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Abstract

We consider the Darboux problem with functional dependence for z, Dxz
and Dyz on the right-hand side of the differential equation. We investigate a
wide class of difference schemes for the differential-functional problem. In the
present paper we prove convergence theorems by means of consistency and
stability statements.

1 Introduction

Take a, b > 0 and α, β ≥ 0. Define E = [0, a]× [0, b], E0 = [−α, a]× [−β, b]\(0, a]×
(0, b], and B = [−α, 0] × [−β, 0] Given a function z : E0 ∪ E → R and a point
(x, y) ∈ E, we define the functional z(x,y) : B → R by z(x,y)(ξ, η) = z(x+ ξ, y +η) for
(ξ, η) ∈ B. Suppose that we are given a function f : Ω := E ×X0 ×X1 ×X2 → R,
where X0, X1, X2 are some subsets of the set of all functions from B to R. Take a
differentiable function φ : E0 → R. Consider the Darboux problem

Dxyz(x, y) = f
(
x, y, z(x,y), (Dxz)(x,y), (Dyz)(x,y)

)
, (1)

z(x, y) = φ(x, y), (x, y) ∈ E0. (2)

We will assume that there exists a classical solution to problem (1), (2), i.e. a
continuous function v : E0 ∪E → R which satisfies (2) on E0, is of class C2 on E,
and satisfies (1) on the set E.
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Fix a constant c ≥ 1. Define the set of acceptable steps

Id =

{
(h, k) ∈ (0, a]× (0, b]

∣∣∣∣∣ α

h
,

β

k
∈ N0, k

1

c
≤ h ≤ k c

}
,

where the symbol N0 denotes all natural numbers including 0. We write xi = ih
and yj = jk. Take Zhk =

{
(xi, yj) | i, j ∈ Z

}
. Denote by E0

hk the set of all

(xi, yj) ∈ E0 ∩ Zhk. Denote E+
hk = (0, a]× (0, b] ∩ Zhk. Define

Ehk =
{
(xi, yj) ∈ Zhk | (xi+1, yj+1) ∈ E+

hk

}
Ẽhk = (E0 ∪ E) ∩ Zhk, Bhk = B ∩ Zhk.

If z : Ẽhk → R, we denote z(i,j) = z(xi, yj). Let F(X, Y ) be the set of all functions
from a set X into Y .

We will need some difference operators δ1, δ2, δ12 which correspond to the deriva-
tives Dx, Dy, Dxy, respectively. We define these operators as follows

δ1z
(i,j) =

z(i+1,j) − z(i,j)

h
, (xi, yj), (xi+1, yj) ∈ Ẽhk,

δ2z
(i,j) =

z(i,j+1) − z(i,j)

k
, (xi, yj), (xi, yj+1) ∈ Ẽhk,

δ12z
(i,j) =

z(i+1,j+1) − z(i+1,j) − z(i,j+1) + z(i,j)

hk
, (xi, yj), (xi+1, yj+1) ∈ Ẽhk,

for z ∈ F(Ẽhk, R).
Define also a discrete counterpart of z(x,y). If z ∈ F(Ẽhk, R) and (xi, yj) ∈

Ehk, then we define the function z[i,j] ∈ F(Bhk, R) by z[i,j](xµ, yν) = z(i+µ,j+ν) for
(xµ, yν) ∈ Bhk.

Suppose that fhk : Ωhk := Ehk × F(Bhk, R
3) → R and φhk : E0

hk → R. We
consider the difference scheme in correspondence with differential-functional problem
(1), (2).

δ12z
(i,j) = fhk

(
xi, yj, z[i,j], (δ1z)[i,j], (δ2z)[i,j]

)
(xi, yj) ∈ Ehk, (3)

z(i,j) = φ
(i,j)
hk , (xi, yj) ∈ E0

hk. (4)

In [KL] we investigate the Darboux problem without partial derivatives in the right-
hand side. We develop there a general theory of convergence under some relatively
weak assumptions of non-linear Perron-type estimates of the right-hand-side func-
tion. This theory corresponds with the existence and uniqueness theory for hyper-
bolic equations in this way that typical integral forms of the Darboux problem and
their basic properties are reflected on the ground of difference schemes by also very
natural inverse summation formulas from which one can deduce a priori bounds
for all discrete solutions and their errors, that is: the differences between the so-
lutions to the difference scheme and the solution to differential problem restricted
to the mesh. In the above mentioned item of the literature as well as in [L2] and
[L3], we can find a standard way of dealing with convergence theorems, namely:
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if the difference scheme is consistent with the differential or differential-functional
problem (at least on a class of solutions which are sufficiently regular) and if it is
stable (not too sensitive with respect to perturbations of the right-hand sides and
the initial data), then the solutions to difference scheme converge to the solution
of the differential problem provided it exists and it is unique. The paper [L3] is
devouted to a class of finite difference approximations to parabolic problems and
the convergence is obtained by some realization of discrete maximum principle. In
[L2] we consider a strongly coupled hyperbolic system of first-order equations whose
difference analogues are proved to converge due to a recurrence comparison formula
for a properly transformed error equation. Considering difference schemes for the
Darboux problem with functional dependence, we begin our analysis of error equa-
tions by means of an inverse formula, which is very similar to getting an integral
fixed point equation for differential-functional problem (1), (2).

2 Main examples

We illustrate in the present section how to specify the above difference operators
and how to produce a new right-hand side in the difference scheme on the ground
of the function f . Finally, we give two very common types of functional dependence
which could be easily specified from (1).

Example 1. Suppose that we are given three interpolation operators I0, I1, I2 :
F(Bh,k, R)→ C(B, R). We can define the discrete counterpart of the function f in
the following way

fhk
(
xi, yj, w0, w1, w2

)
= f

(
xi, yj, I0w0, I1w1, I2w2

)
(5)

for (xi, yj) ∈ Bhk and wν ∈ F(Bhk, R), (ν = 0, 1, 2). If there is no functional
dependence, i.e. if f(x, y, w0, w1, w2) = f̃(x, y, w0(0, 0), w1(0, 0), w2(0, 0)) for some
function f̃ : E × R3 → R and for all (x, y, w0, w1, w2) ∈ Ω, then we can put simply
(Iνwν)(x, y) = wν(0, 0) in formula (5), and we have the difference scheme

δ12z
(i,j) = f̃

(
xi, yj, z

(i,j), δ1z
(i,j), δ2z

(i,j)
)
. (6)

It is seen that in that case the function fhk coincides with the function f restricted
to the mesh.

