ΓR[X ] = ΓN [X ] =
B[X ]; even more particularly, if X is complemented), then (cf. Lemma 3.1(a,g,h))

Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ].

Thus, in these cases, the classes ΓR[X ] and ΓN [X ] play no role in Proposition 3.1.

4 Essential Spectra

Definition 4.1. Corresponding to the classes Φ+[X ], Φ−[X ], and Φ[X ] there are
the following spectra. Take T ∈ B[X ].

σe+(T) = σπe(T) =
{

λ ∈ C : λI − T /∈ Φ+[X ]
}

=
{

λ ∈ C : R(λI − T) is not closed or dimN (λI − T) = ∞
}

is the upper semi-Fredholm spectrum or the essential approximate point spectrum,

σe−(T) = σδe(T) =
{

λ ∈ C : λI − T /∈ Φ−[X ]
}

=
{

λ ∈ C : codimR(λI − T) = ∞
}

=
{

λ ∈ C : R(λI − T) is not closed or dimX/R(λI − T) = ∞
}

is the lower semi-Fredholm spectrum or the essential surjective spectrum, and

σe(T) = σe+(T) ∪ σe−(T)

=
{

λ ∈ C : λI − T /∈ (Φ+[X ] ∩ Φ−[X ])
}

=
{

λ ∈ C : λI − T /∈ Φ[X ]
}

is the Fredholm spectrum or the essential spectrum (cf. Corollary 1.1).
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The sets σe+(T), σe−(T), and σe(T) are compact subsets of the spectrum σ(T)
(reason: the sets Φ+[X ], Φ−[X ], and Φ[X ] are open regularities in the Banach
algebra B[X ] [16, Proposition 6.2 and Theorems 16.7 and 16.11]).

Definition 4.2. Corresponding to the classes Fℓ[X ], Fr[X ], and F [X ] there are
the following spectra. Take T ∈ B[X ].

σℓe(T) =
{

λ ∈ C : λI − T /∈ Fℓ[X ]
}

=
{

λ ∈ C : λI − T is not left essentially invertible
}

is the left essential spectrum,

σre(T) =
{

λ ∈ C : λI − T /∈ Fr[X ]
}

=
{

λ ∈ C : λI − T is not right essentially invertible
}

is the right essential spectrum, and

σe(T) = σℓe(T) ∪ σre(T)

=
{

λ ∈ C : λI − T /∈ (Fℓ[X ] ∩ Fr[X ])
}

=
{

λ ∈ C : λI − T /∈ F [X ]
}

is the essential spectrum.

The sets σℓe(T), σre(T), and σe(T) are compact subsets of the spectrum σ(T)
(reason: the sets Fℓ[X ] and Fr[X ] are open regularities in the Banach algebra
B[X ]). Moreover, σℓe(T) and σre(T) are the left and right spectra of the natural
image π(T) of T in the Calkin algebra B[X ]/B∞[X ]. See [16, p.52,53,160,172].

Definition 4.3. Corresponding to the classes ΓR[X ], ΓN [X ], and Γ[X ] there are
the following subsets of C (actually, subsets of σ(T)). Take T ∈ B[X ].

ζR(T) =
{

λ ∈ C : λI − T /∈ ΓR[X ]
}

=
{

λ ∈ C : R(λI − T)− is not complemented
}

,

ζN(T) =
{

λ ∈ C : λI − T /∈ ΓN [X ]
}

=
{

λ ∈ C : N (λI − T) is not complemented
}

,

ζ(T) = ζR(T) ∪ ζN(T)

=
{

λ ∈ C : λI − T /∈ ΓR[X ] ∩ ΓN [X ]
}

=
{

λ ∈ C : λI − T /∈ Γ[X ]
}

=
{

λ ∈ C : R(λI − T)− or N (λI − T) is not complemented
}

.

Proposition 4.1.Left-right and upper-lower essential spectra are related as follows.

σℓe(T) = σe+(T) ∪ ζR(T)

=
{

λ ∈ C : R(λI − T) is not closed or, dimN (λI − T) = ∞,

or R(λI − T) is not a complemented subspace
}

.

σre(T) = σe−(T) ∪ ζN(T)

=
{

λ ∈ C : R(λI − T) is not closed, or dimX/R(λI − T) = ∞;

or N (λI − T) is not a complemented subspace
}

.
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Proof. Straightforward by Definition 4.2, Lemma 3.1(a), Definitions 4.3 and 3.2.

