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Abstract

We prove that there exist non-archimedean (n.a.) locally convex spaces
without basic orthogonal sequences, and even without Schauder basic se-
quences. Among other things any n.a. Köthe space with the weak topol-
ogy has no basic orthogonal sequence. On the other hand, we show that the
strong dual of any infinite-dimensional n.a. polar Fréchet space and any n.a.
LF-space have basic orthogonal sequences.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | · | : K → [0,∞).
For fundamentals on locally convex spaces and normed spaces we refer to [10], [11]
and [12]. Basic orthogonal sequences and Schauder bases in locally convex spaces
are studied in [4], [5] and [14] – [18].

Any infinite-dimensional (i.d.) Banach space of countable type is isomorphic to
the Banach space c0 of all sequences in K converging to zero with the sup-norm
([11], Theorem 3.16), so it has an orthogonal basis. Thus any i.d. Banach space has
a basic orthogonal sequence.

In [4] it is shown that any locally convex space (lcs) in which not every bounded
set is compactoid has a basic orthogonal sequence ([4], Corollary 3.1) and that any
i.d. metrizable lcs of finite type has an orthogonal basis ([4], Theorem 3.5).
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In [14] we proved that any i.d. metrizable lcs has a basic orthogonal sequence.
Thus we solved the problem stated in [4] whether any i.d. Fréchet space has a basic
orthogonal sequence.

In [15] we showed that there exist i.d. Fréchet spaces of countable type without
orthogonal bases.

In this paper we prove that there exist i.d. locally convex spaces without basic
orthogonal sequences: For any strongly polar Fréchet space E with a continuous
norm the spaces (E, σ(E,E ′)) and (E ′, σ(E ′, E)) have no basic orthogonal sequences
(Propositions 2 and 4). We also show that a lcs E of finite type has a basic orthogonal
sequence if and only if E has an i.d. closed metrizable subspace (Proposition 5).

It is known that (l′∞, σ(l′∞, l∞)) has no Schauder basis, if K is spherically complete
([5], Remark 2.14(ii)). We improve this result by proving that (l′∞, σ(l′∞, l∞)) has no
Schauder basic sequence, if K is spherically complete and the valuation of K is dense
(Proposition 7). Thus there exist i.d. locally convex spaces (at least over spherically
complete fields with a dense valuation) without Schauder basic sequences.

On the other hand, we prove that the strong dual of any i.d. polar Fréchet space
has a basic orthogonal sequence (Proposition 12).

We also note that any LF-space has a basic orthogonal sequence (Corollary 15).

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by linA.
A seminorm on a linear space E is a function p : E → [0,∞) such that p(αx) =

|α|p(x) for all α ∈ K, x ∈ E and p(x+ y) ≤ max{p(x), p(y)} for all x, y ∈ E.
A seminorm p on E is a norm if ker p = {0}.

We assume that a locally convex space (lcs) is a Hausdorff space.
A Fréchet space is a complete metrizable lcs.
Let E be a locally convex space.
Denote by P(E) the set of all continuous seminorms on E. A family B ⊂ P(E)

is a base in P(E) if for any p ∈ P(E) there is q ∈ B with q ≥ p.
A sequence (xn) in E is orthogonal with respect to a family B in P(E) if

p(
∑n

i=1 αixi) = max1≤i≤n p(αixi) for all p ∈ B, n ∈ N and α1, . . . , αn ∈ K.
A sequence (xn) of non-zero elements of E is a basic orthogonal sequence in E

if it is orthogonal with respect to some base B in P(E). A linearly dense basic
orthogonal sequence in E is called an orthogonal basis in E.

A sequence (xn) in a lcs E is a Schauder basis of E if each element x in E can
be written uniquely as x =

∑∞
n=1 αnxn with (αn) ⊂ K and the coefficient functionals

fn : E → K, x → αn (n ∈ N) are continuous. A sequence (xn) in a lcs E is a
Schauder basic sequence if it is a Schauder basis of the closed linear span of (xn).

It is known that any basic orthogonal sequence in a lcs E is a Schauder basic
sequence in E and that every Schauder basic sequence in a Fréchet space F is a
basic orthogonal sequence in F ([4], Propositions 1.4 and 1.7).

For any seminorm p on a linear space E the map p : Ep → [0,∞), x+ker p→ p(x)
is a norm on Ep = (E/ ker p).

