Birkhoff-Kellogg and Best Proximity Pair Results

Donal O'Regan Naseer Shahzad Ravi P. Agarwal

Abstract

The paper presents new Birkhoff-Kellogg type theorems for maps in the S-KKM class. Best proximity pair theorems are also established for the admissible class \mathfrak{A}_c^{κ} and the PK class.

1 Introduction

The paper discusses maps in the S-KKM class and in the admissible class \mathfrak{A}_c^{κ} . We prove new Birkhoff-Kellogg type results on invariant direction for the class of S-KKM maps, which is a general class of maps including other important classes such as the composite class \mathfrak{A}_c^{κ} . We also obtain "invariant direction" results for countably condensing maps. We establish best proximity pair theorems for multimaps in the \mathfrak{A}_c^{κ} and PK classes. The results given in this paper extend, generalize and complement various known results in the literature including those of [1, 7, 8, 10, 11, 13].

2 Preliminaries

Let X and Y be Hausdorff topological vector spaces. Recall a polytope P in X is any convex hull of a nonempty finite subset of X. Given a class \mathcal{X} of maps, $\mathcal{X}(X,Y)$ denotes the set of maps $F:X\to 2^Y$ (the nonempty subsets of Y) belonging to \mathcal{X} , and \mathcal{X}_c the set of finite compositions of maps in \mathcal{X} . A class \mathfrak{A} of maps is defined by the following properties:

- (i). $\mathfrak A$ contains the class $\mathcal C$ of single valued continuous functions;
- (ii). each $F \in \mathfrak{A}_c$ is upper semicontinuous and compact valued; and

Received by the editors January 2005.

Communicated by F. Bastin.

1991 Mathematics Subject Classification: 47H10.

Key words and phrases: Invariant direction, S-KKM maps, countably condensing maps, proximity pair theorems.

(iii). for any polytope $P, F \in \mathfrak{A}_c(P, P)$ has a fixed point, where the intermediate spaces of composites are suitably chosen for each \mathfrak{A} .

Definition 2.1. $F \in \mathfrak{A}_c^{\kappa}(X,Y)$ (i.e. F is \mathfrak{A}_c^{κ} -admissible) if for any compact subset K of X, there is a $G \in \mathfrak{A}_c(K,Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Definition 2.2. Let X be a convex subset of a Hausdorff topological vector space and Y a topological space. If $S,T:X\to 2^Y$ are two set-valued maps such that $T(co(A))\subseteq S(A)$ for each finite subset A of X, then we say that S is a generalized KKM map w.r.t. T. The map $T:X\to 2^Y$ is said to have the KKM property if for any generalized KKM w.r.t. T map S, the family

$$\{\overline{S(x)}: x \in X\}$$

has the finite intersection property. We let

$$KKM(X,Y) = \{T : X \to 2^Y : T \text{ has the KKM property } \}.$$

Remark 2.1. If X is a convex space, then $\mathfrak{A}_c^{\kappa}(X,Y) \subset \mathrm{KKM}(X,Y)$ (see [6]).

Definition 2.3. Let X be a nonempty set, Y a nonempty convex subset of a Hausdorff topological vector space and Z a topological space. If $S: X \to 2^Y$, $T: Y \to 2^Z$, $F: X \to 2^Z$ are three set-valued maps such that $T(co(S(A))) \subseteq F(A)$ for each nonempty finite subset A of X, then F is called a generalized S-KKM map w.r.t. T. If the map $T: X \to 2^Z$ is such that for any generalized S-KKM w.r.t. T map F, the family

$$\{\overline{F(x)}: x \in X\}$$

has the finite intersection property, then T is said to have the S-KKM property. The class

S-KKM
$$(X,Y,Z)=\{T:Y\to 2^Z:T \text{ has the S-KKM property}\}$$
 .

Remark 2.2. Note that S-KKM(X,Y,Z) = KKM(X,Z) whenever X = Y and S is the identity mapping $\mathbf{1}_X$. Moreover, KKM(Y,Z) is a proper subset of S-KKM(X,Y,Z) for any $S:X\to 2^Y$. S-KKM(X,Y,Z) also includes other important classes of multimaps (see [4, 5] for examples).

Remark 2.3. Let X be a convex space, Y a convex subset of a Hausdorff locally convex space, and Z a normal space. Suppose $s: Y \to Y$ is surjective, $F \in s\text{-KKM}(Y,Y,Z)$ is closed, and $f \in \mathcal{C}(X,Y)$. Then $F \circ f \in \mathbf{1}_X - \text{KKM}(X,X,Z)$ (see [5]).

