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Abstract

The aim of this paper is to give a presentation of several subjects of Schur
analysis with some historical information. The class of J-inner functions plays
a key role in this new mathematical field which is situated at the seam of
various mathematical disciplines (operator theory, scattering theory, complex
function theory, prediction theory for stochastic processes, spectral theory for
differential operators). This article shows the importance of J-inner functions
in Schur analysis. We shall concentrate on the Soviet roots of the theory and
discuss Potapov’s factorization theory and Arov’s investigations on Darlington
synthesis. Furthermore we present some of Arov’s results on interrelations
between a certain subclass of J-inner functions and generalized bitangential
Schur-Nevanlinna-Pick interpolation.

0 Introduction

In the last 25 years one could observe an intensive research interest in matricial
and operator-theoretical versions of classical moment problems and related ques-
tions in interpolation theory. This was mainly initiated by the fundamental papers
of V.M. Adamjan, D.Z. Arov and M.G. Krĕın [AAK68a]–[AAK71b]. In the first
30 years of our century, the original scalar versions of these problems attracted
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the attention of several of the most important mathematicians of that time. Sev-
eral fundamental papers appeared in that period and they have exerted a strong
influence on further developments which have led to the present state-of-the-art
(see Carathéodory [Car07]–[Car29], Carathéodory/Fejér [CF11], Hausdorff [Hau21],
Hellinger [Hel22], Herglotz [Her83], Pick [Pic16]–[Pic20], R. Nevanlinna [Nev19]–
[Nev29], F. Riesz [Rie11]–[Rie18], M. Riesz [Rie22], Schur [Sch12], [Sch17], Szegő
[Sze20], Toeplitz [Toe11], Weyl [Wey35]).

We mention in particular an ingenious algorithm which was developed by Schur
[Sch17] and generalized by R. Nevanlinna [Nev29]. This algorithm can be considered
as the starting point of a series of developments which led to the growth of a new
mathematical field which is situated at the seam of various mathematical disciplines
(operator theory, scattering theory, complex function theory, prediction theory for
stochastic processes, spectral theory for differential operators). This field is now
designated as Schur analysis. In the last decade the lively research in Schur analy-
sis has materialized in the publication of numerous monographs which customize
modern developments for a wide audience (see Bakonyi/Constantinescu [BC92],
Ball/Gohberg/Rodman [BGR90], Constantinescu [Con96], Dubovoj/Fritzsche/Kir-
stein [DFK92], Dym [Dym89], Foiaş/Frazho [FF90], Gohberg/Goldberg/Kaashoek
[GGK90], Helton [Hel87], Rosenblum/Rovnyak [RR85]).

It is remarkable that in these monographs, essentially the same problems are
studied but the developed methods for the solution are absolutely different from
each other. This illustrates that the considered problems are highly multifaceted.
In this paper we want to point out the available resources which can lead to a better
understanding of these problems and which provide the tools for their solution. It
is impossible to give in the context of this paper all the details of these diverse
disciplines. The reader will almost certainly not understand all the alusions made,
but there is a great chance that most readers will find some piece of the cake that
he or she really likes (and knows about). As the authors we take the humble task
of describing only the simplest possible cases and we give the links and references
to the literature concerning the more advanced topics which were treated in the
different approaches, each with its own terminology and tools.

In most cases, the underlying problem can be reduced to an interpolation prob-
lem. Therefore we take these interpolation problems as a starting point and use
them as a tread in the further exposition. As Schur analysis developed, it be-
came clear that the scalar interpolation problems had to be generalized to matrix
versions. The synthesis of the various approaches for matricial interpolation prob-
lems created an apparatus for the treatment of complicated classes of interpola-
tion problems whose complexity and generality goes far beyond the original scalar
problems. During a Schur analysis conference in Leipzig in October 1989, V.E.
Katsnelson emphasized this orientation as an important research field for the next
decade and so far, his prediction has largely become true. For more elaborate cross
connections and the synthesis of several approaches to interpolation problems, the
reader is referred to Alpay/Bolotnikov [AB93], [AB94], Alpay/Bolotnikov/Peretz
[ABP95], Dubovoj/Fritzsche/Kirstein [DFK92], Fritzsche/Fuchs/Kirstein [FFK92],
Fritzsche/Kirstein [FK87b], [FK87a], Katsnelson/Kheifets/Yuditskii [KKY87].

Let us first introduce some classical interpolation problems in the complex plane
which are at the basis of this Schur analysis.
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1 Classical interpolation problems

Several of the classical interpolation problems and moment problems can be for-
mulated as follows. Let ∆ and Ω be domains in C. We denote by F(∆, Ω) the
class of complex functions which are analytic in ∆ and which take values in Ω∪ ∂Ω.
Usually these domains are the open unit disk D = {z : |z| < 1} or a half plane
like C+ = {z : Im (z) > 0}. Since there is a conformal mapping from D to C+,
these problems are essentially the same and one could restrict the discussion to the
case ∆ = Ω = D. For that choice, we have to consider the class F(D,D) which is
called the Schur class and denoted as B(D). It is a unit ball in H∞ (for the unit
disk). Also the class P(C+) = F(C+,C+) is a special case one often refers to. It is
called the Nevanlinna class in [Ac69], but we shall call it the Nevanlinna-Pick class
in order not to confuse with the Nevanlinna class N from harmonic analysis. By the
Carathéodory class C(D) one usually means the functions analytic in D and taking
values in the right half plane instead of the upper half plane. Of course these classes
are basically the same since one can apply a Cayley transform mapping the disk
into a half plane or visa versa. Let I(Γ) denote the set of complex functions which
satisfy a certain set of interpolation conditions described by the data Γ. For exam-
ple, we can consider a set of couples Γ = {(zk, wk) ∈ C2 : k ∈ K} where the zk are
supposed to be different and define I(Γ) as the set of complex functions w satisfying
w(zk) = wk for all k ∈ K. Also, if some of the interpolation points coincide, we can
give conditions for the derivatives. Thus, given a set of triples Γ = {(zk, wk, αk)}k∈K
where αk are non-negative integers and wk = (w0k, w1k, . . . , wαk,k) ∈ Cαk+1, then
the set I(Γ) can be described as the set of complex functions w satisfying (the
superscript in w(α) means the derivative of order α)

w(α)(zk) = wα,k, α = 0, 1, . . . , αk; k ∈ K.

A general complex interpolation problem can now be described as follows.
General scalar interpolation problem: Given is a set of interpolation data Γ defin-

ing the set I(Γ) of interpolating functions. Find necessary and sufficient conditions
so that I(Γ) ∩ F(∆, Ω) 6= ∅. If this solution set is not empty, find conditions for
which the problem is determinate, i.e., for which the solution is unique and if the
problem is indeterminate, describe all the solutions, or find one which is optimal in
some sense (for example which has minimal norm). In the case when there are only
a finite number of interpolation conditions, there usually exists a solution which is
a rational function. Then it makes sense to find for example a solution of minimal
degree.

In a classical scalar Nevanlinna-Pick problem, one considers an interpolation
problem in the Schur class B(D) where the different points {zk}k∈K are all in D.
Pick gave necessary and sufficient condition for solvability when the set K is finite
and R. Nevanlinna generalized this to a countable set K. Schur considered the
same problem, but with all the interpolation points zk coinciding at the origin. This
means that he looked for a function in B(D) which has a power series expansion at
the origin, starting with a given polynomial. By a conformal mapping, the Schur
problem can be transformed into a Carathéodory coefficient problem. Here, one
solves an interpolation problem in C(D) with all zk = 0. Carathéodory and Fejér
considered an extra question where it was required to find among all solutions the
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one with minimal norm. The Schur problem is also known to be closely related to the
trigonometric moment problem. Here one has to find a positive measure on the unit
circle which has prescribed moments mk =

∫
t−kdµ(t), k ∈ Z. The relation between

the two problems is that if w is a solution of the Carathéodory coefficient problem
and µ is a solution of the corresponding trigonometric moment problem then w
is the Riesz-Herglotz transform of the measure µ: w(z) =

∫
(t + z)/(t − z)dµ(t).

When some of the points zk coincide, but not all at the same point, then we have
a multipoint generalization of the trigonometric moment problem. It is not difficult
to imagine that the solutions of such a multipoint moment problem are related
to the solutions of multipoint Carathéodory problems, again by a Riesz-Herglotz
transform . See [BGVHN97]. The relationship between these interpolation problems
and moment problems should not come as a complete surprise if one realizes that
functions from the classes F(∆, Ω) usually have integral representations involving
a positive measure and finding the interpolating function is basically the same as
finding its representing measure.

A somewhat different situation occurs when the points zk are chosen on the
boundary ∂∆. These problems are often referred to as Loewner problems or bound-
ary Nevanlinna-Pick problems. The best known situation occurs when the problem
is solved in P(C+) and all zk are at ∞. We then have to find w ∈ P(C+) with a
given asymptotic expansion at ∞. This is known to be equivalent with the Ham-
burger moment problem: Find a positive measure on the real line such that it has
prescribed moments mk =

∫
tkdµ(t), k = 0, 1, . . . (or a truncated version thereof).

As in the trigonometric case, this equivalence is also a direct consequence of the
integral representation of functions in P(C+). Again, when not all the interpolation
points coincide at ∞, but when there are several points of confluence, one obtains
multipoint moment problems [Nud94]. However, when a finite number of interpo-
lation conditions are prescribed at a point on the boundary, then it is natural to
give an even number of conditions. To explain this, we have to introduce first the
notion of pseudocontinuation. We define it for the circular case, but similar notions
do exist for the real line.

Let g be a function which belongs to the meromorphic Nevanlinna class of the
unit disk NM(D) — that is the class of functions meromorphic in D that can be
written as the ratio of two bounded holomorphic functions.

Then one says that g admits a pseudocontinuation (outside unit disc) if there
exists a function g# which is defined outside unit disk such that the radial boundary
values of g and g# coincide almost everywhere on the unit circle (with respect to the
Lebesgue measure). It is obvious that a function of the meromorphic Nevanlinna
class admits at most one pseudocontinuation. Note that if a pseudocontinuable
function is also analytically continuable through some open arc of the unit disc,
then this analytic continuation coincides with the pseudocontinuation. The concept
of pseudocontinuity goes back to H.S. Shapiro [Sha66] and appears implicitly in
Tumarkins paper [Tum61] on weighted rational approximation.