Example 2. Suppose that we are given the same operators I0, I1, I2 as in Example
1. Take another interpolation operator Ĩ : C(B, R)→ C(B ′(h, k), R), where

B ′(h, k) =
{
(x + ξ, y + η)

∣∣∣ (x, y) ∈ B, (ξ, η) ∈ [0, h/2]× [0, k/2]
}
.

Define the function Fh,k : Ω→ R by

Fhk(P ) = f(P )+ (7)

h

2
Dxf(P ) +

k

2
Dyf(P ) + Dw0f(P )

(
(Ĩw0)(h/2,k/2) − w0

)
+

Dw1f(P )
(
(Ĩw1)(h/2,k/2) − w1

)
+ Dw2f(P )

(
(Ĩw2)(h/2,k/2)− w2

)
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for P = (x, y, w0, w1, w2) ∈ Ω. Now, instead of formula (5), we write

fhk
(
xi, yj, w0, w1, w2

)
= Fhk

(
xi, yj, I0w0, I1w1, I2w2

)
(8)

for (xi, yj) ∈ Ehk and wν ∈ F(Bhk, R), (ν = 0, 1, 2). It is seen that the function
Fhk(x, y, . . . ) approximates the value f(x+h/2, y+k/2, . . . ) for it is derived from the
Taylor formula of second order, possible when the function f is sufficiently regular.
This difference scheme, as such, is to approximate the solution to the differential-
functional problem much better than the scheme in Example 1.

Example 3. The interpolation operators I0, I1, I2 in Examples 1 and 2 should pro-
vide a relevant approximation for sufficiently regular functions. One such example
is the spline interpolation: we define I0 = I1 = I2 by

(Iνwν)(s, t) = (9)

w(i,j)
ν

(
1− s− xi

h

)(
1− t− yj

k

)
+ w(i+1,j+1)

ν

s− xi
h

t− yj
k

+

w(i+1,j)
ν

s− xi
h

(
1− t− yj

k

)
+ w(i,j+1)

ν

(
1− s− xi

h

)
t− yj

k

for ν = 0, 1, 2 and for (s, t) ∈ B, (xi, yj) ∈ Bhk such that xi ≤ s ≤ xi+1 and
yj ≤ t ≤ yj+1.

Example 4. Besides typical examples such as the Darboux problems for equations
without functional dependence such as

Dxyz(x, y) = F (x, y, z(x, y), Dxz(x, y), Dyz(x, y)),

we can find in equation (1) some equations with deviations and with the Volterra-
type integral dependence. Suppose that F : E × R3 → R, ω0, ω1, ω2 : E → E0 ∪ E
and G0, G1, G2 : B × R→ R. Assume that these functions are continuous and that
the functions ων for ν = 0, 1, 2 satisfy the condition

(x− α, y − β) ≤ ων(x, y) ≤ (x, y) for (x, y) ∈ E.

Consider the equations

Dxyz(x, y) = F
(
x, y, z(ω0(x, y)), Dxz(ω1(x, y)), Dyz(ω2(x, y))

)
(10)

and

Dxyz(x, y) = (11)

F
(
x, y,

∫
B

G0(s, t, z(s + x, t + y)) dt ds,∫
B

G1(s, t, Dxz(s + x, t + y)) dt ds,
∫
B

G2(s, t, Dyz(s + x, t + y)) dt ds
)

.

The first (deviated) equation can be specified from equation (1) when we substitute

f(x, y, w0, w1, w2) =

F
(
x, y, w0(ω0(x, y)− (x, y)), w1(ω1(x, y)− (x, y)), w2(ω2(x, y)− (x, y))

)
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for (x, y, w0, w1, w2) ∈ Ω. Indeed, we have then the equality

f
(
x, y, z(x,y), (Dxz)(x,y), (Dyz)(x,y)

)
=

F
(
x, y, z((ω0(x, y)− (x, y)) + (x, y)),

Dxz((ω1(x, y)− (x, y)) + (x, y)), Dyz((ω2(x, y)− (x, y)) + (x, y))
)

The differential-integral equation can be obtained from equation (1) when we define
the function f on Ω by

f(x, y, w0, w1, w2) =

F
(
x, y,

∫
B

G0(s, t, w0(s, t)) dt ds,∫
B

G1(s, t, w1(s, t)) dt ds,
∫
B

G2(s, t, w2(s, t)) dt ds
)

The explanation is similar to that in the former case. Changing wν into its discrete
counterpart Iνwν (cf. (5)) leads to particular quadratures for the above integrals.

3 Notations and assumptions

Define the discrete operators L0 : F(Ẽhk, R)→ F(E+
hk, R) and

L1 : F(Ẽhk, R) → F((0, k) + Ehk, R), L2 : F(Ẽhk, R)→ F((h, 0) + Ehk, R).

Given a function z ∈ F(Ẽhk, R), we define

L0z
(i,j) = z(i,0) + z(0,j) − z(0,0) + (12)

hk
i−1∑
µ=0

j−1∑
ν=0

fhk
(
xµ, yν, z[µ,ν], (δ1z)[µ,ν], (δ2z)[µ,ν]

)
,

L1z
(i,j) = δ1z

(i,0) + k
j−1∑
ν=0

fhk
(
xi, yν, z[i,ν], (δ1z)[i,ν], (δ2z)[i,ν]

)
,

L2z
(i,j) = δ2z

(0,j) + h
i−1∑
µ=0

fhk
(
xµ, yj, z[µ,j], (δ1z)[µ,j], (δ2z)[µ,j]

)
,

for (xi, yj) ∈ E+
hk, (0, k)+Ehk, (h, 0)+Ehk, respectively. Observe that if the function

z ∈ F(Ẽhk, R) is a solution to equation (3), then we have

z(i,j) = L0z
(i,j)

(
(xi, yj) ∈ E+

hk

)
, (13)

δ1z
(i,j) = L1z

(i,j)
(
(xi, yj) ∈ (0, k) + Ehk

)
,

δ2z
(i,j) = L2z

(i,j)
(
(xi, yj) ∈ (h, 0) + Ehk

)
.

