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Abstract

We obtain a generalized continuous selection theorem and a coincidence

theorem for generalized convex spaces. Some new Himmelberg type theo-

rems and Eilenberg-Montgomery and Gorniéwicz type fixed point theorems

for mappings with KKM property are established in noncompact LG-spaces.

Moreover, applications to these fixed point theorems for existence of equilibria

are given.

1 Introduction

Let X be a nonempty set, we denote by 2X the family of all subsets of X, by F(X)
family of all nonempty finite subsets of X and |A| the cardinality of A ∈ F(X).
Suppose that Y is a nonempty set and F : X → 2Y is a multivalued mapping,
fibers F−(y) for y ∈ Y defined by F−(y) = {x ∈ X : y ∈ F (x)}. For topological
spaces X and Y , a multivalued mapping F : X → 2Y is said to be compact if
the closure clF (X) of its range F (X) is compact in Y . A multivalued mapping F
is said to be upper semicontinuous (u.s.c.) if for each closed set B ⊆ Y , the set
F−(B) = {x ∈ X : F (x) ∩ B 6= ∅} is closed subset of X; lower semicontinuous
(l.s.c.) if for each open set B ⊆ Y , the set F−(B) is open.
Let f be a real bifunction on X×Y , then f is called λ-transfer lower semicontinuous
(l.s.c.) on Y if for each (x, y) ∈ X × Y with f(x, y) > λ there exist x′ ∈ X and a
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neighborhood U(y) of y in Y such that f(x′, z) > λ for all z ∈ U(y).The bifunction
f is said to be λ-transfer upper semicontinuous (u.s.c.) on Y if −f is λ-transfer l.s.c.
on Y . It is easily seen that a lower (upper) semicontinuous bifunction is λ-transfer
lower (upper) semicontinuous for each λ. A nonempty topological space is acyclic if
all of its reduce homology groups over rational vanishes.
The following class A(X, Y ) of approachable multivalued mappings was introduced
by Ben-El-Mechaiekh et al. [1]. Let (X,U), (Y,V) be uniform topological spaces
with bases U and V of symmetric entourages for the uniformities on X and Y

respectively. For each U ∈ U and V ∈ V, let

W = {((x, y), (x′, y′)) ∈ (X × Y ) × (X × Y ) : (x, x′) ∈ U, (y, y′) ∈ V }.

Then the family W = (W )U∈U ,V ∈V is a base of symmetric entourages for the product
uniformity, and the associated uniform topology on X × Y is the product of the
uniform topologies on X and Y . Let F : X → 2Y be a multivalued mapping. For
given element W ∈ W, a function f : X → Y is said to be a W -approximative
selection of F if and only if Gr(f) ⊆W [Gr(F )], where Gr(f) and Gr(F ) denote the
graphs of f and F , respectively. A multivalued mapping F is said to be approachable
if F admits a continuous W -approximative selection for each W ∈ W. The class
A(X, Y ) of multivalued mappings is defined by

A(X, Y ) := {F : X → 2Y : F is approachable}.

A generalized convex space or G-convex space was first introduced by Park and Kim
[24]. A G-convex space (X,D; Γ) consist of a topological spaceX and a nonempty set
D such that for each A = {a0, a1, ..., an} ∈ F(D) there exist a subset Γ(A) of X and
a continuous function ΦA : ∆n → Γ(A) such that for each L = {ai0, ai1 , ..., ail} ⊆
A implies ΦA(∆l) ⊂ Γ(L), where ∆n is an n-simplex with vertices v0, v1, ..., vn,
∆l = co{vi0, vi1 , ..., vil} the face of ∆n corresponding to L. When D = X, we
shall write (X; Γ) in place of (X,X; Γ). If D ⊆ X, (X,D; Γ) is a G-convex space
and K ⊂ X, then K is called G-convex if for each A ∈ F(D), A ⊂ K implies
Γ(A) ⊂ K. The G-convex hull of K denoted by G-coK, is the set