Thus if a function w ∈ P(C+) has a pseudocontinuation, then it can be extended
to lower half plane C− by the relation w(z) = w(z), for z ∈ C−. Therefore, if an
interpolation condition w(zk) = wk is satisfied for zk ∈ C+, then the pseudocon-
tinued function immediately satisfies w(zk) = w(z) in the lower half plane as well.
Thus if zk is moved to the boundary, there will be two interpolation conditions in
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the boundary point: one coming from C− and one coming form C+.
Among other things, current research in Schur analysis is concerned with the

solution of the matrix generalizations of all the scalar interpolation problems that
we have briefly sketched above. For example, consider Bp×q(D) as the generalization
of the Schur class of p × q matrix valued functions analytic in D and which are
contractive, i.e., for which S(z)∗S(z) ≤ Iq in D where for Hermitian matrices A
and B, the inequality A ≤ B means that B − A is Hermitian positive semidefinite.
The interpolation data are Γ = {(zk, xk, yk)}k∈K where the zk are different complex
numbers, xk ∈ Cp and yk ∈ Cq. I(Γ) is then the set of Cp×q-valued functions w
which satisfy the directional or tangential Nevanlinna-Pick interpolation conditions
x∗kw(zk) = y∗k for all k ∈ K. Of course, this is a one-sided formulation. We could
have imposed the interpolation conditions in the form w(zk)yk = xk. More difficult
are bidirectional or bitangential formulations where left as well as right conditions
are imposed simultaneously. We refer to Section 8 for more details.

For the solution of such problems, the J -contractive, J -unitary and J -inner func-
tions play a central role. To introduce these notions in their simplest possible form,
we give some elements about Blaschke products and the Nevanlinna-Pick algorithm
in the next section.

2 Blaschke products and the Nevanlinna-Pick algorithm

Let us start by defining a Blaschke factor. Assume a ∈ D then we define a Blaschke
factor ζa as a complex-valued function

ζa(z) := η(a)
a− z

1− az
, (1)

where η(a) = a/|a| ∈ T if a 6= 0, and if a = 0, then we set η(0) = −1 so that
ζ0(z) = z. This function is a conformal map of the Riemann sphere Ĉ = C ∪ {∞}
onto itself such that the unit circle, its exterior and its interior are stable under this
transformation.

Let A = {ak}k∈K be a sequence of points in the unit disk where K is a finite or
infinite set of integers. If the condition∑

a∈A
(1− |a|) <∞ (2)

is satisfied, then the product
b(z) =

∏
a∈A

ζa(z) (3)

converges to a non-zero analytic function [Wal60]. Hereby the condition (2) is called
Blaschke condition and the product (3) is also called the Blaschke product which is
based on the sequence A. Any Blaschke product is an inner function because it has
unitary boundary values almost everywhere on the unit circle (with respect to the
linear Lebesgue-Borel measure). Let f be a holomorphic contractive complex-valued
function which does not vanish identically in the unit disc. Then the set of the roots
A = {ak}k∈K of this function satisfies the Blaschke condition and we can construct
a Blaschke product b with this set of points. The well-known factorization theorem
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of F. Riesz and V.I. Smirnov says that every analytic and contractive function f
admits a factorization

f = b · s (4)

where b is its Blaschke product (which is built on the roots of the function f) and
s is a contractive holomorphic function with no roots in the unit disc. The function
s is singular, i.e., both functions s and s−1 are holomorphic. The representation (4)
is called a multiplicative representation. Note that this representation is unique.

The Nevanlinna-Pick algorithm is based on the simple fact that if w is a complex
function, a ∈ D and ρ = w(a), then w ∈ B(D) if and only if either |ρ| < 1 and

u(z) =
1

ζa(z)

ρ− w(z)

1− ρw(z)
∈ B(D),

or |ρ| = 1, in which case w is a constant. Inverting this formula we get that w is a
Schur function that takes the value ρ ∈ D in the point a ∈ D if and only of it is of
the form

w(z) =
u(z)ζa(z)− ρ

u(z)ζa(z)ρ− 1
,

for arbitrary u ∈ B(D). If we assume that the w and u are written as the ratio of
two analytic functions in D: w = ∆10/∆20, and u = ∆11/∆21, then we can express
the previous relation as

[∆10 ∆20]
T = θ(z)[∆11 ∆21]

T

(the T means transpose) with

θ(z) = UρJZa(z)

where

Za(z) =

[
ζa(z) 0

0 1

]
, J =

[
1 0
0 −1

]
, and Uρ = γ

[
1 ρ
ρ 1

]
,

with γ = (1− |ρ|2)−1/2 a normalizing constant.
If we also assume that the function values wk at the different interpolation points

zk are given as ratios of complex numbers: wk = w
(0)
1k /w

(0)
2k , for k = 0, 1, . . ., then we

can iterate this procedure and define

[∆1,k−1 ∆2,k−1]
T = θk(z)[∆1k ∆2k]

T

with
θk(z) = UρkJZzk(z)

and ρk = w
(n−k)
1,k /w

(n−k)
2,k with

[w
(k)
1i w

(k)
2i ]T = θk(zi)

−1[w
(k−1)
1i w

(k−1)
2i ]T , i = 0, 1, . . . , n− k.

If ∆1n/∆2n is an arbitrary function from B(D), then ∆10/∆20 will be a function
from B(D) as well and it will take the values wk at the points zk for k = 0, 1, . . . , n.
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Thus, assuming that all ρk ∈ D, we have constructed the solutions for a Nevanlinna-
Pick problem where only a finite number of interpolation conditions are given at
different points inside the unit disk. The algorithm can be adapted to the case
where some (or all) of the interpolation points zk coincide. For example, when
they are all equal to zero, then the Nevanlinna-Pick algorithm reduces to the Schur
algorithm. In the case of the Schur algorithm, the numbers ρk are called Schur
parameters or reflection coefficients. In the Schur as well as in the Nevanlinna-Pick
case, there is a solution of the problem with N ≤ ∞ interpolation conditions when
all ρk are in D. If we have a situation where |ρk| < 1, k = 1, . . . , n − 1, |ρn| = 1
and ρn+1 = · · · = ρN = 0, then the problem is determinate and has a unique
solution which is a rational function of degree n. It is the interpolant obtained by
the previous procedure when setting ∆1n/∆2n = 0. In general all the solutions which
are interpolating the data {zk, wk}nk=1 are given by

[∆10 ∆20]
T = θ1(z)θ2(z) · · · θn(z)[∆1n ∆2n]

T .

where ∆1n/∆2n ∈ B(D). A rational solution of minimal degree is obtained by setting
[∆1n ∆2n] = [0 1]. Thus that solution is contained in the second column of the
matrix Wn(z) = θ1(z) · · · θn(z).

Matrices like Wn(z) play a prominent role in Schur analysis and they are the
main concern of this survey paper. If we set

Wn =

[
W11 W12

W21 W22

]

then we can give all the solutions, satisfying n interpolation conditions in the form
of a linear fractional transform:

W11g + W12

W21g + W22
, g =

∆1n

∆2n
∈ B(D).

What is so special about these matrix functions W (z)? To lift the answer to this
question to a higher level of generality, we first have a look at the generalization
of the matrix J . The matrix J is a special case of a signature matrix. A square
m×m complex matrix J is called a signature matrix if J2 = Im and J = J∗ (J∗ is
the adjoint of J). For any signature matrix J , we say that a square matrix M is J-
unitary if M∗JM = J and it is called J-contractive if M∗JM < J and J-expansive
if M∗JM > J . If M is a function of a complex variable z, and M is analytic and
J -contractive in D while it is J -unitary on ∂D, then we have an indefinite analog of
the Schur class, the difference being that the (possibly indefinite) signature matrix J
replaces the identity I in the definition of the Schur class. Such a matrix will be said
to belong to the Potapov class. Before we give the general definition of this class,
let us briefly return to our 2× 2 example of the matrix W in the Nevanlinna-Pick
algorithm. Obviously, the matrix J is a simple indefinite signature matrix. The Uρ

part of θ(z) is a constant matrix which is J -unitary. For the matrix Za(z) we have

Za(z)∗JZa(z) =

[
|ζa(z)|2 0

0 −1

]

and because we assumed that a ∈ D, we have by the mapping property of the
Moebius transform ζa(z) that the matrix Za(z) is J -unitary on the unit circle and
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J -contractive in D while it is J -expansive outside the closed unit disk. Note that,
also in the general situation, the above properties are stable under multiplication.
This implies that not only a matrix of the form θk(z), but also the product W =
θ1(z) · · · θn(z) will be in the Potapov class.

We now give a general definition of the Potapov class, which (for reasons that
should have become clear from the scalar example of Nevanlinna-Pick interpolation)
we restrict to the meromorphic functions. Let Jp ∈ Cp×p and Jq ∈ Cq×q be general
signature matrices. The Potapov class PJp ,Jq is defined as the set of all meromorphic
p× q matrix-valued functions W which satisfy the condition

Jq −W ∗(z)JpW (z) ≥ 0 (5)

for all z where W is analytic. A matrix which fulfils (5) is also called (Jp, Jq)-
contractive. Observe, that every element of a matrix-valued function W ∈ PJp ,Jq

belongs to the meromorphic Nevanlinna class NM, i.e., every element of W can be
represented as a quotient of two bounded holomorphic functions. The p× q matrix
valued Schur class is denoted by Bp×q(D) and coincides with the Potapov class when
Jp and Jq are unit matrices. For square matrices when Jp = Jq = J , we denote the
Potapov class as PJ .

Due to a classical result of Fatou, the function W ∈ PJ has almost everywhere
radial boundary values on the unit circle (with respect to the linear Lebesgue-Borel
measure on the unit circle). If W denotes such a radial boundary value of W , then
it follows for Lebesgue-almost all z on the unit circle that

J −W ∗(z)JW (z) ≥ 0 . (6)

Let us now return to interpolation problems. It will not require a big leap of
faith from the reader to accept that in various matricial versions of the interpolation
problems discussed above, such matrix valued functions from the Potapov class will
play an important role. For example, one can write the solutions of a matricial
Nevanlinna-Pick problem in the form

f = (W11g + W12)(W21g + W22)
−1 , g ∈ Bp×q(D) (7)

where the matrix functions Wij can be arranged in an array

W =

[
W11 W12

W21 W22

]
(8)

where W11 has size p× p and W22 has size q× q. This matrix will be in the Potapov
class of square matrix valued functions of size p+ q and the corresponding signature
matrix has the form

J = jpq =

[
Ip 0
0 −Iq

]
. (9)

The matrix W can be constructed from the interpolation data in a way which is a
natural generalization of the scalar Nevanlinna-Pick algorithm.