Remark 2.4. Let X be a convex subset of a Hausdorff topological space, Y a convex space, and Z, W topological spaces and $S: X \to 2^Y$. If $F \in S\text{-KKM}(X,Y,Z)$ and $f \in \mathcal{C}(Z,W)$, then $f \circ F \in S\text{-KKM}(X,Y,W)$ (see [5]).

Let (E,d) be a pseudometric space. For any $C \subseteq E$, let $B(C,\epsilon) = \{x \in E : d(x,C) \le \epsilon\}$, here $\epsilon > 0$ The measure of noncompactness of the set $M \subseteq E$ is defined by $\alpha(M) = \inf Q(M)$, where

$$Q(M) = \{\epsilon > 0 : M \subseteq B(A, \epsilon) \text{ for some finite subset } A \text{ of } E\}.$$

Let C be a subset of a locally convex Hausdorff topological vector space E, and let \mathcal{P} be a defining system of seminorms on E. Suppose $F: C \to 2^E$. Then F is called countably \mathcal{P} -concentrative mapping if F(C) is bounded, and for $p \in \mathcal{P}$ and each countably bounded subset S of C, we have $\alpha_p(F(S)) \leq \alpha_p(S)$, and for $p \in \mathcal{P}$ for each countably bounded non-p-precompact subset S of C (i.e., S is not precompact in the pseudonormed space (E,p)) we have $\alpha_p(F(S)) < \alpha_p(S)$; here $\alpha_p(C)$ denotes the measure of noncompactness in the pseudonormed space (E,p).

Let Q be a subset of a Hausdorff topological space X. We let \overline{Q} (respectively, ∂Q , int(Q)) denote the closure (respectively, boundary, interior) of Q.

Definition 2.4. Let Z and W be subsets of Hausdorff topological vector spaces E_1 and E_2 and F a set-valued map. We say that $F \in PK(Z, W)$ if W is convex, and there exists a map $S: Z \to W$ with

$$Z = \bigcup \{intS^{-1}(w) : w \in W\}, co(S(x)) \subset F(x) \text{ for } x \in Z,$$

and $S(x) \neq \emptyset$ for each $x \in Z$; here $S^{-1}(w) = \{z : w \in S(z)\}$.

Remark 2.5. Suppose Z is paracompact, W is convex, and $F \in PK(Z, W)$. Then there exists a continuous (single valued) mapping $f: Z \to W$ such that $f(x) \in F(x)$ for each $x \in Z$ (see [9]).

A nonempty subset X of a Hausdorff topological vector space E is said to be admissible if for every compact subset K of X and every neighborhood V of 0, there exists a continuous map $h: K \to X$ with $x - h(x) \in V$ for all $x \in K$ and h(K) is contained in a finite dimensional subspace of E. X is said to be q-admissible if any nonempty compact, convex subset Ω of X is admissible.

The following results [2, 4] will be needed in the sequel.

Theorem 2.1. Let Ω be an admissible convex subset of a Hausdorff topological vector space E and X a nonempty subset of Ω Suppose $s: X \to \Omega$ is surjective and $F \in s - KKM(X, \Omega, \Omega)$ is compact and closed. Then F has a fixed point in Ω .

Theorem 2.2. Let Ω be a q-admissible closed convex subset of a Hausdorff topological vector space E with $x_0 \in \Omega$. Suppose $s: \Omega \to \Omega$ is surjective and $F \in s - KKM(\Omega, \Omega, \Omega)$ is closed with the following property holding:

(2.1)
$$A \subseteq \Omega, A = \overline{co}(\{x_0\} \cup F(A)) \text{ implies } A \text{ is compact.}$$

Then F has a fixed point in Ω .

Theorem 2.3. Let Ω be a closed convex bounded subset of a Fréchet vector space E (\mathcal{P} is a defining family of seminorms) and $x_0 \in \Omega$. Suppose $s: \Omega \to \Omega$ is surjective and $F \in s - KKM(\Omega, \Omega, \Omega)$ is closed countably P-concentrative map. Then F has a fixed point in Ω .

The following fixed point result is a particular case of a result established in [9].

Theorem 2.4. Let Ω be a nonempty convex subset of a Hausdorff locally convex topological vector space and $F \in \mathfrak{A}_{c}^{\kappa}(\Omega,\Omega)$ a compact map. Then F has a fixed point.