⋂

{B ⊂ X : B
is a G-convex subset of X containing K}. A function f : X → R is called G-
quasiconvex (resp.G-quasiconcave) if for each λ ∈ R, the set {x ∈ X : f(x) < λ}
(resp. {x ∈ X : f(x) > λ}) is G-convex.
Notice that G-convex spaces contain most of the well known spaces such as convex
spaces, H-spaces, L-spaces, C-spaces and hyperconvex metric spaces. For details see
Park [18-22] and references therein.
A G-convex space (X,D; Γ) is called an LG-space if (X,U) is a uniform space such
that D is dense in X and if there exists a symmetric basis {Vλ}λ∈I for uniformity U
such that for each λ ∈ I, {x ∈ X : C

⋂

Vλ[x] 6= ∅} is G-convex whenever C ⊆ X is
G-convex, where Vλ[x] = {x′ ∈ X : (x, x′) ∈ Vλ}.
Let (X,D; Γ) be a G-convex space and Y be a topological space. The following
class B(X, Y ) of better admissible multivalued mappings was introduced by Park
[4]. This class consists of multivalued maps F : X → 2Y such that for any A ∈
F(D) with |A| = n + 1 and for any continuous function f : F (Γ(A))) → ∆n, the
composition map foFoΦA : ∆n → ∆n has a fixed point. It is well known that the
class of better admissible contains Aκ

c (X, Y ), the admissible class, and many other
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important classes of multivalued mappings [19]. A multivalued map F : D → 2X

is called a KKM map if for each A ∈ F(D), Γ(A) ⊂
⋃

x∈A F (x). More generally if
G : D → 2Y , F : X → 2Y are two multivalued maps such that for any A ∈ F(D),
F (Γ(A)) ⊆ G(A), then G is said to be a generalized KKM mapping with respect
to F . Let F : X → 2Y be a multivalued mapping such that if G : D → 2Y is a
generalized KKM mapping with respect to F , then the family {clG(x) : x ∈ D} has
the finite intersection property. In this case we say that F has the KKM property.
We define

K(X, Y ) := {F : X → 2Y : F has the generalized KKM property}.

When X is a convex subset of a topological vector space, the class K(X, Y ) was
introduced and studied by Chang and Yen [2]. This concept is further extended for
G-convex spaces by Lin et al. [17].
Motivated by the concept of c measure of noncompactness of Hahn [10] for topolog-
ical vector spaces, we define this notion in a similar way for G-convex spaces. Let
(X,D; Γ) be a G-convex space, D ⊂ X, and C a cone in a vector space with partial
ordering ≤. Let c be a real number with c ≥ 1. A function Ψ : 2X → C is called a
c-measure of noncompactness on X provided that the that the following conditions
hold for any Z ∈ 2X :

(1) Ψ(clZ) = Ψ(Z);

(2) Ψ(G-co Z) ≤ cΨ(Z);

(3) if x ∈ X, then Ψ(Z ∪ {x}) = Ψ(Z);

(4) if Z1 ⊂ Z, then Ψ(Z1) ≤ Ψ(Z).

If T : X → 2X , then T is called Ψ-pseudocondensing map if, whenever Ψ(Z) ≤
cΨ(T (Z)) for Z ∈ 2X , then Z is relatively compact.
In particular, if c = 1, then T is called Ψ-condensing. Note that if T is a compact
mapping, then T is of course, Ψ-condensing.

Throughout this paper, all topological spaces are assumed to be Hausdorff.

2 Continuous selection theorem and Fixed point theorems

In this section we shall obtain a new version of existence of a continuous selection
for multivalued mappings on noncompact subsets of a G-convex space and we apply
this result for obtaining a coincidence theorem and fixed point theorems in G-convex
spaces.

In order to obtain our continuous selection result we used the following notation.
Assume J is a well ordered indexing set and let {eα : α ∈ J} be a given abstract
set. Define

E := {x =
∑

α∈J

λαeα : λα ∈ R and at most finitely many λα 6= 0}.



