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Abstract

It is well-known that the concept of Hyers-Ulam-Rassias stability origi-
nated by Th. M. Rassias (Proc. Amer. Math. Soc. 72(1978), 297-300) and
the concept of Ulam-Gavruta-Rassias stability by J. M. Rassias (J. Funct.
Anal. U.S.A. 46(1982), 126-130; Bull. Sc. Math. 108 (1984), 445-446; J. Ap-
prox. Th. 57 (1989), 268-273) and P. Gavruta (“An answer to a question of
John M. Rassias concerning the stability of Cauchy equation”, in: Advances
in Equations and Inequalities, in: Hadronic Math. Ser. (1999), 67-71). In
this paper we give results concerning these two stabilities.

1 Introduction

The stability problem of functional equations originated from a question of S.
Ulam|[21] concerning the stability of group homomorphism: Let (G1,0) be a group
and (Ga,x) a metric group with a metric d(-,-). Given € > 0, does there exist a
0 > 0 such that if f: Gy — Gy satisfies

d(f(roy), f(x)* f(y) <9, forallz,ye G,

then there exists a homomorphism h : G — Gy with

d(f(x),h(x)) <e, forallx e Gq?

D. H. Hyers[5] gave a first affirmative answer to the question of Ulam, for Banach
spaces:
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Let f: E — E' be a mapping, where E and E' are Banach spaces, such that
| fz+y) = fl@) = fy) g <e

for all z,y € E and for some €. Then there exists a unique additive mapping
L: E — E' such that

| f(z) — L(z) | <e

In 1978, Th. M. Rassias[17] proved the following generalization of Hyers|[5]:

Proposition 1.1. Let f : E — E’ be a mapping, where E is a real normed space
and E' is a Banach space. Assume that there exist € > 0 such that

I fz+y) = fl@) = F) I <ell ="+ 1y ), (1.1)

for all x,y € E, where p € [0,1). Then there exists a unique additive mapping

L:FE — E' such that
2¢

| f@) - L) | < 5=

for all x € E. If p <0 then inequality (1.1) holds for z,y # 0 and (1.2) for x # 0.

[l " (1.2)

In 1991, Z. Gajda[3] gave an affirmative answer to Th. M. Rassias’ question
whether his theorem can be extended for values of p greater than one.

However it was shown by Z. Gajda[3] and Th. M. Rassias and P. Semrl][18] that
one can not prove a theorem similar to [17].

The inequality (1.1) that was introduced for the first time by Th. M. Rassias[17]
provided a lot of influence in the development of a generalization of the Hyers-Ulam
concept. This new concept of stability is known as generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations (see the book of D. H. Hyers,
G. Isac and Th. M. Rassias[6]).

In 1982-1989, J. M. Rassias([14], [15], [16]) proved the following generalization
of Hyers[5]:

Proposition 1.2. Let f : E — E' be a mapping, where E is a real normed space
and E" is a Banach space. Assume that there exists a 8 > 0 such that

I fz+y) = @)+ FlH <0l =" [y [l (1.3)

for all x,y € E, where r = p+ q # 1. Then there exists a unique additive mapping
L: E — FE' such that

I f(z) = L(z) || <

" 1.4

forallx € F.

However, the case 7 = 1 in inequality (1.3) is singular. A counter-example has
been given by P. Gavruta[4]. The above-mentioned stability involving a product of
different powers of norms is called Ulam-Gavruta-Rassias stability by B. Bouikha-
lene, E. Elqgorachi and M. A. Sibaha[20], as well as by K. Ravi and M. Arunkumar[19],
P. Nakmahachalasint[9], and B. Bouikhalene and E. Elqorachi[1].
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More generalizations and applications of the generalized Hyers-Ulam stability to
a number of functional equations and mappings can be find in [2], [7], [8], [10], [11]
and [13].

C. Park, Y. Cho and M. Han[12] proved that a mapping satisfying one of the
following inequalities,

| £@)+ F) + £ 1 < 2 (2R ),
| £@)+ F) + FE I < fa+y+2) ||
I £@)+ F) +2f) | < 1 2F 2 42 ),

is a Cauchy additive mapping and they gave some stability of these mappings. In
this paper, we give improved results concerning these mappings.