A lcs E is of finite type if dimEp <∞ for any p ∈ P(E), and of countable type if
the normed space (Ep, p) contains a linearly dense countable set for any p ∈ P(E).
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Any i.d. Fréchet space of finite type is isomorphic to the Fréchet space KN of all
sequences in K with the topology of pointwise convergence (see [4], Theorem 3.5).

The strong dual of KN we denote by φ. The topology of φ is the finest locally
convex topology on φ.

By a Köthe space we mean a Fréchet space E with a Schauder basis (xn) and
with a continuous norm.

An LM-space (respectively, LF-space) is a lcs E which is the inductive limit of an
inductive sequence (En) of metrizable locally convex spaces (respectively, of Fréchet
spaces).

Put BK = {α ∈ K : |α| ≤ 1}. By the absolutely convex hull of a subset A of a lcs
E we mean the set coA = {∑n

i=1 αiai : n ∈ N, α1, . . . , αn ∈ BK, a1, . . . , an ∈ A}.
A subset B of a lcs E is absolutely convex if coB = B.
A lcs E is Baire-like if for any increasing sequence (An) of absolutely convex

closed subsets of E covering E there is n ∈ N such that An is a neighbourhood of
zero in E.

For a subset A of a lcs E we put A◦ = {f ∈ E ′ : |f(x)| ≤ 1 for all x ∈ A} and
A◦◦ = {x ∈ E : |f(x)| ≤ 1 for all f ∈ A◦}; A is a polar set if A = A◦◦.

For an absolutely convex subset A of a lcs E we put Ae = A if the valuation of
K is discrete, and Ae =

⋂{αA : α ∈ K ∧ |α| > 1} if the valuation of K is dense.
A lcs E is polar if any neighbourhood of zero in E contains a polar one, and

strongly polar if every absolutely convex neighbourhood U of zero in E with U = U e

is a polar set. Any lcs of countable type is strongly polar ([12], Theorem 4.4); if K
is spherically complete, then any lcs over K is strongly polar ([12]).

A subset B of a lcs E is compactoid if for each neighbourhood U of zero in E
there exists a finite subset A of E such that B ⊂ U + coA. By a Fréchet-Montel
space we mean a Fréchet space in which any bounded subset is compactoid.

3 Results

First we show the following.

Proposition 1. Let E∗ be the algebraic dual of a linear space E. Then the lcs
Eσ = (E, σ(E,E∗)) has no basic orthogonal sequence.

Proof. Suppose, by contradiction, that (xn) is a basic orthogonal sequence in
Eσ. Let B be a Hamel basis of E such that (xn) ⊂ B. Let (fb)b∈B ⊂ E∗ be
the family of coefficient functionals associated with the basis B. Then for any
x ∈ E the set {b ∈ B : fb(x) 6= 0} is finite and x =

∑
b∈B fb(x)b. Put f(x) =∑

b∈B fb(x), x ∈ E; clearly f ∈ E∗ and f(b) = 1, b ∈ B. Since |f | ∈ P(Eσ), then
there exists q ∈ P(Eσ) with q ≥ |f | such that (xn) is orthogonal with respect
to q. Because dim(E/ ker q) < ∞, the set M = {n ∈ N : q(xn) 6= 0} is finite.
Indeed, let m ∈ N, α1, . . . , αm ∈ K, i1, . . . , im ∈ M with i1 < · · · < im such that∑m

k=1 αk(xik + ker q) = ker q. Then 0 = q(
∑m

k=1 αkxik) = max1≤k≤m |αk|q(xik), so
α1 = · · · = αm = 0. Thus (xm + ker q)m∈M is linearly independent in E/ ker q, so M
is finite. Hence the set {n ∈ N : |f(xn)| 6= 0} is finite; a contradiction. �

For Fréchet spaces we have the following.
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Proposition 2. Let E be a strongly polar Fréchet space. Then the lcs Eσ =
(E, σ(E,E ′)) has a basic orthogonal basic sequence if and only if E has no con-
tinuous norm.

Proof. If E has no continuous norm, then E contains an isomorphic copy F
of KN ([1], Proposition 2.6). Hence (F, σ(F, F ′)) has an orthogonal basis. Clearly,
σ(F, F ′) = σ(E,E ′)|F ; so Eσ has a basic orthogonal sequence.