Every meromorphic matrix-valued function (8) which describes the solution set
of the considered problem via (7) is called an associated resolvent matrix. This con-
cept of the resolvent matrix was created by M.G. Krĕın [Kre44]–[Kre49]. In the 40s
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he developed with M.S. Livšic and M.A. Năımark a certain approach to the solution
of interpolation problems which can be described as follows. The basic idea consists
in a transformation of the original problem in an equivalent problem of extension
of a certain isometric or symmetric operator to a unitary (respectively, selfadjoint)
operator in a suitable Hilbert space. The interpolation problem and the exten-
sion problem are equivalent because there is a bijective correspondence between the
solution set of the interpolation problem and the set of all unitary (respectively, self-
adjoint) extensions of the original operator. This bijective correspondence is realized
by the so-called Krĕın formula for the family of all generalized resolvents of the orig-
inal operator. Under a certain condition of regularity, this formula can be rewritten
as a linear fractional transformation and this transformation is characterized by the
resolvent matrix.

The treatment of various matricial versions of classical interpolation problems
showed that the associated resolvent matrices are functions of the Potapov class
which are J-unitary, i.e., which fulfil the condition (6) with equality (Lebesgue-
almost everywhere) on the unit circle. This subclass of the Potapov class is very
important and is called the class of J-inner functions. Within the class of J -inner
functions we can distinguish between regular and singular ones. If a J -inner func-
tion and its inverse function are holomorphic then it is called singular. Recent
investigations of D.Z. Arov [Aro88]–[Aro90] on Schur-Nevanlinna-Pick interpolation
led him to the following subclasses of J -inner functions. A J -inner function W is
called A-singular (or Arov-singular) if both functions W and W−1 belong to the
Smirnov class (which is a certain subalgebra of the holomorphic Nevanlinna class
whose elements fulfil some conditions in growth1). Note that an A-singular J -inner
function is singular. The concept of A-singularity was created by Katsnelson to
distinguish this class from singular functions. A J -inner function W is called left
(respectively, right) Arov-regular if W has the following property: If W = WrWs

(respectively, W = WsWr) is an arbitrary representation of W with some J -inner
function Wr and some Arov-singular J -inner function Ws then Ws is necessarily
constant. The set of Arov-regular J -inner functions plays a key role in the theory
of Schur-Nevanlinna-Pick interpolation. This will be explained to some extend in
Section 8.

Potapov has studied the J -contractive functions in great detail. One of his main
concerns was to factor a rational J -contractive matrix as a product of “elementary”
J -contractive factors. This problem is inspired by the problem of Darlington syn-
thesis, a problem from electrical engineering where this factorization will help to
realize an electrical network, called an m-port as a cascade of elementary m-ports.
To motivate the reader, we give some elements about Darlington synthesis in the
next section.

1If λ is the Lebesgue measure of the unit circle, then the Smirnov class N+(D) is the class
of functions g ∈ N (D) for which

∫
log+ |g(z)|λ(dz) = limr↑1

∫
log+ |g(rz)|λ(dz) where log+ x =

max{logx, 0}, x ≥ 0, g is the boundary function.
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3 Darlington synthesis and scattering theory

The electrical background of the problem of Darlington realization of a general m-
port can be found in the book by Belevitch [Bel70].

An electrical network is a finite number of interconnected elements like resis-
tances, capacitances, inductances, current or voltage generators etc. Such a network
can have terminals, i.e., “loose ends” to which some other network can be connected
or where some measurements can be taken. A couple of such terminals is called a
port and a network is called an m-port if it has 2m terminals which are paired in m
ports. A port is characterized by 2 variables, called port variables, which could be
e.g., the voltage and the current over that port. Such port variables are functions
which are interconnected by differential equations, which describe the properties of
the electrical elements. Taking the Laplace transform we get an algebraic relation
between functions of the complex variable z in the transform (frequency) domain.
If, in this z-domain, the voltage and current for port i are represented by Vi and
Ii, then P =

∑n
i=1 I∗i Vi is called the power dissipated in the n-port. Setting for an

Figure 1: A 2-port

�
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I1 I2 V2
V1

m-port
V = [V1 V2 · · · Vm]T and I = [I1 I2 · · · Im]T ,

then P = I∗V . If the network has no internal generators, then there is a linear
relation between V and I given by

V = RI

where the m×m matrix R is called the impedance matrix.
A passive m-port has an active power that is non-negative in the right half plane,

i.e., Re P (z) ≥ 0 for Re z > 0. If we have in addition Re P (z) = 0 for Re z = 0,
then the m-port is called lossless. Since for a passive network I∗(Re R)I ≥ 0 in the
right half plane, it follows that R(z) is a square m×m matrix valued function which
satisfies

Re R(z) ≥ 0 for Re z > 0.

Such a matrix is called passive. For a lossless network we have moreover that

Re R(z) = 0 for Re z = 0.

Such a matrix is called lossless. Obviously, a passive matrix valued function is for the
right half plane what a square matrix valued Im-contractive function is for the unit
disk. It is not difficult in fact to transform one into the other. Similarly, a lossless
function is like a square Im-inner function. Up to a rotation from the right half plane
to the upper half plane, the passive matrix functions correspond to a square matrix
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version of the Nevanlinna-Pick class, which we have defined in Section 1. In fact,
when we had started with a digital (i.e. a discrete) network then we should have
applied the z-transform instead of the Laplace transform and we would immediately
have obtained the formulation of the prolem in the unit disk. This problem in the
unit disk corresponds to a scattering problem, which is equivalent to a problem
of transmission lines in electrical engineering. Since we started with a continuous
problem, we will now line out how it can be transformed to the unit disk in the form
of a scattering problem.

If a 1-port contains internal current or voltage generators, we have an inhomo-
geneous relation between voltage V and current I : V = RI + E where V and I
represent some combinations of internal variables of the network. Physically, this
formula means that it can be realized by placing a voltage generator in series with
an impedance R. This is in fact Thevenin’s theorem. When I = 0, then V = E.
Thus E is the open-circuit voltage of the 1-port. If all the internal generators are
neutralized, i.e., voltage generators replaced by short-circuits and current genera-
tors by open circuits, then there is no equivalent external E and V = RI . The
impedance R = V/I is called the internal impedance of the 1-port. Now consider

Figure 2: Generator with load
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a voltage generator with internal impedance Ω and which is loaded by an external
load ΩL, then there will be a current

I =
V

Ω + ΩL

in that port. If one takes ΩL = Ω, then the total power dissipated in the load is
maximal [Bel70, p. 159]. In that case the current is

I0 =
V

2Re Ω
,

so that the relative difference for the currents with an open-circuit (load 0) and a
load ΩL is

s =
I0 − I

I
=

ΩL − Ω

ΩL − Ω
.

This s is called the reflectance of ΩL relative to Ω. Choosing the normalized variables
i = I

√
Ω, v = V/

√
Ω and ω = ΩL/Ω, we get

s =
ω − 1

ω + 1
or equivalently ω =

1 + s

1− s
.

Note that ω = v/i because Ω = V/I . It follows that

Re ω =
1− |s|2
|1− s|2 ,
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which shows that Ω, hence also ω, being passive is equivalent with |s(z)| ≤ 1 for
Re z > 0, and if ω is lossless, then |s(z)| = 1 for Re z = 0. Replacing the current i
and the voltage v by two other variables:

x =
v + i

2
and y =

v − i

2
,

we find from s = (v − i)/(v + i) that y = sx. The x is called the incoming wave
variable and y the outgoing wave variable. All this has been explained for a 1-port,
but the same kind of transformations can be done for each port of an m-port. If
the wave variables for port i are (xi, yi) and if we define X = [x1 x2 . . . xm]T =
(V + I)/2, and Y = [y1 y2 . . . ym]T = (V − I)/2, then we obtain a relation
Y = SX which can replace V = RI . The matrix is called the scattering matrix of
the m-port. It is related to the (internal) impedance matrix of the m-port by

S = (R + Im)−1(R − Im).

Thus

P = I∗V = (X − Y )∗(X + Y ) = X∗(Im − S∗S)X.

So, we have that for a passive m-port, S(z)∗S(z) ≤ Im in Re z > 0 and if the
m-port is lossless, then S(z)∗S(z) = Im for Re z = 0. One refers to these properties
as passiveness respectively losslessnes of the scattering matrix S.

This can be interpreted as a scattering problem. A scattering medium has an
input wave U0 and a reflected wave V0 at the surface of the medium. The transfer
function S0 = V0/U0 is called the scattering function of the medium.

One may now decompose the scattering medium in two layers. On the left, U0 is
the incoming wave and V0 is the reflected wave. At the interface of the left layer and
the right layer, a wave UL is transmitted from the left to the right layer and a wave
VL is reflected by the right layer to the left layer. Suppose the scattering function
of the right layer is SL then VL = SLUL. The right layer acts as a load applied to

Figure 3: Scattering medium with load
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a 2-port which represents the left layer. Considering X = [U0 VL]
T as input and

Y = [UL V0]
T as output for this 2-port, we have

Y = SX

where S is a (in this case a 2 by 2) scattering matrix. Such a scattering matrix
has however the following drawback. Suppose we want to subdivide the scattering
medium in more layers. Consider two adjacent layers as in Figure 4. The left one has
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Figure 4: A cascade of 2 layers
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a scattering matrix S and the right one a scattering matrix S ′. Using the notation
of the figure, we have[

U ′

V

]
= S

[
U
V ′

]
and

[
U ′′

V ′

]
= S ′

[
U ′

V ′′

]

while for the cascade of both we assume a scattering matrix S ′′, thus[
U ′′

V

]
= S ′′

[
U
V ′′

]
.

The relation between S, S ′ and S ′′ is given by the Redheffer product [Red62]

S ′′ = S ∗ S ′ =

[
S ′11 + S ′12S11ΓS ′12 S ′12S11ΓS ′22S12 + S ′12S12

S21ΓS ′21 S21ΓS ′22S12 + S22

]

with Γ = (1 − S ′22S11)
−1. If 1 − S ′22S11 is not identically zero, this will exist for

all values of z, except for at most a countable number of values. This is a rather
complicated expression. For the cascading of layers, it is much easier to work with
chain scattering matrices. Scattering matrices give relations between inputs and
outputs where each port is considered to have an input and an output. For the
cascading, it is more natural to consider both terminals of the left port as an input
to the medium and both terminals of the right port as an output. The relation
between these inputs and outputs are given by the chain scattering matrix, which
we denote by W . Thus[

U ′

V

]
= S

[
U
V ′

]
⇔

[
U ′

V ′

]
= W

[
U
V

]
.

