
Spacelike Hypersurfaces with Constant Mean

Curvature in the Steady State Space

A. Gervasio Colares Henrique F. de Lima∗

Abstract

In this paper we obtain height estimates concerning to a compact space-
like hypersurface Σn immersed with constant mean curvature H in the Steady
State space Hn+1, when its boundary is contained into some hyperplane of
this spacetime. As a first application of these results, when Σn has spheri-
cal boundary, we establish relations between its height and the radius of its
boundary. Moreover, under a certain restriction on the Gauss map of Σn, we
obtain a sharp estimate for H. Finally, we also apply our estimates to de-
scribe the end of a complete spacelike hypersurface and to get theorems of
characterization concerning to spacelike hyperplanes in Hn+1.

1 Introduction

Interest in the study of spacelike hypersurfaces in Lorentzian manifolds has in-
creased very much in recent years, from both the physical and mathematical
points of view. For example, it was pointed out by J. Marsdan and F. Tipler
in [16] and S. Stumbles in [22] that spacelike hypersurfaces with constant mean
curvature in arbitrary spacetime play an important part in the relativity theory.
They are convenient as initial hypersurfaces for the Cauchy problem in arbitrary
spacetime and for studying the propagation of gravitational radiation. From a
mathematical point of view, that interest is also motivated by the fact that these
hypersurfaces exhibit nice Bernstein-type properties. Actually, E. Calabi in [6], for
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n ≤ 4, and S.Y. Cheng and S.T. Yau in [8], for arbitrary n, showed that the only
complete immersed spacelike hypersurfaces of the (n + 1)-dimensional Lorentz-
Minkowski space Ln+1 with zero mean curvature are the spacelike hyperplanes.

Recently, R. López obtained a sharp estimate for the height of compact space-
like surfaces Σ2 immersed into the 3-dimensional Lorentz-Minkowski space L3

with constant mean curvature (cf. [15], Theorem 1). For the case of constant
higher order mean curvature, by applying the techniques used by Hoffman, de
Lira and Rosenberg in [11], the second author obtained another sharp height es-
timate for compact spacelike hypersurfaces immersed in the (n + 1)-dimensional
Lorentz-Minkowski space Ln+1 (cf. [14], Theorem 4.2). As an application of this
estimate, he studied the nature of the end of a complete spacelike hypersurface
of Ln+1.

In this paper we deal with a compact spacelike hypersurface Σn immersed
in the Steady State space Hn+1, which is a particular model of Robertson-Walker
spacetime given by Hn+1 = −R ×et Rn (cf. Section 3). In this setting, by sup-
posing the mean curvature H of Σn constant and its boundary ∂Σ contained into
some hyperplane of Hn+1, we obtain estimates for its height function h in terms
of H. We prove the following result:

Theorem (Theorem 3.1) Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose
boundary ∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature
H > 1 is constant and that ∂Σ is mean convex. Then, the height h of Σn with respect to
Ln(τ) satisfies the inequality

eh + h ≤ H

and, consequently,
h ≤ ln H.

It is important to point out that, by analyzing López’s result in [15] as well as
the estimate obtained by the second author in [14] (both of them related to the
Lorentz-Minkowski space Ln+1), the estimate of the preceding theorem has the
great virtue that it does not depend on the geometry of the hypersurface Σn, but
only on the value of the mean curvature H.

On the other hand, we observe that E. Heinz in [10] discovered that a compact
graph Σn over a hyperplane Π of the Euclidean space Rn+1, with zero boundary
values and having constant mean curvature H > 0, is at most a height 1

H from

Π (see also [20] and [21]). A hemisphere in Rn+1 of radius 1
H shows that this

estimate is optimal. If we reinterpret the estimate of Heinz as an upper bound for
the mean curvature in terms of the height function h, i.e.,

H ≤ 1

h
,

we note that there exists a duality between our Theorem 3.1 and Heinz’s result in
the sense that in our theorem we have obtained a lower bound one; as follows:

H ≥ eh.

In this setting, we note that the hyperplanes realize our estimate.
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We also observe that, in connection with our work but using different tools,
S. Montiel obtained another height estimate for compact spacelike hypersurfaces
with constant mean curvature H > 1 in the Steady State space (cf. [18], Theo-
rem 5). By comparing with Montiel’s result, the advantage of our corresponding
estimates is their independence on the hyperplane where the boundary of the hy-
persurface is contained. This fact is exactly what enable us to use our estimates
for the study of the complete noncompact spacelike hypersurfaces immersed in
Hn+1 with constant mean curvature (cf. Section 5). At this point notice that,
since there is not exist complete noncompact spacelike hypersurface with con-
stant mean curvature H < 1 in Hn+1 which are umbilical (cf. [18], Section 3), it is
natural that we restrict ourselves to the case H ≥ 1.