3 Birkhoff-Kellogg Type Results

We obtain a variety of the Birkhoff-Kellogg type results on invariant directions. Let E be a Hausdorff locally convex topological vector space, C a closed convex subset of E, and $U \subseteq C$ a convex, open subset of E with $0 \in U$. Since U is open in C, we have $int_CU = U$. Let $s: \overline{U} \to \overline{U}$ be surjective. We consider maps $F: \overline{U} \to K(C)$ which satisfies $F \in s - KKM(\overline{U}, \overline{U}, C)$; here \overline{U} denotes the closure of U in C and K(C) represents the family of nonempty closed subsets of C.

Throughout we will assume the map $F:\overline{U}\to K(C)$ satisfies one of the following conditions:

(H1). F is compact;

(H2). If $D \subseteq \overline{U}$ and $D \subseteq \overline{co}(\{0\} \cup F(co(\{0\} \cup D) \cap \overline{U}))$, then \overline{D} is compact; or

(H3). F is countably \mathcal{P} -concentrative and E is Fréchet (here \mathcal{P} is a defining system of seminorms).

Fix $i \in \{1, 2, 3\}$. We say $F \in s - KKM^i(\overline{U}, \overline{U}, C)$ if $F \in s - KKM(\overline{U}, \overline{U}, C)$ satisfies (Hi).

Theorem 3.1. Fix $i \in \{1, 2, 3\}$ and let E be a Hausdorff locally convex topological vector space, C a closed convex subset of E, $U \subseteq C$ convex, U an open subset of E, and $0 \in U$. Suppose C is a normal space, $s : \overline{U} \to \overline{U}$ is surjective and $F \in s - KKM^i(\overline{U}, \overline{U}, C)$ is closed. Then either

(i). F has a fixed point in \overline{U} ;

(ii). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $x \in \lambda Fx$; here ∂U denotes the boundary of U in C.

PROOF: Let μ be the Minkowski functional on \overline{U} and let $r: E \to \overline{U}$ be defined by

$$r(x) = \frac{x}{\max\{1, \mu(x)\}} \text{ for } x \in E.$$

Let G = Fr. Then $G \in 1_C - KKM(C, C, C)$ by Remark 2.3. Furthermore G is closed. Next we show that G has a fixed point in C for $i \in \{1, 2, 3\}$.

Let i = 1. Since $F \in s - KKM(\overline{U}, \overline{U}, C)$ is compact and r is continuous, it follows that G is compact. Now Theorem 2.1 guarantees that there exists $y \in C$ such that $y \in G(y)$.

Let i = 2. Let $D \subseteq C$ and $D = \overline{co}(\{0\} \cup G(D))$. Then since $r(A) \subseteq co(\{0\} \cup A)$ for any subset A of E, we have

$$D\subseteq \overline{co}(\{0\}\cup F(co(\{0\}\cup D)\cap \overline{U})).$$

Since $F \in s - KKM^2(\overline{U}, \overline{U}, C)$, if follows that \overline{D} is compact. Now Theorem 2.2 guarantees that there exists $y \in C$ such that $y \in G(y)$.

Now let i = 3. We show that G is countably \mathcal{P} -concentrative. To see this, let $p \in \mathcal{P}$ and Ω a countably bounded non-p-precompact subset of C. Then since

$$G(\Omega)\subseteq F(r(\Omega))\subseteq F(co(\{0\}\cup\Omega)\cap\overline{U}),$$

we have

$$\alpha_p(G(\Omega)) < \alpha_p(\Omega).$$

Thus G is countably \mathcal{P} -concentrative. Now Theorem 2.3 guarantees that there exists $y \in C$ such that $y \in G(y)$.

