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Introduction

Let H be a finite dimensional Hopf algebra and let C be a left H-comodule coalgebra.
In [2], a Morita-Takeuchi context arising from a left H-comodule coalgebra has been
constructed. Utilizing that Morita- Takeuchi context we may characterize the Hopf-
Galois coactions on coalgebras, and use it to prove the duality theorem for crossed
coproducts. In this note, we show that the Morita-Takeuchi context constructed in
[2] is generated by the left comodule C>/HC , where C >/ H is the smash coproduct
coalgebra of C by H. As a consquence, we obtain that the coaction of Hopf algebra H
on C is Galois if and only if C>/HC is a cogenerator. This dualizes the corresponding
result in [1]. Another functorial description of Galois coactions is in Theorem 2.8,
which is the dualization of the weak structure theorem in [4].

In Section 3, we define the cotrace map for an H∗-coextension C/R. There are
various descriptions of the cotrace map being injective. For instance, the comodule

C>/HC is an injective comodule; the canonical map G in the Morita-Takeuchi context
is injective; the cohom functor hC>/H−(C,−) is equivalent to the cotensor functor
C2C>/H− cf.Theorem 3.5.

1 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned
⊗, Hom, etc, are over k. C, D always denote coalgebras and H is a Hopf algebra. We
refer to [9] for detail on coalgebras and comodules. We adapt the usual sigma nota-
tion for the comultiplications of coalgebras, and adapt the following sigma notation
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for a (left) C-comodule structure map ρX of X:

ρX(x) =
∑

x(−1) ⊗ x(0).

For a left H-comodule M , we use the following sigma notation to denote the co-
module structure map ρM of M :

ρM(m) =
∑

m<−1> ⊗m<0>.

Let MC (or CM) denote the category of right (or left) C-comodules. If α : C −→
D is a coalgebra map, then any left C-comodule X may be treated as a left D-
comodule in a natural way:

(α⊗ 1)ρ : X −→ C ⊗X −→ D ⊗X.

A (C − D)-bicomodule is a left C-comodule and a right D-comodule X, denoted
by CXD, such that the C-comodule structure map ρC : X −→ C ⊗ X is right
D-colinear (or a D-comodule map).

For a right C-comodule M and a left C-comodule N , the contensor product
M2CN is the kernel of

ρM ⊗ 1− 1⊗ ρN : M ⊗N
−→−→M ⊗ C ⊗N.

The functors M2C− and −2CN are left exact and preserve direct sums. If CXD

and DYE are bicomodules, then X2DY is a (C − E)-bicomodule with comodule
structures induced by those of X and Y .

We recall from [10] the definition of a cohom functor and some of its basic properties.
A comodule CX is quasi-finite if ComC−(Y, X) is finite dimensional for any finite
dimensional comodule CY . A comodule CX is finitely cogenerated if it is isomorphic
to a subcomodule of C ⊗W for some finite dimensional space W . A finitely cogen-
erated comodule is quasi-finite. But the coverse is not true. A comodule X ∈ CM
is said to be a cogenerator if for any comodule M ∈ CM there is a space W such
that M ↪→ X ⊗W as comodules. The following lemma relates the existence of the
cohom functor to quasi-finiteness:

Basic Lemma[10]: Let CXD be a bicomodule. Then CX is quasi-finite if and
only if the functor X2D− : DM −→ CM has a left adjoint functor, denoted by
hC−(X,−). That is, for comodules CY and DW ,

ComD−(hC−(X, Y ), W ) ' ComC−(Y, X2DW ) (#)
Where,

hC−(X, Y ) = lim
−→
µ

ComC−(Yµ, X)∗ ' lim
−→
µ

(Y ∗µ2CX)∗

is a left D-comodule, {Yµ} is the directed family of finite dimensional subcomodules
of CY such that Y =

⋃
µ Yµ. In particular, if C = X, D = k, then hC−(C,−) is

nothing else but the forgetful functor U : CM −→ M, here M is the k-module
category; if C = D, X = C , hC−(C,−) is the identity functor from CM to CM. Let
θ denote the canonical C-colinear map Y −→ X2DhC−(X, Y ) which corresponds
to the identity map hC−(X, Y ) −→ hC−(X, Y ) in (#). Similarly, there is a right
version of the basic lemma for a quasi-finite comodule XD.
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Assume that CX is a quasi-finite comodule. Consider a bicomodule CXk. Then
eC−(X) = hC−(X, X) is a coalgebra, called the co-endomorphism coalgebra of X.
The comultiplication of eC−(X) corresponds to (θ ⊗ 1)θ : X −→ X ⊗ eC−(X) ⊗
eC−(X) in (#), and the counit of eC−(X) corresponds to the identity map 1X . Also
X is a C − eC−(X)-bicomodule with right comodule structure map θ, the canonical
map X −→ X ⊗ hC−(X, X).