A function γ : Id → R+ is said to be of the class Γ0 if lim(h,k)→(0,0) γ(h, k) = 0.
We introduce assumptions which will guarantee consistency and stability of the
difference scheme.
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Assumption 1 Suppose that there is a function v ∈ C(E0 ∪ E, R) which satisfies
(1), (2) and the function v|E0

= φ is of class C2, the function v|E is of class C3. Of
the function v satisfying these conditions we will say that it is of class C2,3.

Assumption 2 Suppose that there is γ0[w] ∈ Γ0 such that∣∣∣fhk(xi, yj, (w0)|Bhk , (w1)|Bhk , (w2)|Bhk

)
− f(xi, yj, w0, w1, w2)

∣∣∣ ≤ γ0[w](h, k)

for (xi, yj, w0, w1, w2) ∈ Ω, where w = (w0, w1, w2).

Assumption 3 Suppose that there are constants L0, L1, L2 ∈ R+ (independent of
(h, k)) such that

|fhk(xi, yj, w0, w1, w2)− fhk(xi, yj, w̄0, w̄1, w̄2)| ≤
L0‖w0 − w̄0‖+ L1‖w1 − w̄1‖+ L2‖w2 − w̄2‖

for (xi, yj, w0, w1, w2), (xi, yj, w̄0, w̄1, w̄2) ∈ Ωhk.

If z ∈ F(Ẽhk, R), then we will denote by ξ
(i,j)
hk [z] ((xi, yj) ∈ Ehk) the following

residual expression

ξ
(i,j)
hk [z] = δ12z

(i,j) − fhk
(
xi, yj, z[i,j], (δ1z)[i,j], (δ2z)[i,j]

)
. (14)

4 Lemmas on consistency and stability

We start this section with a lemma on the consistency of the difference scheme with
the differential-functional problem.

Lemma 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Then the function
γ(h, k) = maxi,j |ξ(i,j)

hk [v]| is of class Γ0.

Proof. Since the function v is of class C2,3 we can expand δ12v
(i,j) in the Taylor

power series with the error of the third order. Then we obtain the estimate

|δ12v
(i,j) −Dxyv(xi, yj)| ≤ ‖(h, k)‖

∑
µ,ν≥0;µ+ν≤3

‖Dµ
xD

ν
yv‖ (15)

for (xi, yj) ∈ Eh,k. Moreover, we can get

‖(δ1(v|Ẽhk
)[i,j] − (Dxv)|Ẽhk

)[i,j]‖ = (16)

max
(xµ,yν )∈Bhk

|δ1v
(i+µ,j+ν) −Dxv(xi+µ, yj+ν | ≤ h‖Dxxv‖,

‖(δ2(v|Ẽhk
)[i,j] − (Dyv)|Ẽhk

)[i,j]‖ =

max
(xµ,yν )∈Bhk

|δ2v
(i+µ,j+ν) −Dyv(xi+µ, yj+ν| ≤ k‖Dyyv‖.

Consequently, we get

|ξ(i,j)
hk [v]| ≤ ‖(h, k)‖

∑
µ,ν≥0; µ+ν≤3

‖Dµ
xD

ν
yv‖+ (17)

γ0[v, δ1v, δ2v](h, k) + L1h‖Dxxv‖+ L2k‖Dyyv‖
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for (xi, yj) ∈ Ehk, where γ0[v, δ1v, δ2v] ∈ Γ0 is taken out of Assumption 2. This
completes the proof.

We formulate a lemma on stability of the difference scheme.

Lemma 2 Suppose that Assumption 3 is satisfied. Take z, z̄ ∈ F(Ẽhk, R); the
function z satisfying (3), (4), and the function z̄ satisfying the inequalities

|ξ(i,j)
hk [z̄]| ≤ γ̄(h, k) for (xi, yj) ∈ Ehk, (18)

|z(i,j) − z̄(i,j)| ≤ γ̄0(h, k) for (xi, yj) ∈ E0
hk,

|δ1z
(i,j) − δ1z̄

(i,j)| ≤ γ̄1(h, k) for (xi, yj), (xi+1, yj) ∈ E0
hk,

|δ2z
(i,j) − δ2z̄

(i,j)| ≤ γ̄2(h, k) for (xi, yj), (xi, yj+1) ∈ E0
hk,

where γ̄, γ̄0, γ̄1, γ̄2 ∈ Γ0. Then we have

|z(i,j) − z̄(i,j)| ≤ W0(xi, yj) for (xi, yj) ∈ Ẽhk,

|δ1z
(i,j) − δ1z̄

(i,j)| ≤ W1(xi, yj) for (xi, yj), (xi+1, yj) ∈ Ẽhk,

|δ2z
(i,j) − δ2z̄

(i,j)| ≤ W2(xi, yj) for (xi, yj), (xi, yj+1) ∈ Ẽhk,

where the functions W0, W1, W2 : E0 ∪ E → R are defined by

W0(x, y) =

3γ̄0(h, k) + xyγ̄(h, k) +
∫ x
0

∫ y
0 W̃ (s, t) dt ds on E,

W0(max{x, 0}, max{y, 0}) on E0,
(19)

W1(x, y) =

γ̄1(h, k) + yγ̄(h, k) +
∫ y
0 W̃ (x, t) dt on E,

W1(max{x, 0}, max{y, 0}) on E0,

W2(x, y) =

γ̄2(h, k) + xγ̄(h, k) +
∫ x
0 W̃ (s, y) ds on E,

W2(max{x, 0}, max{y, 0}) on E0,

and the function W̃ : E → R+ is a unique solution to the Darboux problem

Dxyz(x, y) = L0z(x, y) + L1Dxz(x, y) + L2Dyz(x, y), (20)z(0, y) =
(
3L0γ̄0 + L1γ̄1 + L2γ̄2 + γ̄(yL1 + 1)