Thus, in each case, we can find $y \in C$ with $y \in G(y) = Fr(y)$. Let x = r(y). Then $x \in rF(x)$, i.e., x = r(w) for some $w \in F(x)$. Now either $w \in \overline{U}$ or $w \notin \overline{U}$. If $w \in \overline{U} = U \cup \partial U$ (notice that $int_C U = U$ since U is open in E), then r(w) = w and so $x = w \in F(x)$. If $w \notin \overline{U}$, then $x = r(w) = \frac{w}{\mu(w)}$ with $\mu(w) > 1$. Thus $x = \lambda w$ (i.e., $w \in \lambda F(w)$) with $0 < \lambda = \frac{1}{\mu(w)} < 1$. Notice that $x \in \partial U$ since $\mu(x) = \mu(\lambda w) = 1$ (note that $\partial U = \partial_E U$ since $int_C U = U$). Consequently, $x \in \lambda F(x)$ with $\lambda = \frac{1}{\mu(w)} \in (0,1)$ and $x \in \partial U$. \square

Next we assume

(3.1)
$$\begin{cases} \text{ for any map } F \in s - KKM(\overline{U}, \overline{U}, C) \text{ and any} \\ \lambda \in \mathbf{R}, \text{ we have that } \lambda F \in s - KKM(\overline{U}, \overline{U}, C). \end{cases}$$

As an application of Theorem 3.1, we derive some Birkhoff-Kellogg type theorems.

Theorem 3.2. Let E be a Hausdorff locally convex topological vector space, C a closed convex subset of E, $U \subseteq C$ convex, U an open subset of E, and $0 \in U$. Suppose C is a normal space, $s: \overline{U} \to \overline{U}$ is surjective and $F \in s - KKM^1(\overline{U}, \overline{U}, C)$ is closed and assume (3.1) holds. In addition suppose the following condition holds

(3.2) there exists
$$\mu \in \mathbf{R}$$
 with $\mu F(\overline{U}) \cap \overline{U} = \emptyset$.

Then there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $(\lambda^{-1}\mu^{-1})x \in Fx$ (i.e. $F|_{\partial U}$ has an eigenvalue); here $\mu \neq 0$ is chosen as in (3.2).

PROOF: Choose $\mu \neq 0$ as in (3.2). By (3.1), we have $\mu F \in s - KKM(\overline{U}, \overline{U}, C)$. Also we have μF is closed and compact since $F \in s - KKM(\overline{U}, \overline{U}, C)$ is closed and compact. Now (3.2) guarantees that μF has no fixed points in \overline{U} . An application of Theorem 3.1 yields that there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $x \in \lambda(\mu F)x$. Consequently, $(\lambda^{-1}\mu^{-1})x \in Fx$. This completes the proof. \square

Theorem 3.3. Fix $i \in \{2,3\}$ and let E be a Hausdorff locally convex topological vector space, C a closed convex subset of E, $U \subseteq C$ convex, U an open subset of E, and $0 \in U$. Suppose C is a normal space, $s : \overline{U} \to \overline{U}$ is surjective and $F \in s - KKM^i(\overline{U}, \overline{U}, C)$ is closed. In addition suppose the following conditions are satisfied:

(3.3)
$$\begin{cases} \text{for any } map \, F \in s - KKM(\overline{U}, \overline{U}, C) \text{ and } any \, \lambda \in \mathbf{R} \\ \text{with } |\lambda| \leq 1 \text{ we have } that \, \lambda F \in s - KKM(\overline{U}, \overline{U}, C) \end{cases}$$

(3.4) there exists
$$\mu \in \mathbf{R}$$
 with $|\mu| \le 1$ and $\mu F(\overline{U}) \cap \overline{U} = \emptyset$

and

(3.5)
$$\begin{cases} if \ i = 2, \ assume \ either \ \mu > 0 \ in \ (3.4) \\ or - F(D) = F(D) \ for \ any \ D \subseteq \overline{U}. \end{cases}$$

Then there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $(\lambda^{-1}\mu^{-1})x \in Fx$.

PROOF: Choose $\mu \neq 0$ as in (3.4) and notice that $\mu F \in s - KKM(\overline{U}, \overline{U}, C)$ from (3.3). We claim

(3.6)
$$\mu F \in s - KKM^{i}(\overline{U}, \overline{U}, C).$$

Let i=2 and let $D\subseteq \overline{U}$ with $D\subseteq \overline{co}(\{0\}\cup \mu F(D))$. From (3.5), we have $\mu F(D)\subseteq co(\{0\}\cup F(D))$. As a result, we have

$$D \subseteq \overline{co}(\{0\} \cup co(\{0\} \cup F(D))) = \overline{co}(co(\{0\} \cup F(D))) = \overline{co}(\{0\} \cup F(D)).$$

Since $F \in s - KKM^2(\overline{U}, \overline{U}, C)$, \overline{D} is compact. So (3.6) holds if i = 2. Now let i = 3, then (3.6) holds since $|\mu| \le 1$. Now Theorem 3.1 guarantees that there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $x \in \lambda(\mu F)x$. Hence $(\lambda^{-1}\mu^{-1})x \in Fx$. \square Remark 3.1. In Theorem 3.3, (3.5) can be replaced by the more general condition