Now we assume that E has a continuous norm p. Suppose, by contradiction, that
Eσ has a basic orthogonal sequence (xn). Let D be the closed linear span of (xn)
in Eσ. By [9], Theorem 1.3, (xn) is a Schauder basis in the strongly polar Fréchet
space D. Let (fn) be the sequence of coefficient functionals associated with the
basis (xn). Without loss of generality we can assume that p(xn) ≥ 1, n ∈ N. Clearly,
fn(x)xn →n 0 in D for any x ∈ D. Hence |fn(x)| →n 0, x ∈ D. Thus the series∑∞

n=1 fn(x) is convergent for any x ∈ D. By the Banach-Steinhaus theorem the linear
functional f(x) =

∑∞
n=1 fn(x), x ∈ D, is continuous on D; clearly f(xn) = 1, n ∈ N.

Let g ∈ E ′ with g|D = f ([10], Theorem 4.2). Then there is q ∈ P(Eσ) with q ≥ |g|
such that (xn) is orthogonal with respect to q. Since dim(E/ ker q) < ∞, there
exists n0 ∈ N such that for any n ≥ n0 we have q(xn) = 0. Hence, f(xn) = 0 for any
n ≥ n0; a contradiction. �

Corollary 3. For any strongly polar Fréchet space E with a continuous norm the
lcs Eσ has no basic orthogonal sequence. In particular, any Köthe space E with the
weak topology has no basic orthogonal sequence.

The conclusion of Proposition 2 (and Corollary 3) also holds if we assume that
the Fréchet space E has the following property, usually called property (*): For every
subspace of countable type D of E, each f ∈ D′ has a continuous linear extension
g ∈ E ′. The class of strongly polar Fréchet spaces is strictly contained in the class
of Fréchet spaces with property (*). For example, a Banach space with a basis of a
non-countable cardinality (in the sense of [11]) is not necessarily strongly polar, but
such a space has property (*) (see the proof (i)–(iii) of Theorem 1.3 of [9], where it
is also shown that each lcs with property (*) is an (O.P.)-space i.e. every weakly
convergent sequence is convergent).

Clearly, for any i.d. strongly polar Fréchet space E, the lcs Eσ has a Schauder
basic sequence, since E has a Schauder basic sequence.

It is easy to see that the weak dual E ′
σ of a Fréchet space E has a Schauder basic

sequence if E has a quotient F with a Schauder basis (xn). Thus, by [19], Theorems
2 and 11, the weak dual of any i.d. Fréchet space of countable type has a Schauder
basic sequence. For basic orthogonal sequences we have the following.

Proposition 4. The weak dual E ′
σ = (E ′, σ(E ′, E)) of any Fréchet space E has no

basic orthogonal sequence.

Proof. Suppose, by contradiction, that E ′
σ has a basic orthogonal sequence (fn).

Let F be the closed linear span of (fn) in E ′
σ and let (f ∗n) ⊂ F ′ be the sequence of

coefficient functionals associated with the orthogonal basis (fn) in F . Clearly, E ′
σ is

of countable type; so for any n ∈ N there is xn ∈ E such that f ∗n(f) = f(xn) for any
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f ∈ F ([12], Theorems 4.2 and 4.4). For some sequence (αn) of non-zero scalars the
series

∑∞
n=1 αnxn is convergent in E to some element x0. Clearly, fn(x0) = αn 6= 0

for any n ∈ N. The seminorm p(f) = |f(x0)|, f ∈ E ′, is continuous on E ′
σ, so there

is q ∈ P(E ′
σ) with q ≥ p such that (fn) is orthogonal with respect to q. Since

dim(E ′/ ker q) < ∞, then there exists n0 ∈ N such that for any n ≥ n0 we have
q(fn) = 0. Hence p(fn) = 0 for n ≥ n0, so fn(x0) = 0 for n ≥ n0; a contradiction. �

The above results also can be obtained using the following.

Proposition 5. A lcs E of finite type has a basic orthogonal sequence if and only
if E contains an i.d. metrizable closed subspace.

Proof. It is known that any i.d. metrizable lcs of finite type has an orthogonal
basis ([4], Theorem 3.5). Thus it is enough to show that any lcs E of finite type
with an orthogonal basis (xn) is metrizable.

Let (fn) be the sequence of coefficient functionals associated with the basis (xn).
Let p ∈ P(E). Then there is q ∈ P(E) with q ≥ p such that (xn) is orthogonal with
respect to q. Since dim(E/ ker q) <∞, there exists n0 ∈ N such that for any n > n0

we have q(xn) = 0. Put C = maxn q(xn) and pn(x) = max1≤k≤n |fk(x)|, x ∈ E, n ∈
N. Clearly (pk) ⊂ P(E). It is easy to check that (xn) is orthogonal with respect
to (pk). For any x ∈ lin(xn) we have q(x) ≤ Cpn0(x). Indeed, let m ≥ n0 and
α1, . . . , αm ∈ K; then q(

∑m
i=1 αixi) = max1≤i≤m q(αixi) ≤ C max1≤i≤m pn0(αixi) =

Cpn0(
∑m

i=1 αixi). Since (xn) is linearly dense in E, we get p(x) ≤ q(x) ≤ Cpn0(x), x ∈
E. Thus E is metrizable. �

By the proof of Proposition 5 we have the following.