Suitable formulae for the Laplacians of h and of a support-like function natu-
rally attached to a spacelike hypersurface (cf. Lemma 2.1) constitute the analytical
tools that we use to get our estimate. As a first application of Theorem 3.1, when
such a hypersurface has spherical boundary, we establish relations between its
height and the radius of its boundary (cf. Corollary 3.3 and Corollary 3.8).

Afterwards, by imposing a certain restriction on the Gauss map of Σn, we ob-
tain a sharp estimate for the mean curvature H. More precisely:

Theorem (Theorem 4.1) Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose
boundary ∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature
H ≥ 1 is constant and that the hyperbolic image of Σn is contained in the closure of the
interior domain enclosed by the horosphere Ln(̺). Then,

H ≤ ̺2

τ2

and the equality happens only in the case that Σn is entirely contained in Ln(τ). More-
over, the height h of Σn with respect to Ln(τ) satisfies

h ≤ ln
(̺

τ

)
.

Furthermore, we apply our estimates to obtain the following description of
the end of a complete spacelike hypersurface:

Theorem (Theorem 5.1) Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with
one end. Suppose that the mean curvature H > 1 is constant and that Σn is horizontally
mean convex. Then, the end of Σ is not divergent.

We also use our estimates to get theorems of characterization concerning space-
like hyperplanes in Hn+1, as the following one:

Theorem (Theorem 5.3) Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with
one end over a hyperplane Ln(τ), for some τ > 0. Suppose that the hyperbolic image
of Σn is contained in the closure of the interior domain enclosed by a horosphere Ln(̺),

for some ̺ ≥ τ. If the mean curvature H is a constant satisfying H ≥ ̺2

τ2 , then Σn is a
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hyperplane Ln(τ̃) for some 0 < τ̃ ≤ τ.

Finally, we observe that A.L. Albujer and L.J. Alı́as have recently found in-
teresting Bernstein-type results in the 3-dimensional Steady State space (cf. [1]).
Moreover, considering the generalized Robertson-Walker spacetime model of
Hn+1, they extended their results to a wider family of spacetimes.

2 Preliminaries

Let Mn be a connected, n-dimensional (n ≥ 2) oriented Riemannian manifold,
I ⊂ R an interval and f : I → R a positive smooth function. In the product

differentiable manifold M
n+1

= I × Mn, let πI and πM denote the projections
onto the factors I and M, respectively.

A particular class of Lorentzian manifolds (spacetimes) is the one obtained by
furnishing M with the metric

〈v, w〉p = −〈(πI)∗v, (πI)∗w〉+ ( f ◦ πI) (p)2〈(πM)∗v, (πM)∗w〉,

for all p ∈ M and all v, w ∈ TpM. Such a space is called (following the termi-
nology introduced in [3]) a Generalized Robertson-Walker (GRW) spacetime, and

in what follows we shall write M
n+1

= −I × f Mn to denote it. In particular,
when Mn has constant sectional curvature, then −I × f Mn is classically called a
Robertson-Walker (RW) spacetime (cf. [19]).

We recall that a tangent vector field K on a spacetime M
n+1

is said to be con-

formal if the Lie derivative with respect to K of the metric 〈, 〉 of M
n+1

satisfies:

£K 〈, 〉 = 2φ 〈, 〉 ,

for a certain smooth function φ ∈ D(M
n+1

). Since LK(X) = [K, X] for all
X ∈ X (M), it follows from the tensorial character of LK that K ∈ X (M) is con-
formal if and only if

〈∇XK, Y〉+ 〈X,∇YK〉 = 2φ〈X, Y〉,

for all X, Y ∈ X (M). In particular, K is a Killing vector field relatively to the
metric 〈, 〉 if and only if φ ≡ 0.

We observe that, when M
n+1

= −I × f Mn is a GRW spacetime, the vector
field

K = f ∂t = ( f ◦ πI)∂t

is conformal and closed (in the sense that its dual 1−form is closed), with confor-
mal factor φ = f ′, where the prime denotes differentiation with respect to t ∈ I
(cf. [17]).