2 Hyers-Ulam-Rassias Stability

In this paper we note that X is a normed vector space and Y is a Banach space. It
was shown in [12] that a mapping f : X — Y satisfying the inequality

r+y+=z

Hf@) + 1)+ 1) lly < IT2f(—

) |l

Y
is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.1. Let r > 1 and € be nonnegative real numbers, and let f : X — Y be
a mapping such that

rT+y+z

I f@)+ fly) + f() lly < M1 2f(—

VI el s+ 1yl + 1= k), (2.1)
forall x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — Y

such that
6+ 27

2r —2

I f(z) = L(z) ||y < el Ix- (2.2)

Proof. From (2.1) with z = y = z = 0, we get || 3f(0) ||y < || 2f(0) ||, which
implies || f(0) ||y» = 0 and f(0) = 0. Also, by letting y = z, z = —2z in (2.1) we get

12f(z) + f(=22) [y < 2+2)ell [,
for all z € X. So, we get

x 242"
l20(5)+ =) I, <=5

el Ilx- (2.3)

Next, by letting y = —x and z = 0 in (2.1) we get

If (@) + f(=2) [ly < 2€l @ [Ix- (2.4)
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Hence, we have due to (2.3) and (2.4) that

| 2'5(5) - 2" F (5 g | 277(55) - 2 () |
— if j+1 g+l g L jr1p L
;HQ (2J)+2 f(2,+1) 2 f(ﬁ)—Q f(ﬁ) Hy
m—1

=53 2 + 27 (D I+ 127 () + 27 () I
6+2

m—1 2 i
e E: ||le<§),

for all nonnegative integers m and [ with m > [ and all x € X. It means that the
sequence {2"f(57)} is a Cauchy sequence for all z € X. Since Y is complete, the
sequence {2"f(57)} converges. So we can define the mapping L : X — Y by L(x)
= lim,, . 2" f(57), for all z € X.

Moreover, by letting [ = 0 and passing the limit m — oo, we get (2.2).

Next, we claim that L(x) is a Cauchy additive mapping. First of all, we get by
(2.4) that

om x x o r T

| L(x) + L(=2) [ly < lim 2" f(5) + f(=5-) || < lim 2" el| |
n—0o0 2n 2 y = n—oo 2n Tx
2n—|—16 .

for r > 1. So we have L(—x) = —L(x).
Therefore we get by the definition of L(z) and (2.1) that

= lim
n—oo 277,7”

I L(z) + L(y) — L(x+y) ly = I L(z) + L(y) + L(=z = y) [ly

= lim 2" F() + F(2) + S5 |
Y
. 2\" r r r
< Jim (o) el +lyl+la+ylid=0

for all x,y € X. So the function L : X — Y is Cauchy additive.

Now, to prove uniqueness of the function L(x), let us assume that 7': X — Y
be another Cauchy additive mapping satisfying (2.2).

Then we obtain

a

| L@) = T(@) lly = lim 2" L) = T(G) I
< Jim 27| L(z) = FG) |+ 1 TG = (5 1L )

/2N (124 201 )
SJL%(;) <ﬁ>€’|x“x:07

for all x € X. So we can conclude that L(x) = T'(z) for all x € X. This proves
the uniqueness of L. Thus the mapping L : X — Y is a unique Cauchy additive
mapping satisfying (2.2). [
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Theorem 2.2. Let r < 1 and € be nonnegative real numbers, and let f : X — Y be
a mapping such that
X + y _l_ z T T T
(@) + ) + F(2) ly < N 2f(—5—) I +ell 2l + 1y I+ 2 lx), (2:5)

forall x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — 'Y
such that

2439 )
I f(@) = L)y < 5 —— €l =" (2.6)
2-2
Proof. From (2.5) with y = z and z = —2x, we get
1 249 :
| f(z) +5f(=22) || < el lx- (2.7)
2 Y 2
Hence, we have by (2.4) and (2.7)
1, . I 1 i
I /) = 5@ I, = 0 5 @) - g ) |,
]:
ST 1 j+1 j+1 j+1
< 3 (I @)+ g S |+ gl (=27 + (27) |y
3=l

m—1
242" Lo 2e r
< 3 |(Gr) e 122 i+ gl 244 Ui
J:

ml 24327\ /27 .

<X () (7)Aol
for all nonnegative integers m and [ with m > [ and all x € X. It means that the
sequence {5 f(2"x)} is a Cauchy sequence for all z € X.

Since Y is complete, the sequence {4 f(2"x)} converges. So we can define the
mapping L : X — Y by L(z) = lim,,_, %f(Q"x), for all x € X.

Moreover, by letting [ = 0 and passing the limit m — oo, we get

243-20 ,
I f(z) = L) |y < 5——— €l =l
2-2

The rest is similar to the proof of Theorem 2.1. [

It was shown in [12] that a mapping f : X — Y satisfying the inequality

| f@)+fW)+fE) Iy <[ flx+y+2) ][y

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.3. Let r > 1 and € be nonnegative real numbers, and let f : X — Y be
a mapping such that

@) +f@+FE Ny <l Fa+y+2) ly +ellz iy + Ty llx+121x), (28

forall x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — Y

such that
6+ 27

I f(z) = L(@) lly < gm—5ell = Il (2.9)
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Proof. One can easily check that || f(0) ||, = 0 which implies f(0) = 0. Also, by
letting y = = and z = —2x in (2.9), we get