(3.7)
$$\begin{cases} \text{ if } i = 2, \text{ and if } D \subseteq \overline{U} \text{ with } D \subseteq \overline{co}(\{0\} \cup \mu F(D)), \\ \text{ then } \overline{D} \text{ is compact; here } \mu \text{ is chosen as in (3.4)} \end{cases}$$

(with this assumption we do not require to assume $|\mu| \leq 1$ in (3.4) if i = 2). For example, if F is P-concentrative (here E is Fréchet), then clearly (3.7) is satisfied (if $|\mu| \leq 1$).

Theorem 3.4. Let E be a normal locally convex topological vector space, C a closed convex subset of E, $U \subseteq C$ convex, U an open subset of E, and $0 \in U$. Suppose $s: \overline{U} \to \overline{U}$ is surjective and $F \in s - KKM^1(\overline{U}, \overline{U}, C)$ is closed. In addition suppose (3.2) holds Then there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $(\lambda^{-1}\mu^{-1})x \in Fx$.

PROOF: Choose $\mu \neq 0$ as in (3.2). Define $f(x) = \mu x$ for $x \in C$. Then $f \in \mathcal{C}(C, E)$. By Remark 2.4 we have $\mu F \in s - KKM(\overline{U}, \overline{U}, E)$. Furthermore μF is closed and compact. Now (3.2) guarantees that μF has no fixed points in \overline{U} . An application of Theorem 3.1 yields that there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $x \in \lambda(\mu F)x$. As a result, we have $(\lambda^{-1}\mu^{-1})x \in Fx$. \square

Essentially the same reasoning as above yields the following result.

Theorem 3.5. Fix $i \in \{2,3\}$ and let E be a normal locally convex topological vector space, C a closed convex subset of E, $U \subseteq C$ convex, U an open subset of E, and $0 \in U$. Suppose $s : \overline{U} \to \overline{U}$ is surjective and $F \in s - KKM^i(\overline{U}, \overline{U}, C)$ is closed. In addition suppose (3.4) and (3.5) holds. Then there exists $\lambda \in (0,1)$ and $x \in \partial U$ with $(\lambda^{-1}\mu^{-1})x \in Fx$.

In Theorem 3.2 (respectively Theorem 3.3) if $\mu > 0$ in (3.2) (respectively (3.4)), we say that $F|_{\partial U}$ has an invariant direction (i.e., has a positive eigenvalue). Some of the ideas here are borrowed from the literature (see [8] and the references therein).

Theorem 3.6. Let E = (E, ||.||) be an infinite dimensional normed linear space, C = E, U = B, Suppose $s : \overline{B} \to \overline{B}$ is surjective and $F \in s - KKM^1(\overline{B}, \overline{B}, E)$ is closed; here $B = \{x \in E : ||x|| < 1\}$. In addition suppose the following conditions are satisfied:

$$(3.8) 0 \notin \overline{F(S)};$$

here $S = \{x \in E : ||x|| = 1\}$. Then F has an invariant direction.

PROOF: It is known [3] that there exists a continuous retraction $r: \overline{B} \to S$. Let G = Fr. Then, as before, $G \in \mathbf{1}_{\overline{B}} - KKM(\overline{B}, \overline{B}, E)$. We claim that we can find a number $\mu > 0$ such that

$$\mu F(S) \cap \overline{B} = \emptyset.$$

If this is not true, then for each $n \in \{1, 2, 3, ...\}$, there exists $y_n \in F(S)$ and $w_n \in \overline{B}$ with $y_n = \frac{1}{n}w_n$. This implies that $0 \in \overline{F(S)}$. This contradicts (3.8). Using (3.9), we have

$$\mu G(\overline{B}) \cap \overline{B} = \emptyset.$$

Now Theorem 3.4 (applied to G with U=B and C=E) guarantees that there exists $\lambda \in (0,1)$ and $x \in \partial B = S$ with $\lambda^{-1}\mu^{-1}x \in Gx = Frx = Fx$. Hence F has an invariant direction.