A smooth immersion ψ : Σn → M
n+1

of an n-dimensional connected manifold
Σn is said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian
metric on Σn, which, as usual, is also denoted by 〈, 〉. In this setting, ∇ stands
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for the Levi-Civita connection of Σn, A the corresponding shape operator and
H = −tr(A)/n the mean curvature.

To close this section, we present the analytical framework that we will use to
obtain our estimates. The formulae collected in the following lemma are particu-
lar cases of ones obtained by L.J. Alı́as jointly with the first author (cf. [2], Lemma
4.1 and Corollary 8.5). Here, and for the sake of completeness, we present more
direct and specific proofs (for an alternative proof of the item (b) of the following
lemma see [7], Proposition 3.1; see also [4], Proposition 3.1).

Lemma 2.1. Let ψ : Σn → −I × f Mn be a spacelike hypersurface immersed into a GRW
spacetime, with Gauss map N. Then,

(a) by denoting h = πI ◦ ψ the height function of Σ, we have

△h = −(ln f )′(h)(n + |∇h|2)− nH〈N, ∂t〉;

(b) by supposing M
n+1

a RW spacetime with flat Riemannian fiber Mn, we get

△〈N, K〉 = n〈∇H, K〉+nH f ′(h)+ 〈N, K〉
(
|A|2 − (n − 1)(ln f )′′(h)|∇h|2

)
,

where K = f ∂t and |A| is the Hilbert-Schmidt norm of A.

Proof. (a) One has

∇h = ∇(πI|Σ) = (∇πI)
⊤ = −∂⊤t

= −∂t − 〈N, ∂t〉N,

where ∇ denotes the gradient with respect to the metric of the ambient space and
X⊤ the tangential component of a vector field X ∈ X (M) on Σ. Now, fixed p ∈ M
and v ∈ TpM, write v = w − 〈v, ∂t〉∂t, so that w ∈ TpM is tangent to the fiber of

M passing through p. By repeated use of the formulae of item (2) of Proposition
7.35 of [19], we get

∇v∂t = ∇w∂t − 〈v, ∂t〉∇∂t
∂t = ∇w∂t

= (ln f )′w = (ln f )′(v + 〈v, ∂t〉∂t).

Thus,

∇v∇h = ∇v∇h + 〈Av,∇h〉N

= ∇v(−∂t − 〈N, ∂t〉N) + 〈Av,∇h〉N

= −(ln f )′w − v(〈N, ∂t〉)N + 〈N, ∂t〉Av + 〈Av,∇h〉N

= −(ln f )′w + (〈Av, ∂t〉 − 〈N,∇v∂t〉)N + 〈N, ∂t〉Av + 〈Av,∇h〉N

= −(ln f )′w + (〈Av, ∂⊤t 〉 − 〈N, (ln f )′w〉)N + 〈N, ∂t〉Av + 〈Av,∇h〉N

= −(ln f )′w − (ln f )′〈v, ∂t〉〈N, ∂t〉N + 〈N, ∂t〉Av

= −(ln f )′{v − 〈v, ∂t〉(−∂t − 〈N, ∂t〉N)}+ 〈N, ∂t〉Av

= (ln f )′(−v + 〈v, ∂⊤t 〉∇h) + 〈N, ∂t〉Av

= −(ln f )′(v + 〈v,∇h〉∇h) + 〈N, ∂t〉Av.
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Finally, by fixing p ∈ Σ and an orthonormal frame {ei} at TpΣ, one gets

△h = tr(Hess h) =
n

∑
i=1

〈∇ei
∇h, ei〉

=
n

∑
i=1

〈−(ln f )′(ei + 〈ei,∇h〉∇h) + 〈N, ∂t〉Aei, ei〉

= −(ln f )′(n + |∇h|2) + 〈N, ∂t〉tr(A)

= −(ln f )′(h)(n + |∇h|2)− nH〈N, ∂t〉.
(b) To prove the formula for △〈N, K〉, suppose that the Riemannian fiber Mn

is flat. Since ∇VK = f ′(h)V for all V ∈ X (Σ), we easily see that

∇〈N, K〉 = −A(K⊤).

Thus, for all V ∈ X (Σ),

∇V(∇〈N, K〉) = −(∇V A)(K⊤)− A(∇V K⊤).