12f(z) + f(=22) [y <(2+2e | = |k, (2.10)

for all z € X. So we have

242" .
el e

x
12f5)+ f(=2) || <

Y
Next, by letting y = —x and z = 0 in (2.9), we get

I f(@) + f(=2) [ly <2 = .
The rest is similar to the proof of Theorem 2.1. [

Theorem 2.4. Let r < 1 and € be nonnegative real numbers, and let f : X — Y
be a mapping satisfying (2.8). Then there exists a unique Cauchy additive mapping
L: X —Y such that

24+3.2 .
I f@) = L) ly = 5 —— ellzly, foralzeX. (2.11)

Proof. Since we get from (2.10),
12f(x) + f(=22) [y < (24 27)e || 2 |Ix,

for all x € X, we obtain

1 242" .
| f@)+57(=20) | < e 2 I,

So by defining L(z) = lim,_ 5 f(2"2), we get (2.11). The rest is similar to the
proof of Theorem 2.2. [

It was shown in [12] that a mapping f : X — Y satisfying the inequality

| £+ F) +2£(2) lly <1l 20 (=2 y +2) I

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.5. Let r > 1 and € be nonnegative real numbers, and let f : X — Y be
a mapping such that
_'_ y r T T
| f(x)+ fly)+2f(z) ly < |l 2f(— )l Aell 2l + 1yl +1= ).
(2.12)
forall x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — Y

such that 54 or
I f() = L(2) ly < 5—ell = - (2.13)
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Proof. From (2.12) with x =y = z = 0, we get f(0) = 0. Also, by letting =z = 2z,
y=0and z = —z in (2.12), we get

I f(22) +2f(=2) ly < (1 +2)e [l . (2.14)

Next, by letting y = —x and z = 0 in (2.14), we have

If (@) + f(=2) [ly < 26l = [Ix- (2.15)

By a similar method to the proof of Theorem 2.1, we can define L(z) = lim, . 2" f (57).
Now we claim that the mapping L(z) is Cauchy additive. Due to (2.12) and (2.14),
we obtain

| L(z) + L(y )—L($+y) ly
= lim 2l £0) + £ - D I

_1mlr{nf< )+ () + f(2wHy)H 1 27 () + ¢

n—oo

x+y

),

. 2\" r r
<lim (o) el ol + 1yl + -0,
for r > 1. The rest is similar to the proof of Theorem 2.1. ]

Theorem 2.6. Let r < 1 and € be nonnegative real numbers, and let f : X — Y
be a mapping satisfying the inequality (2.12). Then there ezists a unique Cauchy
additive mapping L : X —'Y such that

1+3-2"

| f(z) = L(z) ||y < 5 o el z ||, forallze X. (2.16)

Proof. In this case, we define L(x) = lim, . 2nf(2" x). Then, due to (2.12) and
(2.14), we obtain

| L(z) + L(y) — L(z + y) |y
~ Jim iu F2m) + @) — F2 4+ 9) Iy
< lim o £ + )+ 2L

+ 1im | 272

)+

L0 4 ),

) 2rn , -
ghm(§>6“Hﬂx+HMH+

Y
n—oo

for r < 1. The rest is similar to the proof of Theorem 2.2. [
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3 Ulam-Gavruta-Rassias Stability

In this section, we will give results concerning Ulam-Gavruta-Rassias stability.

Theorem 3.1. Let r > % and € be nonnegative real numbers, and let f: X — Y be
a mapping such that

(@) + )+ F(2) NIy < 12/(

forall x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — Y
such that

$+y+z T s T
EEEEE N wella Wyl =15, (30

T

2 3r
I £@) ~ L) lly < gy € N2 7 (32)

Proof. From (3.1) with z =y = 2 =0, we get || f(0) ||, = 0 which implies f(0) =
0. Also, by letting y = z and z = —2x in (3.1), we get

I2f(2) + f(=22) |y < 2e ||« |7

So, we obtain

i € 3r
d _ < _ :
12f) + f=a) I < o5l (3.3)
Next, by letting y = —z and z = 0 in (3.1), we get
I f(z)+ f(==z) [ly =0 (3.4)
which implies —f(z) = f(—=z). Hence, we have
x m — , x
|25~ 2 f (o ; 19 5(5) ~ 9 f ) I
m— . m—1 2
<SG+ G I, < Z, =
‘7:

g

€ 3r 2 J
<Yl ()

<.
Il

for all nonnegative integers m and [ with m > [ and all x € X It means that the
sequence {2" f(Z)} is a Cauchy sequence for all z € X, if r > 5. Since Y is complete,
the sequence {2" f(5%)} converges. So we can define the mappmg L:X —Y by
L(z) = limy, o 2" f(55), for all z € X.

Moreover, by letting [ = 0 and passing the limit m — oo, we get (3.2).

