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Abstract

We give a characterization of quasinormable weighted Fréchet spaces of
entire functions under the assumption that the system of weights belongs to
the class (E)a,A of Bierstedt-Bonet-Taskinen, see [5].

1 Introduction and Notation

Quasinormable Fréchet spaces were introduced by Grothendieck as a class
”which contains the most usual Fréchet function spaces” (see [12] p. 107) such
as normed spaces, Schwarz spaces and many classical spaces of functions and
distributions. The class of quasinormable spaces has played an important role in
the study of tensor products ([11], [19]), the lifting of bounded sets ([8], [21], [17])
and the splitting of exact sequences of Fréchet spaces ([16], [24]).
Several authors studied quasinormable Köthe echelon spaces, see e.g. Bierstedt-
Meise-Summers [7], Meise-Vogt [16], Valdivia [20], [22] and Vogt [23]. In the set-
ting of weighted Fréchet spaces of continuous functions Bierstedt-Meise [6] and
Bastin-Ernst [1] obtained a characterization of quasinormability in terms of the
involved weights.
The aim of this article is to get such a characterization in the case of weighted
Fréchet spaces HW(C) resp. HW0(C) of entire functions. In [25] we were able
to give a necessary condition for quasinormability in terms of the sequence of
weights (which are considered as growth conditions in the sense of [4]) and their
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associated growth conditions in a rather general setting. In case of weighted
Fréchet spaces of holomorphic functions on the unit disk we could show that
under some restrictions on the weights the necessary condition is also sufficient,
see [25] and [26].

For entire functions the sufficiency is obtained under the assumption that the
systems of weights belong to the class (E)a,A of Bierstedt-Bonet-Taskinen (see [5]),
see the details below. The class (E)a,A is based on methods developed by Lusky
in [15].

Let us first describe the setting of the weighted Fréchet spaces of entire func-
tions. Let H(C) denote the set of all entire functions. We consider an increasing
sequence W = (wn)n∈N of strictly positive continuous functions (weights) on C.
For every n ∈ N the spaces

Hwn(C) := { f ∈ H(C); ‖ f‖n := sup
z∈C

wn(z)| f (z)| < ∞} and

H(wn)0(C) := { f ∈ H(C); wn f vanishes at ∞ on C}

endowed with the norm ‖.‖n are Banach spaces. The weighted Fréchet spaces of
holomorphic functions are defined by

HW(C) := projnHwn(C) and HW0(C) := projnH(wn)0(C).

For each n ∈ N, let Bn, resp. Bn,0, be the closed unit ball of Hwn(C), resp.
H(wn)0(C), and Cn := Bn ∩ HW(C), resp. Cn,0 := Bn,0∩ HW0(C). By Bn, Bn,0, Cn,

Cn,0 we denote the co-closures of the corresponding sets. The sequence
(

1
n Cn

)

n∈N

,

resp.
(

1
n Cn,0

)

n∈N
, constitutes a 0-neighborhood base of HW(C), resp. HW0(C).

Without loss of generality we may assume that (Cn)n∈N, resp. (Cn,0)n∈N, is a
0-neighborhood base. Put

W := {w : C →]0, ∞[; w continuous on C, wnw is bounded on C ∀n ∈ N},

and Cw := { f ∈ HW(C); | f | ≤ w on C}, resp. Cw,0 := Cw ∩ HW0(C), w ∈ W.
We write Cw and Cw,0 to refer to the co-closure. (Cw)w∈W, resp. (Cw,0)w∈W, is a
fundamental system of bounded subsets of HW(C), resp. HW0(C).
Let v be a weight on C. Its associated growth condition (see [4]) is defined by

∼
v(z) := sup{|g(z)|; g ∈ H(C), |g| ≤ v}, z ∈ C.