238 M. Fakhar – J. Zafarani

We provide E by the induced topology of l1(J). For each nonempty subset I of J
the convex hull of {eα : α ∈ I} is denoted by ∆I .

The following proposition improves proposition 3.8 of Ben-El-Mechaiekh et al. [1],
theorem 3.2 of Horvath [11], lemma 2 of Kim and Tan [13] and theorem 1 of Wu
and Shen [29].

Proposition 2.1. Let (X,D; Γ) be a G-convex space and Y be a normal space.
Suppose that S : Y → 2D and T : Y → 2X are two multivalued mappings such that:

(1) for each y ∈ Y and for every L ∈ F(S(y)) one has Γ(L) ⊆ T (y),

(2) there exist a nonempty paracompact subset K of Y and finite subset M of D
such that Y \K ⊆ {IntS−(x) : x ∈M},

(3) K =
⋃

{IntS−(x) : x ∈ S(K)},

(4) for each A ∈ F(D) we have ΦA(∆l) = ΦL(∆l) for any L ⊆ A where l+1 = |L|.

Then T has a continuous selection.
Proof. Since K is paracompact, there is a locally finite open refinement V := {Vα :
α ∈ I} of the open cover {IntS−(x) : x ∈ S(K)}, where I is an index set. Therefore
for each α ∈ I, there exists xα ∈ S(K) such that Vα ⊆ IntS−(xα) ⊆ S−(xα). Let
{xα : α ∈ I}

⋃

M = {xβ : β ∈ J} = C, we can suppose that J is a well ordered
set. Moreover C ⊆ S(Y ) ⊆ D. Assume that {hβ : β ∈ J} is a partition of unity
subordinated to V

⋃

{IntS−(x) : x ∈M} = {Vβ : β ∈ J} and h : Y → ∆J is defined
by

h(y) =
∑

β∈J

hβ(y)eβ.

If hβ(y) 6= 0, then y ∈ Vβ and so xβ ∈ S(y). Hence if Jy = {β ∈ J : hβ(y) 6= 0}
and L = {xβ : β ∈ Jy}, then L is finite and L ⊆ S(y), therefore by condi-
tion (1) ΦL(∆l) ⊆ T (y), where Jy = l + 1. Thus by the virtue of condition (4)
f(y) := ΦLoh(y) is a continuous selection of T .

Remarks. (a) Condition (4) of the above proposition is satisfied by a wide classes
of spaces. Namely H-spaces, B′-simplicial convexity of Ben-El-Mechaiekh et al. [1]
and ω-connected spaces considered by Park [20].
(b) In proposition 2.1 if K is compact, then without condition (4) we can conclude
that there exist continuous functions h : Y → ∆n and g : ∆n → X for some n ∈ N,
such that goh = f is a continuous selection of T . Therefore, we obtain theorem 2.1
of Ding and Park [5] and theorem 1 of Yu and Lin [33].

The following coincidence theorem is an improvement of theorem 3.1 of Ding and
Tarafdar [6] and theorem 3.1 of Park [20].

Theorem 2.2. Let (X,D; Γ) be G-convex space and Y be a normal space. Sup-
pose that S : Y → 2D and T : Y → 2X are two multivalued mappings satisfying
the conditions (1) and (3) of proposition 2.1, condition (2) of proposition 2.1 for a
nonempty compact subset K and F ∈ B(X, Y ). Then there exist a point x0 ∈ X
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and a point y0 ∈ Y such that x0 ∈ T (y0) and y0 ∈ F (x0).
Proof. By part (b) of the above remark, there are continuous functions g : ∆n → X

and h : Y → ∆n such that goh = f is a continuous selection of T . By our assump-
tions on B(X, Y ), the map hoFog : ∆n → 2∆n has a fixed point t0 ∈ hoFog(t0).
Hence if x0 = g(t0), then there exists y0 ∈ F (x0) where t0 = h(y0). But x0 = g(t0) =
goh(y0) ∈ T (y0) and so the proof is complete.