)
eyL1−1
L1

, for y ∈ [0, b],

z(x, 0) =
(
3L0γ̄0 + L1γ̄1 + L2γ̄2 + γ̄(xL2 + 1)

)
exL2−1
L2

, for x ∈ [0, a],

where γ̄ν = γ̄ν(h, k) for ν = 0, 1, 2, and γ̄ = γ̄(h, k).
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Proof. In view of formula (12) we deduce for (xi, yj) ∈ E+
hk the estimate

|z(i,j) − z̄(i,j)| ≤

|L0z
(i,j) − L0z̄

(i,j)|+ hk
i−1∑
µ=0

j−1∑
ν=0

|ξ(µ,ν)
hk [z̄]| ≤

3γ̄0(h, k) + xiyjγ̄(h, k) +

hk
i−1∑
µ=0

j−1∑
ν=0

(
L0‖(z − z̄)[µ,ν]‖+ L1‖(δ1(z − z̄))[µ,ν]‖+ L2‖(δ2(z − z̄))[µ,ν]‖

)
≤

3γ̄0(h, k) + xiyjγ̄(h, k) +

hk
i−1∑
µ=0

j−1∑
ν=0

(
L0W0(xµ, yν) + L1W1(xµ, yν) + L2W2(xµ, yν)

)
≤

3γ̄0(h, k) + xiyjγ̄(h, k) +∫ xi

0

∫ yj

0

(
L0W0(s, t) + L1W1(s, t) + L2W2(s, t)

)
dt ds ≤

W0(xi.yj)

Now, we take (xi, yj) ∈ (0, k) + Ehk and derive the estimate

|δ1z
(i,j) − δ1z̄

(i,j)| ≤

|L1z
(i,j) −L1z̄

(i,j)|+ k
j−1∑
ν=0

|ξ(i,ν)
hk [z̄]| ≤

γ̄1(h, k) + yjγ̄(h, k) +

k
j−1∑
ν=0

(
L0‖(z − z̄)[i,ν]‖+ L1‖(δ1(z − z̄))[i,ν]‖+ L2‖(δ2(z − z̄))[i,ν]‖

)
≤

γ̄1(h, k) + yjγ̄(h, k) +

k
j−1∑
ν=0

(
L0W0(xi, yν) + L1W1(xi, yν) + L2W2(xi, yν)

)
≤

γ̄1(h, k) + yjγ̄(h, k) +∫ yj

0

(
L0W0(xi, t) + L1W1(xi, t) + L2W2(xi, t)

)
dt ≤

W1(xi.yj).
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Taking (xi, yj) ∈ (h, 0) + Ehk, we derive the estimate

|δ2z
(i,j) − δ2z̄

(i,j)| ≤

|L2z
(i,j) −L2z̄

(i,j)|+ k
i−1∑
µ=0

|ξ(µ,j)
hk [z̄]| ≤

γ̄2(h, k) + xiγ̄(h, k) +

h
i−1∑
µ=0

(
L0‖(z − z̄)[µ,j]‖+ L1‖(δ1(z − z̄))[µ,j]‖+ L2‖(δ2(z − z̄))[µ,j]‖

)
≤

γ̄2(h, k) + xiγ̄(h, k) +

k
i−1∑
µ=0

(
L0W0(xµ, yj) + L1W1(xµ, yj) + L2W2(xµ, yj)

)
≤

γ̄2(h, k) + xiγ̄(h, k) +∫ xi

0

(
L0W0(s, yj) + L1W1(s, yj) + L2W2(s, yj) ds

)
≤

W2(xi.yj).

These estimates establish the assertion of our lemma, which finishes the proof.

5 The main result - convergence theorem

Our convergence result is based on consistency and stability. The main theorem will
be followed by some efficient error estimates.

Theorem 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Assume that the
function z ∈ F(Ẽhk, R) is a solution to problem (3), (4) satisfying within E0

hk the
inequalities

|φ(i,j)
hk − φ(xi, yj)| ≤ γ̄0(h, k) for (xi, yj) ∈ E0

hk, (21)

|δ1φ
(i,j)
hk − δ1φ̄

(i,j)| ≤ γ̄1(h, k) for (xi, yj), (xi+1, yj) ∈ E0
hk,

|δ2φ
(i,j)
hk − δ2φ̄

(i,j)| ≤ γ̄2(h, k) for (xi, yj), (xi, yj+1) ∈ E0
hk,

where γ̄, γ̄0, γ̄1, γ̄2 ∈ Γ0. Then we have

|v(i,j)− z(i,j)|, |Dxv(xi, yj)− δ1z̄
(i,j)|, |Dyv(xi, yj)− δ2z̄

(i,j)| → 0

as (h, k)→ (0, 0).

Proof. It follows from Lemma 1 that the function γ(h, k) = maxi,j |ξ(i,j)
hk [v]| is of

class Γ0. Define γ̄∈Γ0 as the right-hand side of inequality (17):

γ̄(h, k) = ‖(h, k)‖
∑

µ,ν≥0;µ+ν≤3

‖Dµ
xD

ν
yv‖+ (22)

γ0[v, δ1v, δ2v](h, k) + L1h‖Dxxv‖+ L2k‖Dyyv‖.
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If we put z̄ = v|Ẽhk
, then formulas (17), (22), (21) yield (18). It follows from Lemma

2 that

|z(i,j) − v(i,j)| ≤ W0(xi, yj) for (xi, yj) ∈ Ẽhk,

|δ1z
(i,j) − δ1v

(i,j)| ≤ W1(xi, yj) for (xi, yj), (xi+1, yj) ∈ Ẽhk,

|δ2z
(i,j) − δ2v

(i,j)| ≤ W2(xi, yj) for (xi, yj), (xi, yj+1) ∈ Ẽhk,

where the functions W0, W1, W2 : E0∪E → R are defined by (19) with W̃ satisfying
(20). Because of the continuous dependence on the initial data, we claim that the
function W̃ , and consequently the functions W0, W1, W2 tend to 0 as (h, k) → 0.
Finally, we derive

|Dxv(xi, yj)− δ1z
(i,j)| ≤ (23)

|Dxv(xi, yj)− δ1v
(i,j)|+ |δ1v

(i,j) − δ1z
(i,j)| ≤ h‖Dxxv‖+ W1(xi, yj)

for (xi, yj), (xi+1, yj) ∈ Ẽhk,

|Dyv(xi, yj)− δ2z
(i,j)| ≤

|Dyv(xi, yj)− δ2v
(i,j)|+ |δ2v

(i,j) − δ2z
(i,j)| ≤ k‖Dyyv‖+ W2(xi, yj)

for (xi, yj), (xi, yj+1) ∈ Ẽhk.