Then, since ∇h = −∂⊤t , by Codazzi equation we get

∇V(∇〈N, K〉) = −(∇K⊤ A)(V)− (R(V, K⊤)N)⊤ − f ′(h)A(V) + 〈N, K〉A2(V),

where R denotes the curvature tensor of the spacetime M
n+1

. On the other hand,
by taking an orthonormal frame {ei}, one has

tr(∇W A) =
n

∑
i=1

〈(∇W A)ei, ei〉 =
n

∑
i=1

W〈Aei, ei〉 = −n〈∇H, W〉,

for all W ∈ X (Σ).
Therefore, from Proposition 7.42 and Corollary 7.43 of [19], we obtain that

△〈N, K〉 = n〈∇H, K〉+ nH f ′(h) + 〈N, K〉
(
|A|2 − (n − 1)(ln f )′′(h)|∇h|2

)
.

3 Height Estimate for Hypersurfaces in the Steady State Space

In what follows we consider a particular model of RW spacetime, the Steady State
space, namely

Hn+1 = −R ×et R
n.

We observe that the Steady State space appears naturally in physical context
as an exact solution for the Einstein equations, being a cosmological model where
matter is supposed to travel along geodesics normal to the horizontal hyper-
planes; these, in turn, serve as the initial data for the Cauchy problem associated
to those equations (see [9], Chapter 5).
An alternative description of the Steady State space Hn+1 (cf. [18]; see also [13])
can be given as follows. Let Ln+2 denote the (n + 2)-dimensional Lorentz-Min-
kowski space (n ≥ 2), that is, the real vector space Rn+2, endowed with the
Lorentz metric

〈v, w〉 =
n+1

∑
i=1

viwi − vn+2wn+2,
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for all v, w ∈ R
n+2. We define the (n + 1)-dimensional de Sitter space S

n+1
1 as the

following hyperquadric of Ln+2:

S
n+1
1 =

{
p ∈ Ln+2; 〈p, p〉 = 1

}
.

From the above definition it is easy to show that the metric induced from 〈 , 〉
turns S

n+1
1 into a Lorentz manifold with constant sectional curvature 1. Moreover,

for p ∈ S
n+1
1 , we have

TpS
n+1
1 =

{
v ∈ L

n+2; 〈v, p〉 = 0
}

.

Let a ∈ Ln+2 be a nonzero null vector of the null cone with vertex in the origin,
such that 〈a, en+2〉 > 0, where en+2 = (0, . . . , 0, 1).

It can be shown that the open region
{

p ∈ S
n+1
1 ; 〈p, a〉 > 0

}

of the de Sitter space S
n+1
1 is isometric to Hn+1 (cf. [1], Section 4). This open

region forms the spacetime for the steady state model of the universe proposed
by Bondi and Gold [5] and Hoyle [12], when looking for a model of the universe
which looks the same not only at all points and in all directions (that is, spatially
isotropic and homogeneous), but at all times (cf. [9], Section 5.2; see also [23],
Section 14.8). We will call by Minkowski model this alternative description of Hn+1.
We observe that, in this setting, the boundary of Hn+1 is the null hypersurface

{
p ∈ S

n+1
1 ; 〈p, a〉 = 0

}
,

whose topology is that of R× S
n−1. Now, we consider in Hn+1 the timelike vector

field
K = − 〈x, a〉 x + a.

We easily see that

∇VK = − 〈x, a〉V, for all V ∈ X (Hn+1).

Thus, K is a closed conformal vector field globally defined in Hn+1 and, conse-
quently (cf. [17], Proposition 1), determines a foliation on Hn+1 by hyperplanes

Ln(τ) =
{

x ∈ Sn+1
1 ; 〈x, a〉 = τ

}
, τ > 0,

which are totally umbilical hypersurfaces of Hn+1. Moreover, each Ln(τ) is iso-
metric to the Euclidean space R

n and has constant mean curvature 1 with respect
to the unit normal fields

Nτ (x) = −x +
1

τ
a, x ∈ Ln(τ).

We note that the hyperplanes Ln(τ) approach to the boundary of Hn+1 when τ
tends to zero and that, when τ tends to ∞, they approach to the spacelike future
infinity for timelike and null lines of de Sitter space.
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In what follows, considering the Minkowski model of Hn+1, we will deal
with a compact spacelike hypersurface ψ : Σn → Hn+1 whose boundary ∂Σ is a
(n − 1)-dimensional closed submanifold embedded in a hyperplane Ln(τ), for
some τ > 0. Moreover, we will suppose that the spacelike hypersurface Σn ori-
ented by a unit normal field N in the same time-orientation of K (that is, such that
〈N, K〉 < 0).