As a consequence of the above theorem we obtain the following result which im-
proves corollary 3.1 of Ding and Tarafdar [6] and corollary 2.2 of Tarafdar [26].

Corollary 2.3. In theorem 2.2 if we replace F by any continuous mapping f : X →
Y , then there is a point x0 ∈ X such that x0 ∈ T (f(x0)).

In the case when X = Y and f = I is the identity mapping on X, corollary 2.3 re-
duces to the following corollary which contains corollary 2.3 of Tarafdar [26], lemma 2
of Wu [28] and particular case of theorem 6.4 of Park [20] for paracompact C-spaces.

Corollary 2.4. Let (X,D; Γ) be a normal G-convex space. Suppose that S : X → 2D

and T : X → 2X are satisfied the conditions of theorem 2.2, then T has a fixed point.

In the following lemmas we show the richness of the space K(X, Y ) of all multivalued
mappings with the KKM property. The first lemma is an analogous result of lemma
3.1 of Ding [4] and part (2) of lemma 2 of Park [22].

Lemma 2.5. Let (X,D; Γ) be a G-convex space and Y be a topological space. Then
those elements F ∈ B(X, Y ) such that for any A ∈ F(D) with |A| = n + 1, the set
F (ΦA(∆N)) in its induced topology is a normal space, belong to K(X, Y ).
In particular case, any element F ∈ B(X, Y ) for which F is u.s.c. and compact
values, belongs to K(X, Y ).
Proof. Assume that F ∈ B(X, Y ) and G : D → 2Y is a generalized KKM map-
ping with respect to F such that G(x) is closed for each x ∈ D. If the fam-
ily {G(x) : x ∈ D} does not have the finite intersection property, then there
exists a finite subset A = {x0, x1, ..., xn} of D such that

⋂n
i=0G(xi) = ∅. Thus

F (ΦA(∆n)) ⊆
⋃n

i=0 Vi, where Vi = F (ΦA(∆n)) \ G(xi). Since F (ΦA(∆n)) is normal
space, then there exists a partition of unity {hi : i = 0, ..., n} subordinated to the
open cover {Vi : i = 0, ..., n}. Define h : F (ΦA(∆n)) → ∆n as h(y) =

∑n
i=0 hi(y)ei,

then by our assumptions on B(X, Y ), the map hoFoΦA : ∆n → 2∆n has a fixed
point t0 ∈ hoFoΦA(t0). So h−1(t0)

⋂

FoΦA(t0) 6= ∅. If y ∈ h−1(t0)
⋂

FoΦA(t0) and
Jy = {i : hi(y) 6= 0}, then i ∈ Jy if only if y ∈ Vi and so y ∈

⋂

i∈Jy
Vi. But

y ∈ FoΦA(∆Jy
) ⊆

⋃

i∈Jy
G(xi), which is a contradiction.

As a consequence of the above lemma we obtain the following result.

Lemma 2.6. Let (X,D; Γ) be a G-convex space, Y be a topological space and
F : X → 2Y be an u.s.c. with acyclic compact values, then F ∈ K(X, Y ).
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Lemma 2.7. Let (X,D; Γ) be an LG-space and F : X → 2X be u.s.c. G-convex
compact values, then F ∈ K(X,X).
Proof. Suppose that A = {x0, x1, ...xn} is a finite subset of D. Then FoΦA : ∆n →
2X is u.s.c. and G-convex values hence by proposition 3.9 of [1] FoΦA ∈ A(∆n, X).
Now, since ∆n is compact by lemma 2.4 of [1] the composition hoFoΦA : ∆n → 2∆n

is approachable for any continuous map h : F (ΦA(∆n)) → ∆n. Lemma 4.1 of [1]
implies that this composition map has a fixed point, therefore F ∈ B(X,X). Thus
by lemma 2.5, we have F ∈ K(X,X).

Remark. The proof of the above lemma also shows that if F ∈ A(X,X) is u.s.c.
and compact, then F ∈ B(X, Y ), and therefore it belongs to K(X,X).