Remark 3.2. Let E be a normal locally convex topological vector space and U any open set with $0 \in U$. Theorem 3.6 remains valid if we replace B by U provided ∂U is a retract of \overline{U} . However, in this case, (3.8) is replaced by

(3.10) there exists
$$\mu > 0$$
 with $\mu F(\partial U) \cap \overline{U} = \emptyset$.

Remark 3.3. In Theorem 3.6, $F \in s - KKM^1(\overline{B}, \overline{B}, E)$ could be replaced by $F \in s - KKM^1(S, S, E)$.

It was shown [3] that if E is an infinite dimensional normed linear space, then there exists a Lipschitzian retraction $r: \overline{B} \to \overline{S}$ with Lipschitz constant $k_0(E)$, say; here B and S are as in Theorem 3.4. In fact, there exists a k_0 with $k_0(E) \le k_0$ for any space E (as described above).

Let $r: \overline{B} \to S$ be a Lipschitzian retraction with Lipschitz constant $k_0(E)$.

Theorem 3.7. Let E = (E, ||.||) be an infinite dimensional normed linear space, C = E, U = B, Suppose $s : \overline{B} \to \overline{B}$ is surjective and $F \in s - KKM(\overline{B}, \overline{B}, E)$ is closed; here $B = \{x \in E : ||x|| < 1\}$. In addition suppose the following two conditions are satisfied:

(3.11)
$$\begin{cases} F \text{ is countably } k\text{-set-contractive with } 0 \leq k < \frac{1}{k_0(E)}; \\ here \ k_0(E) \text{ is a Lipschitz constant as described above} \end{cases}$$

and

(3.12) there exists
$$\mu > 0$$
 with $0 < \mu \le 1$ and $\mu F(S) \cap \overline{B} = \emptyset$.

Then F has an invariant direction.

PROOF: Let G = Fr, where r is a Lipschitzian retraction with Lipschitz constant $k_0(E)$. Then as before $G \in \mathbf{1}_{\overline{B}} - KKM(\overline{B}, \overline{B}, E)$. Clearly G is countably $kk_0(E)$ -set

contractive. Thus $G \in s - KKM^3(\overline{B}, \overline{B}, E)$. Now Theorem 3.4 (applied to G with U = B and C = E) guarantees that there exists $\lambda \in (0, 1)$ and $x \in \partial B = S$ with $\lambda^{-1}\mu^{-1}x \in Gx = Frx = Fx$. Hence F has an invariant direction.

Remark 3.4. In Theorem 3.7, $F \in s - KKM(\overline{B}, \overline{B}, E)$ could be replaced by $F \in s - KKM(S, S, E)$.

4 Best Proximity Pair Results

Let A and B be nonempty subsets of a normed space E = (E, ||.||). Then A is called approximately compact if for each y in E and each $\{x_n\}$ in A with $||x_n - y|| \to d(y, A)$, there exists a subsequence of $\{x_n\}$ converging to an element of A. The set

$$P_A(x) = \{a \in A : ||a - x|| = d(x, A)\}$$

is the set of all best approximations in A to any element $x \in E$. It is known [12] that if A is an approximately compact convex subset of E, then $P_A(x)$ is a nonempty compact convex subset of A and the multivalued mapping $P_A : E \to 2^A$ is upper semicontinuous on E.

A mapping f from a topological space X to another topological space Y is called proper if $f^{-1}(K)$ is compact in X whenever K is compact in Y.

If B is convex, a mapping $f: B \to E$ is said to be quasi-affine if for every real number $r \ge 0$ and $x \in E$, the set $\{b \in B : ||f(b) - x|| \le r\}$ is convex.

We recall the following notations (see [11, 13]).

$$d(A, B) = \inf\{||a - b|| : a \in A, b \in B\}$$

$$Prox(A, B) = \{(a, b) \in A \times B : ||a - b|| = d(A, B)\}$$

$$A_0 = \{a \in A : ||a - b|| = d(A, B) \text{ for some } b \in B\}$$

$$B_0 = \{b \in B : ||a - b|| = d(A, B) \text{ for some } a \in A\}.$$

Various sufficient conditions for the non-emptiness of the set Prox(A, B) were explored by many authors, see, for example, [12, 14].

Remark 4.1. Note $P_A(B_0) \subset A_0$. Indeed, let $y \in P_A(B_0)$. Then $y \in P_A(b)$ for some $b \in B_0$. This implies that ||y-b|| = d(b,A). Since $b \in B_0$, we have ||a-b|| = d(A,B) for some $a \in A$ and so $||y-b|| = d(b,A) \le ||a-b|| = d(A,B)$. On the other hand, $d(A,B) \le ||y-b||$ for all $y \in A$ and $b \in B$. Consequently, ||y-b|| = d(A,B) and so $y \in A_0$.