In this setting, we will subtend the compositions with the isometry Φτ be-
tween the Minkowski and RW models of Hn+1 which is characterized by

Φτ(Ln(τ)) = {0} × R
n and (Φτ)∗ (Nτ) = ∂t.

In order to establish our main estimate for the height function of a spacelike
hypersurface of the Steady State space, we regard that an embedded closed hy-
persurface of a Euclidean space is said to be mean convex when its mean curvature
with respect to the interior normal field is non-negative.

Theorem 3.1. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H > 1 is
constant and that ∂Σ is mean convex. Then, the height h of Σn with respect to Ln(τ)
satisfies the inequality

eh + h ≤ H

and, consequently,

h ≤ ln H.

Proof. We first see that, as a consequence of the tangency principle in the Steady
State space (cf. [18], Theorem 2), Proposition 3 of [18] assures that the height func-
tion h is non-negative. Thus, in order to get the above inequalities, we define on
Σn the function

ϕ = c h − 〈N, K〉,
where c is a positive constant to be determined and K = et∂t. Notice that, from
the assumptions that Σn has constant mean curvature H > 1 and that the bound-
ary ∂Σ is mean convex, we are in the position to apply the gradient estimates of
Montiel (cf. [18], Theorem 7). Then, we have that

0 > 〈N, a〉 ≥ −Hτ

on Σn and, consequently,

〈N, ∂t〉 = 〈N, Nτ〉 = 〈N,−ψ +
1

τ
a〉 ≥ −H

on ∂Σ. Therefore,

ϕ|∂Σ ≤ H.

On the other hand, since ∇h = −∂⊤t , one has |∇h|2 = 〈N, ∂t〉2 − 1 and, from
Lemma 2.1,

△ϕ = c{1 − 〈N, ∂t〉2 − n − nH〈N, ∂t〉} − nHeh − 〈N, ∂t〉|A|2eh.
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Now, let S2 denote the second elementary symmetric function on the eigenvalues
of A, and H2 = 2S2/n(n − 1) denote the mean value of S2. Elementary algebra
gives

|A|2 = n2H2 − n(n − 1)H2,

which put into the above formula gives

△ϕ = c{1 − 〈N, ∂t〉2 − n − nH〈N, ∂t〉}
+nH(H − 1)eh − n(n − 1)(H2 − H2)〈N, ∂t〉eh.

Since h ≥ 0, −1 ≥ 〈N, ∂t〉 ≥ −H and (from the Cauchy-Schwarz inequality)
H2 − H2 ≥ 0, we get

△ϕ ≥ nH(H − 1)(1 − c) + (n − 1)(H2 − 1)c.

Thus, by taking c = 1, we get that △ϕ ≥ 0. Consequently, from the maximum
principle, ϕ ≤ H on Σn. Therefore, by the definition of the function ϕ,

eh + h ≤ H

and, consequently,
h ≤ ln H.

Remark 3.2. Related to our previous theorem, it is important to observe the fol-
lowing facts:

(i) A result which is similar to the above theorem were obtained by S. Montiel
(cf. [18], Theorem 5). Differently of Montiel’s result, we note that the above
estimate does not depend of the parameter τ > 0 associated to the hyper-
plane where the boundary of the hypersurface is contained. This fact will
allow us to describe the nature of the end of a complete spacelike hyper-
surface immersed in the Steady State space with constant mean curvature
H > 1 (cf. Section 5).

(ii) Notice that compact spacelike hypersurfaces satisfying the conditions re-
quired in Theorem 3.1 actually exist. In fact, Montiel has proved that given
a compact domain Γ on a time slice of the Steady State space Hn+1 with
mean convex boundary and a real number H ≥ 1, there exists a spacelike
graph over Γ with constant mean curvature H and boundary ∂Γ (cf. [18],
Theorem 9).

As an application of the previous theorem, and using Theorem 2 of [13], we
obtain the following result.

Corollary 3.3. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ = Sn−1(ρ) is a (n − 1)−dimensional geodesic sphere of radius ρ into the hyperplane

Ln(τ). Suppose that the mean curvature H > 1 is constant. If
√

3 − 1 < ρ < 1 or√
2 + 1 < ρ <

√
3 + 1, then the height h of Σn with respect to Ln(τ) satisfies the

inequality

h < − ln

(
ρ −

∣∣∣∣1 −
ρ2

2

∣∣∣∣
)

.