In the following theorem we establish an almost fixed point theorem for a multival-
ued map which is a similar result to theorem 3.1 of Ding [4], theorem 2 of Park [22]
and the first part of theorem 5.1 of Park [23] in our context.

Theorem 2.8. Let (X,D; Γ) be an LG-space, Y be a compact subset of X and
F ∈ K(X, Y ) with G-convex values. Then for each U ∈ U there exists xU ∈ X such
that F (xU) ∩ U [xU ] 6= ∅.
Proof. Since Y is compact and D is dense in X, there exists A = {x0, x1, ..., xn} ∈
F(D) such that Y ⊆

⋃

x∈A U [x]. Now define a mapping G : D → 2Y by G(x) =
Y \ U [x], for all x ∈ X, then G(x) is closed for each x ∈ X and ∩x∈AG(x) = ∅.
Hence, G is not a generalized KKM mapping with respect to F . Therefore there
exists B = {x0, x1, ..., xn} ⊆ A such that F (Γ(B)) 6⊆

⋃n
i=0G(xi). So there ex-

ists y′ ∈ F (Γ(B)) such that y′ 6∈
⋃n

i=0G(xi). From the definition of G it follows
that y′ ∈ U [xi] for all i ∈ {0, 1, ..., n}. If y′ ∈ F (x′) for some x′ ∈ Γ(B)), then
B ⊆ {x ∈ X : F (x′) ∩ U [x] 6= ∅}. Therefore, F (x′) ∩ U [x′] 6= ∅.

Theorem 2.9. Let (X,D; Γ) be an LG-space and F ∈ K(X,X) with G-convex val-
ues. Suppose that T : X → 2X is closed values, u.s.c. and compact and F (x) ⊆ T (x)
for each x ∈ X, then T has a fixed point.
Proof. By the above theorem for Y = clT (X) and for each U ∈ U there ex-
ists xU ∈ X such that F (xU) ∩ U [xU ] 6= ∅ and so T (xU) ∩ U [xU ] 6= ∅ . If
yU ∈ T (xU) ∩ U [xU ], then since T is compact and closed we can assume there
is a point x̂ ∈ X such that xU and yU are convergent to x̂ and x̂ ∈ T (x̂).

Remark. In the case when for each x ∈ X, {x} is G-convex, or equivalently, since
X is Hausdorff, for each x ∈ X, and each U ∈ U , U [x] is G-convex, the condition of
G-convexity values of F in theorems 2.8 and 2.9 is not necessary. Hence theorem 2.9
slightly improves theorems 5.2 and 5.4 of Park [18]. Moreover by the remark which
follows lemma 2.7, theorem 2.9 implies also corollary 4.4 of Ben-El-Mechaiekh et al.
[1]. Therefore, we have the following corollary which improves also theorem 2 of
Chang and Yen for locally convex spaces [2].

Corollary 2.10. Let (X,D; Γ) be an LG-space and for each x ∈ X, {x} be G-
convex. Then any T ∈ K(X,X) which is compact, closed values and u.s.c. has a
fixed point.
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From lemma 2.7 and theorem 2.9 we can conclude the main result of Park [21] and
therefore, the main result of Watson [27].

Corollary 2.11. Let (X,D; Γ) be an LG-space and T : X → 2X be an u.s.c. closed
values, G-convex values and compact, then T has a fixed point.

Remark. In the above corollary instead of LG-space and G-convexity values of T ,
we can assume that (X; Γ) is a G-convex space provided with a uniform structure U
such that for each U ∈ U and x ∈ X the set {y ∈ X : T (x)∩U [y] 6= ∅} is G-convex.
In this case we obtain a refinement of theorem 2.3 of Hou [12].

From lemma 2.6, theorem 2.9 and corollary 2.10 we obtain the main result of Yuan
[32].

Corollary 2.12. Let (X,D; Γ) be an LG-space such that for each x ∈ X, {x} is
G-convex. Suppose that T : X → 2X is an u.s.c., compact, closed and acyclic values,
then T has a fixed point.

