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Abstract
In this note, we compare several descriptions of “epistasis”, which have been
used in the literature and apply some techniques originating from linear al-
gebra, to present a formal approach, which encompasses all of the previous
ones.

0 Introduction

Although several variants of the genetic algorithm (GA) have been introduced in
the past, basically “the” GA always acts on a set Ω of binary strings, of length l say,
and aims to maximize a real valued fitness function f : Ω→ R, through the use of
a suitable set of genetic operators, acting on successive populations sampled within
Ω.
Most models use crossover and mutation as their fundamental operators. Crossover
basically constructs new strings by combining pieces of given ones, whereas muta-
tion randomly changes bits of a given string (with a very low probability). The GA
starts from a randomly chosen initial population P (0) ⊆ Ω (a multiset, in general).
It then picks couples of strings within P (0), with a probability of being selected
proportional to their fitness and applies crossover and mutation to this pair, thus
producing a new population P (1). This process is then iterated until some initially
given criterion is satisfied.
The GA is a very robust and widely applicable algorithm, due to the fact that it
does not directly act on the crude data of a problem, but on the encoding of these
data into binary strings. As a side effect, it should be clear that the efficiency of the
GA is highly dependent on the chosen encoding scheme and, in particular, on the
interdependency of different bits in the strings resulting from it.
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1 Epistasis

The (in)dependence of bits in a string or a population of strings, is what one usually
refers to as epistasis. The term epistasis has been used in several publications, with-
out giving a formal definition, however. As we just pointed out, it usually seems
to mean that the presence of combinations of certain allele values in particular bit
positions has a strong influence on the fitness of the string in which this combination
occurs.
In [3] Rawlins describes two extreme cases of epistasis. The first is maximum epis-
tasis, where no proper subset of bits is independent of the other bits. This means
that for every bit, it is possible to find one or more bits whose value influences the
contribution of this bit to the fitness of a string. The second is zero epistasis where
all bits are independent.

2 The fitness function

Let us fix some notations that will be used throughout this text. We will count the
bits of s ∈ Ω from right to left and from 0 to l − 1, i.e., s = s0 . . . sl−1. The fitness
function will be a real valued function f : Ω → R. If A = {0, 1} is the set of allele
values and I = {0, . . . , l− 1} the index set of the bits, we can rewrite the condition
for zero epistasis found in [3] as :

∃g : I × A→ R, ∀s ∈ Ω : f(s) =
∑
i∈I

g(i, si). (1)

So, every reasonable definition of epistasis as a real valued function ε : Ω→ R will
have to satisfy the condition ε(s) = 0 for all s in Ω, whenever such a function g
exists.
On the other hand, in [2], Davidor proposes a definition for the epistasis of a string
with respect to a population P ⊆ Ω: if |P | = N and if s = s0s1 . . . sl−1, then the
epistasis εP,f (s) of s with respect to the population P is given by

εP,f (s) = f(s) −
l−1∑
i=0

1

Ni(si)

∑
t∈Pi,si

f(t) +
l − 1

N

∑
t∈P

f(t).

Here Pi,si is the set of all strings t ∈ P which have value si in position i and Ni(si)
is the cardinality of Pi,si . If we take N = 2l (i.e., P = Ω), we obtain

ε(s) = εΩ,f (s) = f(s) −
l−1∑
i=0

1

2l−1

∑
t∈Ωi,si

f(t) +
l− 1

2l
∑
t∈Ω

f(t). (2)

We will call this the (global) epistasis of s (with respect to the fitness function f).



What is “epistasis”? 71

3 A matrix representation

We can rewrite the definition of ε(s) by using matrices. Denoting the binary rep-
resentation of a positive integer i ∈ N by b(i), we define d(i, j) as the Hamming
distance H(b(i), b(j)), for every pair of positive integers i, j, i.e., di,j will be the
number of bits in which b(i) and b(j) differ. If we put

e =


ε(00 . . . 00)
ε(00 . . . 01)

...
ε(11 . . . 11)


and

f =


f(00 . . . 00)
f(00 . . . 01)

...
f(11 . . . 11)


then clearly

e = f − Ef , (3)

where E = (ei,j) ∈ R2l ×R2l with ei,j = 2−l(l + 1− 2di,j).

If we define the (global) epistasis ε(f) of f as
√∑

s∈Ω ε(s)
2, then ε(f) = ||e||.

