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Abstract

Let E be a Banach space and Λ a Banach perfect sequence space. Denote
by Λ(E) the space of all Λ-summable sequences from E. In this note it is
proved that Λ(E) is reflexive if and only if Λ and E are reflexive and each
member of Λ(E) is the limit of its finite sections.

1 Introduction and preliminaries

Let Λ be a normal sequence space, with Köthe dual Λ∗ and let E be a locally
convex space. A sequence (xn)n ⊂ E is said to be Λ-summable if the series

∑
αnxn

converges in E for all (αn)n in Λ∗. Denote by Λ(E) the linear space of all Λ-summable
sequences from E. These spaces were introduced by A. Pietsch in [6] and some of
their properties were studied in [5] when Λ is endowed with the normal topology.
The general case was studied by M. Florencio and P. J. Paúl in [2] and [3]. At this
point, we refer the reader to [5] for details concerning Köthe theory of sequence
spaces.

In this note, we give a partial solution to the following general question asked to
the author by Prof. Paúl: When is the subspace Λ(E)r of Λ(E), consisting of those
sequences which are the limit of their sections, reflexive? Since Λ(E)r is isometrically
isomorphic to the complete injective tensor product Λ⊗̃εE of Λ and E (Prop. 2 in
[2]), the answer would give conditions for Λ⊗̃εE to be reflexive.
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In the sequel E stands for a Banach space with norm || · ||E and E∗ denotes
its topological dual, and Λ stands for a Banach perfect sequence space whose norm
|| · ||Λ satisfies:

(1) For all α and β in Λ, if α ≤ β, then ||α||Λ ≤ ||β||Λ, and
(2) (Λ, || · ||Λ) is an AK-space, i.e., every α = (αn)n ∈ Λ is the || · ||Λ-limit of

its finite sections (α1, . . . , αn, 0, . . .), n ∈ N. It is well-known that this condition
holds if, and only if, the topological dual of Λ coincides with its Köthe dual Λ∗. In
particular, Λ is reflexive if, and only if, (Λ∗, || · ||Λ∗) is also an AK-space.

The following proposition, whose proof is similar to that of Prop. 1 in [2], defines
a natural norm on Λ(E):

Proposition 1: For every x = (xn)n ∈ Λ(E) and x∗ ∈ E∗, (〈x∗, xn〉)n belongs to Λ
and

||x||Λ(E) =: sup{||(〈x∗, xn〉)n||Λ, x∗ ∈ E∗ : ||x∗||E∗ ≤ 1}

defines a (complete, whenever E is complete) norm on Λ(E). Moreover, Λ and E
are closed topological subspaces of (Λ(E), || · ||).

2 Reflexivity of Λ(E)

We start with the following result.

Proposition 2: Λ(E) is isometrically isomorphic to a closed subspace of the space
L(Λ∗, E) of all bounded linear operators from Λ∗ to E. If, in addition, Λ∗ is an
AK-space, this embedding is even onto.

Proof: For every x = (xn)n ∈ Λ(E), let Tx : Λ∗ → E be defined by Tx(α) =∑∞
n=1 αnxn. Then

||Tx(α)||E =

∥∥∥∥∥

∞∑

n=1

αnxn

∥∥∥∥∥
E

= sup

{∣∣∣∣∣

∞∑

n=1

αn〈x
∗, xn〉

∣∣∣∣∣ : x∗ ∈ E∗, ||x∗||E∗ ≤ 1

}

≤ ||α||Λ∗||x||Λ(E).

Therefore, Tx is bounded. Moreover,

||Tx|| = sup

{∥∥∥∥∥

∞∑

n=1

αnxn

∥∥∥∥∥
E

: ||α||Λ∗ ≤ 1

}

= sup

{
∞∑

n=1

|αn〈x
∗, xn〉| : ||x

∗||E∗ ≤ 1, ||α||Λ∗ ≤ 1

}

= sup {‖〈x∗, xn〉)n‖Λ : ||x∗||E∗ ≤ 1} = ||x||Λ(E).

Hence the linear mapping T : Λ(E) → L(Λ∗, E), x 7→ Tx is an isometry. It

remains to show that the range of T is closed in L(Λ∗, E). Given u ∈ T (Λ(E))
L(Λ∗,E)

and ε > 0, take a ∈ Λ(E) such that ||Ta − u||L(Λ∗,E) ≤ ε/2. We shall prove that, if
en is the n-th unit vector of Λ∗ and x = (u(en))n, then x ∈ Λ(E). Indeed, for every
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α = (αn)n ∈ Λ∗ (we may and do assume that ||α||Λ∗ ≤ 1), there exists n0 ∈ N such
that, for every n > m > n0, we have ||Ta(

∑n
p=m αpep)|| ≤ ε/2. Therefore,

∥∥∥∥∥

n∑

p=m

αpu(ep)

∥∥∥∥∥ =

∥∥∥∥∥u(
n∑

p=m

αpep)

∥∥∥∥∥

≤

∥∥∥∥∥(u − Ta)(
n∑

p=m

αpep)

∥∥∥∥∥+

∥∥∥∥∥Ta(
n∑

p=m

αpep)

∥∥∥∥∥

≤
ε

2
+

ε

2
= ε.