By proposition 2.1 and corollary 2.10 we conclude the following result which im-
proves corollary 4.7 of Ben-El-Mechaiekh et al. [1], theorem 3.1 of Kirk, Sims and
Yuan [15] and theorem 6 of Park [21].

Corollary 2.13. Let (X,D; Γ) be a normal LG-space such that for each x ∈ X,
{x} is G-convex. Suppose that S : X → 2D and T : X → 2X are two multivalued
mappings such that T is compact and all of the conditions of the proposition 2.1
hold. Then T has a fixed point.
Proof. By proposition 2.1, T has a continuous selection f : X → X. But clf(X) ⊆
clT (X) and T is compact, therefore f is also compact. Hence corollary 2.10 implies
that f has a fixed point x0 = f(x0) ∈ T (x0).

When our multivalued mapping is l.s.c., we have the following fixed point theorem
in LG-spaces which contains the second part of theorem 5.1 of Park [23].

Theorem 2.14. Let (X,D; Γ) be an LG-space and Y be a compact space. Suppose
that S : Y → 2X is l.s.c. and G-convex values, F ∈ B(X, Y ) and T : X → 2X is
u.s.c., compact with closed values such that SoF ⊆ T , then T has a fixed point.
Proof. Suppose that U ∈ U , since Y is compact and S is l.s.c., then there is a finite
subset A = {x0, x1, ..., xn} of D such that Y ⊆

⋃n
i=0 S

−(U [xi]). Assume that {hi :
i = 0, 1, ..., n} is a partition of unity subordinated to {S−(U [xi]) : i = 0, 1, ..., n},
h : Y → ∆n is defined by h(y) =

∑n
i=0 hi(y)ei and ΦA : ∆n → Γ(A). Therefore, the

map hoFoΦA : ∆n → 2∆n has a fixed point t0 ∈ ∆n. Suppose that ΦA(t0) = xU , then
since t0 ∈ hoF (xU) there exists y ∈ F (xU) such that h(y) = t0. If Jy = {i : hi(y) 6=
0} and i ∈ Jy, then y ∈ S−(U [xi]). Hence {xi : i ∈ Jy} ⊆ {x : S(y) ∩ U [x] 6= ∅}.
Since S(y) is G-convex, then S(y) ∩ U [ΦAoh(y)] 6= ∅. But ΦAoh(y) = ΦA(t0) = xU

and S(y) ⊆ SoF (xU), therefore SoF (xU)∩U [xU ] 6= ∅. So, for each element U , there
exist xU , yU ∈ X such that yU ∈ S(xU) and yU ∈ U [xU ]. Since clT (X) is compact
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and T is u.s.c. with closed values, then we can conclude xU , yU have subnet converge
to some x̂ ∈ clT (X) and x̂ ∈ T (x̂). This completes our proof.

As a consequence of the above theorem we obtain an analogous result to coincidence
theorem 7 of Wu [28] and Eilenberg-Montgomery and Gorniéwicz ’s theorem [25,
lemma 1].

Corollary 2.15. Let (X,D; Γ) be an LG-space, {x} be G-convex for each x ∈ X and
Y be a compact space. Suppose that f : Y → X is continuous map and F ∈ B(X, Y )
is u.s.c. and closed values, then the multivalued maps foF and Fof have fixed points.
Proof. It is enough in theorem 2.14, to set S = f and T = foF .

By a similar proof as that it was given by Chen and Yen[2 , Proposition 3(ii)], we
can obtain the following lemma.

Lemma 2.16. Let (X,D; Γ) be a G-convex space and Y, Z topological spaces. If
T ∈ K(X, Y ) and if f : Y → Z is continuous, then fT ∈ K(X,Z).

Now by using lemma 2.16 and corollary 2.10 we obtain a refinement of corollary 2.15.