A weight v on C is said to be radial if v(z) = v(|z|) holds for every z ∈ C.
We use standard notation on locally convex spaces (see e.g. Jarchow [13],

Köthe [14], Meise-Vogt [17] and Pérez Carreras-Bonet [18]). For a locally con-
vex space E, E′ is the topological dual and E′

b the strong dual. If E is a locally
convex space, U0(E) and B(E) stand for the families of all absolutely convex
0-neighborhoods and absolutely convex bounded sets in E, respectively.
A locally convex space E is called quasinormable if

∀U ∈ U0(E) ∃V ∈ U0(E) ∀λ > 0 ∃B ∈ B(E) : V ⊂ B + λU.
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Each normed space is quasinormable. By [17, Lemma 26.14] a Fréchet space E
with a 0-neighborhood base (Un)n∈N is quasinormable if and only if

∀n ∈ N ∃m > n ∀k ≥ n ∀ε > 0 ∃δ > 0 : Um ⊂ δUk + εUn.

A dense linear subspace F of a quasinormable Fréchet space E need not be quasi-
normable, as an example due to Bonet and Dierolf shows (see [9]), but Bonet,
Dierolf and Aye Aye showed that F is quasinormable if and only if it is large in E,
see [10].
The question of the inheritance properties of quasinormability under formation
of injective tensor products led to the stronger property quasinormable by operators
(QNo) (due to Peris, see [19]). Let E be a Fréchet space with a 0-neighborhood
base (Un)n∈N. Then E is said to be (QNo) if

∀n ∈ N ∃m > n ∀ε > 0 ∃P ∈ L(E, E) : P(Um) ∈ B(E) and (I − P)(Um) ⊂ εUn.

2 Results

Definition 1 (Bierstedt-Bonet-Taskinen [5, Definition 2.1]) Given constants A > 0
and a > 0, we say that a continuous, radial strictly positive weight function
w : C → R+ of the form

w(r) := v(r)e−ar , r ∈ [0, ∞)

belongs to the class (E)A,a if v : R+ → R+ is differentiable, strictly increasing and has
the property

sup
r∈[0,∞)

rv′(r)

av(r)
≤ A.

If a = 1, we denote the class by (E)A.

The proof of the following proposition is strongly based on concepts given by
Lusky in [15], for details see [5].

Proposition 2 (Bierstedt-Bonet-Taskinen [5, Proposition 2.3]) Let A, a > 0 be fixed.
There exists a sequence (Tn)n∈N of finite rank operators on the space of all polynomials
with the following properties:

(a) The operators Tn satisfy TnTm=0 if |n − m| ≥ 2 and TnTn+1 = Tn+1Tn.

(b) For every polynomial p we have ∑n Tn p = p, and the sum is finite.

(c) There is a constant D ≥ 1 such that for every r > 0 and every polynomial p we
have

sup
|z|=r

|Tn p(z)| ≤ D sup
|z|=r

|p(z)|.
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(d) There exists increasing positive sequences (ρn)n∈N and (σn)n∈N, ρn < σn, such
that for each weight w ∈ (E)A,a,w(r) = v(r)e−ar , there exist a constant C(w) > 0
such that for every polynomial p,

1

D
sup
n∈N

sup
ρn≤|z|≤σn

v(ρn)e−ar|Tn p(z)| ≤ ‖p‖w ≤

C(w) sup
n∈N

sup
ρn≤|z|≤σn

v(ρn)e−ar|Tn p(z)|;

here D is the constant of statement (c), which does not depend on the weight w.

(e) There is a constant 0 < d ≤ 1, independent of the weight, such that (with the
notations of item (d)) v(ρn) ≥ dv(ρn+1) for all n.

The following lemma is well-known. We will omit the proof, for details see
[25].

Lemma 3 Let E be a locally convex space and F a dense subspace of E. Assume that F is
quasinormable. Then E is also quasinormable.

Theorem 4 Let W = (wn)n∈N be an increasing sequence of strictly positive continuous
radial functions on the complex plane C such that each wn belongs to the class (E)A,a.
The following are equivalent:

(1) HW0(C) is quasinormable.

(2) HW(C) is quasinormable.

(3) For every l ∈ N there is j > l such that for every i ≥ l and for every µ > 0 we can
find ξ > 0 such that

Cj,0 ⊂ ξCi,0 + µCl,0.