Lemma 4.1. The sets in Definitions 4.1, 4.2, and 4.3 satisfy the relations.

(a) ζN(T) ⊆ σe+(T) and ζR(T) ⊆ σe−(T), and so

ζ(T) ⊆ σe(T) and ζR(T) ∩ ζN(T) ⊆ σe+(T) ∩ σe−(T);

(b) σℓe(T)\σre(T) = (σe+(T)\σe−(T))\ζN(T) = (σe+(T)\σe−(T))\ζ(T), and

σre(T)\σℓe(T) = (σe−(T)\σe+(T))\ζR(T) = (σe−(T)\σe+(T))\ζ(T);

(c) σe(T) = σℓe(T) ∪ σre(T) = σe+(T) ∪ σe−(T);

(d) ζ(T) ⊆ (σe+(T) ∩ σe−(T)) ∪ ζ(T) = σℓe(T) ∩ σre(T);

for every T on any Banach space X . Now take T on a Banach space X .

(e) If σe+(T) = σe−(T), then σe+(T) = σℓe(T) and σe−(T) = σre(T),

so that σℓe(T) = σre(T).

(f) If σℓe(T) = σre(T), then σe+(T) ∪ ζR(T) = σe−(T)∪ ζN(T) =

σe+(T) ∪ ζ(T) = σe−(T) ∪ ζ(T) =

σe+(T) ∪ σe−(T) =
(

σe+(T) ∩ σe−(T)
)

∪ ζ(T);

and also σe+(T)\σe−(T)\ζN(T) = σe−(T)\σe+(T)\ζR(T).

(g) If ζR(T) = ζN(T), then σe+(T) = σℓe(T) and σe−(T) = σre(T).

Moreover,

(h) σe+(T) = σℓe(T) and σe−(T) = σre(T) if and only if ζ(T) ⊆ σe+(T) ∩ σe−(T).

Proof. This is the dual of Lemma 3.1, from item (a) to item (h), respectively.

Theorem 4.1. Take T ∈ B[X ] on a Banach space X .

(a) If ΓR[X ] is open (closed) in B[X ], then ζR(T) is closed (open) in C. If ΓN [X ] is
open (closed) in B[X ], then ζN(T) is closed (open) in C.

(b) If ζR(T) is open in C, then σe+(T) = σℓe(T). If ζN(T) is open in C, then
σe−(T) = σre(T).

Proof. Let T be an operator on a Banach space X .

(a) Readily verified by the complementary character between ΓR[X ] and ζR(T),
and between ΓN [X ] and ζN(T).

(b) By Proposition 4.1, σℓe(T) = σe+(T) ∪ ζR(T) = σe+(T) ∪ (ζR(T)\σe+(T)),
where {σe+(T), ζR(T)\σe+(T)} is a partition of σℓe(T). Suppose σℓe(T) 6= σe+(T),
which means that ζR(T) 6⊆ σe+(T); equivalently, ζR(T)\σe+(T) 6= ∅. Since σℓe(T)
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and σe+(T) are closed subsets of C, it follows that ζR(T)\σe+(T) is not open.
If ζR(T) is open, then ζR(T)\σe+(T) = ζR(T) ∩ (C\σe+(T)) is open (because
σe+(T) is closed), which is a contradiction. Thus ζR(T) is not open. Similarly, since
σre(T) = σe−(T)∪ ζN(T) (Proposition 4.1), and since σre(T) and σe−(T) are closed
sets in C, the same argument ensures that if σre(T) 6= σe−(T), then ζN(T) is not
open.

Remark 4.1. Consider Lemma 4.1(a,g,h). If ζR(T) ⊆ σe+(T) and ζN(T) ⊆ σe−(T)
(i.e., if ζ(T) ⊆ σe+(T) ∩ σe+(T) — in particular, if ζR(T) = ζN(T); more particu-
larly, if ζR(T) = ζN(T) = ∅; even more particularly, if X is complemented),
then

σe+(T) = σℓe(T) and σe−(T) = σre(T).

Thus, in these cases, the sets ζR(T) and ζN(T) play no role in Proposition 4.1.