Corollary 2.17. Let (X,D; Γ) be an LG-space such that for each x ∈ X, {x} is
G-convex, and Y be a compact space. Suppose that f : Y → X is continuous map
and T ∈ K(X, Y ) is u.s.c. and closed values, then the multivalued maps foT and
Tof have fixed points.

As another application of our fixed point theorems we have the following coincidence
point theorem which is similar to theorems 2.3 and 2.4 of Wu et al. [30] and refines
our theorem 2.2 in LG-spaces.

Theorem 2.18. Let Y be a topological space and let Z ⊂ Y be a nonempty com-
pact subset. Suppose that (X,D; Γ) is an LG-space such that for each x ∈ X, {x} is
G-convex and T : Y → 2X has a continuous selection. If F ∈ K(X,Z) is u.s.c., then
there is a point z0 ∈ Z and a point x0 ∈ X such that z0 ∈ F (x0) and x0 ∈ T (z0).
Proof. Suppose that f is a continuous selection of T . Then by corollary 2.17 foF has
a fixed point x0 ∈ X. Hence, there exists z0 ∈ F (x0) such that x0 = f(z0) ∈ T (z0).

Remark. If T satisfies the conditions of theorem 2.2, we have a continuous selection
for T .

In order to obtain our result for Ψ-pseudocondensing map, we need the following
lemma. The proof of this lemma is similar to that for topological vector spaces, see
for example lemma 3.1 of I. S. Kim et al. [14] and therefore, it is omitted.

Lemma 2.19. Let (X,D; Γ) be a G-convex space such that D ⊂ X, and Z be a
closed G-convex subset of X. If T : Z → 2Z is Ψ-pseudocondensing map, then there
exists a nonempty compact G-convex subset K ⊂ Z such that T (K) ⊂ K.
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The following theorem is a analogous result to theorem 3.2 of I. S. Kim et al. [14]
and theorem 3 of Lin and Yu [16] for LG-spaces.

Theorem 2.20. Let (X,D; Γ) be an LG-space such that for each x ∈ X, {x}
is G-convex. Then any Ψ-psedocondensing maps T ∈ K(X,X) which is u.s.c. and
closed valued has a fixed point.
Proof. By lemma 2.19, there is a nonempty compact G-convex subset K of X such
that T (K) ⊂ K. Since T ∈ K(X,X), it is easy to see that T |K ∈ K(K,K) is closed
and compact. Hence an appeal to corollary 2.10 completes the proof.

3 Generalized quasi-variational inequalities

In this section some applications of our results in the previous section for obtaining a
solution of quasi-variational inequalities are given. As a consequence of the theorem
2.2, we obtain the following result that is similar to theorem 7.1 of Granas and Liu
[8], theorem 10 of Ha [9] and theorem 3.3 of Yuan [31] for G-convex spaces. Those
theorems improve the well known Fan’s minimax inequality [7].

Theorem 3.1. Let (X; Γ) be a G-convex space, Y be a normal topological space and
F ∈ B(X, Y ). Suppose that ϕ, ψ : X × Y → R are two real valued bifunctions such
that:

(1) ϕ(x, y) is G-quasiconvex in x,

(2) ψ(x, y) is λ-transfer u.s.c. in y for every λ,

(3) ϕ(x, y) ≤ ψ(x, y) for each (x, y) ∈ X × Y ,

(4) there is a nonempty compact subset K of Y and a finite subset M ∈ F(X)such
that for every y ∈ Y \K there exists x ∈M such that ψ(x, y) < infx∈X,y∈F (x) ϕ(x, y).