Next, we note from (3.4)

| L)+ L(=2) lly = Jim 2" F(55) + F(=5) || =0

which implies L(—x) = —L(x). The rest is similar to the proof of Theorem 2.1. m

Theorem 3.2. Letr < % and € be nonnegative real numbers, and let f : X —Y be a
mapping satisfying the inequality (3.1). Then there exists a unique Cauchy additive
mapping L : X — Y such that

T

| £@) =~ L) Iy < g € N2 % (35)
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Proof. From (3.1) with y = x, z = —2x, we get

I f(2) + %f(—%) | <27 I%- (3.6)

Hence, we get by (3.4) and (3.6) that

1 l mg. S 1 j+1
I @f(Q T) — —f (2 Z:: ﬁf@] ) ||Y
m—1 - m—1 or 30
szl[u— )+ gl >M e 72 Iy
J= Jj=

for all nonnegative integers m and [ with m > [ and all x € X. It means that the
sequence {5 f(2"x)} is a Cauchy sequence for all z € X.

Since Y is complete, the sequence {5 f(2"x)} converges. So we can define the
mapping L : X — Y by L(z) = lim,,_, 2inf(Q"x), for all x € X.

Moreover, by letting | = 0 and passing the limit m — oo, we get (3.5). The rest
is similar to the proof of Theorem 2.1. [

Theorem 3.3. Let r > % and € be nonnegative real numbers, and let f: X — Y be
a mapping such that

@)+ )+ fE Ny < flety+2) ly +ellzlx-Tyllx-121%), B7)

for all x,y,z € X. Then there exists a unique Cauchy additive mapping L : X — 'Y
such that

T

I £@) = L) lly < gy € N2 3. (33)

Proof. One can easily check || 3f(0) ||y < || f(0) ||y which implies || f(0) ||, =0 =
f(0). Also, by letting y = x and z = —2x in (3.8) we get

| 2f(x) + f(—22) |ly <27 ||z |3, for allze X, (3.9)

which implies by replacing x as 3 that

T 1
I 27(5) + F-) I < s o IS
Next, by letting y = —x and z = 0, we have f(—x) = —f(x). The rest is similar to

the proof of Theorem 3.1. [

Theorem 3.4. Letr < é and € be nonnegative real numbers, and let f : X —Y be a
mapping satisfying the inequality (3.7). Then there exists a unique Cauchy additive
mapping L : X —'Y such that

T

2 .
I f@) = L(@) ly < 5= €l = IX, forallze X. (3.10)
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Proof. we get from (3.9) that

1 . ,
(@) +5f(=20) || <27 |lw I%
Y
The rest is similar to the proof of Theorem 3.2. [

Theorem 3.5. Let r > % and € be nonnegative real numbers, and let f: X — Y be
a mapping such that

I f(@) + fly) +2f(=) Iy < 2f(ﬂ )l el -yl -1 = %), (3-11)

for all x,y,z € X. Then the mapping f : X — Y is a Cauchy additive mapping.

Proof. One can easily get f(0) = 0 by letting x = y = z = 0 in (3.11). Also, by
letting x = 2z, 2z = —z and y = 0 in (3.11), we get

I f(22) +2f(==) [ly = 0. (3.12)
Next, by letting y = —x and z = 0 in (3.11), we get
I f(@) + f(=2) Iy =0, f(=2) = —f(2). (3.13)
Thus, by (3.12) and (3.13) we obtain
F2n) = 2(), f) =25, fla)=2"F(2) (3.14)

for all n € N and € X. Since f(x) = lim, . 2" f(5r) we obtain by (3.11),(3.12)

| F@) + ) = fle+y) Hy—hm2"||f( 2+ F(or) - f<$2ty

< Jim 2" (I £G2) + £ + 2 () |+ 1 20 () +

n—oo

(2" . r ety
< i () e<r|xr|x~||yr|X-TX =0,

for r > %. Thus f(z+y) = f(z) + f(y). "

Theorem 3.6. Let r < % and f: X — Y be a mapping satisfying (3.11). Then the
mapping [ X — Y is a Cauchy additive mapping.

),

x+y

)

Proof. By a similar method to the proof of Theorem 3.5, we get

| F20) +2f(=2) Iy =0, f(~2) = 5 f(20)
and
I £)+ f(=2) ly =0, f(=2) = —f(a).

Thus we obtain

f() = f20) = 53 (0%) = . = S f (2.

2 2
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1

for alln € N and z € X. So we have f(z) = lim, .o 57

method to the proof of Theorem 3.5, we obtain

(2"x). Hence, by a similar

I f(x) + f(y) = fle+y) [y = lim 2%” f@%) + f2%) = F2"(z + ) lly

(27" . ro eyl
< g () e pseny - L] <o,
for r < &. Therefore f(z +y) = f(z) + f(y). "
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