It is then much easier to cascade because the cascade of two layers with chain
scattering matrices W and W ′ has a scattering matrix W ′′ = WW ′ which is given
by the ordinary matrix product. To derive the relation between S and W for a
2-port, we introduce the projectors

P =

[
1 0
0 0

]
and P⊥ =

[
0 0
0 1

]
.

We then have[
U ′

V ′

]
= (PS + P⊥)

[
U
V ′

]
and

[
U
V

]
= (P⊥S + P )

[
U
V ′

]
.
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Thus [
U ′

V ′

]
= (PS + P⊥)(P⊥S + P )−1

[
U
V

]
so that

W = (PS + P⊥)(P⊥S + P )−1 =

[
S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

]
(10)

if S22 is not identically zero. The latter transformation is often called the Potapov-
Ginzburg transformation. If the scattering matrix is passive (resp. lossless) then
S∗S ≤ I2 in Re z > 0 (resp. S∗S ≤ I2 in Re z > 0 and S∗S = I2 on Re z = 0) and
this translates into the chain scattering matrix being J -contractive (resp. J -inner)
for the right half plane where

J = P − P⊥ =

[
1 0
0 −1

]
.

Similar observations hold for an m-port which is passive or lossless: its chain scat-
tering matrix is a J -contractive or J -inner matrix valued function for a more general
signature matrix J .

After this very elementary introduction in the tools and terminology, it should
be clear that to understand complex m-port electrical networks, or to analyse a
complex scattering medium, it is important to thoroughly understand the structure
and properties of J -contractive and J -inner matrix valued functions. If one wants to
realize the network, or model the scattering medium as a layered system, then one
should be able to factor such a J -contractive function as a product of elementary
J -contractive functions. Each such factor should be rational and of lowest possible
degree. Indeed, the degree of a rational transfer function somehow describes the
complexity of the system, computationally but also physically. The simplest possible
section should have only one pole, which could be inside, outside or on the border
of the region of interest which is the unit disk or a half plane. Such factors are
now called Blaschke-Potapov factors. So far we only allowed poles outside this
region, since we assumed for stability reasons (i.e., passiveness) that the function
was analytic inside. An elementary m-port corresponding to such an elementary
factor with pole outside the region is often referred to as a Schur section. However,
under certain conditions, it is also possible to extract factors with poles on the
boundary. Such a section is called a Brune section [Bru31]. In that case, there is
of course the relation with the boundary Nevanlinna-Pick or Loewner interpolation
problems and multipoint moment problems.

We note that these scattering problems can also be formulated as linear pre-
diction problems. This was in fact the approach taken by Dewilde/Dym [DD81a,
DD81b, Dew84, DD84]. These prediction and filtering problems were initiated by
Wiener [Wie49], and by the generalization of Wiener/Massani [WM57]. Here some
least squares problem has to be solved and it was Levinson [Lev47] who formulated
an efficient algorithm to solve the normal equations. The recursion used in this algo-
rithm turned out to be equivalent to the Szegő recursion for polynomials orthogonal
on the unit circle [Sze67]. The Schur algorithm was rediscovered in the fifties in the
context of seismic signal processiong where it turned out that the algorithm could
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be given a full physical interpretation and the Schur parameters are often called
reflection coefficients because of this interpretation. Burg in his Ph.D. thesis at
Stanford [Bur75] explained the connection between spectral analysis of time series,
the maximum entropy method and Szegő’s theory.

What has been said here in the context of the Schur algorithm can be be gener-
alized to the Nevanlinna-Pick algorithm. A generalization of the theory of Szegő’s
orthogonal polynomials has been generalized to orthogonal rational functions with
prescribed poles. In prediction terms, this means that the autoregressive filters
are replaced by autoregressive moving average (ARMA) filters with given transmis-
sion zeros. The study of these orthogonal rational functions was initiated by M.M.
Djrbashian in the sixties [Djr62b, Djr62a, Djr66a, Djr66b, Djr67, Djr90]. It was
continued in a number of papers by Bultheel/González-Vera/Hendriksen/Nj̊astad.
The current state of the art is collected in [BGVHN97].

These ideas made their way firmly into electrical engineering, signal processing
and robust control since then. A recent monograph by Kimura [Kim97] clearly
illustrates the role of chain scattering matrices in optimal control.

In the remaining sections we shall be mainly concerned with a survey of the
history and the different approaches taken by several (groups of) researchers in their
attempt to tackle the study of general interpolation problems and in particular of
general J -inner functions.

4 Operator theoretic interpolation problems and dilation theory

Not only matricial, but also operator versions of classical interpolation problems
play an important role in this context because they too are connected with appli-
cations in the field of electrical circuits (see Efimov/Potapov [EP73]) and questions
of system theory (see Arov [Aro79b], [Aro79c]). This trail of research culminated
in the commutant lifting theorem by Nagy and Foiaş which was initiated by results
of Sarason for the solution of the Nevanlinna-Pick problem. We shall briefly sketch
these ideas in this section.

Potapov’s algorithm for the solution of matricial interpolation problems was
generalized to operator theoretical interpolation problems by Ivacenko/Sakhnovic
[IS87b]. The main tool in their approach is based on dilation theory. To explain
this, we have to introduce the concept of dilation first.

Let H and H1 be Hilbert spaces. A linear transformation T from H into H1 is
a contraction if

‖Th‖H1 ≤ ‖h‖H
for all h ∈ H, i.e. ‖T‖ ≤ 1. Assume that H and H1 are subspaces of some Hilbert
space K. Then an operator U (defined on K) is called a dilation of T if

T nh = PHUnh, n = 1, 2, . . .

for all h ∈ H where PH denotes the orthogonal projection from K onto H. Two
dilations of T , say U and Ũ on K and K̃, respectively, are called isomorphic if there
exists a unitary transformation φ from K̃ onto K such that φh = h for all h ∈ H,
and Ũ = φ−1Uφ. A dilation V is called isometric if V ∗V = I . Observe that for
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every contraction T on a Hilbert space H, there is an isometric dilation V on some
Hilbert space K+ which is minimal in the sense that

K+ =
∞∨
n=0

V nH.

Note that this minimal isometric dilation of T is determined up to an isomorphism.
Therefore it is called the minimal isometric dilation of T .

Let T and T ′ be contractions on some Hilbert spaces H and H ′ respectively, and
let I(T, T ′) denote the set of all contractions A : H → H ′ intertwining T and T ′, i.e.
T ′A = AT . Let V on K+ and V ′ on K ′+ be the minimal isometric dilations of T and
T ′, respectively. If A belongs to I(T, T ′) then B : K+ → K ′+ is called a contractive
intertwining lifting of A if B belongs to I(V, V ′) and B is a lifting of A, i.e., if

PH ′B = APH

(PH and PH ′ denote projections). See Figure 5.

Figure 5: Intertwining lifting
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Now we are able to formulate the fundamental commutant lifting theorem which,
in its general form, goes back to Sz.-Nagy/Foiaş [SNF68], [SNF70].

Theorem. If A belongs to I(T, T ′) then there exists a contractive intertwining
lifting B of A.

Since these original papers, a set of alternate proofs of this theorem were pub-
lished (see Douglas/Muhly/Pearcy [DMP68], Parrott [Par78], Arocena [Aro83]).
Foiaş/Frazho give in [FF90] several proofs for the commutant lifting theorem where
each proof illuminates different features of this theorem. One proof discusses the
uniqueness question in the commutant lifting theorem. Another one establishes the
connection to Ando’s dilation theorem for two commuting contractions, while a fur-
ther one is based on Arocena’s coupling of contractions. There also exist algorithms
to construct all the commuting intertwining liftings of which the theorem gives the
existence, and these algorithms are somehow generalizations of the Nevanlinna-Pick



On several aspects of J -inner functions in Schur analysis 619

algorithm. Here of course we can make the connection with the previous sections
of this text. To do this, we give a result due to Sarason [Sar67] which was the
immediate source of inspiration for the formulation of the commutant lifting theo-
rem and which was formulated while he was investigating interpolation problems of
Nevanlinna-Pick type.

To formulate Sarason’s result, we introduce the concept of a function interpolat-
ing an operator. Let U be the shift operator in L2 and let ψ be a nonconstant inner
function. Further, let S be the projection of the shift operator U onto H2 	 ψH2.
For a function φ belonging to H∞, let Mφ be the operator which corresponds to the
multiplication with φ in L2. Let φ(S) denote the projection of Mφ onto H2 	 ψH2.
If an operator T (on the Hilbert space H2	ψH2) can be written as φ(S) for a φ in
H∞, then we say that φ interpolates T . Note that the operators φ(S) are exactly
the operators that commute with S. The converse case is given in the following
result.

Theorem. If T is an operator on H that commutes with the shift operator S,
then there is a function φ in H∞ such that φ interpolates T and ‖φ‖∞ = ‖T‖H.

Sarason proved this result in his paper [Sar67]. Furthermore, he indicated the
perspectives of the application of lifting theorems in interpolation theory. He con-
sidered the Carathéodory problem in the language of contractive intertwining lifting
problems in the following way: The Carathéodory problem corresponds to the case
where ψ is a power of z, i.e., ψ(z) = zn+1. Then the considered subspace H2	ψH2 is
an (n+1)-dimensional space and has an orthonormal basis ek(z) = zk, k = 0, . . . , n.
The operator S is the shift with respect to the basis of H2	ψH2, i. e., Sek = ek+1.
Then an operator on H2 	 ψH2 commutes with S if and only if its matrix (with
respect to the basis {ek}) has the representation

c0 0 0 . . . 0
c1 c0 0 . . . 0
c2 c1 c0 . . . 0
...

...
...

...
cn cn−1 cn−2 c0

 . (11)

Moreover, a function in H∞ interpolates the operator with the matrix representation
(11) if and only if its power series begins with c0 + c1z + · · ·+ cnz

n, i. e., if and only
if it belongs to the solution set of the Carathéodory interpolation problem. This
argumentation led Sarason [Sar67] to a condition which is equivalent to the following
well-known Carathéodory-Toeplitz condition for the solvability of the Carathéodory
coefficient problem: There exists a function in the Carathéodory class C(D) whose
power series begins with the terms c0 +c1z + · · ·+cnz

n if and only if the matrix (11)
has a nonnegative real part as an operator on an (n +1)-dimensional Hilbert space.
There is more than that in [Sar67], since one also finds there the characterization
of all solutions of the Carathéodory coefficient problem which have a minimal H∞-
norm. This makes the immediate link with the Adamjan, Arov and Krĕın papers
and minimal Hankel norm approximation.