296 A. G. Colares – H. F. de Lima

Remark 3.4. In the above corollary, we have a strict inequality because a necessary

condition to get h = − ln
(

ρ −
∣∣∣1 − ρ2

2

∣∣∣
)

is that 1 − ρ2

2 = 0 or, equivalently, ρ =
√

2; but, this implies that |H| ≤
√

2
2 < 1 (cf. [13], Corollary 3).

Theorem 3.5. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H > (n −
1) ≥ 1 is constant and that ∂Σ is mean convex. Then, the height h of Σn with respect to
Ln(τ) satisfies the inequality

eh +
nHh

H − (n − 1)
≤ H

and, consequently,

h ≤ H

n
+

n − 1

nH
− 1.

Proof. To get this another estimate, it’s enough to reproduce the proof of Theo-
rem 3.1 by taking

c =
nH

H − (n − 1)
.

Remark 3.6. We observe that, for example, in the case H = n the estimate in Theo-
rem 3.5 is better than that in Theorem 3.1. On the other hand, fixed the dimension
n, since ln H

H → 0 when H → ∞, for H sufficiently large we have that the estimate
in Theorem 3.1 is better than that in Theorem 3.5.

As consequences of our last estimate, we obtain the following results.

Corollary 3.7. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H > (n −
1) ≥ 1 is constant and that ∂Σ is mean convex. Then, the height h of Σn with respect to
Ln(τ) satisfies the inequality

h ≤ min

(
ln H,

H

n
+

n − 1

nH
− 1

)
.

Corollary 3.8. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ = Sn−1(ρ) is a (n − 1)−dimensional geodesic sphere of radius ρ into the hyperplane

Ln(τ). Suppose that the mean curvature H > (n − 1) ≥ 1 is constant. If
√

3 − 1 <

ρ < 1 or
√

2 + 1 < ρ <

√
3 + 1, then the height h of Σn with respect to Ln(τ) satisfies

the inequality

h <
1

n

{(
ρ −

∣∣∣∣1 −
ρ2

2

∣∣∣∣
)−1

− 1

}
.

4 A sharp estimate for the mean curvature

In order to establish the next results, we observe that the Gauss map N of a space-
like hypersurface Σn immersed in the Steady State space Hn+1 can be thought of
as a map

N : Σn → H
n+1
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taking values in the hyperbolic space

H
n+1 =

{
x ∈ L

n+2; 〈x, x〉 = −1, 〈x, a〉 < 0
}

.

Here a is any non-zero null vector in L
n+2, which will be chosen to be the same

one in the beginning of this section; that is, 〈a, en+2〉 > 0, where en+2 = (0, · · ·, 0, 1).
In this setting, the image N(Σ) is called the hyperbolic image of Σn.

On the other hand, all the horospheres of Hn+1 can be realized in the Minkow-
ski model in the following way:

Ln(̺) =
{

x ∈ H
n+1; 〈x, a〉 = −̺

}
,

where ̺ is a positive number.
We easily see that when Σn is a compact spacelike hypersurface whose bound-

ary in some hyperplane Ln(τ) and its hyperbolic image is contained in the closure
of the interior domain enclosed by some horosphere Ln(̺), we must have ̺ ≥ τ.

Now, by supposing a certain restriction on the hyperbolic image of the space-
like hypersurface, we state and prove a sharp estimate for its mean curvature.

Theorem 4.1. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H ≥ 1 is
constant and that the hyperbolic image of Σn is contained in the closure of the interior
domain enclosed by the horosphere Ln(̺). Then,

H ≤ ̺2

τ2

and the equality happens only in the case that Σn is entirely contained in Ln(τ). More-
over, the height h of Σn with respect to Ln(τ) satisfies

h ≤ ln
(̺

τ

)
.

Proof. Fixe a positive number c and consider on Σn the function ϕ given by

ϕ = c h − 〈N, K〉,

where K = et∂t. We observe that, since our hypothesis on the hyperbolic image
of Σn implies that

0 > 〈N, a〉 ≥ −̺,

we have that

−1 ≥ 〈N, ∂t〉 = 〈N, Nτ〉 = 〈N,−ψ +
1

τ
a〉 ≥ −̺

τ
.

Consequently, we get

ϕ|∂Σ ≤ ̺

τ
.