This completes the proof.
In order to give some explicite error estimates we will majorate it by means of

the following lemma the function W̃ satisfying equation (20).

Lemma 3 Suppose that a function z : E → R satisfies the equation
Dxyz(x, y) = L0z(x, y) + LDxz(x, y) + LDyz(x, y),

z(x, 0) = C(1 + x)(eLx − 1)/L, for x ∈ [0, a],

z(0, y) = C(1 + y)(eLy − 1)/L, for y ∈ [0, b],

(24)

for some C, L ∈ R+. Then we have

z(x, y) ≤ C

L
eL(x+y)

∞∑
ν=0

(
(L0 + L2)xy

)ν
(ν!)2

≤ C

L
eL(x+y)+(L0+L2)xy (25)

for (x, y) ∈ E.

Proof. Define the function z̃ : E → R as z̃(x, y) = e−L(x+y)z(x, y) for (x, y) ∈ E. It
is clear that the function z̃ satisfies the equation

Dxy z̃(x, y) = e−L(x+y)z(x, y)(L0 + L2) = z̃(x, y)(L0 + L2) (26)

and the initial conditionz̃(x, 0) = C(1 + x)(1− e−Lx)/L ≤ C(1 + x)/L, for x ∈ [0, a],

z̃(0, y) = C(1 + y)(1− e−Ly)/L ≤ C(1 + y)/L, for y ∈ [0, b].
(27)
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If we solve the comparison problem with respect to problem (26), (27), then we
obtain the estimate

z̃(x, y) ≤ C

L

∞∑
ν=0

(
(L0 + L2)xy

)ν
(ν!)2

. (28)

The remaining part of the proof is trivial.

Corollary 1 Suppose that the assumptions of Theorem 1 are satisfied. Then we
have

|v(i,j) − z(i,j)| ≤ (29)

3γ̄0(h, k) + xiyjγ̄(h, k) + xiyj
C(h, k)

L
e(xi+yj )L+xiyj(L0+L2),

for (xi, yj) ∈ E+
hk,

|Dxv(xi, yj)− δ1z
(i,j)| ≤ (30)

h‖Dxxv‖+ γ̄1(h, k) + yjγ̄(h, k) + yj
C(h, k)

L
e(xi+yj )L+xiyj (L0+L2),

for (xi, yj), (xi+1, yj) ∈ Ehk,

|Dyv(xi, yj)− δ2z
(i,j)| ≤ (31)

k‖Dyyv‖+ γ̄2(h, k) + xiγ̄(h, k) + xi
C(h, k)

L
e(xi+yj )L+xiyj (L0+L2),

for (xi, yj), (xi, yj+1) ∈ Ehk,

where

L = L1 + L2,

C(h, k) = 3L0γ̄0(h, k) + L1γ̄1(h, k) + L2γ̄2(h, k) + γ̄(h, k)(L + 1).

Proof. From Lemma 3 we obtain the estimate

W̃ (x, y) ≤ C

L
eL(x+y)+(L0+L2)xy (32)

with C = C(h, k). Observe that∫ x

0

∫ y

0
eL(s+t)+(L0+L2)st dt ds ≤ xyeL(x+y)+(L0+L2)xy,∫ y

0
eL(x+t)+(L0+L2)xt dt ds ≤ yeL(x+y)+(L0+L2)xy,∫ x

0
eL(s+y)+(L0+L2)sy dt ds ≤ xeL(x+y)+(L0+L2)xy.

Our assertion follows from the estimates in the proof of Theorem 1. This completes
the proof.

Note that Corollary 1 yields some effective error estimates in dependence on the
perturbations of the data and on the a priori bounds of classical solutions to the
Darboux problem. Applying the more subtle estimate from Lemma 3 and the exact
values of the integrals, we can obtain a more accurate error estimate.
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6 An existence theorem

We give in Example 4 two generic kinds of functional dependence (deviated and
integral) not only because of the awareness of a noticeable imbalance between the
deviated and the integral dependence, namely: the Lipschitz condition holds for
itegral functionals with somehow regular kernels, whereas any non-trivial deviations
affect this property. The same behaviour has been observed while dealing with
difference analogues of differential-functional problems. We will quote a theorem
from [L1] which includes much more difficult type of equations with delays. First,
we quote the assumptions concerning the case in question.

A[f ]. Suppose that f : ΩCL := E ×X0×X1×X2 → R, where X0 = CL(B, R) (the
class of continuous functions satisfying the Lipschitz condition), X1 = C0+L(B, R)
(the class of continuous functions satisfying the Lipschitz condition with respect
to the second variable) and X2 = CL+0(B, R) (the class of continuous functions
satisfying the Lipschitz condition with respect to the first variable). Assume that
the function f is continuous on ΩC and there are L, L0, L1, L2 ∈ R+ such that

|f(x, y, w0, w1, w2)− f(x̄, ȳ, w̄0, w̄1, w̄2)| ≤
L‖(x− x̄, y − ȳ)‖+ L0‖w0 − w̄0‖L + L1‖w1 − w̄1‖0+L + L2‖w2 − w̄2‖L+0

for all (w0, w1, w2), (w̄0, w̄1, w̄2) ∈ X0 × X1 × X2 and (x, y) ∈ E, where the norms
‖ · ‖L, ‖ · ‖0+L, ‖ · ‖L+0 in functional spaces X0, X1, X2 are defined by

‖w0‖L = ‖w0‖+ sup
(x,y) 6=(x̄,ȳ)

|w0(x, y)− w0(x̄, ȳ)|
‖(x− x̄, y − ȳ)‖ ,

‖w1‖0+L = ‖w1‖+ sup
(x,y) 6=(x,ȳ)

|w1(x, y)− w1(x, ȳ)|
|y − ȳ| ,

‖w2‖L+0 = ‖w2‖+ sup
(x,y) 6=(x̄,y)

|w2(x, y)− w2(x̄, y)|
|x− x̄|

for wν ∈ Xν (ν = 0, 1, 2).