Sarason also described the Nevanlinna-Pick interpolation problem in an operator-
theoretical language. This problem corresponds to the case where ψ coincides with
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a Blaschke product whose simple zeros are the interpolation points z0, . . . , zn. The
subspace H2 	 ψH2 is the (n + 1)-dimensional subspace spanned by the functions

gk(z) =
1

1− zkz
, k = 0, . . . , n. (12)

These functions g0, . . . , gn are eigenvectors of S∗ with respective eigenvalues z0, . . . ,
zn. This implies that an operator T commutes with S if and only if g0, . . . , gn are
eigenvectors of T ∗. To get the Nevanlinna-Pick problem, this is exactly what is
needed because then T should be the operator which is defined on H2 	 ψH2 by

T ∗gk = wkgk , k = 0, . . . , n , (13)

where {wk}nk=0 are the complex function values corresponding to the given distinct
interpolation points z0, . . . , zn. In this case, a function φ in H∞ interpolates T if
and only if φ(zk) = wk for k = 0, . . . , n, thus if and only if it is a solution of the
Nevanlinna-Pick problem. With an appropriate transformation from the disk to the
right half plane, Sarason got a condition equivalent to the one given by Pick.

The lifting problem has also a strong connection with the characterization of
shift invariant subspaces. This characterization problem was given by Beurling in
the scalar case and generalized by Lax [Lax59], Halmos [Hal61], and Masani [Mas62].
Later Lax and Phillips built up their scattering theory [LP67] as an alternative
highway to study these problems. Masani together with Wiener worked out their
prediction theory [WM57]. A very general approach to the Beurling-Lax theorem
was given later by Ball/Helton [BH83] (see below).

The solution of an interpolation problem with dilation theory always leads to
a parametrization of all the contractive intertwining dilations of a certain opera-
tor. This problem in particular, was also investigated by Ando/Ceausescu/Foiaş
[ACF77], Ceausescu/Foiaş [CF78] and Arsene/Ceausescu/Foiaş [ACF80]. They
parametrized the contractive intertwining dilations with a sequence of contractive
parameters (which is called choice sequence). This choice sequence is the operator
theoretic generalization of the sequence of Schur parameters. The Schur parameters
characterized a Schur function and the choice sequence characterizes a contraction.
In the operator theoretic problem, the (generalization of the) Schur algorithm does
indeed generate a choice sequence of Schur parameters {Γn}n∈N. In this sequence,
Γ0 ∈ L(H0, K) is a contraction from a Hilbert space H0 into a Hilbert space K and
for n ≥ 1, Γn ∈ L(Hn,DΓ∗n−1

) is a contraction from a Hilbert space Hn into DΓ∗n−1
.

Here we used for an operator Γ between Hilbert spaces the notation Γ∗ to denote
its adjoint, DΓ = (I − Γ∗Γ)1/2 is its defect operator and DΓ is its defect space, that
is the closure of the range of DΓ. L(H, K) represents the linear operators between
the Hilbert spaces H and K.

This parametrization forms a basis on which it is possible to treat several op-
erator extension problems and operator interpolation problems. Especially ap-
plications in prediction theory and entropy optimization were considered in this
context (Arsene/Constantinescu [AC85], [AC87], Arsene/Ceausescu/Constantinescu
[ACC88] and Constantinescu [Con85]–[Con87]).

A disadvantage of the lifting approach is the fact that it can not be used for
boundary value interpolation problems. Inspired by Nudelman, Rosenblum/Rovnyak
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[RR80], [RR85] formulated a generalized operator interpolation problem which con-
tains the classical results of Schur, Carathéodory, Nevanlinna, Pick and Loewner as
special cases.

A further operator theorectical approach for interpolation problems was cre-
ated by Ball/Helton [BH83]–[BH88] (see also Sarason [Sar85], [Sar87]). They had
the original idea to embed interpolation problems into a context of Krĕın spaces.
Hereby the associated operator extension problems were transformed into extension
problems of subspaces of the Krĕın space. The Method of Ball and Helton can also
be used to treat boundary value interpolation problems and indefinite interpolation
problems. An essential part of their approach is a useful indefinite generalization
of the theorem of Beurling/Lax/Halmos/Masani about shift invariant subspaces.
Furthermore Ball and Helton got the most far-reaching results concerning the treat-
ment of one- and two-sided tangential interpolation problems which were considered
earlier by Fedčina [Fed72]–[Fed75b] in connection with the papers of Adamjan, Arov
and Krĕın. As we mentioned before, such tangential interpolation prolems are char-
acterized by the fact that not the interpolation data themselves but their projection
into certain given directions are prescribed. For more details see Section 8 below.

5 Potapov factorization of J-contractive functions

Let us now concentrate on the study of J -inner matrix functions which are at the
heart of all the theory and the different approaches that were sketched in the previous
sections.

The work of V.P. Potapov is at the origin of the vast literature that is now
available on matrix valued J -inner functions. For some history and a survey of
early and more recent results one should consult the Potapov memorial volumes
[GoS94, DFKK97] published in the Operator Theory Series edited by I. Gohberg.

The class PJ as we defined it above was introduced by M.S. Livšic and V.P.
Potapov [LP50] in 1950. Livšic obtained basic results about the spectral analy-
sis of non-unitary (respectively, non-selfadjoint) operators with minimal degree of
non-unitarity (respectively, non-selfadjointness). These investigations were inspired
by system theory and the results are often formulated in terms of special dissipa-
tive systems. He showed that the transfer function (or chain scattering matrix) of
such a system belongs to PJ . This is what we also obtained in the simple situa-
tion of Section 3. Because such systems are uniquely determined by their transfer
function, all questions of analysis and synthesis of these systems can be translated
into corresponding analytic questions for the transfer function. As we have seen,
an important question is the problem of decomposing such a system into a cas-
cade of “easy pieces” and this corresponds to the factorization of functions of the
Potapov class into a product of simple functions of this class. Unfortunately, this
is a difficult problem. What are these simple functions? The complete description
of the solution of this factorization problem is the main result of V.P. Potapov’s
fundamental paper [Pot55], where he got a direct generalization of the well-known
factorization theorem of F. Riesz and V.I. Smirnov for bounded holomorphic func-
tions on the unit disc. Already the description of the rational elementary factors of
the Potapov class, i.e., the matricial generalization of an elementary Blaschke factor,
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was far from being trivial. It was shown that such rational elementary factors (which
are now called Blaschke-Potapov elementary factors) are not only determined by a
singularity. They depend also on a J -projector.

If P is an m × m idempotent complex matrix such that JP is non-negative
Hermitian, then the Blaschke-Potapov J-elementary factor of the first kind has the
form

Bw,P := Im + (ζw − 1)P (14)

where ζw is a usual scalar Blaschke factor. This Blaschke-Potapov J -elementary
factor is holomorphic and its inverse function B−1

w,P has a simple pole in w. It
follows easily that Bw,P is J -contractive and has a J -unitary boundary value almost
everywhere on the unit circle (with respect to the Lebesgue measure). If Q is an
m×m idempotent complex matrix such that −JQ is non-negative Hermitian, then

Cw,P := Im + (
1

ζw
− 1)Q (15)

is said to be a Blaschke-Potapov J-elementary factor of the second kind. It is readily
checked that the inverse function of a Blaschke-Potapov J -elementary factor of the
first kind is such a factor of the second kind. Observe that, in the positive definite
case (J = Im), there is no Blaschke-Potapov J -elementary factor of the second kind.
In the negative definite case, only the Blaschke-Potapov J -elementary factor of the
second kind exists.

Let {wk}k∈K be a sequence of points of the unit disk and let {Pk}k∈K be a
sequence of idempotent complex matrices such that JPk is non-negative Hermitian
for all k ∈ K. Assume that ∑

k∈K
(1− |wk|)‖Pk‖ <∞ . (16)

Furthermore let Bwk ,Pk be the corresponding Blaschke-Potapov J -elementary factors
of the first kind. Then the products

Bl :=
→∏
k∈K

Bwk ,Pk = Bwi1 ,Pi1
Bwi2 ,Pi2

. . . (17)

and

Br :=
←∏
k∈K

Bwk,Pk = . . . Bwi2 ,Pi2
Bwi1 ,Pi1

(18)

where K = {i1, i2, . . .}, converge absolutely and uniformly on each compact set inside
the unit disc. Hereby the order of the factors is essential because the multiplication
of matrices is non-commutative. The condition (16) is called Blaschke-Potapov con-
dition and the product Bl (resp. Br) is called a left (resp. right) Blaschke-Potapov
product of the first kind with respect to J . A Blaschke-Potapov product of the second
kind is defined in a similar way. A matrix-valued function B(l) (respectively, B(r))
is called a left (respectively, right) Blaschke-Potapov product with respect to J if it
admits a product representation with Blaschke-Potapov J -elementary factors of first
or second kind. For further convergence properties of Blaschke-Potapov products
we refer the reader to Potapov [Pot55] and Ginzburg [Gin58]. See also [GiS94] for
a survey.
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Since a Blaschke-Potapov factor of the first kind is a holomorphic J -contractive
matrix-valued function in the unit disc, a Blaschke-Potapov product with respect to
J is a J -contractive meromorphic function. This implies that every such Blaschke-
Potapov product has radial boundary values almost everywhere on the unit circle.
Arov proved that these boundary values are J -unitary. That means that the restric-
tion of a left or right Blaschke-Potapov product B to the domain of analyticity of
B is a J -inner function. We can say more: the restriction of an arbitrary left (resp.
right) Blaschke-Potapov product B to the domain of analyticity of B is a left (resp.
right) Arov-regular J -inner function. In the rest of this paper we use the symbol
B2 to denote the restriction of B to its domain of analyticity in the unit disc.

In 1955 V.P. Potapov [Pot55] formulated and proved his fundamental theorem
about the existence and uniqueness of multiplicative representations of J -contractive
matrix-valued meromorphic functions. This result can be considered as a general-
ization of the F. Riesz-Nevanlinna-Smirnov factorization for bounded holomorphic
functions in the unit disc. We formulate this as a theorem.

Theorem. Let J be an m ×m signature matrix and let W ∈ PJ . Further let
PJ;s be the set of all singular functions which belong to PJ . Then the following
holds true.

(a) There are a left Blaschke-Potapov product Bl with respect to J and a function
Σls belonging to PJ;s such that W = B2

l · Σls.