Remark 4.2. If ΓR[X ] and ΓN [X ] are closed, then ζR(T) and ζN(T) are open. So

σe+(T) = σℓe(T) and σe−(T) = σre(T)

(Theorem 4.1). There may be sequences of operators Tn in ΓR[ℓ
p] converging uni-

formly to an operator T not in ΓR[ℓ
p] for 1 < p 6= 2 [4, Example 1]) and so ΓR[X ]

may not be closed. On the other hand, ΓR[X ] and ΓN [X ] include nonempty open
regularities (e.g., Φ+[X ] and Φ−[X ], which include the open group G[X ]).

5 Holes and Pseudo Holes of the Essential Spectrum

Let Z denote the set of all integers, and let Z = Z ∪ {−∞,+∞} be the set of all
extended integers. If T ∈ Φ+[X ] ∪ Φ−[X ], then ind(T) = dimN (T)− codimR(T)
is an element of Z. This is the index of T ∈ Φ+[X ] ∪ Φ−[X ]. If T ∈ Φ+[X ] ∪ Φ−[X ]
and ind(T) is finite, then T ∈ Φ+[X ] ∩ Φ−[X ] = Φ[X ] = F [X ]. Set

σw(T) =
{

λ ∈ C : λI − T is not a Fredholm operator of index zero
}

=
{

λ ∈ C : λ ∈ σe(T) or λI − T ∈ Φ+[X ] ∪ Φ−[X ] and ind(λI − T) 6= 0
}

,

the Weyl spectrum of T ∈ B[X ]. Recall that σe(T) ⊆ σw(T) ⊆ σ(T). Let σ0(T)
denote the complement of σw(T) in σ(T),

σ0(T) = σ(T)\σw(T)

=
{

λ ∈ σ(T) : λ 6∈ σe(T) and ind(λI − T) = 0
}

=
{

λ ∈ σ(T) : λI − T is a Fredholm operator of index zero
}

.

Moreover, for each nonzero extended integer k ∈ Z\{0} set

σk(T) =
{

λ ∈ C : λI − T ∈ Φ+[X ] ∪ Φ−[X ] and ind(λI − T) = k 6= 0
}

,

which are open subsets of σ(T). For every nonzero (finite) integer k ∈ Z\{0} the
sets σk(T) are the holes of σe+(T) ∩ σe−(T), and therefore they are the holes of the
essential spectrum σe(T), since

σ+∞(T) = σe+(T)\σe−(T) and σ−∞(T) = σe−(T)\σe+(T)
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are the holes of σe−(T) and σe+(T) in σe(T), respectively. The sets σ+∞(T) and
σ−∞(T) are the pseudoholes of σe(T) — which are not holes of σe(T) (see e.g.,
[17, p.3], [10, p.162], and [12, p.147]). Summing up, {σk(T)}k∈Z\{0} is the col-

lection of all holes of the essential spectrum σe(T), and {σ−∞(T), σ+∞(T)} is the
collection of pseudoholes of σe(T), all of them open subsets of the spectrum σ(T).

Remark 5.1. At this point a word on notation is in order. Here we have defined
σe+(T) and σe−(T) coincidently with what has been defined as σℓe(T) and σre(T)
in [1], [2], [5], [10], [12], [13], [14], and [17] — the same happening with respect to
Φ+[X ], Φ−[X ] and Fℓ[X ], Fr[X ] — since there (up to [14]) they work on a Hilbert
space, which is complemented, where these sets indeed coincide (i.e., in that case,
Γ[X ] = B[X ], which implies that Φ+[X ] = Fℓ[X ] and Φ−[X ] = Fr[X ] — thus
ζ(T) = ∅, which in turn implies that σe+(T) = σℓe(T) and σe−(T) = σre(T)).

Keeping Remark 5.1 in mind, recall that

σ(T) = σe(T) ∪
⋃

k∈Z
σk(T),

σe(T) =
(

σe+(T) ∩ σe−(T)
)

∪ σ+∞(T) ∪ σ−∞(T),

(this partition of σ(T) is the Spectral Picture) so that (Schechter Theorem)

σw(T) = σ(T)\σ0(T) = σe(T) ∪
⋃

k∈Z\{0}
σk(T) :

the Weyl spectrum is the union of the essential spectrum and all its holes [5,
Proposition XI.6.10 and Theorem XI.6.12] or [12, Corollary 5.18 and Theorem
5.24]. Thus,

σe(T) has no holes if and only if σe(T) = σw(T).