A[φ]. Suppose that φ : E0 → R is differentiable and Dxφ ∈ C0+L(E0, R), Dyφ ∈
CL+0(E0, R).

Observe the fact of losing the global character of existence, which results in
demanding that the Lipschitz constants L1, L2 be sufficiently small.

A[Cν]. Suppose that there are θ ∈ (0, 1) and Cf ∈ R+ such that

θ = L0(ab + a + b) + L1(1 + b) + L2(1 + a) and ‖f(·, ·, 0, 0, 0)‖ ≤ Cf .

If the assumption A[Cν] holds, we can define a few positive constants: C , C0,
C1, C2 by

C =
Cf + 3L0‖φ‖+ ‖φ‖L(2L0 + L1 + L2)

1− θ
, (33)

C0 = (ab + a + b)C + 3‖φ‖+ 2‖φ‖L,
C1 = ‖φ‖L + (1 + b)C, C2 = ‖φ‖L + (1 + a)C.
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Define the set XL[C0, C1, C2] by the fomula

XL[C0, C1, C2] =

{(z0, z1, z2) ∈ X | ‖z0‖L ≤ C0, ‖z1‖0+L ≤ C1, ‖z2‖L+0 ≤ C2} ,

where

‖z0‖L = sup
(x,y)∈E

‖(z0)(x,y)‖L,

‖z1‖0+L = sup
(x,y)∈E

‖(z1)(x,y)‖0+L,

‖z2‖L+0 = sup
(x,y)∈E

‖(z2)(x,y)‖L+0.

We cite after [L1] the existence theorem for differential-functional problem (1), (2).

Theorem 2 Suppose that the assumptions A[φ], A[f ] and A[Cν ] are satisfied. Then
there is a unique solution z = (z0, z1, z2) to a natural integral equivalent of problem
(1), (2) in the class XL[C0, C1, C2]. Moreover, we have z1 = Dxz0 and z2 = Dyz0

on E0 ∪E, and the function z0 is a classical solution to problem (1), (2).

Existence results can be found also in [By], [Cz], [LLV]. We shall formulate as-
sumptions which reflect the character of these sufficient conditions for existence and
uniqueness. The ideas and methods used in the proofs of stability and convergence
statements can be found to be parallel to that of existence and uniqueness.

7 Other stability, consistency and convergence results

Define the discrete norms

‖w‖L = ‖w‖+ ‖δ1w‖+ ‖δ2w‖, (34)

‖w‖L+0 = ‖w‖+ ‖δ1w‖, ‖w‖0+L = ‖w‖ + ‖δ2w‖

for w ∈ F(X, R), where X stands either for Ẽhk or Bhk in dependence on the
context. The difference operators in the above definition are discrete counterparts
of the Lipschitz constants.

Assumption 4 Suppose that there are constants L0, L1, L2 ∈ R+ (independent of
(h, k)) such that

|fhk(xi, yj, w0, w1, w2)− fhk(xi, yj, w̄0, w̄1, w̄2)| ≤
L0‖w0 − w̄0‖L + L1‖w1 − w̄1‖0+L + L2‖w2 − w̄2‖L+0

for (xi, yj, w0, w1, w2), (xi, yj, w̄0, w̄1, w̄2) ∈ Ωhk.

Note that what Assumption 4 states of the function fhk is very close to A[f ],
compare also Example 1 and 2.

We start the main body of this section with a lemma on the consistency of the
difference scheme with the differential-functional problem.
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Lemma 4 Suppose that Assumptions 1, 2 and 3 are satisfied. Then the function
γ(h, k) = maxi,j |ξ(i,j)

hk [v]| is of class Γ0.

We omit the proof as it is similar to that of Lemma 1. We formulate a lemma
on stabiliy of the difference scheme.

Lemma 5 Suppose that Assumption 4 is satisfied. Take z, z̄ ∈ F(Ẽhk, R); the func-
tion z satisfying (3), (4), and the function z̄ satisfying the inequalities

|ξ(i,j)
hk [z̄]| ≤ γ̄(h, k) for (xi, yj) ∈ Ehk, (35)

|z(i,j) − z̄(i,j)| ≤ γ̄0(h, k) for (xi, yj) ∈ E0
hk,

|δ1z
(i,j) − δ1z̄

(i,j)| ≤ γ̄1(h, k) for (xi, yj), (xi+1, yj) ∈ E0
hk,

|δ2z
(i,j) − δ2z̄

(i,j)| ≤ γ̄2(h, k) for (xi, yj), (xi, yj+1) ∈ E0
hk,

|δ12z
(i,j) − δ12z̄

(i,j)| ≤ γ̄12(h, k) for (xi, yj), (xi, yj+1), (xi+1, yj) ∈ E0
hk,

where γ̄, γ̄0, γ̄1, γ̄2, γ̄12 ∈ Γ0. Then we have

|z(i,j) − z̄(i,j)| ≤ C0(h, k) for (xi, yj) ∈ Ẽhk, (36)

|δ1z
(i,j) − δ1z̄

(i,j)| ≤ C1(h, k) for (xi, yj), (xi+1, yj) ∈ Ẽhk,

|δ2z
(i,j) − δ2z̄

(i,j)| ≤ C2(h, k) for (xi, yj), (xi, yj+1) ∈ Ẽhk,

|δ12z
(i,j) − δ12z̄

(i,j)| ≤ C12(h, k) for (xi, yj), (xi+1, yj+1) ∈ Ẽhk,

where

C0(h, k) = 3γ̄0(h, k) + abγ̄(h, k) + abC(h, k), (37)

C1(h, k) = γ̄1(h, k) + bγ̄(h, k) + bC(h.k),

C2(h, k) = γ̄2(h, k) + aγ̄(h, k) + aC(h, k),

C12(h, k) = γ̄(h, k) + C(h, k)

with

C(h, k) = (38)

3γ̄0(h, k)L0 + γ̄1(h, k)(L0 + L1) + γ̄2(h, k)(L0 + L2) + γ̄(h, k)θ

1− θ
,

and C0(h, k), C1(h, k), C2(h, k), C12(h, k)→ 0 as h, k → 0.