(b) If W = B̃l
2 ·Σ̃ls is another factorization of W with some left Blaschke-Potapov

product B̃l with respect to J and some function Σ̃ls ∈ PJ;s then there is a

J -unitary matrix U such that B̃l = BlU and Σ̃ls = U−1Σls. If W is J -inner
then Σ̃ls is J -inner.

(c) If U is an arbitrary J -unitary matrix then B̃l := BlU and Σ̃ls := U−1Σls are a
left Blaschke-Potapov product with respect to J and a function belonging to
PJ;s, respectively, such that W = B̃l

2 · Σ̃ls.

During his investigation on Schur-Nevanlinna-Pick interpolation, Arov [Aro73],
[Aro74a], [Aro75] got another factorization for the special case, that W is a J -inner
function. For that we refer to Section 8.

Further details on left and right Potapov products were obtained by V.E. Kat-
snelson in a series of papers [Kat89], [Kat90], [Kat93]. He got remarkable relations
between left and right Blaschke-Potapov products (with respect to an arbitrary sig-
nature matrix J). Of course, in the definite case, i.e., if the signature matrix J
coincides with I or −I , then a left Blaschke-Potapov product is a right Blaschke-
Potapov product at the same time. However, in the indefinite case, i.e. when the
signature matrix J is not definite, it can happen that the so-called singular part in
the multiplicative representation of a left Blaschke-Potapov product is not constant.
Hence there are matrix functions which are a left Blaschke-Potapov product but not
a right Blaschke-Potapov product. Furthermore it proves to be possible to give a
function-theoretical description of the class of all singular functions which occur in
the right multiplicative representations of left Blaschke-Potapov products. We in-
clude two of his theorems to illustrate these results.
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Theorem. Let J be an m×m signature matrix which is different from Im and
−Im.

(a) Let Bl be a left Blaschke-Potapov product with respect to J . Further let Ws be
an Arov-singular J -inner function and let Wrr be a right Arov-regular J -inner
function such that

B2
l = WsWrr .

Then there is a right Blaschke-Potapov product B̃r with respect to J such that

Wrr = B̃r
2

.

(b) Let Br be a right Blaschke-Potapov product with respect to J . Further let Vs
be an Arov-singular J -inner function and let Vlr be a left Arov-regular J -inner
function such that

B2
r = VlrVs .

Then there is a left Blaschke-Potapov product B̃l with respect to J such that

Vlr = B̃l
2

.

Theorem. Let J be an m×m signature matrix which is different from Im and
−Im.

(a) Let Bl be a left Blaschke-Potapov product with respect to J . If Σrs is a
function that belongs to PJ and if B̃r is a right Blaschke-Potapov product
with respect to J such that

B2
l = ΣrsB̃r

2

then Σrs is an Arov-singular J -inner function.

(a) Let Br be a right Blaschke-Potapov product with respect to J . If Σls is a
function that belongs to PJ and if B̃l is a left Blaschke-Potapov product with
respect to J such that

B2
r = B̃l

2
Σls

then Σls is an Arov-singular J -inner function.

V.E. Katsnelson’s investigations are essentially based on the treatment of prob-
lems of weighted approximation for special classes of meromorphic matrix-valued
functions. This approach uses a couple of deep results, namely a generalization of
Frostman’s result about the value distribution of holomorphic functions (which goes
back to W. Rudin) and a theorem of D.Z. Arov about approximation of pseudocon-
tinuable functions.

If we consider Potapov’s Riesz-Nevanlinna-Smirnov type of theorem which we
formulated above as the main result of a first phase in the development of J -theory,
then we could say that in the second area of J -theory, V.P. Potapov and his collabo-
rators A.V. Efimov and I.V. Kovalishina dealt with problems which had their origin
in the theory of electrical circuits (see Efimov/Potapov [EP73], Kovalishina [Kov66],
Melamud [Mel72], Tovmasjan [Tov71]). In this framework, a detailed discussion
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about several constellations of poles of J -elementary factors was initiated. More-
over, the inner structure of J -orthogonal projectors was discovered. V.P. Potapov
[Pot69] improved the procedure for separating a J -elementary factor with one pole
from a given matrix-valued function which belongs to PJ . It was a fundamental
observation of Potapov to see that the Schur algorithm is equivalent to the multi-
plicative decomposition of a J -elementary factor (with a pole of order n at infinity)
in a product of n J -elementary factors (with a pole of order 1). For a detailed treat-
ment of this procedure, the reader can also be referred to [DFK92, Chapter 4.3] or
to the papers by Dewilde and Dym [DD81a, DD81b, Dew84, DD84].)

In this way, the important role of J -elementary factors was exposed in the frame-
work of matricial versions of classical interpolation and moment problems. The third
phase of J -theory began in which general interpolation problems were considered.
We discuss this in the next section.

6 Non-negative definite kernels, fundamental matrix inequali-

ties, fundamental identities and the generalized Nehari prob-

lem

V.P. Potapov developed a powerful approach to matricial interpolation problems.
This approach is based on a generalization of a classical lemma of H.A. Schwarz and
a modification of this result which goes back to G. Pick. He converted the original
problem in an equivalent matricial inequality (the fundamental matrix inequality or
FMI of the problem). In the case that the so-called information block of this in-
equality is non-degenerate, he created a clever factorization method which allows the
determination of the solution set of the matrix equality and consequently also of the
original interpolation problem (see Kovalishina/Potapov [KP74]–[KP89], Dubovoj
[Dub82], Galstjan [Gal77], Golinskii [Gol83b], [Gol83a], Djukarev/Katsnelson [DK81],
Djukarev [Dju82], Dubovoj/Fritzsche/Kirstein [DFK92, Chapter 5], and Katsnelson
[Kat97]).

As an example, we consider the Nevanlinna-Pick problem for the upper half
plane. If z1, z2, . . . is a set of distinct points in the upper half plane and w1, w2, . . .
a corresponding set of function values with positive real part, then we have to find
a Nevanlinna-Pick function w ∈ P(C+) such that w(zi) = wi, i = 1, 2, . . .. Potapov
showed that w is a solution of this problem if and only if

[
wi −w∗k
zi − zk

]n
i,k=1

[
w(z)−wi

z − zi

]n
i=1[

w∗(z)− w∗k
z∗ − z∗k

]n
k=1

[
w(z)− w∗(z)

z − z∗

]n
i=1

 ≥ 0.

This is called the FMI for this Nevanlinna-Pick problem. The left-upper part of
this matrix is the information block (which is in this case the Pick matrix). This
matrix is positive definite if the information matrix and its Schur complement is
positive definite. The positivity of the information matrix is the well known Pick
condition. The second condition on the Schur complement leads to a factorization
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problem which can be solved by a Nevanlinna-Pick algorithm. Indeed, when this
algorithm is performed, a matrix W from the Potapov class is obtained and the
Schur complement inequality can be reformulated as

[w∗(z) 1](W ∗)−1JW−1

[
w(z)

1

]
≥ 0,

where J is some appropriate signature matrix. The Nevanlinna-Pick algorithm (or
other algorithms which can solve this problem) correspond to an explicit or implicit
Cholesky or inverse Cholesky factorization of the information matrix. Since this
matrix is highly structured, it can be factored in a very efficient way. As we described
above, the Nevanlinna-Pick algorithm generates a matrix W which is in the Potapov
class. All solutions of the FMI can be described by

w = (W11g + W12)(W21g + W22)
−1, g ∈ P(C+).

Similar relations can be written down for other interpolation problems or general-
izations.

Further it should be remarked that V.E. Katsnelson [Kat81], [Kat85] studied sev-
eral continuous analogs of classical interpolation problems of Hamburger-Nevanlinna
type. These are mainly problems of integral representations for certain non-negative
definite kernels. Such problems can be reformulated as equivalent interpolation prob-
lems for holomorphic functions with non-negative imaginary part in the upper half
plane (the Nevanlinna-Pick class P(C+)) which fulfil certain conditions in growth.
In the beginning of the 80s R. Arocena, M. Cotlar and C. Sadosky initiated the
investigation of non-negative definite kernels of mixed Toeplitz-Hankel type (which
are also called generalized Toeplitz kernels).

Already in 1985 V.E. Katsnelson [Kat85] integrated his results in Potapov’s
model and he created a modified fundamental inequality with skillful usage of a cer-
tain transformation (about these transformations see [Kat97]). Furthermore, he also
formulated the associated fundamental identity or FI. This extension of Potapov’s
method goes back to L.A. Sakhnovich (see [IS87b, IS87a, IS94]). He analysed the
interpolation problems which were discussed by Potapov and his collaborators, and
he recognized that for all these interpolation problems, certain matrices show up
which satisfy a special matrix identity which has the form of a Lyapunov or Stein
equality for matrices. These matrices are the matrices one can find in the informa-
tion block of the FMI. In our Nevanlinna-Pick example, it was a Pick matrix, but it
can have another structure as well (see below). Since one has to solve implicitly or
explicitly a system of linear equations with this kind of matrix, it is important to
discover the structure of the matrix, so that it can be exploited to compute solutions
efficiently.

A simple example of such a FI can be easily given for the trigonometric moment
problem. In this case, the information matrix is the infinite Hermitian Toeplitz
matrix of the given moments which has to be positive definite for the problem to be
solvable. It is easily seen that a Toeplitz matrix T = [ti−j] with t−k = t∗k, satisfies a
so-called displacement identity

T − ZTZ∗ = GJG∗
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where Z is the down-shift operator with 1s on the subdiagonal and zeros elsewhere,
J = diag(1,−1), and

G = t
−1/2
0


t0 0
t1 t1

t2 t2
...

...

 .

A matrix equation of the form AXB −X = C is called a Stein equation.
Another well known example is the Hankel matrix of moments which appears

in the Hamburger moment problem. Again, this (real) Hankel matrix H = [hi+j−1]
should be positive definite. A Hankel matrix satisfies the displacement identity

ZH −HZT = GJGT

where Z is the down-shift as above, while

J =

[
0 −1
1 0

]
and G = h

−1/2
0


h0 0
h1 h1

h2 h2
...

...

 .

A matrix equation of the type AX − XB = C is said to be of Lyapunov type.
These displacement equations have led to the notions of quasi-Toeplitz, quasi-Hankel
and other kinds of structured matrices which can be dealt with in fast algorithms.
Such matrices were discovered from the idea of cascade factorization of a scattering
medium, linear prediction of mildly non-stationary processes, or equivalently from
the factorization of J -inner functions. The efficient algorithms are based on the
construction of successive Schur complements. For some history see [Kai91]. These
ideas were promoted by T. Kailath and his coworkers [KKM79b, KKM79a, Say92,
KS95]. The basics are all in the book by G. Heinig and K. Rost [HR84]. For a recent
survey with many applications see [KS95].