Then there is an y0 ∈ Y such that

inf
x∈X,y∈F (x)

ϕ(x, y) ≤ ψ(x, y0)

for all x ∈ X.
Proof. Let infx∈X,y∈F (x) ϕ(x, y) = α. Assume the conclusion is false, then for each
y ∈ Y there exists x ∈ X such that ψ(x, y) < α. Define S, T : Y → 2X by

S(y) = {x ∈ X : ψ(x, y) < α} and T (y) = {x ∈ X : ϕ(x, y) < α}

for each y ∈ Y . By our assumption S(y) 6= ∅, condition (3) implies that S(y) ⊂ T (y)
and by condition (1), T (y) is G-convex. Moreover, condition (2) implies the con-
dition (3) of proposition 2.1 holds. Therefore, by theorem 2.2 there exists x0 ∈ X

and y0 ∈ Y such that y0 ∈ F (x0) and x0 ∈ T (y0), hence ϕ(x0, y0) < α, which is a
contradiction.
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As a consequence of proposition 2.1 and corollary 2.10, we obtain a solution of quasi-
equilibrium problem which is similar to theorem 5 of Chen, Lin and Park [3]. In
this way, we deduce a solution of quasi-variational inequalities in G-convex spaces,
see; [3, 15, and 18].

Theorem 3.2. Let (X,D; Γ) be a paracompact and perfectly normal LG-space such
that for each x ∈ X, {x} is G-convex and the condition (4) of proposition 2.1 holds.
Assume that T : X → 2X is a multivalued mapping with G-convex values, open
fibers and compact such that T̄ : X → 2X is u.s.c., where T̄ (x) = clT (x) for x ∈ X.
Suppose that ϕ is a real valued bifunction on X ×X such that

(i) ϕ(x, y) is l.s.c. in first variable,

(ii) ϕ(x, y) is G-quasiconcave in second variable and ϕ(x, x) ≤ 0 for all x ∈ X.

Then there exists x̂ ∈ T̄ (x̂) such that ϕ(x̂, x) ≤ 0 for all x ∈ T (x̂).
Proof. Suppose that Y is fixed points of T̄ , then by corollary 2.10 Y is nonempty.
Assume S(x) = {y ∈ X : ϕ(x, y) > 0} for all x ∈ X and U = {x ∈ X : S(x)∩T (x) 6=
∅}. If there exists x̂ ∈ Y \ U , then the theorem is proved. Now let Y ⊆ U and
F (x) = T (x) ∩ S(x), then Y ⊆ U =

⋃

x∈X F
−(x). Since T has open fibers and

x 7→ ϕ(x, y) is l.s.c., then F has open fibers. Moreover since T is G-convex values
and y 7→ ϕ(x, y) is G-quasiconcave for each x ∈ X, F has G-convex values and since
X is perfectly normal and paracompact, U is paracompact. Hence, we can apply
proposition 2.1 to assure that there exists a continuous selection f : U → X such
that f(x) ∈ F (x) for all x ∈ U . Define the multivalued mapping G : X → 2X by

G(x) =







f(x) if x ∈ U,

T̄ (x) if x ∈ X \ U.

Then G is u.s.c. and G(x) is G-convex for each x ∈ X. Moreover since G(x) ⊆ T (x)
for all x ∈ X, then G is compact. Therefore by corollary 2.10, G has a fixed point
x̂. Note that, if x̂ ∈ U , then x̂ = f(x̂) ∈ F (x̂). Hence ϕ(x̂, x̂) > 0 which contradicts
condition (ii). If x̂ ∈ X \ U , then x̂ ∈ T̄ (x̂). Therefore x̂ ∈ Y , which is a contradic-
tion. So the proof is complete.

Corollary 3.3. Let (X,D; Γ) be a G-convex space and T be the same as in theorem
3.2. Suppose that Y is a topological space, H : X → 2Y a multivalued mapping
having a continuous selection h : X → Y and ψ : X×Y ×X :→ R. If the following
conditions are fulfilled:

(i) ψ(x, y, z) is l.s.c. in (x, y) and is G-quasiconcave in z,

(ii) for each x ∈ X and each y ∈ T (x), ψ(x, y, x) ≤ 0,

then there exist x̂ ∈ T̄ (x̂) and ŷ ∈ H(x̂) such that

ψ(x̂, ŷ, x) ≤ 0 ∀x ∈ T (x̂).

Proof. Put ϕ(x, y) = ψ(x, h(x), y) for all (x, y) ∈ X ×X and apply the above theo-
rem.
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