Let us write g : I × A→ R as a column vector

g =



g(l−1)1

g(l−1)0
...
g11

g10

g01

g00


where gia = g(i, a), for every (i, a) ∈ I × A.
Then we can rewrite (1) as:

∃g ∈ R2l : Ag = f , (4)

where A = (ai,j) ∈ R2l ×R2l is defined as follows: if we encode a 0 as 01 and a 1 as
10, then the i-th row of A will be the encoded version of the binary number i− 1.
For example, if l = 3, then

A =



0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0


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Alternatively, A = (ai,j) may be defined by putting for any 1 ≤ i ≤ 2l, 1 ≤ j ≤ 2l

ai,j =

1− (((i− 1)divd
2l−j+1

2
e−12) mod 2) if j is even

((i− 1)divd
2l−j+1

2
e−12) mod 2 if j is odd

Here, for any x ∈ R, we let dxe denote the smallest integer n with n ≥ x and div
denotes integer division. Moreover divk is inductively defined by:

ndiv0m= n
ndiv1m= ndivm
ndivkm= (ndivk−1m)divm

4 Generalized inverses

Recall (from [1], e.g.) that the Moore-Penrose (or generalized) inverse A+ of an
arbitrary p× q matrix A is the (unique!) q × p matrix X with

AXA = A (5)

XAX = X (6)

(AX)T = AX (7)

(XA)T = XA (8)

It is easy to check that for any invertible matrix A, we have A+ = A−1. Moreover,
it is well known that a linear system f = Ag has A+f as a solution, whenever
solutions exist.
With this observation in mind, it then is clear that (4) is equivalent to

f −AA+f = 0. (9)

Comparing (3) and (9), it thus seems natural to link E and A+. Actually we will
see below that E = AA+.
As a consequence, let us point out that this yields a straightforward proof of the
main result of [4]:

6.Proposition The following assertions are equivalent:

(i) ∀s ∈ Ω : ε(s) = 0;

(ii) ∃g : I × A→ R, ∀s ∈ Ω : f(s) =
∑
i∈I g(i, si) .

Proof Since (i) is equivalent to f −Ef = 0, and (ii) is equivalent to f −AA+f = 0,
this follows immediately from the equality E = AA+. �

In order to prove our main theorem, we will need the following results:

7. Lemma With notations as before, the matrix E is idempotent.
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Proof Denote by e
(2)
i,j the (i, j)-th element of E2 , i.e.,

e
(2)
i,j =

2l−1∑
k=0

l + 1− 2di,k
2l

l + 1− 2dk,j
2l

(10)

Expanding (10) and using

2l−1∑
i=0

di,j =
l∑

p=0

p

(
p
l

)
= l2l−1

(which one easily verifies), we obtain:

e
(2)
i,j =

1− l2
2l

+ 4
2l−1∑
k=0

di,kdk,j.

So, in order to prove our assertion, i.e., e
(2)
i,j ) = (ei,j, one thus easily reduces to

verifying that
2l−1∑
k=0

di,kdk,j = (l2 + l − 2di,j)2
l−2.

Let us introduce the following notations:

• d(i, j|k) = the number of bits in i, which coincide with the corresponding ones
in j, but not in k.

• d(i|j, k) = the number of bits in j, which coincide with the corresponding ones
in k, but not in i.

For example, if i = 101011, j = 010111 and k = 100010, then d(i, j|k) = d(i|j, k) =
1.
We then obtain

2l−1∑
k=0

di,kdk,j =
2l−1∑
k=0

(d(i, j|k) + d(i|j, k))(d(i, j|k) + d(j|i, k))

Now

2l−1∑
k=0

d(i, j|k)2 =
l−di,j∑
m=0

m2

(
l − di,j
m

)
2di,j (11)

=2di,j (l − di,j)(l − di,j + 1)2l−di,j−2 (12)

2l−1∑
k=0

d(i, j|k)d(j|i, k)=
l−di,j∑
m=0

di,j∑
n=0

m

(
l− dij
m

)(
di,j
n

)
(13)

= ldi,j2
l−2 − d2

i,j2
l−2 (14)

and

2l−1∑
k=0

d(i|k, j)d(j|i, k)=
di,j∑
m=0

(
di,j
m

)
m(dij −m)2l−dij (15)

= d2
i,j2

l−1 − d2
i,j2

l−2 − di,j2l−2 (16)
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So, it is clear that
2l−1∑
k=0

di,kdk,j = (l2 + l − 2di,j)2
l−2,

indeed, which finishes the proof. �

As a first consequence of the fact that E is idempotent (and symmetric), let us point
out that

ε(f) =
√

eTe =
√

(f − Ef)T (f − Ef) =
√

fT (I−E)f = ||f ||I−E

For any matrix B, we denote by R(B) the range of B, i.e., the vectorspace spanned
by is columns.