Similar observations were made for other, more complex interpolation problems.
The individuality of every interpolation problem is expressed by the associated fun-
damental identity which has to be discovered. Once this identity is found, an ab-
stract version of Potapov’s factorization method admits the determination of the
solution set of the fundamental matrix inequality. Katsnelson/Kheifets/Yuditskii
[KKY87], [KY94] created an abstract scheme for the solution of interpolation prob-
lems which contains basic elements from the theory of unitary extensions of iso-
metrical operators (which is another idea that can be traced back to the work of
Arov/Grossman [AG83]).

V.E. Katsnelson’s paper [Kat85] also discusses the treatment of generalized Ne-
hari problems. Because this is another important classical problem that has not
been treated in this paper, we give some details. Let us start with the simple scalar
case.

Nehari Problem. Let {dn}−n∈N be a sequence of complex numbers. Determine
the set N ({dn}−n∈N) of all Borel-measurable complex-valued bounded functions φ
which admit ‖φ‖ ≤ 1 and which satisfy the condition

dn =
1

2π

∫
T
z−nφ(z)λ(dz) (19)
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for n = −1,−2, . . .. In particular characterize the case that N ({dn}−n∈N) is non-
empty.

This scalar classical problem was formulated by Z. Nehari [Neh57] in 1957. Note
that it is not quite like a trigonometric moment problem. Only the moments for
−n ∈ N are prescribed, and φ need not be positive, but it has another constraint
namely ‖φ‖ ≤ 1. In his paper, Nehari gave a necessary and sufficient condition for
the solvability of this problem. He characterized the solvability by the fact that the
infinite Hankel matrix (d−j−k+1)

∞
j,k=1 defines a contractive operator. In the papers

of Adamjan/Arov/Krĕın [AAK68a]–[AAK71b] which were published around 1970,
there is not only a complete description of the solution set of an indeterminate scalar
Nehari problem, but under a certain additional condition, there is even a general-
ization of this results to the matrix case. The general situation of the matrix case
was also considered by V.M. Adamjan [Ada73] in 1973. D.Z. Arov and M.G. Krĕın
[AK81], [AK83] published the solution of the entropy optimization problem which is
connected with the matricial Nehari problem. Inspired by the study of upgrades of
classical theorems of M. Riesz and Helson/Szegő, the group of Arocena, Cotlar and
Sadosky came to an important addition to the theory related to the Nehari problem.
Their results gave rise to a lot of well-known results of complex analysis, operator
theory and theory of stochastic processes. So let us see what a generalized Nehari
problem looks like.

Generalized Nehari Problem. Let F11 and F22 be non-negative Hermitian p× p
and q × q measures, respectively, and let {βk}∞k=0 be a sequence of complex p × q
matrices. Determine the set F(F11, F22, {βk}∞k=0) of all σ-additive p × q complex-
valued mappings F12 which satisfy the conditions

∫
T
z−kF12(dz) = βk , k ∈ N0 (20)

and such that [
F11 F12

F ∗12 F22

]

is a non-negative Hermitian (p + q) × (p + q) Borel measure on the unit circle. In
particular characterize the case that F(F11, F22, {βk}∞k=0) is non-empty.

The generalized Nehari problem also leads directly to the investigation of definite
kernels of so-called mixed Toeplitz-Hankel type. For the set F(F11, F22, {βk}∞k=0) to
be non-empty, it is necessary and sufficient that such a kernel is positive definite.
Note that the generalized Nehari problem coincides with the usual Nehari problem
in the case p = q = 1 and F11 = F22 = λ/2π. Katsnelson [Kat85] formulated the
generalized Nehari problem using the matricial version of the F. Riesz-Herglotz the-
orem in the following equivalent way.

Nehari Carathéodory Problem. Let α and β and δ be respectively p × p, p × q,
and q × q matrix-valued holomorphic functions. Determine the set NC(α, β, δ) of
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all q × p matrix-valued holomorphic functions γ such that[
α β
γ δ

]

is a (p+q)×(p+q) matrix-valued Carathéodory function. In particular characterize
the case that NC(α, β, δ) is non-empty.

B. Fritzsche and B. Kirstein [FK88], [FK90] investigated generalized Nehari prob-
lems for matricial Carathéodory and Schur functions. They also gave a prediction
theoretical interpretation of these problems. Dubovoj/Fritzsche/Kirstein [DFK93]
studied a generalized Nehari problem of Schur type which is connected with Dar-
lington synthesis with Arov-singular J -inner functions. Using a result of Katsnelson
[Kat93], A.Ya. Kheifets [Khe95] also gave an answer to an inverse question of the
Nehari problem which was formulated by Sarason.

7 Arov’s investigations on Darlington realizations generated by

J-inner functions

In the end of the 60’s Potapov’s seminar dealt as well with questions about J -
theory and related extension problems as basic conceptions of electrical circuits. At
this time D.Z. Arov was one of the most active participants of this seminar which
took place in Odessa. Stimulated by the discussions of the Potapov-seminar, D.Z.
Arov expanded the fields of his research and turned his attention to dissipative lin-
ear systems and questions of the theory of J -inner matrix functions and related
continuation problems. Electrical circuits were a useful model which allowed him
a better understanding and perception of questions of operator theory, scattering
theory and matricial function theory. In this context Arov’s fundamental papers
[Aro71], [Aro73] and [Aro75] about Darlington synthesis arose. Further he consid-
ered relations between Darlington synthesis and other subjects like scattering theory
[Aro74b], [Aro74a], [Aro79c], the theory of rational approximation [Aro78] and var-
ious questions of the theory of passive linear systems [Aro79b, Aro79a, Aro84].

Arov’s considerations were crucially influenced by the paper of Douglas/Shapiro/
Shields [DSS70] on cyclic vectors of the backward shift which was published in 1970.
They characterized the backward shift in terms of pseudocontinuity, a concept we
defined in Section 1. It turned out to be an essential tool to solve the Darlington
realization problem.

In the following, we will deal with the special (p + q)× (p + q) signature matrix
J = jpq as given in (9). Let f be a p × q Schur function. Then we will say that
f admits a Darlington realization if there exists a jpq-inner function W with block
partitioning (8) and a contractive p× q matrix ε such that

f = (W11ε + W12)(W21ε + W22)
−1 (21)

holds for all points of the domain of analyticity of W . One also says that W
generates a Darlington realization of f . The Darlington realization is called non-
degenerate (respectively, canonical) if ε is strictly contractive (respectively, if ε is
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the null matrix). If a p × q Schur function f admits a non-degenerate Darlington
realization with some strictly contractive p× q matrix ε then the jpq-inner function

V := W · Uε (22)

generates a canonical Darlington realization of f where the matrix Uε is given by

Uε :=

 √
(Ip − εε∗)−1 ε

√
(Iq − ε∗ε)−1

ε∗
√

(Ip − εε∗)−1
√

(Iq − ε∗ε)−1

 . (23)

The reader will certainly recognize it as the J -unitary matrix Uε we used in the scalar
Nevanlinna-Pick algorithm. This matrix Uε is known as the Halmos extension of ε.
In particular, if W is an Arov-singular jpq-inner function then V is Arov-singular
as well. Note that every Darlington realization of a p× q Schur function f is non-
degenerate if Ip − f∗f is positive Hermitian almost everywhere on the unit circle.
This condition is particularly satisfied if f has finite entropy, i.e., if

1

4π

∫
T

log
(
det(Ip − f f∗)

)
dλ > −∞ (24)

holds true. Arov [Aro73] proved the important fact that a matrix-valued Schur func-
tion f admits a Darlington realization if and only if f admits a pseudocontinuation
(see also [DH73]). If a matrix-valued Schur function h admits a non-degenerate
Darlington realization, then it also admits a canonical Darlington realization. In
this case, one can see that h also has finite entropy.

In Arov’s famous paper [Aro73], he gave a complete description of all canonical
Darlington realizations of a given p× q Schur function which has finite entropy and
admits a pseudocontinuation. Furthermore, he got additionally that every matrix-
valued pseudocontinuable Schur function with finite entropy admits Darlington re-
alizations generated by jpq-inner functions of Smirnov type as well as by jpq-inner
functions of inverse Smirnov type. B. Fritzsche and B. Kirstein [FK93] character-
ized the situation when a given matrix-valued Schur function (with finite entropy)
admits a Darlington realization generated by some Arov-singular jpq-inner function.
In this paper they also investigated some kind of minimal Darlington realizations.

The problem of describing all Darlington realizations is equivalent to a block
completion problem for matrix-valued inner functions. In such a matrix completion
problem one has to characterize the set of all matrix-valued inner functions where
the right upper (respectively, left lower) block coincides with a given matricial Schur
function. Using the Potapov-Ginzburg transform (see (10)) it is easily checked
that a Schur function f admits a canonical Darlington realization with respect to
some jpq-inner function if and only if f can be embedded into the right upper
corner of some matrix-valued inner function. The investigation of such completion
problems for matrix-valued inner functions was initiated by Douglas/Helton [DH73]
who characterized the solvability of the problem. A detailed analysis of the structure
of the set of all solutions was considered in D.Z. Arov’s paper [Aro74a] which can
be considered as a continuation of his former work on Darlington synthesis (see
[Aro71, Aro73]).
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8 On J-inner functions and generalized bitangential Schur-Ne-

vanlinna-Pick interpolation

D.Z. Arov’s investigations on Darlington synthesis also mark the starting point of a
systematic study of J -inner functions. It is surprising that the non-rational J -inner
functions did not attract Potapov’s attention. For instance, the important fact,
that a left or right Blaschke-Potapov product is also a J -inner matrix function, was
proved by Arov/Simakova [AS76] in 1976 (more then 20 years after Potapov’s fund-
mental paper [Pot55]). Furthermore, D.Z. Arov continued his investigations about
the matricial Nehari problem which he started already with V.M. Adamjan and
M.G. Krĕın [AAK71b]. He discovered the connection between the matricial Nehari
problem and the so-called generalized bitangential Schur-Nevanlinna-Pick problem
which is a very useful matricial generalization of these interpolation problems, al-
ready investigated by Sarason.

Generalized Bitangential Schur-Nevanlinna-Pick Problem. Let S0 be a p×q Schur
function. Further let b1 and b2 be p × p and q × q matrix-valued inner functions,
respectively. Describe the set SNP(b1, b2; S0) of all p × q Schur functions S such
that

b−1
1 (S − S0)b

−1
2

belongs to the Hardy space H∞ of all bounded holomorphic functions in the unit
disc.