Corollary 6. A lcs E of finite type has an orthogonal basis (xn) if and only if E is
metrizable.

Now we shall prove that there exist i.d. locally convex spaces (at least over
some fields) without Schauder basic sequences. It is known that if K is spherically
complete and E is an i.d. Banach space over K , then (E ′′, σ(E ′′, E ′)) does not have
a Schauder basis ([5], Remark 2.16(iii)). We can improve this result by proving the
following.

Proposition 7. Assume that the field K is spherically complete and the valuation
of K is dense. If E is an i.d. Banach space over K, then (E ′′, σ(E ′′, E ′)) has no
Schauder basic sequence. In particular, the lcs (l′∞, σ(l′∞, l∞)) has no Schauder basic
sequence.

Proof. By [11], Corollary 4.5, E ′ is spherically complete. Using [11], Corollary
5.20, we infer that E ′ has no quotient with a Schauder basis (see also [8], Remark
2.6).

Suppose, by contradiction, that (E ′′, σ(E ′′, E ′)) has a Schauder basic sequence
(fn); denote by F its closed linear span. Put G = {x ∈ E ′ : f(x) = 0 for all f ∈ F}
and H = (E ′/G). Let T : E ′ → H be the quotient map and let T ′ : H ′ → E ′′

be the adjoint map of T . As in the archimedean case one can show that T ′(H ′) =
F and T ′ is an isomorphism between (H ′, σ(H ′, H))) and (F, σ(E ′′, E ′)|F ). Thus
(H ′, σ(H ′, H)) has a Schauder basis. Hence, by [5], Proposition 2.13, the Banach
space H has a Schauder basis; a contradiction. �
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One can check that the lcs (l∞, σ(l∞, l
′
∞)) possesses a Schauder basic sequence

and has no basic orthogonal sequence (for any field K).

If K has a discrete valuation, then by [8], Remark 2.6 (or [11], Corollary 4.14)
any i.d. Banach space E over K has a quotient with a Schauder basis (xn), so
(E ′, σ(E ′, E)) has a Schauder basic sequence.

Next we will show that the spaces Cp(X) and Cc(X) of continuous functions
have basic orthogonal sequences.

Let X be an infinite zero-dimensional Hausdorff space and let F be a family
(Ft)t∈T of compact subsets of X with

⋃
t∈T Ft = X such that for all t1, t2 ∈ T there

exists t3 ∈ T with Ft1∪Ft2 ⊂ Ft3 . Denote by CF(X) the space C(X) of all continuous
functions from X to K, with the topology of uniform convergence on the elements of
F . The seminorms pn,t(f) = n supx∈Ft

|f(x)|, f ∈ C(X), n ∈ N, t ∈ T, form a base
in P(CF(X)).

If F is the family Fp of all finite subsets of X, then CF(X) is the space Cp(X) of
all continuous functions from X to K with the topology of pointwise convergence.
If F is the family Fc of all compact subsets of X, then CF(X) is the space Cc(X)
of all continuous functions from X to K with the compact-open topology.

Any infinite clopen (i.e. closed and open) subset A of X contains a non-empty
clopen subset B such that (A \B) is infinite. Thus X possesses a sequence (Un) of
nonempty clopen subsets pairwise disjoint. Let fn be the characteristic function of
Un for n ∈ N. Then (fn) is an orthogonal sequence in CF(X). Indeed, let n ∈ N, t ∈
T,m ∈ N and α1, . . . , αm ∈ K. We have pn,t(

∑m
i=1 αifi) = n supx∈Ft

|∑m
i=1 αifi(x)| =

maxi∈Mt n|αi| = max1≤i≤m pn,t(αifi), where Mt = {i ∈ N : 1 ≤ i ≤ m ∧ Ui∩Ft 6= ∅}
(max ∅ = 0). Thus (fn) is orthogonal with respect to the base {pn,t : n ∈ N, t ∈ T}.
Similarly one can check that any sequence (fn) ⊂ C(X) of functions with pairwise
disjoint nonempty supports is a basic orthogonal sequence in CF(X).