Proof. The estimates are obvious on E0
hk. If we define the error z − z̄, then there

is no question of the explicite solvability of the error equation. The only matter is
how to estabish its relevant estimate. In view of formula (12) and the above remark
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on recurrence solvability we deduce for (xi, yj) ∈ E+
hk the estimate

|z(i,j) − z̄(i,j)| ≤

|L0z
(i,j) − L0z̄

(i,j)|+ hk
i−1∑
µ=0

j−1∑
ν=0

|ξ(µ,ν)
hk [z̄]| ≤

3γ̄0(h, k) + xiyjγ̄(h, k) + hk
i−1∑
µ=0

j−1∑
ν=0

(
L0‖(z − z̄)[µ,ν]‖L +

L1‖(δ1(z − z̄))[µ,ν]‖L+0 + L2‖(δ2(z − z̄))[µ,ν]‖0+L

)
≤

3γ̄0(h, k) + xiyjγ̄(h, k) + hkij
(
L0(C0(h, k) + C1(h, k) + C2(h, k)) +

L1(C1(h, k) + C12(h, k)) + L2(C2(h, k) + C12(h, k))
)
≤ C0(h, k).

Now, we take (xi, yj) ∈ (0, k) + Ehk and derive the estimate

|δ1z
(i,j) − δ1z̄

(i,j)| ≤

|L1z
(i,j) − L1z̄

(i,j)|+ k
j−1∑
ν=0

|ξ(i,ν)
hk [z̄]| ≤

γ̄1(h, k) + yjγ̄(h, k) + k j
(
L0(C0(h, k) + C1(h, k) + C2(h, k)) +

L1(C1(h, k) + C12(h, k)) + L2(C2(h, k) + C12(h, k))
)
≤ C1(h, k).

Taking (xi, yj) ∈ (h, 0) + Ehk, we derive the estimate

|δ2z
(i,j) − δ2z̄

(i,j)| ≤

|L2z
(i,j) − L2z̄

(i,j)|+ k
i−1∑
µ=0

|ξ(µ,j)
hk [z̄]| ≤

γ̄2(h, k) + xiγ̄(h, k) + h i
(
L0(C0(h, k) + C1(h, k) + C2(h, k)) +

L1(C1(h, k) + C12(h, k)) + L2(C2(h, k) + C12(h, k))
)
≤ C2(h, k).

Finally, taking (xi, yj) ∈ Ehk such that (xi+1, yj), (xi, yj+1) ∈ Ehk , we get

|δ12z
(i,j) − δ12z̄

(i,j)| ≤
|fhk

(
xi, yj, z[i,j], (δ1z)[i,j], (δ2z)[i,j])

)
−

fhk
(
xi, yj, z̄[i,j], (δ1z̄)[i,j], (δ2z̄)[i,j])

)
|+ k

i−1∑
µ=0

|ξ(µ,j)
hk [z̄]| ≤

γ̄(h, k) +
(
L0(C0(h, k) + C1(h, k) + C2(h, k)) +

L1(C1(h, k) + C12(h, k)) + L2(C2(h, k) + C12(h, k))
)
≤ C12(h, k).

These estimates establish the assertion of our lemma, which finishes the proof.
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Theorem 3 Suppose that Assumptions 1, 2, 4 and A[Cν] are satisfied. Assume
that the function z ∈ F(Ẽhk, R) is a solution to problem (3), (4) satisfying within
E0
hk the inequalities

|φ(i,j)
hk − φ(xi, yj)| ≤ γ̄0(h, k) for (xi, yj) ∈ E0

hk, (39)

|δ1φ
(i,j)
hk − δ1φ̄

(i,j)| ≤ γ̄1(h, k) for (xi, yj), (xi+1, yj) ∈ E0
hk,

|δ2φ
(i,j)
hk − δ2φ̄

(i,j)| ≤ γ̄2(h, k) for (xi, yj), (xi, yj+1) ∈ E0
hk,

|δ12φ
(i,j)
hk − δ12φ̄

(i,j)| ≤ γ̄12(h, k) for (xi, yj), (xi, yj+1), (xi+1, yj) ∈ E0
hk,

where γ̄, γ̄0, γ̄1, γ̄2 ∈ Γ0. Then we have

|v(i,j) − z(i,j)| ≤ C0(h, k)→ 0, (40)

|Dxv(xi, yj)− δ1z̄
(i,j)| ≤ h‖Dxxv‖+ C1(h, k)→ 0,

|Dyv(xi, yj)− δ2z̄
(i,j)| ≤ k‖Dyyv‖+ C2(h, k)→ 0,

|Dxyv(xi, yj)− δ12z̄
(i,j)| ≤ ‖(h, k)‖

∑
µ,ν≥0; µ+ν≤3

‖Dµ
xD

ν
yv‖ + C12(h, k)→ 0.

Proof. It follows from Lemma 1 that the function γ(h, k) = maxi,j |ξ(i,j)
hk [v]| is of class

Γ0. Define γ̄∈Γ0 as the right-hand side of inequality (17). Assertion (40) is obtained
by means of Lemma 5 with γ̄, γ̄0, γ̄1, γ̄2, γ̄12 satisfying (35). This completes the
proof.