On the other hand, from Lemma 2.1, we have that

△ϕ = c{1 − 〈N, ∂t〉2 − n − nH〈N, ∂t〉} − nHeh − 〈N, ∂t〉|A|2eh,
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where we also have used that |∇h|2 = 〈N, ∂t〉2 − 1; since −1 ≥ 〈N, ∂t〉 ≥ − ̺
τ and

|A|2 ≥ nH2, we then get

△ϕ ≥ n

{
c

(
H − ̺2

τ2

)
+ H(H − 1)

}
.

Now, supposing by contradiction that H >
̺2

τ2 , we have that △ϕ ≥ 0. Thus, from

the maximum principle, we get that ϕ ≤ ̺
τ on Σn and, consequently,

h ≤ ̺

c τ
.

Since c > 0 was taken arbitrarily, we conclude that h ≡ 0 and so, ψ (Σ) must be
a compact domain of the hyperplane Ln(τ). However, in this case we must have

H ≡ 1 ≤ ̺2

τ2 , and we arrive at a contradiction. Therefore, 1 ≤ H ≤ ̺2

τ2 .

Now, suppose that H =
̺2

τ2 . Thus, as in the preceding calculations, we see
that in this case we have h ≡ 0; so, ψ (Σ) is a compact domain of the hyperplane
Ln(τ). Reciprocally, if ψ (Σ) ⊂ Ln(τ), we have that N = Nτ = −ψ + 1

τ a and,

consequently, 〈N, a〉 = −τ; so, ̺ = τ and H = ̺2

τ2 ≡ 1.
Finally, by applying the same steps of the proof of Theorem 3.1 for the function

ϕ =
H(H − 1)

̺2

τ2 − H
h − 〈N, K〉,

we obtain that

h ≤ ln
( ̺

τ

)
.

We derive from Theorem 4.1 the following corollaries.

Corollary 4.2. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H > 1 is
constant and that the hyperbolic image of Σn is contained in the closure of the interior

domain enclosed by the horosphere Ln(̺). If H <
̺2

τ2 , then the height h of Σn with respect

Ln(τ) satisfies

h ≤
( ̺

τ − 1
) ( ̺2

τ2 − H
)

H(H − 1)
.

Corollary 4.3. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
is contained in a hyperplane Ln(τ). Suppose that Σn satisfies the following conditions:

(a) The mean curvature H ≥ 1 is constant;

(b) The hyperbolic image is contained in the closure of the interior domain enclosed by
the horosphere Ln(τ).

Then, Σn is a compact domain of Ln(τ).
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To close this section, also as a consequence of Theorem 4.1, we present a re-
sult that gives us an information about the Gauss map of a compact spacelike
hypersurface of the Steady State space.

Corollary 4.4. Let ψ : Σn → Hn+1 be a compact spacelike hypersurface whose boundary
∂Σ is contained in the hyperplane Ln(τ). Suppose that the mean curvature H ≥ 1 is
constant. If Σn is not entirely contained into Ln(τ), then the hyperbolic image of Σn

is contained in the closure of the interior domain enclosed by a horosphere Ln(̺) with
̺ > τ.

5 Complete spacelike hypersurfaces with one end

In this section, considering the RW model of the Steady State space, we deal with
complete spacelike hypersurface ψ : Σn → Hn+1 with one end Nn, that is, a hy-
persurface Σn that we can regarded as

Σn = Σn
t ∪ Nn,

where Σn
t is a compact hypersurface with boundary contained into a horizontal

hyperplane Πt = {t} × Rn of Hn+1, and Nn is diffeomorphic to the cylinder
[t, ∞)× Sn−1.

Given a complete spacelike hypersurface Σn = Σn
t ∪ Nn with one end, we

say that its end Nn is divergent if, considering Nn with coordinates p = (s, q) ∈
[t, ∞)× Sn−1, we have that

lim
s→∞

h(p) = ∞,

where h denotes the height function of the end Nn with respect to ∂t.
Finally, a complete spacelike hypersurface Σn immersed in the Steady State

space Hn+1 is said to be horizontally mean convex when the nonempty intersection
of Σn with any horizontal hyperplane of Hn+1 is mean convex.

Theorem 5.1. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with one end.
Suppose that the mean curvature H > 1 is constant and that Σn is horizontally mean
convex. Then, the end of Σ is not divergent.

Proof. Suppose, by contradiction, that the end Nn of Σn = Σn
t ∪ Nn is divergent.