Thus we have the following.

Proposition 8. The lcs CF(X) has a basic orthogonal sequence.

Corollary 9. The spaces Cp(X) and Cc(X) have basic orthogonal sequences.

Note that for some spaces X the lcs Cp(X) possesses i.d. closed subspaces
without basic orthogonal sequences. Indeed, let E be an i.d. polar Fréchet space.
Then Cp(E) has an i.d. closed subspace isomorphic to (E ′, σ(E ′, E)) which has no
basic orthogonal sequence.

Using Corollary 6 it is easy to obtain the following.

Corollary 10. The lcs Cp(X) has an orthogonal basis (fn) if and only if the set X
is countable.

To prove our next proposition we need the following lemma (compare with [3],
Lemma 2.2.3 and Remarks 2.2.5).

Lemma 11. Every barrelled lcs E which is not Baire-like contains an isomorphic
copy of φ.
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Proof. Let (An) be an increasing sequence of closed absolutely convex subsets
of E covering E such that An is not a neighbourhood of zero in E for any n ∈ N.
Without loss of generality we can assume that the sequence linAn, n ∈ N, is strictly
increasing. Let xn ∈ (An+1 \ linAn), n ∈ N. We shall prove that the linear span X
of (xn) is isomorphic to φ. Let p be a seminorm on X. By [13], Corollary 1.2, and
[3], Lemma 0.1, the sets Bn = (An + lin{xk : k < n})e, n ∈ N, are closed; clearly
xn ∈ (Bn+1 \ linBn), n ∈ N.

Using [3], Proposition 0.2, we can find inductively a sequence (pn) ⊂ P(E) such
that pn(x) < 1 for x ∈ Bn and pn(xn) > max({pk(xn) : k < n} ∪ {p(xn)}), n ∈ N.
Then q(x) = supk pk(x) <∞ for any x ∈ E. Since E is barrelled, q ∈ P(E).

It is easy to see that pn(xk) = 0 for all n, k ∈ N with n > k. Clearly,
q(xj) = pj(xj) for any j ∈ N. Let (αj) ⊂ K. For any n ∈ N we have q(

∑n
j=1 αjxj) ≥

pn(
∑n

j=1 αjxj) = pn(αnxn) = q(αnxn). Hence, by induction, we get q(
∑n

j=1 αjxj) ≥
max1≤j≤n q(αjxj), n ∈ N. Thus we obtain p(

∑n
j=1 αjxj) ≤ max1≤j≤n p(αjxj) ≤

max1≤j≤n pj(αjxj) = max1≤j≤n q(αjxj) ≤ q(
∑n

j=1 αjxj) for any n ∈ N.
It follows that p(x) ≤ q(x) for any x ∈ X. We have shown that any seminorm

on X is continuous, so X is isomorphic to φ. �

Now we can prove the following.

Proposition 12. (a) The strong dual E ′
b = (E ′, b(E ′, E)) of any i.d. polar Fréchet

space E has a basic orthogonal sequence.
(b) The strong dual E ′

b of a strongly polar Fréchet space has an orthogonal basis
(fn) if and only if E is a Fréchet-Montel space with an orthogonal basis.

Proof. (a) Let (Un) be a decreasing base of polar neighbourhoods of zero in E.
Clearly, the sets U◦

n, n ∈ N, are bounded in E ′
b. By [4], Corollary 3.1, it is enough

to consider the case when for any n ∈ N the set U◦
n is compactoid in E ′

b.
Then, by [12], Proposition 6.5, every σ(E ′, E)-bounded subset of E ′ (i.e. every

equicontinuous subset of E ′) is compactoid in E ′
b. Applying [6], Theorem 3.3, we

deduce that E is a Fréchet-Montel space; so E is of countable type ([6], Theorem
3.1). It follows from [12], Theorem 10.3, Lemma 9.4, Theorem 8.5 and Corollary
10.10, that E ′

b is barrelled.
The space E ′

b is not Baire-like. Indeed, (U◦
n) is an increasing sequence of abso-

lutely convex closed subsets of E ′
b covering E ′

b. Recall that we consider the case when
for any n ∈ N the set U◦

n is compactoid in E ′
b; then U◦

n is not a neighbourhood of
zero in E ′

b for any n ∈ N. Using Lemma 11, we infer that E ′
b contains an isomorphic

copy of φ; so E ′
b has a basic orthogonal sequence.