Remark. The last inequality in (35) and (36) seem unnatural and inconvenient, but
these constraints are contained by themselves just in the definitions of ‖δ1z‖0+L =
‖δ1z‖+ ‖δ12z‖ and ‖δ2z‖L+0 = ‖δ2z‖+ ‖δ12z‖. Our error estimates are local, which
is due to Assumption 4 and A[Cν]. Some parts of our assumptions (for instance
on the boundedness of f) are not applied in their explicite forms. They are hidden
somehow in the regularity of the solutions to the Darboux problem.

8 Numerical examples

We illustrate the results of our numerical experiments performed by PC IBM 486.
Three differential equations whose share solution is

u(t, x) = 1 + t x2 − x t3 (41)

are considered in E = [0, 0.5]× [0, 0.5]. We introduce the usual mesh with h = k =
0.005 and show some computed values at the main diagonal of the square E.

Numerical example 1. We compute approximate solutions of the following non-
linear equation

Dtxu(t, x) = u(t, x) + sin (Dtu (t, x) + Dxu (t, x)) + f1(t, x), (42)

where the function f1 : E → R is defined as follows

f1(t, x) = −1− 3t2 + 2x + t3x− tx2 + sin
(
t3 − 2tx + 3t2x− x2

)
.
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The following table contains the diagonal values of Uenh(xi, xi) and U(xi, xi), the
solutions of enhanced and usual difference schemes, and their errors errenh and err,
respectively.

xi Uenh(xi, xi) errenh U(xi, xi) err

0.05 1.00011878 0.00000003 1.00010687 −0.00001188
0.10 1.00090013 0.00000013 1.00085493 −0.00004507
0.15 1.00286904 0.00000029 1.00277278 −0.00009597
0.20 1.00640053 0.00000053 1.00623895 −0.00016105
0.25 1.01171959 0.00000084 1.01148191 −0.00023684
0.30 1.01890122 0.00000122 1.01858020 −0.00031980
0.35 1.02787044 0.00000169 1.02746249 −0.00040626
0.40 1.03840224 0.00000224 1.03790770 −0.00049230
0.45 1.05012163 0.00000288 1.04954522 −0.00057353
0.50 1.06250361 0.00000361 1.06185512 −0.00064488

In the usual scheme we take U [i, j] ≈ u(ti, xj) and progressive difference operators
instead of Dtu(. . . ) and Dxu(. . . ). The enhancement requires some modifications,

namely: f1(ti, xj) is replaced by f1

(
ti+1/2, xj+1/2

)
, and

U [i, j] + U [i + 1, j] + U [i, j + 1] + v

4
≈ u

(
ti+1/2, xj+1/2

)
,

1

2

(
U [i + 1, j]− U [i, j]

h
+

v − U [i, j + 1]

h

)
≈ Dtu

(
ti+1/2, xj+1/2

)
,

1

2

(
U [i, j + 1]− U [i, j]

h
+

v − U [i + 1, j]

h

)
≈ Dxu

(
ti+1/2, xj+1/2

)
,

where v is an approximate value of U [i + 1, j + 1] obtained in a certain number
of iterations. In fact, this is an explicit scheme which is close to a second-order
implicit scheme. The above table shows how much the enhanced scheme improves
the approximation.

Numerical example 2. We consider a differential equation with simple delays t/2
and x/2. Of course, it is no need to give initial data in a ’thick’ set E0, because
these delays act within the set E.

Dtxu(t, x) = −u
(
t,

x

2

)
+ 4u

(
t

2
, x
)

(43)

+
21

8
u(t, x) − 7 t Dtu

(
t

2
,
x

2

)
+ Dxu

(
t

2
,
x

2

)
+ f2(t, x),

where f2(t, x) is given by the formula

f2(t, x) = −5.625− 3t2 + 0.125 t3 + 2x− 0.5 tx− 2.625 tx2.
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We obtain the following table

xi U(xi, xi) err

0.05 1.00010746 −0.00001129
0.10 1.00085979 −0.00004021
0.15 1.00278952 −0.00007923
0.20 1.00627974 −0.00012026
0.25 1.01156452 −0.00015423
0.30 1.01872942 −0.00017058
0.35 1.02771199 −0.00015676
0.40 1.03830232 −0.00009768
0.45 1.05014368 0.00002493
0.50 1.06273311 0.00023311

The above table shows the discrete values and the adequate errors at every tenth
diagonal knot of our mesh. Concerning the points between two knots, we derive
functions as mean value of these from two or four natural neighbouring knots, which
corresponds to applying the linear spline interpolation. In order to get a significant
decrease in error, similarly as in the former numerical example, one can use the
concept of enhancement.

Numerical example 3. Finally, we consider a kind of the Voterra dependence
represented by an integral over the set [t− 1, t]× [x− 1, x].

Dtxu(t, x) = Dtu (t, x) + Dxu (t, x) + 24
∫ t

t−1

∫ x

x−1
u(s, y) dy ds + f3(t, x), (44)

where f3(t, x) is defined by the formula

f3(t, x) = −17− 20 t + 15t2 − 11t3 − 16x + 48tx− 33t2x+

24 t3x + 11x2 − 24 tx2.

In this example, we need some initial data in E0 := [−1, 0.5]× [−1, 0.5]\E. In fact,
our initial data are given by (41). The meaning of the following table is clear.

xi U(xi, xi) err

0.05 1.00012740 0.00000865
0.10 1.00107177 0.00017177
0.15 1.00367755 0.00080880
0.20 1.00878061 0.00238061
0.25 1.01719461 0.00547586
0.30 1.02969647 0.01079647
0.35 1.04701205 0.01914330
0.40 1.06980335 0.03140335
0.45 1.09865893 0.04854018
0.50 1.13408995 0.07158995

What is worth mentioning is that the integrals over subsets of E0 are accurate,
whereas the remaining parts of these integrals are replaced by summation formulas
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from (0, 0) to (i, j), which reflects a sort of approximation by means of piecewise
constant functions. The necessity of dealing with numerous sums results in a no-
ticeable decrease in accuracy and speed of computations. In particular, the above
table contains reliable values only in [0, 0.3) × [0, 0.3). Presumably, applying other
quadratures and averaging operators would lessen the error.
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