Then, since Σn
t is a compact hypersurface with mean convex boundary contained

into a hyperplane Πt, from Theorem 3.1 we have that the height of Σn
t with respect

Πt is at most equal to ln H.
Now, using the hypothesis of that the end Nn of Σn is divergent, we can inter-

sect Σn by the hyperplane Πt−ln H and to obtain a compact hypersurface Σn
t−ln H

with constant mean curvature H, with mean convex boundary contained into the
hyperplane Πt−ln H, and whose height is strictly greater than ln H.

Therefore, we get a contradiction with respect the estimate of Theorem 3.1
and, consequently, we conclude that the end Nn of Σn must be not divergent.

In order to establish our last results, we need one more definition: we say that
a spacelike hypersurface Σn immersed in Hn+1 is over a hyperplane Ln(τ) when,
taking into accounting the isometry Φτ (cf. Section 3), the height function h of Σn

is such that h ≥ 0.
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Remark 5.2. Related to the preceding definition, we note that:

(i) Since Nτ is past directed, saying that the hyperplane Ln(τ̃) be over Ln(τ)
means that 0 < τ̃ ≤ τ;

(ii) Theorem 5.1 gives us a sufficient condition for a complete spacelike hyper-
surface Σn with one end be over a hyperplane Ln(τ), for some τ > 0.

As a consequence of Theorem 4.1, one can reason as in the previous result
to obtain the following characterization concerning spacelike hyperplanes of the
Steady State space.

Theorem 5.3. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface with one end
over a hyperplane Ln(τ), for some τ > 0. Suppose that the hyperbolic image of Σn is
contained in the closure of the interior domain enclosed by a horosphere Ln(̺), for some

̺ ≥ τ. If the mean curvature H is a constant satisfying H ≥ ̺2

τ2 , then Σn is a hyperplane

Ln(τ̃) for some 0 < τ̃ ≤ τ.

Proof. Suppose, by contradiction, that Σn is not a hyperplane; so, since Σn is over
Ln(τ), (considering the RW model) we can intersect it by two horizontal hyper-
planes Πt̃ and Πt, with 0 < t̃ < t.

In this way, we obtain two compact hypersurfaces Σm
t̃

and Σn
t , with Σm

t̃
⊂ Σn

t ,

both of them with constant mean curvature H ≥ ̺2

τ2 . But, from Theorem 4.1, we
must have that Σm

t̃
is a compact domain of Πt̃, while Σn

t is a compact domain of
Πt.

Therefore, we get a contradiction and, consequently, (returning to the Min-
kowski model) Σn must be a hyperplane Ln(τ̃) for some 0 < τ̃ ≤ τ.

From the previous theorem we derive a nonexistence result concerning to
complete spacelike hypersurfaces immersed in the Steady State space with con-
stant mean curvature.

Corollary 5.4. There exists no complete spacelike hypersurface ψ : Σn → Hn+1 with
one end over a hyperplane Ln(τ) and satisfying the following conditions:

(a) The hyperbolic image of Σn is contained in the closure of the interior domain en-
closed by a horosphere Ln(̺), for some ̺ ≥ τ.

(b) The mean curvature H of Σn is a constant satisfying H >
̺2

τ2 .

The following characterization concerning to spacelike hyperplanes of Hn+1

is a consequence of Corollary 4.3.

Theorem 5.5. Let ψ : Σn → Hn+1 be a complete spacelike hypersurface over a hyper-
plane Ln(τ), with constant mean curvature H ≥ 1. If the hyperbolic image of Σn is
contained in the closure of the interior domain enclosed by the horosphere Ln(τ), then Σn

is a hyperplane Ln(τ̃) for some 0 < τ̃ ≤ τ.

Proof. To demonstrate this result, by using a similar procedure as in the proof of
the previous theorem, it is enough to consider the intersection of Σn by a hyper-
plane over Ln(τ) and to apply Corollary 4.3.
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Remark 5.6. We observe that A.L. Albujer and L.J. Alı́as have recently considered
in [1] complete spacelike hypersurfaces with constant mean curvature in Hn+1.
They proved that if the hypersurface is bounded away from the infinity of the
ambient space, then the mean curvature must be H = 1. Moreover, in the 2-
dimensional case they concluded that the only complete spacelike surfaces with
constant mean curvature which are bounded away from the infinity are the totally
umbilical flat surfaces L2(τ).
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