(4) For every l ∈ N there is j > l such that for every i ≥ l and for every ε > 0 we can
find λ > 0 such that

(

1

wj

)∼

≤
λ

wi
+

ε

wl
on C.

(5) For every l ∈ N there is j > l such that for every α > 0 there is w ∈ W with

(

1

wj

)∼

≤ w +
α

wl
on C.

Proof. Since HW0(C) is a Fréchet space, the equivalence of (1) and (3) follows from
[17, Lemma 26.14]. The equivalence of (1) and (2) and the fact that (2) implies (5)
are particular cases of results in a more general setting given in [25, Propositions
17 and 19]. It is easy to see that (4) follows from (5). It remains to show that
(4) yields (3). Our proof was inspired by the proof of [5, Lemma 3.1]. By [3] the
polynomials P are dense in HW0(C). Hence by Lemma 3 it is enough to consider
only polynomials (see also [25]). We denote C1 = C(wi), C2 = C(wl) in the sense
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of Proposition 2. We fix l ∈ N and select j > l. For fixed i ≥ l and µ > 0 we
put ε :=

µ

6D2d−1C2
, where D and d are the constants of Proposition 2. For this ε,

apply (4) to select λ > 0. We fix p ∈ P ∩ Cj,0. Hence |p| ≤ 1
wj

, or equivalently,

|p| ≤
(

1
wj

)∼
on C. Condition (4) implies

(

1

wj

)∼

≤
λ

wi
+

ε

wl
≤ max

(

2λ

wi
,

2ε

wl

)

.

We put u := min
(wi

2λ , wl
2ε

)

and get

|p| ≤

(

1

wj

)∼

≤ max

(

2λ

wi
,

2ε

wl

)

=
1

u
on C.

Hence u|p| ≤ 1 on C. Put a1 := 1
2λ , a2 := 1

2ε , u1 := wi, u2 := wl, i.e.
u = min(a1u1, a2u2). Set s := min(a1s1, a2s2), where s1 := vi and s2 := vl .
For each n ∈ N choose k(n) ∈ {1, 2} such that

s(ρn) = ak(n)sk(n)(ρn),

where (ρn)n∈N is the sequence of Proposition 2. Denote N1 := {n ∈ N; k(n) = 1}
and N2 := {n ∈ N; k(n) = 2}. We have that N is the disjoint union of N1 and
N2. For k = 1, 2 we define

pk := ∑
n∈Nk

Tnp.

The sum has in fact only finitely many terms, since p is a polynomial. First notice
that by (a) of Proposition 2:

Tnpk = ∑
m∈Nk

TnTmp

= (χ(k, n − 1)TnTn−1 + χ(k, n)T2
n + χ(k, n + 1)TnTn+1)p

= (χ(k, n − 1)Tn−1Tn + χ(k, n)T2
n + χ(k, n + 1)Tn+1Tn)p,

where χ(k, n) := 1, if n ∈ Nk and χ(k, n) := 0 otherwise. Hence, d) and c) of
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Proposition 2 imply

‖p1‖i ≤ C1 sup
n∈N

sup
ρn≤|z|≤σn

vi(ρn)e−ar|(χ(k, n − 1)Tn−1Tn

+ χ(k, n)T2
n + χ(k, n + 1)Tn+1Tn)p(z)|

≤ C1 sup
n∈N1

( sup
ρn+1≤r≤σn+1

vi(ρn+1)e−ar sup
Θ∈[0,2π]

|(TnTn+1p)(reiΘ)|

+ sup
ρn≤r≤σn

vi(ρn)e−ar sup
Θ∈[0,2π]

|(T2
n p)(reiΘ)|

+ sup
ρn−1≤r≤σn−1

vi(ρn−1)e−ar sup
Θ∈[0,2π]

|(TnTn−1p)(reiΘ)|)