Theorem 5.1. The essential spectrum has no pseudoholes if and only if the upper and
lower semi-Fredholm spectra coincide, which implies that the right and left essential spec-
tra coincide; that is,

(i) σ+∞(T) = σ−∞(T) = ∅ ⇐⇒ σe+(T) = σe−(T) =⇒ σℓe(T) = σre(T).

Conversely,

(ii) σℓe(T) = σre(T) =⇒ σ+∞(T) = ζN(T)\σe−(T) and σ−∞(T) = ζR(T)\σe+(T).

Special cases. Suppose σℓe(T) = σre(T).

(ii′) If ζR(T) and ζN(T) are closed, then σ+∞(T) = σ−∞(T) = ∅.

(ii′′) If ζR(T) ∪ ζN(T) ⊆ σe+(T) ∩ σe−(T) (in particular, if ζR(T) = ζN(T)),

then σ+∞(T) = σ−∞(T) = ∅.

(ii′′′) If ζR(T) ∩ σe+(T) = ∅ and ζN(T) ∩ σe−(T) = ∅,

then σ+∞(T) = ζN(T) and σ−∞(T) = ζR(T).
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Proof. Let σ+∞(T) = σe+(T)\σe−(T) and σ−∞(T) = σe−(T)\σe+(T) be the pseu-
doholes of σe(T), and consider the following assertions.

(a) σ+∞(T) = ∅ and σ−∞(T) = ∅ (i.e., σe(T) has no pseudoholes).

(b) σe+(T) = σe−(T).

(c) σℓe(T) = σre(T).

(d) σ+∞(T) = ζN(T)\σe−(T) and σ−∞(T) = ζR(T)\σe+(T).

(i) The very definition of σ+∞(T) and σ−∞(T) ensures that (a) and (b) are equiva-
lent, and from Lemma 4.1(e) it follows that (b) implies (c). Thus (i) holds.

(ii) If σℓe(T) = σre(T), then σℓe(T)\σre(T) = σre(T)\σℓe(T) = ∅. By Lemma
4.1(b) we get σe+(T)\σe−(T) ⊆ ζN(T) and σe−(T)\σe+(T) ⊆ ζR(T). By Lemma
4.1(a), σe+(T)\σe−(T) ⊆ ζN(T)\σe−(T) ⊆ σe+(T)\σe−(T) and σe−(T)\σe+(T) ⊆
ζR(T)\σe+(T) ⊆ σe−(T)\σe+(T). Thus (c) implies (d), and so (ii) holds.

(ii′) Suppose σℓe(T) = σre(T) so that σ+∞(T) = ζN(T)\σe−(T) by (ii). Suppose
ζN(T) is closed in C. Recall that σ+∞(T) is bounded. Assume that σ+∞(T) 6= ∅.
If ζN(T) ∩ σe−(T) 6= ∅, then σ+∞(T) = ζN(T)\σe−(T) ⊆ ζN(T) is not open (be-
cause ζN(T) and σe−(T) are closed), which is a contradiction (since σ+∞(T) is
open). If ζN(T) ∩ σe−(T) = ∅, then σ+∞(T) = ζN(T), which is another contradic-
tion (since σ+∞(T) is open and bounded and ζN(T) is closed). Thus σ+∞(T) = ∅.
Outcome: σℓe(T) = σre(T) and ζN(T) closed imply σ+∞(T) = ∅. Similarly (same
argument), σℓe(T) = σre(T) and ζR(T) closed imply σ−∞(T) = ∅.

(ii′′) If ζR(T) = ζN(T), then ζR(T)∪ ζN(T) ⊆ σe+(T) ∩ σe−(T) according to Lemma
4.1(a). If σℓe(T) = σre(T) and ζR(T) ∪ ζN(T) ⊆ σe+(T) ∩ σe−(T), then σ+∞(T) =
ζN(T)\σe−(T) = ∅ and σ−∞(T) = ζR(T)\σe+(T) = ∅ from (ii).