A Morita-Takeuchi (M-T) context (C, D,C PD,D QC, f, g) consists of coalgebras
C, D, bicomodules CPD,D QC, and bicolinear maps f : C −→ P2DQ and g : D −→
Q2CP satisfying the following commutative diagrams:

P
∼

∼

P2DD

12g

Q ∼

∼

Q2CC

12f

C2CP
f21

P2DQ2CP D2DQ
g21

Q2CP2DQ

The context is said to be strict if both f and g are injective (equivalently, iso-
morphic). In this case we say that C is M-T equivalent to D, denoted by C ∼ D.

Let H be a Hopf algebra, C a coalgebra. C is said to be a right H-module coalgebra
if
i). C is a right H-module,
ii). ∆(c ↼ h) =

∑
c(1) ↼ h(1) ⊗ c(2) ↼ h(2), c ∈ C, h ∈ H,

iii). ε(c ↼ h) = ε(c)ε(h).

Dually, a coalgebra C is called a left H-comodule coalgebra if
i). C is a left H-comodule,
ii).

∑
c<−1> ⊗∆(c<0>) =

∑
c(1)<−1>c(2)<−1> ⊗ c(1)<0> ⊗ c(2)<0>,

iii).
∑

ε(c<0>)c<−1> = ε(c)1H .

If H is a finite dimensional Hopf algebra, a coalgebra C is a right H-module coalgebra
if and only if C is a left H∗-comodule coalgebra. On the other hand, for any Hopf
algebra H and right H-module coalgebra C , the convolution algebra C∗ is a left
H-module algebra with H-module structure induced by transposition.

Let C be a right H-module coalgebra, H a Hopf algebra. Denote by H+ the
augmentation ideal kerε which is a Hopf ideal. Then CH+ = C ↼ H+ is a coideal
of C , and C/CH+ is a coalgebra with a trivial right H-module structure. Let R be
the quotient coalgebra C/CH+. It is not hard to check that R∗ is the invariant sub-
algebra of the left H-module algebra C∗. Dual to the terminology of ‘H-extension’,
we call C/R an H-coextension. View C as a left and right R-comodule. There is a
canonical linear map

β : C ⊗H −→ C2RC, c⊗ h 7→
∑

c(1)2c(2) ↼ h.

If β is bijective, then C/R is said to be an H-Galois coextension cf.[7] (sometimes
it is called H-cogalois cf.[3] [8]).

Let C be a left H-comodule coalgebra. We may form a smash coproduct coal-
gebra C >/ H which has counit εC >/ εH and comultiplication as follows:

∆(c >/ h) =
∑

(c(1) >/ c(2)<−1>h(1))⊗ (c(2)<0> >/ h(2)).
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If H is finite dimensional, C∗ is a left H∗-module algebra. We have the usual smash
product algebra C∗#H∗. It is easy to see that C∗#H∗ is exactly the convolution
algebra (C >/ H)∗.

Now let H be a finite dimensional Hopf algebra, C a left H-comodule coalgebra.
We recall from [2] the M-T context arising from a left H-comodule coalgebra C . Let
R be the quotient coalgebra C/CH∗+. Then C may be viewed as a left or a right
R-comodule in a natural way. There is a canonical left C >/ H-coaction on C given
by

ρl(c) =
∑

(c(1) >/ c(2)<−1>)⊗ c(2)<0> (1)

This coaction is compatible with the right R-coaction on C , and makes C into a
(C >/ H − R)-bicomodule.

Let T be a left integral of H∗ and λ be the distinguished group-like element cf.[6]
of H which satisfies:

Th∗ =< h∗, λ > T, ∀h∗ ∈ H∗.