(b) If E ′
b has an orthogonal basis (fn), then E is a Fréchet-Montel space ([12],

Theorem 8.5) and reflexive ([12], Theorem 10.3); so any bounded subset of E ′
b is

compactoid ([12], Theorem 10.7) and E ′
b is complete ([12], Proposition 6.8). Using

[19], Proposition 6, we infer that (E ′
b)
′
b has an orthogonal basis.

If E is a Fréchet-Montel space with an orthogonal basis then, by [19], Proposition
6, E ′

b has an orthogonal basis. �

For Fréchet-Montel spaces we can show a stronger result.
Let E be a lcs. The topology c(E ′, E) of uniform convergence on compactoid

subsets of E is a locally convex topology on the dual space E ′. By E ′
c we denote
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the lcs (E ′, c(E ′, E)). E is said to be a (dF )-space ([7]) if it has a fundamental
sequence of compactoid subsets and the canonical linear map JE : E → (E ′

c)
′
c is an

isomorphism. It is easy to see that the strong dual E ′
b of any Fréchet-Montel space

E is a (dF )-space and E ′
c = E ′

b.

Proposition 13. Let E be a Fréchet-Montel space. Then any i.d. closed subspace
F of the strong dual E ′

b of E has a basic orthogonal sequence.

Proof. E ′
b is a reflexive (dF )-space. Hence, by [7], Theorem 5.12, F is isomorphic

to (E/F⊥)′c, where F⊥ = {x ∈ E : f(x) = 0 for any f ∈ F}.
If G = (E/F⊥) is a Fréchet-Montel space then G′

c = G′
b; so F has a basic

orthogonal sequence, by Proposition 12.
In the opposite case, G contains a complemented isomorphic copy of c0 (see [5],

Corollary 6.7, [6], Theorem 3.1, and [18], Proposition 3) so G′
c contains an isomorphic

copy of ψ = (c0)
′
c ([7], Proposition 2.8).

Thus it is enough to show that ψ has a basic orthogonal sequence. For any
t = (tn) ∈ c0 the set Bt = {x = (xn) ∈ c0 : |xn| ≤ |tn| for n ∈ N} is compactoid in
c0 and any compactoid set B in c0 is contained in Bt for some t ∈ c0 ([2], Corollary
3.7). The seminorms qt(f) = supx∈Bt

|f(x)|, f ∈ (c0)
′, t ∈ c0 form a base B in P(ψ).

It is easy to check that the sequence (fn) of coefficient functionals associated with
the coordinate basis (en) in c0 is orthogonal with respect to B; so (fn) is a basic
orthogonal sequence in ψ. �

By the proof of Proposition 13, for any i.d. Fréchet space E of countable type, E ′
c

has a basic orthogonal sequence. Hence, by [7], Theorem 5.12, any i.d. quotient of
the strong dual E ′

b of any Fréchet-Montel space E has a basic orthogonal sequence.

Finally we show the following.

Proposition 14. Any i.d. barrelled LM-space E has a basic orthogonal sequence.

Proof. Clearly, φ has an orthogonal basis. Thus, by Lemma 11, it is enough
to consider the case when E is Baire-like. Using the idea of the proof of Theorem
2.2.2 of [3], we show that E is metrizable. Let (En) be an inductive sequence of
metrizable locally convex spaces defining E. For any n ∈ N, let (Un,k)∞k=1 be a base
of absolutely convex neighbourhoods of zero in En. Let U be an absolutely convex
closed neighbourhood of zero in E. Let k ∈ N. Then U ∩ Ek is a neighbourhood of
zero in Ek, so Uk,ik ⊂ U ∩Ek for some ik ∈ N. Let An be the closure of

∑n
k=1 Uk,ik in

E for any n ∈ N. Clearly, (An) is an increasing sequence of absolutely convex closed
subsets of E and An ⊂ U for n ∈ N. Let α ∈ K with |α| > 1. Then E =

⋃∞
n=1 α

nAn;
hence αnAn is a neighborhood of zero in E for some n ∈ N. We have shown that
some subfamily of the countable family {clE(

∑n
k=1 Uk,jk

) : n, j1, . . . , jn ∈ N} is a
base of neighbourhoods of zero in E; so E is metrizable.

By [14], Theorem 2, E has a basic orthogonal sequence. �

Corollary 15. Any i.d. LF-space possesses a basic orthogonal sequence.

The author wishes to thank the Referee for very useful remarks and comments.
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[16] W. Śliwa, On basic orthogonal sequences in non-archimedean metrizable locally
convex spaces, Arch. Math., 78(2002), 210–214.
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