Arov considered this problem with the aim to treat various matricial interpola-
tion problems in a uniform framework. The specific interpolation problems result
from this general formulation by a special choice of b1, b2 and S0. Obviously, in the
scalar case, the solution is a Schur function S which interpolates S0 in the points
A = {ak}k∈K if we choose (b1b2)

−1 =
∏
a∈A ζa where ζa is a scalar Blaschke fac-

tor with zero a. The generalized bitangential Schur-Nevanlinna-Pick interpolation
problem is always solvable because S = S0 is obviously a solution. Arov showed
that, under a certain condition, the solution set of this interpolation problem can
be described by a linear fractional transform of a Schur function and the matrix
representing the transform is generated by a matricial J -inner function. As we men-
tioned above, M.G. Krĕın called this function a resolvent matrix of the interpolation
problem.

Arov’s observations led him to the corresponding inverse problem, which is to
describe the J -inner functions which are resolvent matrices of a non-degenerate
Schur-Nevanlinna-Pick problem. Several subclasses of J -inner functions turned out
to be important and a new factorization theory for J -inner functions arose [Aro73,
Aro74a, Aro75]. He proved that under some technical conditions, a J -inner function
W admits unique factorizations

W = RlSl = RrSr

where Rl and Rr are left respectively right Arov-regular J -inner functions and Sl and
Sr are Arov-singular J -inner functions. The definitions of left/right Arov-regular and
Arov singular J -inner functions have been given above in Section 2. Recall from the
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discussion given there that the definition of a left (respectively right) Arov-regular
J -inner function is taken with reference to Arov-singular J -inner functions with the
restriction, that there must not appear a non-constant Arov-singular J -inner left
(respectively right) divisor.

Arov [Aro89], [Aro90] showed that the resolvent matrices of a generalized bitan-
gential Schur-Nevanlinna-Pick interpolation problem (given above) can be charac-
terized by left (respectively, right) Arov-regular jpq-inner functions. In the following,
this will be explained in detail.

The generalized bitangential Schur-Nevanlinna-Pick problem which is given above
will be designated by P [b1, b2; S0]. Let Z be the set of the points of the unit disc,
for which the product det b1 det b2 does not vanish. For all z ∈ Z, the set

K := {S(z) : S ∈ SNP(b1, b2; S0)} (25)

admits a representation as a matrix ball, i.e., there are matrices M(z), L(z) and
R(z) such that

K(z) = {M(z) + L(z)εR(z)} (26)

where ε is an arbitrary contractive matrix. If there does not exist a point z0 in Z
such that detL(z0) vanishes, then the product detL(z) det R(z) is non-zero for any
z ∈ Z. Otherwise, if there does exist such a z0 ∈ Z, then the problem P [b1, b2; S0] is
called completely indeterminate. Smuljan [Smu68] showed that this result does not
depend on the special representation of K as a matrix ball.

Let W be a jpq-inner function which is partitioned as in (8). Then a well-known
theorem due to Ginzburg [Gin58] implies that both functions

S11 := W11 −W12W
−1
22 W21 (27)

and

S22 := W−1
22 (28)

are matrix-valued Schur functions where the functions det S11 and detS22 do not
vanish identically. The functions S11 and S22 also admit inner-outer factorizations. If
b1 and b2 are matrix-valued inner functions such that the functions b−1

1 S11 and S22b
−1
2

(respectively, S11b
−1
1 and b−1

2 S22) are outer, then [b1, b2] is called a left (respectively,
right) pair of inner functions associated with W. Arov [Aro73, Aro75] proved the
following: If [b1, b2] is a left pair of inner functions associated with a jpq-inner function
W , then [b1, b2] is also a left pair of inner functions associated with WWA, where
WA is an Arov-singular jqq-inner function. There is an analogous result for the right
case too. Furthermore, Arov used this pairs of inner functions to characterize the
case that a given jpq-inner function is a left or right Blaschke-Potapov product with
respect to jpq.

Now we turn our attention back to linear fractional transformations which are
generated by a matricial jpq-inner function W (see also Section 7). If W is partitioned
as in (8) then, for each p×q matrix-valued Schur function g, the function det(W21g+
W22) does not vanish identically. Furthermore,

f := (W11g + W12)(W21g + W22)
−1 (29)



On several aspects of J -inner functions in Schur analysis 633

is a matrix valued Schur function. Let Sp×q = Bp×q(D) be the set of all p× q Schur
functions in the unit disc. If we set

TW (Sp×q) := {(W11g + W12)(W21g + W22)
−1 : g ∈ Sp×q} (30)

then Arov’s theorem on the interrelations between generalized bitangential Schur-
Nevanlinna-Pick interpolation and jpq-inner function is as follows:

Theorem. Let S0 be a p× q Schur function and let b1 and b2 be p× p and q× q
matrix-valued inner functions respectively. Suppose that the problem P [b1, b2; S0] is
completely indeterminate. Then there is a left Arov-regular jpq-inner function Wl

such that
TWl

(Sp×q) = SNP(b1, b2; S0) .

If Vl is an arbitrary jpq-inner function such that

TVl(Sp×q) = SNP(b1, b2; S0)

and such that [b1, b2] is a left pair of inner functions associated with Vl, then there
is a jpq-unitary matrix U such that Vl = WlU . In particular, Vl is then left Arov-
regular.

Note that there is also a description of the set of solutions of a generalized bitan-
gential Schur-Nevanlinna-Pick problem in terms of a linear fractional transformation
which is generated by a right Arov-regular jpq-inner function. The next result was
also proved by Arov. It is a converse statement to the previous theorem.

Theorem. Let W be a jpq-inner function with block partition (8). Further let
S0 := W12W

−1
22 and let [b1, b2] be a left pair of inner functions associated with W .

Then the problem P [b1, b2; S0] is completely indeterminate and

TW (Sp×q) ⊆ SNP(b1, b2; S0)

where equality holds true if and only if W is left Arov-regular.

This result shows that a given jpq-inner function W generates naturally a gen-
eralized bitangential Schur-Nevanlinna-Pick problem. If the jpq-inner function W is
A-regular, then the solution set can be described as the image of the Schur class
under the linear fractional transformation generated by W . The characterization of
bitangential Schur-Nevanlinna-Pick problems which are generated by an arbitrary
J -inner function is an unsolved problem.

From the beginning of the nineties, D.Z. Arov, B. Fritzsche and B. Kirstein also
investigated further inverse problems. The considerations of questions about the in-
ner block structure of resolvent matrices led the team of Arov, Fritzsche and Kirstein
to various completion problems for jpq-inner functions. In [AFK93a] they described
the set of all jpq-inner functions W such that the right upper (or the left lower) block
of W coincides with a given function from the meromorphic Nevanlinna-Pick class.
The special subclasses of jpq-inner functions of Smirnov type and inverse Smirnov
type and the subclass of Arov-singular jpq-inner functions were also discussed. The
question of the description of the set of all jpq-inner functions with a given block
row or a given block column is treated in [AFK93b]
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9 Conclusion

We have sketched briefly the wide range of problems and disciplines that are cur-
rently covered by the term Schur analysis. Since this is only a survey paper, we have
only mentioned some of the topics and deliberately ommitted many others. Schur
analysis is currently a very active area of research where mathematicians form oper-
ator theory, complex function theory, matrix analysis, harmonic analysis, orthogonal
polynomials meet engineers and applied mathematicians from electrical engineering,
system theory, scattering theory, control theory, signal processing, prediction theory,
time series analysis and maybe many more applications to come. We concentrated
on the current evolution and tried to highlight the many roots that are found in the
work of researchers from the former east block. A second part of this survey nar-
rowed the field to the evolution of the study of J -inner functions, which we consider
to be at the heart of this kind of research. We sketched the old and new results that
were obtained since the initiation of the field by Potapov and his coworkers.
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ces and generalized Carathéodory–Fejér and F. Riesz problems. Funk.
Anal. i Prilozen, 2 (1968) No. 1, 1–19. (In Russian). English transla-
tion: Functional Anal. Appl. 2 (1968), 1–18.

[AAK68b] V.M. Adamjan, D.Z. Arov, and M.G. Krĕın. Infinite Hankel matri-
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[Bel70] V. Belevitch. Interpolation matrices. Philips Res. Repts., 25 (1970),
337–369.

[Bru31] O. Brune. Synthesis of finite two-terminal network whose driving point
impedance is a prescribed function of frequency. J. Math. Phys., 10
(1931), 191–236.
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von harmonischen Funktionen mit ihren Koefficienten und über den
Picard-Landauschen Satz. Rend. Circ. Mat. Palermo, 32 (1911), 218–
239.
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[Her83] G. Herglotz. Über Potenzreihen mit positiven reellen Teil im Ein-
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Birkhäuser Verlag, 1997.

[Kov66] I.V. Kovalishina. The multiplicative structure of analytical reactive
matrix functions. Izv. Armjan. SSR Mat., 1 (1966) No. 2, 138–146.
(In Russian).



644 A. Bultheel – K. Müller

[KP74] I.V. Kovalishina and V.P. Potapov. An indefinite metric in the
Nevanlinna-Pick problem. Dokl. Akad. Nauk Armjan. SSR, 59 (1974)
No. 1, 17–22. (In Russian). English translation in T. Ando (ed.) Col-
lected papers of V.P. Potapov, Hokkaido University, Sapporo 1982, pp.
33–40.

[KP81a] I.V. Kovalishina and V.P. Potapov. Integral representation of Her-
mitian positive functions. Khark’hov Railway Engineering Inst.,
Khar’kov, 1981. Deposited in VINITI 1981, N0. 2984-81. (In Russian).

[KP81b] I.V. Kovalishina and V.P. Potapov. The radii of the Weyl matrix balls
in a mathematical Nevanlinna-Pick problem. In V.A. Marcenko, editor,
Operator Theory in Function Spaces and Their Applications, pages 25–
49, Kiev, 1981. Naukova Dumka. (In Russian). English translation in
Collected papers of V.P. Potapov, Hokkaido University, Sapporo 1982,
pp. 67–99.

[KP89] I.V. Kovalishina and V.P. Potapov. The method of triades in the
theory of continuation of Hermitian positive functions. Izv. Akad. Nauk
Armjan. SSR, Ser. Mat., 23 (1989), 269–292. (In Russian).
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[Sze20] G. Szegő. Beiträge zur Theorie der Toeplitzschen Formen. Math. Z.,
(1920). Teil I: 6 (1920), 167–202; Teil II: 9 (1921), 167–190.
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