Theorem 4.1. Let E = (E, ||.||) be a normed space. Let A be a nonempty, approximately compact convex subset of E and B a nonempty closed convex subset of E such that Prox(A, B) is nonempty and A_0 is compact. Let C be a nonempty subset of E containing a nonempty convex set C_0 . Assume that

- (a) $F \in PK(A, C)$ such that $F(A_0) \subset C_0$
- (b) $G \in \mathfrak{A}_{c}^{\kappa}(C,B)$ such that $G(C_0) \subset B_0$
- $(c)f: A \rightarrow A \text{ is a continuous, proper, quasi-affine, surjective single-valued map}$

such that $f^{-1}(A_0) \subset A_0$.

Then there exists $x_0 \in A_0$ such that

$$d(fx_0, GFx_0) = d(A, B).$$

PROOF: By Remark 2.5, there exists a continuous function $g:A\to C$ such that $g(x)\in F(x)$ for each $x\in A$. Let T=HGg, where $H=f^{-1}P_A:B_0\to 2^{A_0}$. Then $T(A_0)\subset A_0$ since $G(C_0)\subset B_0$, $P_A(B_0)\subset A_0$ and $f^{-1}(A_0)\subset A_0$. Also $T:A_0\to 2^{A_0}$ is a compact multifunction because A_0 is compact.

Now we show that H is a convex, compact-valued upper semicontinuous function. Let D be a closed subset of A_0 and $\{x_n\} \subset H^{-1}(D)$ such that $x_n \to x$ as $n \to \infty$. Then for each n, choose $y_n \in H(x_n) \cap D$ such that $||f(y_n) - x_n|| = d(x_n, A)$. Since D is compact, we may assume that $y_n \to y$ for some $y \in D$. Using the triangle inequality, we have

$$||f(y) - x_n|| \le ||f(y) - f(y_n)|| + ||f(y_n) - x_n|| + |x_n - x||$$

= $||f(y) - f(y_n)|| + d(x_n, A) + ||x_n - x||,$

which on letting $n \to \infty$ yields

$$||f(y) - x|| \le d(x, A)$$

since f is continuous and $d(x_n, A) \to d(x, A)$. On the other hand, $d(x, A) \le ||f(y) - x||$. Thus

$$||f(y) - x|| = d(x, A)$$

and so $f(y) \in P_A(x)$. As a result $y \in H(x) \cap D$. Hence $x \in H^{-1}(D)$ and so H is upper semi-continuous.

Let $x_1, x_2 \in H(x)$ and $\lambda \in [0, 1]$. Then

$$||f(x_1) - x|| = d(x, A) = ||f(x_2) - x||.$$

Since f is quasi-affine, the set $\{a \in A : ||f(a) - x|| \le d(x, A)\}$ is convex. Set $y = \lambda x_1 + (1 - \lambda)x_2$. Then

$$||f(y) - x|| = d(x, A)$$

and so H(x) is convex.

Since f is a proper map and $P_A(x)$ is compact, H(x) is compact. Hence $H \in \mathfrak{A}_c^{\kappa}(B_0, A_0)$. Since \mathfrak{A}_c^{κ} is closed under compositions, $T \in \mathfrak{A}_c^{\kappa}(A_0, A_0)$. Next we show that A_0 is convex. Let $a_1, a_2 \in A_0$ and $\lambda \in [0, 1]$. Then $||a_1 - b_1|| = d(A, B)$ and $||a_2 - b_2|| = d(A, B)$ for some $b_1, b_2 \in B$. Since A and B are convex, $\lambda a_1 + (1 - \lambda)a_2 \in A$ and $\lambda b_1 + (1 - \lambda)b_2 \in B$. Now $||\lambda a_1 + (1 - \lambda)a_2 - [\lambda b_1 + (1 - \lambda)b_2]|| \leq \lambda ||a_1 - b_1|| + (1 - \lambda)||a_2 - b_2|| = d(A, B)$. Consequently,

$$||\lambda a_1 + (1 - \lambda)a_2 - [\lambda b_1 + (1 - \lambda)b_2]|| = d(A, B)$$