There is a right coaction of C >/ H on C as follows:

ρr(c) =
∑

c(1)<0>⊗ (c(2)<0> >/ S−1(c(1)<−1>c(2)<−1>)λ) (2)

With the above right C >/ H-coaction and the natural left R-coaction C becomes
an (R − C >/ H)-bicomodule. The Morita-Takeuchi context arising from C is

(C >/ H, R, C>/HCR, RCC>/H , F, G) (3)

where the bicolinear maps F , G are given by
F : C >/ H −→ C2RC, c >/ h 7→ ∑

c(1)2c(2)<0> < T, c(2)<−1>h >, and
G : R −→ C2C>/HC, c 7→ ∑

c(1)<0>2c(2)<0> < T, c(1)<−1>c(2)<−1> >.
In [2] we use the above M-T context to show the duality theorem for crossed

coproducts. Moreover, the bicolinear map F in (3) can be used to describe the
Galois coextension, that is, C/R is H∗-Galois if and only if F is injective cf.[2,
Th.1.2].

2 The Hopf comodule category

Let H be a Hopf algebra. If C is a left H-comodule coalgebra, we have the smash
coproduct coalgebra C >/ H. Denote by C>/HM the category of left C >/ H-
comodules and morphisms.
Lemma 2.1. A comodule M is in C>/HM if and only if M is a left C-comodule and
a left H-comodule satisfying the compatibility condition: ∀m ∈M ,∑

m<0>(−1)⊗m<−1>⊗m<0>(0) =
∑

m<−1><0>⊗m(−1)<−1>m(0)<−1>⊗m(0)<0> (4)

Proof. Straightforward. �

A left C-comodule M is called a Hopf comodule if it is a left H-comodule and satisfies
the compatibility condition (4). Write (C,H)M for the category of Hopf comodules
and morphisms. Lemma 2.1 states that C>/HM ∼ (C,H)M. A left C-comodule M is
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said to be a Hopf bimodule if M is a right H-module and satisfies the compatibility
condition:

ρ(m ↼ h) =
∑

m(−1) ↼ h(1) ⊗m(0) ↼ h(2), m ∈ M, h ∈ H. (5)

The category of Hopf bimodules and morphisms is denoted by CMH . If H is finite
dimensional, then we have that (C,H)M ∼ CMH∗ . In the sequel, H is a finite
dimensional Hopf algebra, C is a left H-comodule coalgebra. We identify (C,H)M,
C>/HM with CMH∗. Let H∗+ be the augmentation ideal ker(εH∗ : H∗ −→ k).
Let R be the quotient coalgebra C/CH∗+. To a Hopf comodule M ∈ (C,H)M we
associate an R-comodule M = M/MH∗+. The functor (−) : (C,H)M −→ RM
has a right adjoint functor C2R− : RM −→ (C,H)M cf.[7]. On the other hand,
C is a (C >/ H, R)-bicomodule, and as a left C >/ H-comodule is quasi-finite.
So the cohom functor hC>/H−(C,−) : (C,H)M = C>/HM −→ RM exists and
it is a left adjoint functor of the functor C2R−. By the uniqueness of adjointness,
hC>/H−(C,−) is equivalent to (−). Let η be the natural (isomorphic) transformation
from (−) to hC>/H−(C−). For a Hopf comodule M ∈ (C,H)M, we have the following
commutative diagram:

M
θM

νM

C2RhC>/H−(C, M)

C2M

1⊗ηM

(6)

where θ is the canonical (adjoint) map mentioned in Section 1 and νM is the adjoint
map:

M −→ C2RM : m 7→
∑

m(−1) ⊗m(0).

In the sequel, 2 means the cotensor product over R.
Lemma 2.2. Let M be a Hopf comodules. The following sequence is exact:

0 −→ M ↼ H∗+ −→M
(ε⊗1)θM−→ hC>/H−(C, M) −→ 0.

Proof. Follows from the foregoing commutative diagram (6). �

We need the following preparation to show Proposition 2.4. It is well-known that
a finite dimensional Hopf algebra is a Frobenius algebra. Let Θ be the Frobenius
isomorphism:

HHH∗ −→ HH∗H∗ ,

where the actions are canonical, i.e,

h ↼ p =
∑

< p, h(1) > h(2), h ⇀ p =
∑

p(1) < p(2), h >, h ∈ H, p ∈ H∗.