≤ DC1 sup
n∈N1

( sup
ρn+1≤|z|≤σn+1

vi(ρn+1)e−ar|(Tn+1p)(z)|

+ sup
ρn≤|z|≤σn

vi(ρn)e−ar|(Tn p)(z)|

+ sup
ρn−1≤|z|≤σn−1

vi(ρn−1)e−ar|(Tn−1p)(z)|) (1)

The choice of N1 yields vi(ρn) = a−1
1 s(ρn) and moreover by Proposition 2

da1vi(ρn+1) ≤ a1vi(ρn) ≤ s(ρn) ≤ ds(ρn+1)

a1vi(ρn−1) ≤ a1vi(ρn) ≤ s(ρn) ≤
1

d
s(ρn−1).

Hence (1) is bounded by

3Dd−1C1a−1
1 sup

j=−1,0,1,...,n+j∈N1

sup
ρn≤|z|≤σn

s(ρn)e−ar|(Tn p)(z)|

≤ 3D2d−1C1a−1
1 ‖p‖u ≤ 3D2d−1C1a−1

1 .

Analogously we obtain ‖p2‖l ≤ 3D2d−1C2a−1
2 . Thus,

p = p1 + p2 ∈ 3D2d−1C1a−1
1 Ci,0 + 3D2d−1C2a−1

2 Cl,0

= 6D2d−1C1λCi,0 + 6D2d−1C2εCl,0

= 6D2d−1C1λCi,0 + µCl,0.

Put ξ := 6D2d−1C1λ and obtain the claim. �

Now we show that quasinormable spaces HW0(C) of the type considered in
Theorem 4 are even quasinormable in the sense of Peris [19].

At this point I would like to thank José Bonet who helped me to fix the proof
of the following lemma.

Lemma 5 Let E be a Fréchet space with a basis U0(E) of 0-neighborhoods. Then E
satisfies (QNo) if and only if the following holds:

(qno) ∀U ∈ U0(E)∃V ∈ U0(E) ∀W ∈ U0(E) ∀δ > 0

∃s = s(δ, W) > 0 ∃P ∈ L(E, E) : P(V) ⊂ sW and (I − P)(V) ⊂ δU.
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Proof. Fix U0 ∈ U0(E). Proceed inductively using (qno) to find a basis (Un)n∈N0

of 0-neighborhoods of E with the property: ∀n ∈ N0 ∀δ > 0 ∀W ∈ U0(E)
∃s = s(δ, W) ∃P ∈ L(E, E):

P(Un) ⊂ sW and (I − P)(Un) ⊂ δUn−1.

Next, for U0 ⊃ U1 and ε > 0 we apply (qno) for δ = ε
2 and W = U2 to find s2 > 0

and P1 ∈ L(E, E) with

P1(U1) ⊂ s2U2 and (I − P1)(U1) ⊂
ε

2
U0.

Apply now (qno) for U1 ⊃ U2, ε > 0, δ = ε
22s2

and W = U3 to find s′3 > 0 and

P2 ∈ L(E, E) with

P2(U2) ⊂ s′3U3 and (I − P2)(U2) ⊂
ε

22s2
U1.

Hence
P2(s2U2) ⊂ s2s′3U3 and (I − P2)(s2U2) ⊂

ε

22
U1.

Define s3 := s2s′3. Proceeding in this way we get the basis U0 ⊃ U1 ⊃ U2 ⊃ ... ⊃
Uk ⊃ Uk+1 ⊃ ... such that for every k ∈ N there are sk > 0 and Pk ∈ L(E, E):

Pk(skUk) ⊂ sk+1Uk+1 and (I − Pk)(skUk) ⊂
ε

sk
Uk−1.