8. Lemma With notations as before, R(A) = R(E)

Proof Let us first recall that, if we apply one of the following transformations to the
columns of a matrix, the resulting matrix will have the same range as the original
one:

• (c1, . . . , cn)→ (cσ(1), . . . , cσ(n)) (σ ∈ Sn)

• (c1, . . . , cn)→ (αc1, . . . , αcn) α ∈ R

• (c1, . . . , cn)→ (c1 +
∑n
i=2 αici, . . . , cn)

• (c1, c1, . . . , cn)→ (c1, . . . , cn)

Let us now transform E using these rules.
We number the columns of E from left to right and from 0 to 2l − 1. To simplify
calculations, we first multiply every column of E by 2l.
(i) If for 0 ≤ i ≤ 2l−1 − 1, we add to the i-th column ei of E the column eî with
î = (2l−1)−i, the resulting column will only contain entries equal to 2(l+1)−2l = 2.
Dividing these columns by 2 and removing all duplicates, except one, we thus obtain
a new matrix E′ of the form

E′ = (1, (l + 1)1 − 2d2l−1, . . . , (l + 1)1− 2d2l−1),

where 1 is the column all of whose entries are equal to 1 and where di is the column

di =


d0,i
...

d2l−1,i


Adding −(l+1)1 to each of the columns (except the first one) and multiplying them
by −1

2
, we obtain a new matrix E1 with R(E) = R(E1) and given by

E1 = (1,d2l−1, . . . ,d2l−1)
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(ii) If for 1 ≤ i ≤ 2l−2 we add d2l−i to d2l−1+i−1, the resulting column will always be



l
...
l

l − 1
...

l − 1



This is obvious, if we realize that except for the first bit, 2l − 1 and 2l−1 + i− 1 are
mutual bitwise complements for 1 ≤ i ≤ 2l−2. Adding (l−1)1 to these columns and
again removing identical ones, we obtain a new matrix E2, with R(E2) = R(E) and
given by

E =



1 1 d0,2l−1+2l−2 . . . d0,2l−1
...

...
...

. . .
...

1 1d2l−1−1,2l−1+2l−2 . . . d2l−1−1,2l−1

1 0 d2l−1,2l−1+2l−2 . . . d2l−1,2l−1
...

...
...

. . .
...

1 0 d2l−1,2l−1+2l−2 . . . d2l−1,2l−1



(iii) Repeating this procedure, it is now easy to see that we eventually obtain a
matrix M = El, whose first column is 1 and whose other entries mi,j are just
the number of zeros in the first j bits of i, and which still has the property that
R(M) = R(E).
For example, if l = 3, then

M =



1 1 2 3
1 1 2 2
1 1 1 2
1 1 1 1
1 0 1 2
1 0 1 1
1 0 0 1
1 0 0 0



To finish the proof, let us verify that R(M) = R(A), with A = (a0, . . . , a2l−1) and
M = (m0, . . . ,ml). Recall from [4] that the set

B = {a2i; 0 ≤ i ≤ l − 1} ∪ {a1}

is a basis for R(A).
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For example, if l = 3, then B consists of the columns

a0 =



0
0
0
0
1
1
1
1


a1 =



1
1
1
1
0
0
0
0


a2 =



0
0
1
1
0
0
1
1


a4 =



0
1
0
1
0
1
0
1


Let us create a equivalent basis B′, by swapping the first two columns in B and
adding the second column to the first one. The resulting basis now has 1 as a first
column. The corresponding matrix will be denoted by B = (bi,j) = (b0,b1, . . . ,bl)
and has the property that R(B) = R(A) For example, again with l = 3, we have

B =



1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


It is clear that the rows of the submatrix (b1, . . . ,bl) are just the binary encodings
of the row number – this is essentially just the definition of A.
It now follows that m0 = b0, m1 = 1− b1 and

mj = j1−
j∑

k=0

bk

resp.,

bj = 1 + mj−1 −mj,

for j ≥ 2 which shows that R(E) = R(M) = R(B) = R(A). �

We may now finally prove:

9. Theorem With the above notations, we have: E = AA+.

Proof It is well known that AA+ is the orthogonal projection on the range R(A) ⊆
R2l of A, and that a linear map is an orthogonal projection if and only if its corre-
sponding matrix is idempotent and symmetric. Since the orthogonal projection on
subspaces is unique, we thus have to prove that E2 = E and that R(A) = R(E) –
and this is just the content of the previous lemmas. �
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