Θ−1 makes H a right H∗-free module with basis t = Θ−1(ε), which is a left integral
of H. Let T be S∗(Θ(1)), where S∗ is the antipode of H∗. Then T is a left integral
of H∗ cf.[5, 6]. Define a map

T̃ : H −→ H, h 7→ h ↼ T =
∑

< T, h(1) > h(2) =< T, h > λ,
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where λ is the distinguished group-like element of H satifying

Tp = T < p, λ >, ∀p ∈ H∗.

In fact, T̃ is a map onto 1-dimensional subspace kλ of H because < T, t >= 1 cf.[6].

Lemma 2.3. Let H be a finite dimensional Hopf algebra and let T̃ , λ be as above.
The following sequence is exact:

0 −→ H ↼ H∗+ −→ H
T̃−→ kλ −→ 0.

Proof. It is enough to show that H ↼ H∗+ is the kernel of T̃ . The inclusion
H ↼ H∗+ ⊆ kerT̃ is easily seen. We show the anti-inclusion. For h ∈ H, there is
some p ∈ H∗ such that h = t ↼ p. If T̃ (h) = 0, then 0 = T̃ (t ↼ p) = t ↼ pT . Since
t is the basis of H, we have that pT = 0. But T is a left integral of H∗. It follows
that < p, 1 >= 0, i.e, p ∈ H∗+. So we have that kerT̃ ⊆ H ↼ H∗+. �

Proposition 2.4. Let C be a left H-comodule coalgebra, R the quotient coalgebra
C/CH∗+. Then
1). ηC : R −→ hC>/H−(C, C) = eC>/H−(C) is a coalgebra isomorphism.
2). C ' hC>/H−(C, C >/ H) as (R, C >/ H)-bicomodules.

Proof. 1). It is clear that ηC is a left R-colinear isomorphism. It remains to check
that ηC is a coalgebra map. Note that the adjoint map θC : C −→ C2eC>/H−(C)
makes C into an eC>/H−(C)-comodule cf.[10]. That is, (1 ⊗ ∆e)θC = (θC ⊗ 1)θC ,
where ∆e is the comultiplication of eC>/H−(C). It follows from the diagram (6) that
θC = (1⊗ ηC)νC . The above two equalities arrive at the identity for c ∈ C :∑

c(1)2∆eηC(c(2)) =
∑

c(1)2ηC(c(2))2ηC(c(3)).

This implies that ηC is a coalgebra map.
2). Let M be C >/ H in the diagram (6).

Then ηC>/H : C >/ H −→ hC>/H−(C, C >/ H) is an R-colinear isomorphism. We
have to show that ηC>/H is right C >/ H-colinear and C >/ H ' C as (R−C >/ H)-
bicomodules. Observe that the canonical adjoint map

θC>/H : C >/ H −→ C2hC>/H−(C, C >/ H)

is a C >/ H-bicolinear map. It follows that the map ηC>/H = (ε ⊗ 1)θC>/H is
an (R, C >/ H)-bicolinear map. To show that C >/ H ' C as (R, C >/ H)-
bicomodules, we define a map ψ as follows:

ψ : C >/ H −→ C ⊗ kλ : c >/ h 7→
∑

c<0>⊗ < T, c<−1>h > λ.

It is clear that ψ is a left R-colinear. Moreover, ψ is a right C >/ H-colinear map.
In fact, for c >/ h ∈ C >/ H, we have

ρC(ψ(c >/ h))
=

∑
c<0>(1) ⊗ [c<0>(2) >/ S−1(c<−1>) < T, c<−2>h > λ]

=
∑

c<0>(1) ⊗ [c<0>(2) >/ S−1(c<−1>)c<−2>h(2) < T, c<−3>h(1) >]
=

∑
c<0>(1) ⊗ [c<0>(2) >/ h(2) < T, c<−1>h(1) >]

=
∑

c(1)<0> < T, c(1)<−1>c(2)<−1>h(1) > ⊗c(2)<0> >/ h(2)

=
∑

ψ(c(1) >/ c(2)<−1>h(1))⊗ c(2)<0> >/ h(2)

= (ψ ⊗ 1)∆(c >/ h).
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Now ψ is surjective because:

ψ(
∑

c<0> >/ S−1(c<−1>) < T, c<−2>h > λ) = c⊗ < T, t > λ = c⊗ λ, c ∈ C.

Let (C >/ H)+ be (C >/ H) ↼ H∗+, where the right H∗-module structure of
C >/ H is given by

(c >/ h) ↼ p =
∑

c<0> >/ c<−1>h(2) < T, c<−2>h(1) >, p ∈ H∗, c >/ h ∈ C >/ H.

We show that kerψ = (C >/ H)+. The inclusion (C >/ H)+ ⊆ kerψ is clear. To
show the other inclusion, we need to show that C >/ H is a free H∗-module. Let
C ⊗H be the free H∗-module with H∗-structure stemming from H. Define a map

ζ : C >/ H −→ C ⊗H, c >/ h 7→
∑

c<0> ⊗ c<−1>h.

For p ∈ H∗, we have:

ζ((c >/ h) ↼ p) =
∑

ζ(c<0> >/ h(2) < p, c<−1>h(1) >)

=
∑

c<0> ⊗ c<−1>h(2) < p, c<−2>h(1) >

=
∑

c<0> ⊗ (c<−1>h(2)) ↼ p

=
∑

ζ(c >/ h) ↼ p.

It is obvious that ζ is an isomorphism. It follows from the fact that C ⊗H is a free
H∗-module that C >/ H is H∗-free. Now if x =

∑
ci >/ hi ∈ kerψ, then

ψ(x) =
∑

ci<0>⊗ < T, ci<−1>h > λ

=
∑

ci<0> ⊗ ci<−1>h(2) < T, ci<−2>h(1) >

= 0

This means that x ↼ T = 0 in C >/ H. Let {xi} be a basis of the free H∗-module
C >/ H. Suppose that x =

∑
xi ↼ pi. That 0 = x ↼ T =

∑
xi ↼ piT implies that

piT = 0, ∀i. It follows that pi ∈ H∗+ for all i, and hence x ∈ (C >/ H) ↼ H∗+.
Therefore C >/ H ' C ⊗ kλ ' C . �

Theorem 2.5. The Morita-Takeuchi context (C >/ H, R, C, C, F, G) in (3) is
generated by the comodule C>/HC .

Proof. A M-T context generated by a quasi-finite comodule was constructed by
Takeuchi in [10]. The M-T context generated by the quasi-finite comodule C>/HC is

(C >/ H, eC>/H−(C), C>/HCeC>/H−(C), hC>/H−(C, C >/ H), f, g),

where, f is the canonical map θC>/H : C >/ H −→ C2hC>/H−(C, C >/ H), and g is
the composite map:

eC>/H−(C) −→ hC>/H−(C, C >/ H2C>/HC) −→ hC>/H−(C, C >/ H)2C>/HC.

By Proposition 2.4, we have that R ∼= eC>/H−(C) and hC>/H−(C, C >/ H) '
RCC>/H . It remains to be shown that the following two diagrams are commuta-
tive.

C >/ H
f

F

C2hC>/H−(C, C >/ H)

12µ

C2C

(7)
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and

R
g

G

hC>/H−(C, C >/ H)2C>/HC

µ21

C2C>/HC

(8)

where µ is the composite isomorphism

hC>/H−(C, C >/ H)
η−1
C>/H−→ C >/ H

ψ−→C,

and ψ is induced by the map ψ in the proof of Proposition 2.4. To show the diagram
(7), it is enough to verify that the following diagram commutes because we have the
commutative diagram (6).

C >/ H
νC>/H

F

C2C >/ H

12ψ

C2C

(9)

In fact, for c >/ h ∈ C >/ H,

(12ψ)f(c >/ h) =
∑

c(1)2ψ(c(2) >/ h)

=
∑

c(1)2c(2)<0> < T, c(2)<−1>h >

= F (c >/ h)

Now we establish the diagram (8). Note that we have a relation between f and g
expressed by commutativity of the following diagram:

C
∼

∼

C >/ H2C>/HC

f21

C2R
12g

C2hC>/H−(C, C >/ H)2C>/HC

Explicitly, for c ∈ C , we have the identity:∑
c(1)2g(c(2)) =

∑
f(c(1) >/ c(2)<−1>)2c(2)<0>.

This implies that the map g is determined by f , i.e,

g(c) =
∑

(ε⊗ 1)f(c(1) >/ c(2)<−1>)2c(2)<0>, ∀c ∈ R.

Now we compute

(µ ⊗ 1)g(c) =
∑

(µ⊗ 1)[(ε⊗ 1)f(c(1) >/ c(2)<−1>)2c(2)<0>]

=
∑

(ε⊗ 1⊗ 1)(1⊗ µ ⊗ 1)[f(c(1) >/ c(2)<−1>)2c(2)<0>]

=
∑

(ε⊗ 1⊗ 1)[F (c(1) >/ c(2)<−1>)2c(2)<0>]

=
∑

(ε⊗ 1⊗ 1)[c(1)2c(2)<0> < T, c(2)<−1>c(3)<−1> > 2c(3)<0>]

=
∑

c(1)<0>2c(2)<0> < T, c(1)<−1>c(2)<−1> >

= G(c)

where we omitted the subscript C >/ H and R of the cotensor product, and we use
the commutativity of diagram (7) in the third equality. The proof is complete. �
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Now we can prove:

Corollary 2.6. Let C/R be an H∗-coextension. Then C/R is H∗-Galois if and
only if C>/HC is a cogenerator.

Proof. It follows from [2, Th.1.2] that C/R is H∗-Galois if and only if the
canonical map F is injective. Since The above M-T context is generated by comodule

C>/HC , F is injective if and only if C>/HC is a cogenerator cf.[10, 3.2]. �

Note that the kernel of the canonical map F is a subcoalgebra of the smash
coproduct C >/ H. If C >/ H is a simple coalgebra, then F is injective, and hence

C>/HC is a cogenerator.

Corollary 2.7. If C/R is an H∗-Galois coextension, then the functor C2R− is
equivalent to the cohom functor hR−(C,−).

Proof. Let S = C2R−, T = C2C>/H−. Then the bicolinear maps F and G may
be identified with the natural transformations F : I −→ ST and G : I −→ TS
cf.[10, 2.4]. If C/R is H∗-Galois then F is an isomorphism, and then the pair
(F−1 : ST −→ I, G : I −→ TS) yields an adjoint relation S a T , i.e, S is a left
adjoint functor of T . On the other hand, hR−(C,−) is a left adjoint functor of T
because RC is quasi-finite cf.[2, 1.3]. By the uniquess of adjointness the statement
holds. �

The above result is dual to [11, Th.3.2]. If we call C2R− the induction functor
and call hR−(C, ) the coinduction functor, then induction functor and coinduction
functors coincides when the coextension is Galois. To end this section, we give a
dualization of the so-called weak structure theorem for Hopf modules in [4].

Theorem 2.8. Let C/R be an H∗-coextension. Then C/R is H∗-Galois if and
only if the canonical map νM : M −→ C2M is an isomorphism for every C >/ H-
comodule M .

Proof. Let M = C >/ H. Then the composite map

C >/ H
νC>/H−→ C2C >/ H

12ψ−→C2C

is exactly the canonical map F in the M-T context. If νC>/H is an isomorphism,
then F is injective and C/R is H∗-Galois by [2, Th.1.2].

Conversely, suppose that C/R is H∗-Galois. We dualize the diagram in [4, 2.13].
Let β ′ be the Galois isomorphism:

C ⊗H∗ −→ C2C, c⊗ p 7→
∑

c(1) ↼ p2c(2).

Given a C >/ H-comodule M , β ′ induces an isomorphism

βM : M ⊗H∗ −→ C2M, m⊗ p 7→
∑

m(−1) ↼ p⊗m(0).

Denote by δ the following composite isomorphism:

M ⊗H∗ ⊗H∗
σ−→M ⊗H∗ ⊗H∗

βM⊗1−→ C2M ⊗H∗
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where σ(m ⊗ p⊗ q) =
∑

m ⊗ p(1)q ⊗ p(2). Now it is straightfroward to verify that
the following diagram is commutative:

C2(M ⊗H∗)
1⊗↼

1⊗1⊗ε
C2M C2M 0

M ⊗H∗ ⊗H∗
↼⊗1

1⊗↼

δ

M ⊗H∗
↼

β

M

νM

0

where the uper sequence is exact since C as an R-comodule is coflat (or equivalently
injective), and the bottom one is exact because: if

∑
mip = 0 in M , then

(↼ ⊗1− 1⊗↼)(
∑

mi ↼ pi(1) ⊗ S∗(pi(2))⊗ pi(3) =
∑

mi ⊗ pi.

As βM and δ are isomorphisms, νM is an isomorphism too. �

3 The cotrace map

Throughtout this section H is a finite dimensional Hopf algebra, and C is a left
H-comodule coalgebra. Let T be the left integral of H∗ as in the previous section.
We define a map from R = C/C ↼ H∗+ to C by passage to the quotient:

T̃ : R −→ C, c 7→
∑

c<0> < T, c<−1> > .

If c = x ↼ p, x ∈ C, p ∈ H∗, then T̃ (c) = ε(p)T̃ (x). This means that T̃ is well-
defined. It is clear that T̃ is both left and right R-colinear. The map T̃ is called the
cotrace map of C . Let G be the canonical map R −→ C2C>/HC in the M-T context
(3). Let D be the image T̃ (R) of T̃ . One may easily calculate that the following
diagram is commutative:

R
G

T̃

C2C>/HC

D

∆

(10)

Note that in general the comultiplication map ∆ can not extend from D to C . Since
∆ is injective G is injective if and only if T̃ is injective.
Proposition 3.1. Let C/R be an H∗-coextension. The following are equivalent:
1). The cotrace map T̃ is injective.
2). The canonical map G is injective.
3). C>/HC (or CC>/H) is an injective comodule.
4). The functor (−) is exact.
If one of the above conditions holds, then R as a (left or right) R-comodule is a
direct summand of C .

Proof. It is sufficient to show that 2)⇐⇒ 3) and this follows from Theorem 2.5
and [10, 3.2]. If T̃ is injective, then T̃ splits because R as an R-comodule is injective.

�
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Corollary 3.2. Let C/R be an H∗-coextension. If T̃ is injective, then for any
R-comodule N the adjoint map

∂N : C2N −→ N,
∑

ci2ni 7→
∑

ε(ci)ni

is an isomorphism.
Proof. Let ∂ be the canonical map cf.[10, 1.13]

hC>/H−(C, C2N) −→ hC>/H−(C, C)2N.

We have the following commutative diagram:

hC>/H−(C, C2N)
∂

hC>/H−(C, C)2N

C2N
∂N

ηC2N

N = R2N

ηC21

Since C>/HC is injective, ∂ is an isomorphism cf. [10, 1.14]. It follows that ∂N is an
isomorphism. �

Corollary 3.3. Let C/R be an H∗-coextension. The following are equivalent:
1). C/R is H∗-Galois and the cotrace map is injective.
2). C2− defines an M-T equivalence between RM and C>/HM.

If R is cocommutative, then the cotrace map is injective when C/R is H∗-Galois
cf.[11]. In this case condition 1) in Cor.3.3 may be weakened. In [7], Schneider
showed that 2) of Cor.3.3 is equivalent to C/R being Galois and the existence of a
‘total integral’, i.e, an augmental H∗-linear map from C to H∗. In fact, we have:
Proposition 3.4. Let C/R be an H∗-coextension. The following are equivalent:
1). T̃ is injective.
2). There exists an H∗-linear map φ : C −→ H∗ such that εH∗φ = εC .

Proof. Suppose that T̃ is injective. Let π be the section of T̃ such that πT̃ = 1R.
Define a map φ as follows:

φ C −→ H∗, c 7→
∑

επ(c ↼ T(2))S
∗−1(T(1)),

where T is the left integral of H∗ as before. φ is augmental because

εφ(c) = επ(c ↼ T ) = επT̃(c) = ε(c), ∀c ∈ C.

Observe that we have the identity:∑
pT(2) ⊗ S∗−1(T(1)) =

∑
T(2) ⊗ S∗−1(T(1))p, ∀p ∈ H∗ (11)

This yields

φ(c ↼ p) =
∑

επ(c ↼ pT(2))S
∗−1(T(1))

=
∑

επ(cT(2))S
∗−1(T(1))p

= φ(c)p
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and hence φ is H∗-linear.
Conversely, if there is augmental H∗-linear map φ : C −→ H∗, we define a map

π as follows:
π : C −→ R, c 7→

∑
c(1) < φ(c(2)), t >,

where t is the left integral of H in the previous section. Note that < T, t >= 1. We
have

πT̃ (c) =
∑∑

π(c<0> < T, c<−1> >)

=
∑

c<0>(1) < φ(c<0>(2)), t >< T, c<−1> >

=
∑

c(1)<0> < φ(c(2)<0>), t >< T, c(1)<−1>c(2)<−1> >

=
∑

c(1) ↼ T(1) < φ(c(2) ↼ T(2)), t >

=
∑

c(1) < φ(c(2))T, t >

=
∑

c(1)εφ(c(2)) < T, t >

= c

We have shown that T̃ is injective. �

To end this section we give a functorial characterization of the cotrace map which
is dual to [11, Th.2.1].
Theorem 3.5. Let C/R be an H∗-coextension. The cotrace map is injective if and
only if the functor (−) (cohom functor) is equivalent to the the functor C2C>/H−
(cotensor functor) via the natural transformation

τM : M −→ C2C>/HM, m 7→
∑

m(−1) ↼ T(1)2m(0) ↼ T(2) = ρ(m ↼ T ).

Proof. Suppose that τM is an isomorphism for any left C >/ H- comodule M .
Let M = C . Then τC is exactly the canonical map G, and hence the cotrace map is
injective by Proposition 3.1.

Conversely, suppose that T̃ is injective. For a left C >/ H-comodule M , we first
verify that τM is well-defined. To show ρC(m ↼ T ) ∈ C2C>/HM , it is equivalent to
show that ρC(m ↼ T ) ∈ C2CM and∑

p ⇀ (m(−1) ↼ T(1))⊗m(0) ↼ T(2) =
∑

m(−1) ↼ T(1) ⊗m(0) ↼ T(2)p

for any p ∈ H∗, where
p ⇀ c = c ↼ S∗−1(pλ) =

∑
c ↼ S∗−1(p(1)) < p(2), λ > (∗)

and λ is the group-like element of H mentioned in Section 1. That ρC(m ↼ T )
is in C2CM is clear. The equation (∗) holds if the following equation holds.∑

T(1)S
∗−1(pλ)⊗ T(2) =

∑
T(1) ⊗ T(2)p, p ∈ H∗

This is true because∑
T(1)S

∗−1(pλ)⊗ T(2) =
∑

T(1) < p(2), λ > S∗−1(p(1))⊗ T(2)

=
∑

T(1)p(2)S
∗−1(p(1))⊗ p(3)

=
∑

T(1) ⊗ T(2)p.
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It is clear that τM is R-colinear. To show that τM is an isomorphism, we define a
map as follows:

ξM : C2C>/HM −→ M, ξM (c >/ m) = επ(c)m,

where the map π : C −→ R is the section of the cotrace map T̃ . For simplicity, we
write c2m for an element

∑
ci2mi ∈ C2C>/HM . c2m has to satisfy the following

identity in C ⊗C >/ H ⊗M :∑
c<0>(1) ⊗ c<0>(2) >/ S−1(c<−1>)λ) ⊗m = c⊗ ρC>/H (m)

=
∑

c ⊗m(−1) >/ m(0)<−1> ⊗m(0)<0>

This yields the equation;∑
c<0>(1) ⊗ c<0>(2) < p, S−1(c<−1>)λ > ⊗m =

∑
c⊗m(−1) ⊗m(0) ↼ p.

Now we have∑
c⊗m(−1) ↼ T(1) ⊗m(0) ↼ T(2)

=
∑

c<0>(1) ⊗ c<0>(2) ↼ T(1) < T(2), S
−1(c<−1>)λ > ⊗m

=
∑

c(1)<0> ⊗ c(2)<0> < T, c(2)<−1>S−1(c(1)<−1>c(2)<−2>)λ > ⊗m
=

∑
c(1)<0> ⊗ c(2) < T, S−1(c(1)<−1>)λ > ⊗m

=
∑

c(1)<0> < T, c(1)<−1> > ⊗c(2) ⊗m
=

∑
c(1) ↼ T ⊗ c(2) ⊗m

where we use the identity < T, S−1(h)λ >=< T, h > cf.[2]. It follows from the above
equation that we have

ξτM (c2m) =
∑

επ(c)ρC(m ↼ T )

=
∑

επ(c)m(−1) ↼ T(1)⊗m(0) ↼ T(2)

=
∑

επ(c(1) ↼ T )c(2) ⊗m

=
∑

ε(c(1))c(2) ⊗m

= c ⊗m

that is, ξτM = I . To show that τMξ = I is easy. �
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