Observe that, for x ∈ U1 we get

x = P1x + (I − P1)x ∈ s2U2 +
ε

2
U0

and thus

x = P2P1x + (I − P2)P1x + (I − P1)x ∈ s3U3 +
ε

22
U1 +

ε

2
U0.

Finally, in general

x = Pk · · · P2P1x + (I − Pk)Pk−1 · · · P2P1x + · · ·+ (I − P2)P1x + (I − P1)x

∈ sk+1Uk+1 +
ε

2k
Uk−1 + · · · +

ε

22
U1 +

ε

2
U0. (2)

Set P0 = I. We claim that ∑
∞
k=1(I − Pk)Pk−1 · · · P1x converges for all x ∈ U1. Ob-

viously ∑
l+m
k=l+1(I − Pk)Pk−1 · · · P1x ∈ ε

2l Ul. Hence Qz := ∑
∞
n=1(I − Pk)Pk−1 · · · P1z

converges for every z ∈ E, since U1 is absorbing. By the theorem of Banach-
Steinhaus we know that Q belongs to L(E, E). Moreover Q(U1) ⊂ εU0. It remains
to show that (I − Q)(U1) is bounded in E. Fix s ∈ N. Using (2) above, we see,
for y ∈ U1,

(I − Q)y = PsPs−1 · · · P1y +
∞

∑
k=s+1

(I − Pk)Pk−1 · · · P1y ∈ ss+1Us+1 + εUs

⊂ (ss+1 + 1)Us.

Thus,
(I − Q)(U1) ⊂

⋂

s∈N

(ss+1 + 1)Us.

Setting P := I − Q we have proved (QNo). The other direction is obvious. �
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Lemma 6 Let E be a Fréchet space and F a dense subspace with (QNo). Then E also
satisfies (QNo).

Proof. Let (Un)n∈N be a fundamental sequence of 0-neighborhoods in E. Then the
sets Vn = F ∩ Un, n ∈ N, yield a fundamental sequence of 0-neighborhoods in F.
Since F is (QNo) we obtain:
∀n ∈ N ∃m > n ∀k > n ∀ε > 0 ∃λk > 0 ∃Pk ∈ L(F, F) : Pk(Vm) ⊂ λkVk and
(I − Pk)(Vm) ⊂ εVn. The sets Vn = Un ∩ F, n ∈ N, give a fundamental sequence
of 0-neighborhoods of E. Next we consider the unique extension P̃k ∈ L(E, E) of
Pk and obtain

P̃k(Vm) ⊂ λkVk = λkVk and ( Ĩ − P̃k)(Vm) ⊂ εVn = εVn

and the claim follows. �

Theorem 7 Let W = (wn)n∈N be an increasing sequence of strictly positive continuous
radial functions on the complex plane C such that each wn belongs to the class (E)A,a.
Then HW0(C) is quasinormable if and only if it is (qno) or equivalently (QNo).

Proof. First, we assume that HW0(C) is quasinormable. Then, by Theorem 4 we
know that for every n ∈ N there is m > n such that for every k > n and µ > 0 we
can find ξk > 0 such that

(

1

wm

)∼

≤
ξk

wk
+

µ

wn
on C. (∗)

Since the polynomials are dense in HW0(C) (see [3]), by Lemma 6 it is enough to
consider only the polynomials P . Now, the proof is quite analogous the proof of
Theorem 4 that (4) yields (3). We keep the notation we used there. We fix n ∈ N

and select m > n. Moreover, for fixed k > n and µ > 0, there is ξk > 0 such that
(∗) is fulfilled. Put now ε := µ

6D2d−1C2
. Following the lines of the proof of Theorem

4 we choose p ∈ Cm,0 and set Pk p := ∑n∈N1
Tn p. Then (I − Pk)p = ∑n∈N2

Tn p,

since N is the disjoint union of N1 and N2. We obtain ‖Pk p‖k ≤ 6D2d−1C1ξk and
‖(I − Pk)p‖n ≤ 6D2d−1C2ε = µ. If we put ξk := 6D2d−1C1λk, we obtain the
claim. The other direction follows from the definition. �

Corollary 8 Let W = (wn)n∈N be an increasing sequence of strictly positive continu-
ous radial functions on the complex plane C such that each wn belongs to the class (E)A,a.
If E is (QNo) and HW0(C) is quasinormable, then HW0(C, E) is also quasinormable.

Proof. This follows directly from [19, Proposition 3.4] and [2, Corollary 30]. �
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