(ii′′′) On the other hand, if ζR(T) ∩ σe+(T) = ζN(T) ∩ σe−(T) = ∅ (in addition to
σℓe(T) = σre(T)), we get from (ii) that σ+∞(T) = ζN(T) and σ−∞(T) = ζR(T).

Remark 5.2. The identity σe+(T) = σe−(T) implies the identity σℓe(T) = σre(T)
by Theorem 5.1(i). The reverse implication holds if ζR(T) and ζN(T) are open,
or closed, or ζR(T) ∪ ζN(T) ⊆ σe+(T) ∩ σe−(T) by Theorems 4.1(b) and 5.1(ii′,ii′′),
but the reverse implication might fail if it is possible that ζR(T) and ζN(T) are
nonclosed, or nonopen, or ζR(T) ∪ ζN(T) 6⊆ σe+(T) ∩ σe−(T). For instance, take
a compact nonempty subset D of C (e.g., the closed unit disk) and two proper
subsets DR and DN of D, not both closed nor both open, such that (D\DR)

− 6=
(D\DN)

−. If it is possible that ζR(T) = DR and ζN(T) = DN, and if σe+(T) =
(D\DR)

− and σe−(T) = (D\DN)
−, then σℓe(T) = σre(T) = D and σe+(T) 6=

σe−(T).
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6 An Application

An operator T on a (complex) infinite-dimensional separable Hilbert space is
quasitriangular if there exists a sequence {En} of finite-rank projections such that
(i) {En} converges strongly to the identity operator I and (ii) {(I − En)TEn} con-
verges uniformly to the null operator [8, Section 2]. If both T and its adjoint T∗

are quasitriangular, then T is biquasitriangular. Biquasitriangular operators were
equivalently described in [1, Theorem 5.4], [2, Theorem 2.1] (also see [17, p.37])
as follows. An operator T is biquasitriangular if and only if

(1) σℓe(T) = σre(T) = σe(T) = σw(T),

which in a Hilbert space setting means that σe(T) has no holes and no pseu-
doholes [13, Section 4]. This immediately extends the definition of biquasitri-
angularity from separable to general Hilbert spaces. Note that, since the above
result was worked out in a Hilbert space setting (where σe+(T) = σℓe(T) and
σe−(T) = σre(T) — see Remark 4.1), it actually means that a Hilbert-space opera-
tor T is biquasitriangular if and only if

(1′) σe+(T) = σe−(T) = σe(T) = σw(T),

and this can be naturally extended to an arbitrary (complex) Banach space. How-
ever, as we saw in the preceding section (Spectral Picture and Schechter Theorem)
the identities in (1′) are equivalent to saying that T has no holes or pseudoholes.
Therefore, an operator T is biquasitriangular if and only if

(1′′) σe(T) has no holes and no pseudoholes,

where (1′) and (1′′) are equivalent definitions of biquasitriangularity for operators
T acting on any Banach space [14, Lemma 3.1(e)] and [6]. (Recall that here we have
defined σe+(T) and σe−(T) coincidently with what has been defined as σℓe(T) and
σre(T) in [1], [2], [5], [10], [12], [13], [14], and [17] — see Remark 5.1.)

Assertions (1′) and (1′′) are always equivalent (i.e., (1′) and (1′′) are equivalent
in an arbitrary Banach space) by the very definition of holes and pseudoholes in
Section 5. Assertions (1) and (1′) are equivalent in a Hilbert space. The next corol-
lary summarizes when assertions (1) and (1′) are equivalent in a Banach space.

Corollary 6.1. Let T ∈ B[X ] be an operator acting on a Banach space X . If either

(a) ζR(T) and ζN(T) are closed, or

(b) ζR(T) and ζN(T) are open, or

(c) ζR(T) ⊆ σe+(T) and ζN(T) ⊆ σe−(T) (in particular, if ζR(T) = ζN(T)),

then (1) and (1′) are equivalent; and each of (a), (b), (c) holds whenever each of

(a′) ΓR[X ] and ΓR[X ] are open,

(b′) ΓR[X ] and ΓR[X ] are closed,
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(c′) Φ−[X ] ⊆ ΓR[X ] and Φ+[X ] ⊆ ΓN [X ] (in particular, if ΓR[X ] = ΓN [X ])

holds, respectively.

Proof. Apply Theorems 4.1 and 5.1 (see Question 3.1).
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