and so $\lambda a_1 + (1 - \lambda)a_2 \in A_0$. Thus A_0 is convex. Now Theorem 2.4 guarantees that there exists $x_0 \in A_0$ such that $x_0 \in T(x_0)$. Set $y_0 = g(x_0)$. Then $y_0 \in F(x_0)$ and $x_0 \in H(z_0)$ for some $z_0 \in G(y_0)$. This implies that $f(x_0) \in P_A(z_0)$ and so

$$d(f(x_0), GF(x_0)) \le ||f(x_0) - z_0|| = d(z_0, A).$$

Since $y_0 \in C_0$ and $G(C_0) \subset B_0$, we have $z_0 \in G(y_0) \subset G(C_0) \subset B_0$ and so there exists $a \in A$ with $||a - z_0|| = d(A, B)$. Therefore

$$d(f(x_0), GF(x_0)) \le d(z_0, A) \le ||a - z_0|| = d(A, B).$$

On the other hand, $d(A, B) \leq d(f(x_0), GF(x_0))$. Hence

$$d(f(x_0), GF(x_0)) = d(A, B).$$

Corollary 4.2. Let E = (E, ||.||) be a normed space. Let A be a nonempty, approximately compact convex subset of E and B a nonempty closed convex subset of E such that Prox(A, B) is nonempty and A_0 is compact. Assume that $(a) F \in PK(A, B)$ such that $F(A_0) \subset B_0$

 $(b)f: A \to A$ is a continuous, proper, quasi-affine, surjective single-valued map such that $f^{-1}(A_0) \subset A_0$.

Then there exists $x_0 \in A_0$ such that

$$d(fx_0, Fx_0) = d(A, B).$$

Corollary 4.3. Let E = (E, ||.||) be a normed space. Let A be a nonempty, compact convex subset of E and C a nonempty convex subset of E. Assume that

- (a) $F \in PK(A, C)$
- (b) $G \in \mathfrak{A}^{\kappa}_{c}(C, A)$.

If the multifunction GF is closed-valued, then it has a fixed point and hence G and F have coincidence (i.e., there exist $x_0 \in A$ and $y_0 \in C$ such that $y_0 \in F(x_0)$ and $x_0 \in G(y_0)$).

PROOF: Theorem 4.1 (note B = A) guarantees that there exists $x_0 \in A_0 = A$ with $d(x_0, GFx_0) = 0$. Now since GF has closed values we get the result.

References

- [1] R. P. Agarwal and D. O'Regan, Birkhoff-Kellogg theorems on invariant directions for multimaps, Abstract and Applied Analysis, 7(2003), 435–448.
- [2] R. P. Agarwal and D. O'Regan, Fixed point theorems for S-KKM maps, Applied Math. Letters, **16**(2003), 1257–1264.
- [3] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces and Lipschitz contractible, *Proc. Amer. Math. Soc.*, 88(1983), 439–445.
- [4] T. H. Chang, Y. Y. Huang and J. C. Jeng, Fixed point theorems for multifunctions in S-KKM class, *Nonlinear Anal.*, **44**(2001), 1007–1017.
- [5] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM property and related topics, *Jour. Math. Anal. Appl.*, **229**(1999), 212–227.
- [6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, Jour. Math. Anal. Appl., 203(1996), 224–235.

- [7] M. Furi and M. Martelli, A degree for a class of cyclic-valued vector fields in Banach spaces, Ann. Scuola Norm. Sup. Pisa, 1(1974), 301–310.
- [8] S. Park, Generalized Leray-Schauder principles for condensing admissible multifunctions, *Annali di Matematica pura ed applicata*, **172**(1997), 65–85.
- [9] S. Park, A unified fixed point theory of multimaps in topological vector spaces, Jour. Korean Math. Soc., **35**(1998), 803–829.
- [10] S. Reich, A remark on set valued mappings that satisfy the Leray-Schauder condition, *Atti Acad. Naz. Lincei*, **61**(1979), 193–194.
- [11] S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, *Jour. Approx. Theory*, **103**(2000), 119–129.
- [12] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York (1970).
- [13] P. S. Srinivasan, Best proximity pair theorems, Acta Sci. Math. (Szeged), 67(2001), 421–429.
- [14] X. Xu, A result on best proximity pair of two sets, *Jour. Approx. Theory*, **54**(1988), 322–325.

D. O'Regan

Department of Mathematics, National University of Ireland, Galway, Ireland

N. Shahzad

Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.

R. P. Agarwal

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA.