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Introduction

Let H be a finite dimensional Hopf algebra and let C' be a left H-comodule coalgebra.
In [2], a Morita-Takeuchi context arising from a left H-comodule coalgebra has been
constructed. Utilizing that Morita- Takeuchi context we may characterize the Hopf-
Galois coactions on coalgebras, and use it to prove the duality theorem for crossed
coproducts. In this note, we show that the Morita-Takeuchi context constructed in
2] is generated by the left comodule ¢~qyC, where C' > H is the smash coproduct
coalgebra of C'by H. As a consquence, we obtain that the coaction of Hopf algebra H
on C'is Galois if and only if ¢,z C' is a cogenerator. This dualizes the corresponding
result in [1]. Another functorial description of Galois coactions is in Theorem 2.8,
which is the dualization of the weak structure theorem in [4].

In Section 3, we define the cotrace map for an H*-coextension C'/R. There are
various descriptions of the cotrace map being injective. For instance, the comodule
o>« C'is an injective comodule; the canonical map G in the Morita-Takeuchi context
is injective; the cohom functor hesqm—(C, —) is equivalent to the cotensor functor
COgsag— cf. Theorem 3.5.

1 Preliminaries

Throughout k is a fixed field. All coalgebras, algebras, vector spaces and unadorned
®, Hom, etc, are over k. C', D always denote coalgebras and H is a Hopf algebra. We
refer to [9] for detail on coalgebras and comodules. We adapt the usual sigma nota-
tion for the comultiplications of coalgebras, and adapt the following sigma notation
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for a (left) C-comodule structure map px of X:

px() =D (1) @ T (0).

For a left H-comodule M, we use the following sigma notation to denote the co-
module structure map pys of M:

pu(m) = Zm<_1> ® M<o>-

Let MY (or M) denote the category of right (or left) C-comodules. If a : C' —
D is a coalgebra map, then any left C-comodule X may be treated as a left D-
comodule in a natural way:

(a@l)p: X —-CX — D X.

A (C — D)-bicomodule is a left C-comodule and a right D-comodule X, denoted
by ¢Xp, such that the C-comodule structure map po : X — C ® X is right
D-colinear (or a D-comodule map).

For a right C-comodule M and a left C'-comodule N, the contensor product
MUOgN is the kernel of

pu®@1l—1®py: M@N—M @ C ® N.

The functors MOgs— and —Og N are left exact and preserve direct sums. If ¢ Xp
and pYg are bicomodules, then XOpY is a (C — E)-bicomodule with comodule
structures induced by those of X and Y.

We recall from [10] the definition of a cohom functor and some of its basic properties.
A comodule ¢ X is quasi-finite if Come_ (Y, X) is finite dimensional for any finite
dimensional comodule ¢Y. A comodule X is finitely cogenerated if it is isomorphic
to a subcomodule of C'®@ W for some finite dimensional space W. A finitely cogen-
erated comodule is quasi-finite. But the coverse is not true. A comodule X € ‘M
is said to be a cogenerator if for any comodule M € ©“M there is a space W such
that M — X ® W as comodules. The following lemma relates the existence of the
cohom functor to quasi-finiteness:

Basic Lemma[10]: Let «Xp be a bicomodule. Then ¢X is quasi-finite if and
only if the functor XOp— : PM — ©M has a left adjoint functor, denoted by
he— (X, —). That is, for comodules ¢Y and pW,

ComD_ (hc_ (X, Y), W) >~ COHIC_ (Y, XDDW) (#)

Where,

he-(X,Y) = lim Come_ (Y, X)* ~ lim(Y,; OcX)*
u u
is a left D-comodule, {Y},} is the directed family of finite dimensional subcomodules
of ¢Y such that Y = U, Y,. In particular, if C' = X, D = k, then hc_(C,—) is
nothing else but the forgetful functor U : “M — M, here M is the k-module
category; if C = D, X = C, he_(C, —) is the identity functor from “M to “M. Let
6 denote the canonical C-colinear map Y — XOphe_(X,Y) which corresponds
to the identity map he—(X,Y) — he_(X,Y) in (#). Similarly, there is a right
version of the basic lemma for a quasi-finite comodule Xp.
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Assume that X is a quasi-finite comodule. Consider a bicomodule ¢ X}. Then
ec—(X) = he-(X, X) is a coalgebra, called the co-endomorphism coalgebra of X.
The comultiplication of ec_(X) corresponds to (0@ 1)f : X — X @ ec—(X) ®
ec—(X) in (#), and the counit of ec_ (X)) corresponds to the identity map 1x. Also
X is a €' — ec—(X)-bicomodule with right comodule structure map 6, the canonical
map X — X ® he- (X, X).

A Morita-Takeuchi (M-T) context (C, D,c Pp,p Qc, f,g) consists of coalgebras
C, D, bicomodules ¢ Pp,p Q¢, and bicolinear maps f : ¢' — POpQandg: D —
(QO¢ P satistying the following commutative diagrams:

P~ POpD 0— > - QU.C

ST
fO1 gO1

CDOP*>PDDQDOP DDDQHchmeQ

The context is said to be strict if both f and g are injective (equivalently, iso-
morphic). In this case we say that C'is M-T equivalent to D, denoted by C' ~ D.

Let H be a Hopf algebra, C' a coalgebra. C'is said to be a right H-module coalgebra
if
i). C'is a right H-module,
ii). A(C i h) = ZC(l) i h(l) @ c) — h(g), ceC,he H,
iii). e(c — h) = e(c)e(h).
Dually, a coalgebra C' is called a left H-comodule coalgebra if
i). C'is a left H-comodule,
ii). Yea1s @ Alccos) =20 C(1)<-1>C(2)<—1> @ C(1)<0> @ C(2)<0>5
iii). > e(ccos)c1s> = () 1g.

If H is a finite dimensional Hopf algebra, a coalgebra C'is a right H-module coalgebra
if and only if C' is a left H*-comodule coalgebra. On the other hand, for any Hopf
algebra H and right H-module coalgebra C, the convolution algebra C* is a left
H-module algebra with H-module structure induced by transposition.

Let C' be a right H-module coalgebra, H a Hopf algebra. Denote by H* the
augmentation ideal kere which is a Hopf ideal. Then CH* = C +—~ H™" is a coideal
of C; and C/CH™ is a coalgebra with a trivial right H-module structure. Let R be
the quotient coalgebra C'/C H™. It is not hard to check that R* is the invariant sub-
algebra of the left H-module algebra C*. Dual to the terminology of ‘ H-extension’,
we call C'/R an H-coextension. View C as a left and right R-comodule. There is a
canonical linear map

BI C®H—>CDRC, C®hl—>ZC(1)DC(2) <~ h.

If 3 is bijective, then C'/R is said to be an H-Galois coextension cf.[7] (sometimes
it is called H-cogalois cf.[3] [8]).

Let C be a left H-comodule coalgebra. We may form a smash coproduct coal-
gebra C' > H which has counit e¢ > ey and comultiplication as follows:

Ale>ah) = (cay > c@)<—1>h1)) © (¢@)<0> > hz)).
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If H is finite dimensional, C* is a left H*-module algebra. We have the usual smash
product algebra C*# H*. It is easy to see that C*# H* is exactly the convolution
algebra (C' > H)*.

Now let H be a finite dimensional Hopf algebra, C' a left H-comodule coalgebra.
We recall from [2] the M-T context arising from a left H-comodule coalgebra C'. Let
R be the quotient coalgebra C/CH**. Then C may be viewed as a left or a right
R-comodule in a natural way. There is a canonical left C' > H-coaction on C' given
by

p'(e) = (cay > c@)e—1s) ® C2)<0> (1)

This coaction is compatible with the right R-coaction on C, and makes C' into a
(C >1 H — R)-bicomodule.
Let T be a left integral of H* and A be the distinguished group-like element cf.[6]
of H which satisfies:
Th*=<h* A>T, Yh* € H".

There is a right coaction of C' > H on C' as follows:

p'(c) = Z c(1y<o> @ (c@)<0> > 5_1(0(1)<—1>C(2)<—1>))\) (2)

With the above right C' >1 H-coaction and the natural left R-coaction C' becomes
an (R — C >1 H)-bicomodule. The Morita-Takeuchi context arising from C' is

(C > H7 R7 C><1HCR7 RCC><1H7 F7 G) (3)

where the bicolinear maps F', G are given by
F: C>H— CORC, ¢c><h+— ZC(l)DC(2)<O> <T, C(2)<_1>h >, and
G: R— COgsuC, T— 3 cy<o>0c@)<o> < T, c(y<—1>C@2)<—1> >.

In [2] we use the above M-T context to show the duality theorem for crossed
coproducts. Moreover, the bicolinear map F' in (3) can be used to describe the
Galois coextension, that is, C/R is H*-Galois if and only if F' is injective cf.[2,
Th.1.2].

2 The Hopf comodule category

Let H be a Hopf algebra. If C' is a left H-comodule coalgebra, we have the smash
coproduct coalgebra C' >1 H. Denote by “>*¥M the category of left C' > H-
comodules and morphisms.

Lemma 2.1. A comodule M is in “>*# M if and only if M is a left C-comodule and

a left H-comodule satisfying the compatibility condition: ¥Ym € M,

Zm<0>(—1)®m<—1> XM <o>(0) = Zm<—1><0> QM(~1)<—1>M(0)<—1> @M (0)<0> (4)

Proof. Straightforward. [

A left C'-comodule M is called a Hopf comodule if it is a left H-comodule and satisfies
the compatibility condition (4). Write (“)M for the category of Hopf comodules
and morphisms. Lemma 2.1 states that ©>#M ~ (GHM. A left C-comodule M is
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said to be a Hopf bimodule if M is a right H-module and satisfies the compatibility
condition:

p(m;h):Zm(_l) — hy @ my “— hpy, me M,h € H. (5)

The category of Hopf bimodules and morphisms is denoted by “My. If H is finite
dimensional, then we have that ()M ~ S“My.. In the sequel, H is a finite
dimensional Hopf algebra, C' is a left H-comodule coalgebra. We identify (“#)M,
C>HM with “Mpg~. Let H*' be the augmentation ideal ker(eg~ : H* — k).
Let R be the quotient coalgebra C'/CH*". To a Hopf comodule M € (“HM we
associate an R-comodule M = M/MH**. The functor (—) : (@M — EM
has a right adjoint functor COgr— : M — (©GH)M cf.[7]. On the other hand,
C is a (C > H, R)-bicomodule, and as a left C' >1 H-comodule is quasi-finite.
So the cohom functor hoseyr(C,—) @ (M = ©>HM — M exists and
it is a left adjoint functor of the functor COr—. By the uniqueness of adjointness,
hesar— (C, —) is equivalent to (—). Let  be the natural (isomorphic) transformation
from (—) to hasag— (C—). For a Hopf comodule M € (GH)M, we have the following

commutative diagram:

M 2l COrhesan—(C, M) (6)
\k\ /4@f
caM

where 6 is the canonical (adjoint) map mentioned in Section 1 and vy, is the adjoint
map:
M — CORM : m— Zm(_l) ® M(0)-

In the sequel, O means the cotensor product over R.
Lemma 2.2. Let M be a Hopf comodules. The following sequence is exact:

0— M~ B — MO (0, M) — 0.

Proof. Follows from the foregoing commutative diagram (6). ]

We need the following preparation to show Proposition 2.4. It is well-known that
a finite dimensional Hopf algebra is a Frobenius algebra. Let © be the Frobenius
isomorphism:

aHp — gHj.,

where the actions are canonical, i.e,
h;p: Z <p7h(1) > h(2)7 hépzzp(l) <p(2)7h >, h e Hap € H".

O~ makes H a right H*-free module with basis ¢t = ©7!(¢), which is a left integral
of H. Let T be S*(©(1)), where S* is the antipode of H*. Then T is a left integral
of H* cf.[5, 6]. Define a map

T:H—H h—h=T=> <T hay>hg =<T,h>\
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where A is the distinguished group-like element of H satifying
Tp=T <p,\>, Vpe H".
In fact, T is a map onto 1-dimensional subspace kA of H because < Tt >= 1 cf. [6].

Lemma 2.3. Let H be a finite dimensional Hopf algebra and let T, A be as above.
The following sequence is exact:

0— H—H" X kx—0.

Proof. 1t is enough to show that H <+ H*" is the kernel of T. The inclusion
H — H** C kerT is easily scen. We show the anti-inclusion. For h € H, there is
some p € H* such that h =t — p. If T(h) = 0, then 0 = T(t — p) =t — pT. Since
t is the basis of H, we have that pT' = 0. But T is a left integral of H*. It follows
that < p,1 >=0, i.e, p € H*T. So we have that kerT C H — H**. n

Proposition 2.4. Let C' be a left H-comodule coalgebra, R the quotient coalgebra
C/CH**. Then

1). ng: R — hesan—(C,C) = ecsqu—(C) is a coalgebra isomorphism.

2). C ~ hesau—(C,C > H) as (R,C > H)-bicomodules.

Proof. 1). 1t is clear that n¢ is a left R-colinear isomorphism. It remains to check
that nc is a coalgebra map. Note that the adjoint map ¢ : C — COegsq—(C)
makes C' into an ecsqy—(C)-comodule cf.[10]. That is, (1 ® A.)f0c = (6c ® 1)0¢,
where A, is the comultiplication of ecsqy—(C'). It follows from the diagram (6) that
0c = (1 ®@ ne)ve. The above two equalities arrive at the identity for ¢ € C":

Y cyBAme(Ew) = Y cayBne (@) Bne(c@m)-

This implies that ne is a coalgebra map.

2). Let M be C >1 H in the diagram (6).
Then nesqp : C > H — hesqn—(C,C > H) is an R-colinear isomorphism. We
have to show that ncsqp is right C' > H-colinear and C' >t H ~ C' as (R—C > H)-
bicomodules. Observe that the canonical adjoint map

is a C' >1 H-bicolinear map. It follows that the map noseg = (€ @ 1)0csapm is
an (R,C > H)-bicolinear map. To show that C' > H ~ C as (R,C > H)-
bicomodules, we define a map 1 as follows:

1/}0><]H—>C®k)\ C><]h'—>ZC<O>®<T,C<_1>h>)\.

It is clear that ) is a left R-colinear. Moreover, v is a right C' >1 H-colinear map.
In fact, for ¢ > h € C' > H, we have

pc(P(c > h))
= ZC<O>(1) ® [C<0>(2) > S_I(C<—1>) <T,ccash > )\]
> Cco>(1) @ [C<0>(2) > S_I(C<—1>)C<—2>h(2) <T,cc35hq) >]
2 C<o>(1) ® [C<0>(2) > hy <T,cc1>h >
> cy<o> < T cay<1>C¢2)<—15h1) > @c@y<o> > hyy)
S U(cay > c@y<—15h1)) ® cy<os > )
= (Y®@1)A(c>ah).
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Now 1 is surjective because:

¢(ZC<0> >1S e 15) < Tiecosh >N =c@ <T)t>A=c® )\ ceC.
Let (C' > H)™ be (C > H) +— H*", where the right H*-module structure of
C >4 H is given by
(c>h)—p= Zc<0> >cc1sho) <T,ccashpy >, peH',e><xheC>H.
We show that kery = (C' >1 H)*. The inclusion (C' > H)" C kery is clear. To

show the other inclusion, we need to show that C' > H is a free H*-module. Let
C ® H be the free H*-module with H*-structure stemming from H. Define a map

C: C><]H—>C®H, C><]h|—>ZC<O>®C<_1>h.
For p € H*, we have:

C((c>=h)—=p) = ZC(C<O> > hig) < p,c<15h >)
= ZC<0> ® cc1>h2) < p, ccaxhay >
= ZC<O> ® (C<—1>h(2)) —Pp
= > ((c>h) — p.
It is obvious that ( is an isomorphism. It follows from the fact that C' ® H is a free
H*-module that C' > H is H*-free. Now if x = " ¢; > h; € keri, then
Y(x) = ZCz‘<O>® <T,cico1zh > A
= Z Cico> ® Cic—1>h(a) < T, Cic—axhy >
=0
This means that x < T = 0 in C > H. Let {z;} be a basis of the free H*-module
C >1 H. Suppose that = > x; — p;. That 0 =2 — T = > x; — p,T implies that

piT = 0,Vi. It follows that p; € H*" for all i, and hence z € (C > H) — H**.
Therefore C' >~ H ~ C ® kA ~ C. [

Theorem 2.5. The Morita-Takeuchi context (C' > H,R,C,C,F,G) in (3) is
generated by the comodule ¢~ gy C.

Proof. A M-T context generated by a quasi-finite comodule was constructed by
Takeuchi in [10]. The M-T context generated by the quasi-finite comodule ¢~quC' is

(C > H7 €C><1H—(C>7 C><1HCec><1H_(C)7 hcxH—(Cac > H)7 f7 g)7

where, f is the canonical map Ocsqp : C > H — C'Ohesqp—(C,C > H), and g is
the composite map:

€C><1H—(C) B— thH—(Cag > HDCXHC) B— thH—(Cag > H>DC><1HC-

By Proposition 2.4, we have that R = ecsqn—(C) and hesqp—(C,C > H) ~
rCosan. It remains to be shown that the following two diagrams are commuta-

tive.

C > H L COhgsan—(C,C > H) (7)

X 10p

cac
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and
R ! hC><1H— (Ca C > H)DCXHC (8)

X 01

CDC><1HC

where p is the composite isomorphism

heser (C,C > H) "= T3 H > ¢,

and v is induced by the map 4 in the proof of Proposition 2.4. To show the diagram
(7), it is enough to verify that the following diagram commutes because we have the
commutative diagram (6).

VC>aH

C > H CoOC < H (9)

X 1‘]@

cac

In fact, for c >xh € C > H,
(109) f(e>ah) = > cyD(ce) >h)

= Z cyOcey<os> < T, c)<—15h >
= F(c>h)

Now we establish the diagram (8). Note that we have a relation between f and g
expressed by commutativity of the following diagram:

C = C > HOgwqyC

~ lfl]l

COR %> CORcsan—(C, C > H)Opsau C

Explicitly, for ¢ € C', we have the identity:

> cB9(@@) =Y fleay > c@)<—1>)0c@)<os-
This implies that the map ¢ is determined by f, i.e,
9(€) =Y (e ®1) flcqy > ¢2)<-15)Bc(2)<05, Ve € R.

Now we compute

(h®1)ge) = Y (u® )f(0(1) >4 ¢(2)<-1>)8¢(2)<0>]

= D> (e®101)(1®u®1)[f(cay > c@<—1>)0¢@2)<05]

Z(€® I1®1 [ (cay > c2y<—1>)0c(2) <05
= Z(e R1® )[0(1 Ocy<o> < T, ¢2)<—1>C@)<—1> > DC(3)<0>]

> cy<os0c@)<os < T ¢1)y<—1C2)<—1> >
= G(e)

where we omitted the subscript C' >1 H and R of the cotensor product, and we use
the commutativity of diagram (7) in the third equality. The proof is complete. m
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Now we can prove:
Corollary 2.6. Let C/R be an H*-coextension. Then C/R is H*-Galois if and
only if ¢y C' is a cogenerator.

Proof. 1t follows from [2, Th.1.2] that C'/R is H*-Galois if and only if the
canonical map F'is injective. Since The above M-T context is generated by comodule
o=uC, F' is injective if and only if ¢—,yC is a cogenerator cf.[10, 3.2]. [

Note that the kernel of the canonical map F' is a subcoalgebra of the smash
coproduct C' >1 H. If C' >1 H is a simple coalgebra, then F' is injective, and hence
o> C' is a cogenerator.

Corollary 2.7. If C/R is an H*-Galois coextension, then the functor COgr— is
equivalent to the cohom functor hp_(C, —).

Proof. Let S = COg—, T = COgsqyg—. Then the bicolinear maps F' and G may
be identified with the natural transformations F': I — ST and G: [ — TS
cf.[10, 2.4]. If C/R is H*-Galois then F' is an isomorphism, and then the pair
(F7' . ST — I,G : I — T8) yields an adjoint relation S 4 T, i.e, S is a left
adjoint functor of 7. On the other hand, hr_(C,—) is a left adjoint functor of T
because rC' is quasi-finite cf.[2, 1.3]. By the uniquess of adjointness the statement
holds. [

The above result is dual to [11, Th.3.2]. If we call COgr— the induction functor
and call hp_(C,) the coinduction functor, then induction functor and coinduction
functors coincides when the coextension is Galois. To end this section, we give a
dualization of the so-called weak structure theorem for Hopf modules in [4].
Theorem 2.8. Let C'/R be an H*-coextension. Then C/R is H*-Galois if and
only if the canonical map vy, : M — COM is an isomorphism for every C' > H-
comodule M.
Proof. Let M = C > H. Then the composite map

C > H"E o0 = H 2% coe

is exactly the canonical map F in the M-T context. If vowyy is an isomorphism,
then F' is injective and C'/R is H*-Galois by [2, Th.1.2].

Conversely, suppose that C/R is H*-Galois. We dualize the diagram in [4, 2.13].
Let 8’ be the Galois isomorphism:

C®H" — COC, c®p+— Zc(l) — pOc(a).
Given a C' >1 H-comodule M, 3 induces an isomorphism
Ov: M@ H — COM, m®p — Zm(_l) — p & mo).

Denote by ¢ the following composite isomorphism:

Mo H @ H > Mo H @ H ™% coMm @ H*
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where o(m ® p® q) = X m ® pa)yq @ p(2)- Now it is straightfroward to verify that
the following diagram is commutative:

10—
COM® H) —=CoOM —— COM ——0

191®e
d (I
—®1 ,_
M®H*®H*§M®H* M 0

where the uper sequence is exact since C' as an R-comodule is coflat (or equivalently
injective), and the bottom one is exact because: if - m;p =0 in M, then

( ®1l - 18 Zmz DPi(1) ® S* (pz(2 ®pz(3 Zmz ® pi-

As By and § are isomorphisms, vy, is an isomorphism too. [

3 The cotrace map

Throughtout this section H is a finite dimensional Hopf algebra, and C' is a left
H-comodule coalgebra. Let T' be the left integral of H* as in the previous section.
We define a map from R = C/C — H** to C by passage to the quotient:

T: R—>C, EHZC<O><T,C<_1> > .

Ifc=x+ pxe C,pe H* then f(é) = e(p)f(f) This means that T is well-
defined. It is clear that T is both left and right R-colinear. The map T is called the
cotrace map of C'. Let G be the canonical map R — C'Og-qgC in the M-T context
(3). Let D be the image T(R) of T. One may easily calculate that the following
diagram is commutative:

\/

Note that in general the comultiplication map A can not extend from D to C'. Since
A is injective @ is injective if and only if T is injective.
Proposition 3.1. Let C'/R be an H*-coextension. The following are equivalent:
1). The cotrace map T is injective.
2). The canonical map G is injective.
3). = C (or Cosqp) is an injective comodule.
4). The functor (—) is exact.
If one of the above conditions holds, then R as a (left or right) R-comodule is a
direct summand of C.

Proof. 1t is sufficient to show that 2) <= 3) and this follows from Theorem 2.5
and [10, 3.2]. If T is injective, then T splits because R as an R-comodule is injective.

]
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Corollary 3.2. Let C/R be an H*-coextension. If T is injective, then for any
R-comodule N the adjoint map

8N : CON — N,ZCZ‘DHZ‘ — ZG(CZ‘)HZ‘

is an isomorphism.
Proof. Let 0 be the canonical map cf.[10, 1.13]

hesam - (Ca CDN) — hosam— (Ca C)DN

We have the following commutative diagram:

hesan—(C, CON) —%> hesan - (C, C)ON

nCDNT Tnc‘]l
oN

CON N = RON

Since o=quC' is injective, J is an isomorphism cf. [10, 1.14]. It follows that Jy is an
isomorphism. n

Corollary 3.3. Let C/R be an H*-coextension. The following are equivalent:
1). C'/R is H*-Galois and the cotrace map is injective.
2). CO— defines an M-T equivalence between #M and > M.

If R is cocommutative, then the cotrace map is injective when C/R is H*-Galois
cf.[11]. In this case condition 1) in Cor.3.3 may be weakened. In [7], Schneider
showed that 2) of Cor.3.3 is equivalent to C'/R being Galois and the existence of a
‘total integral’, i.e, an augmental H*-linear map from C to H*. In fact, we have:
Proposition 3.4. Let C'//R be an H*-coextension. The following are equivalent:
1). T is injective.
2). There exists an H*-linear map ¢ : C' — H* such that eg-¢ = ec.

Proof. Suppose that T is injective. Let 7 be the section of T such that 77 = 1.
Define a map ¢ as follows:

¢ C— H*, c— > em(c—Tw)S* Ty,
where T is the left integral of H* as before. ¢ is augmental because
ep(c) = en(c —T) = enT(c) = €(c),Ve € C.
Observe that we have the identity:
> 0T © 5 (Twy) = Y T2y ® S (Tiw))p, Vp € H” (11)
This yields

dlc—p) = D em(c— ple)S (Tw)
= Z €7T(CT(2))S*_1(T(1))p
= ¢(c)p
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and hence ¢ is H*-linear.
Conversely, if there is augmental H*-linear map ¢ : C' — H*, we define a map
7 as follows:

7m: C — R, CHZ@<¢(C(2)),L‘>,

where t is the left integral of H in the previous section. Note that < T, ¢t >=1. We
have

WT(E) = ZZW(C<Q> <T,ce1s >)
Y o) < dlccos@),t >< T ca1s >
= Zm < P(cy<os) t >< T, cayc1>C@2)<—1> >
= Y cay = Ty < plee) = Tz) t >
= Y < ole)T.t >
S ol <T.t>

=
We have shown that 7T is injective. [

To end this section we give a functorial characterization of the cotrace map which
is dual to [11, Th.2.1].

Theorem 3.5. Let C'//R be an H*-coextension. The cotrace map is injective if and
only if the functor (—) (cohom functor) is equivalent to the the functor COgsqp —
(cotensor functor) via the natural transformation

™ - M — CDC><1HM7 m— Zm(_l) — T(l)Dm(O) — T(g) = p(m — T)

Proof. Suppose that 7, is an isomorphism for any left C' >1 H- comodule M.
Let M = C'. Then 7¢ is exactly the canonical map G, and hence the cotrace map is
injective by Proposition 3.1.

Conversely, suppose that 7T is injective. For a left C' >1 H-comodule M, we first
verify that 7y is well-defined. To show po(m — T') € COesqy M, it is equivalent to
show that po(m — T) € COcM and

Yo = (meyy = Ty) @my = Tigy = Y m-yy = Ty @ m) = Tia)p

for any p € H*, where
p=c=c—= 85 p") =S c= S pa)) < Py A > (%)
and A is the group-like element of H mentioned in Section 1. That po(m — T)
is in COcM is clear. The equation (x) holds if the following equation holds.

Z TS ) @ T2y = Z Ty ® Tigp, pe H”
This is true because
Y TSI eTe = > Ty <P(2 A> 5" pay) @ T

= Z Type)S p(l)) ® p(3)
= > Ta) @ Tp.
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It is clear that 7, is R-colinear. To show that 1), is an isomorphism, we define a
map as follows:

€y o COcsugM — M, Exi(c ><am) = er(c)m,

where the map 7 : C — R is the section of the cotrace map T. For simplicity, we
write ¢cOm for an element > ¢;0m; € COpsqp M. cOm has to satisfy the following
identity in C @ C' > H ® M:

Z C<0>(1) ® C<o>(2) >4 SHecmix)N) @m = ¢ ® posarr (M)
= Z ¢ @ m—1) >AM@)<-1> & M(0)<0>

This yields the equation;

D Ccos() ® Caon2) <P, STHeam1s)A > @m =D e ® m_1) ® m) — p.
Now we have

2 c®@my = Ty @ m) = Tz
= Y ccos(1) @ Caos(2) — Ty < T(2), S (cem1s)A > @m
> Ccy<o> R <o < T, C(2)< 1557 (C()<—15C@)<—25 )X > @M
ZC(l)<0> @ c2) < T,5 (0(1 Y<— 1>))\ > Qm
> cy<o> < T, cay<—1> > Qc) @m
= Yy =T Rco®@m

where we use the identity < T, S~'(h)\ >=< T, h > cf.[2]. It follows from the above
equation that we have

Ema(cOm) = Y em(c)pe(m —T)
= Y en(e)m1y = Tay @ mgy — Ty
= Y em(cq) = Thegy @m

= Y (e @m
= cQ®m

that is, &7y = I. To show that 7y, = I is easy. ]
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