This shows that
∑

αpu(ep) is a Cauchy, hence convergent, series in E, that is,
x ∈ Λ(E). Since u = Tx, this shows that Λ(E) is closed.

Finally, assume that Λ∗ is an AK-space and take v ∈ L(Λ∗, E). Since for every
α = (αn)n ∈ Λ∗ the series

∑
αnen converges in E, we have that v(α) =

∑
αnv(en).

This shows that y = (v(en))n belongs to Λ(E) and that u = Ty, so that T is onto. �

Proposition 3: Let x be in Λ(E). Then Tx is compact if, and only if, x is the limit
of its finite sections. Moreover, if Λ∗ is an AK-space, then Λ(E)r is isometrically
isomorphic to the subspace K(Λ∗, E) of L(Λ∗, E) of all compact operators from Λ∗

to E.

Proof: We introduce the following notation. If z = (zn) is a sequence, then z〈k〉

stands for the difference between z and its k-th finite section, that is, z〈k〉 =
(0, 0, . . . , 0, zk+1, zk+2, . . . ).

Now for the proof, let x = (xn)n ∈ Λ(E) be the limit of its finite sections. Since
Tk : Λ∗ → E, Tk(α) =

∑k
n=1 αnxn is of finite rank for every k ∈ N and, by the

preceding proposition,

||Tx − Tk||L(Λ∗,E) = ||Tx〈k〉||L(Λ∗,E)||(0, 0, . . . , 0, xk+1, xk+2, . . . )||Λ(E),

hence Tx is compact. Conversely, assume that Tx is compact but x is not the limit
of its finite sections. Then there exist ε > 0 and a subsequence (uj = T

x
〈kj〉)j of

(Tx〈k〉)k such that ||uj|| > ε, for every j ∈ N and we have

sup{||u∗
j(x

∗)|| : ||x∗|| ≤ 1} = ||u∗
j || = ||uj|| > ε.

where u∗
j denotes the adjoint of uj. Now choose a sequence (x∗

j)j in the unit ball of
E∗ such that for every j ∈ N we have ||u∗

j(x
∗
j)|| > ε. But, on the other hand, for

every x∗ ∈ E∗ and α = (αn) ∈ Λ∗, we have

〈T ∗
x (x∗), α〉 = x∗Tx(α) = x∗

(
∞∑

n=1

αnxn

)
= 〈(〈x∗, xn〉)n, α〉.

Since (〈x∗, xn〉)n belongs to Λ, it follows that T ∗
x takes its values in Λ. Therefore,

by Schauder theorem, T ∗
x is a compact operator from E∗ to Λ and, passing to a

subsequence if necessary, we may assume that (T ∗
xx∗

j ) is a convergent sequence with
limit β ∈ Λ. Take j0 ∈ N such that ||T ∗

xx∗
j − β||Λ ≤ ε/2 for every j ≥ j0, then for

all k ∈ N we have
∣∣∣||(T ∗

xx∗
j )

〈k〉||Λ − ||β〈k〉||Λ
∣∣∣ ≤ ||(T ∗

xx∗
j )

〈k〉 − β〈k〉||Λ ≤ ||T ∗
xx∗

j − β||Λ ≤ ε/2.
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A straightforward computation shows that

u∗
j(x

∗
j ) = T

x
〈kj〉(x

∗
j ) = (T ∗

xx∗
j )

〈kj〉,

whence
ε ≤ ||u∗

j(x
∗
j )|| = ||(T ∗

xx∗
j)

〈kj〉||Λ ≤ ε/2 + ||β〈kj〉||Λ

but this is a contradiction with the fact that (β〈j〉) is a null sequence because Λ is an
AK-space. This finishes the proof that Tx is compact if, and only if, x is the limit
of its finite sections.

Now, if Λ∗ is also an AK-space, then, as we proved in the preceding proposition,
x := (u(en)) belongs to Λ(E) for all u ∈ L(Λ∗, E) and, moreover, Tx = u. The
conclusion follows from the first part of this proposition. �

We now give the promised characterization of the reflexivity of Λ(E).

Main Theorem: The following assertions are equivalent: (a) Λ(E) is reflexive.
(b) Λ and E are reflexive and Λ(E) is an AK-space.
(c) Λ⊗̃εE is reflexive.

Proof: Assume that Λ(E) is reflexive. Then, by Proposition 1, Λ and E are re-
flexive and, in particular, according to the remark made in condition (2) preceding
Proposition 1, Λ∗ is an AK-space so that both Λ and Λ∗ have the approximation
property. On the other hand, by using Proposition 2 we have that L(Λ∗, E) = Λ(E)
is reflexive hence, by Theorem 2 of [4], L(Λ∗, E) = K(Λ∗, E). Using Proposition 3,
we get Λ(E) = Λ(E)r and this proves that (a) implies (b).

Next, if (b) holds, an application of Propositions 2 and 3, and Theorem 44.2.(6)
of [5] or Proposition 2 in [2], gives

L(Λ∗, E) = Λ(E) = Λ(E)r = K(Λ∗, E) = Λ⊗̃εE.

Again, by Theorem 2 of [4], L(Λ∗, E) = Λ⊗̃εE is reflexive, and this shows that (c)
holds.

Finally suppose that Λ⊗̃εE is reflexive. Then Λ and E, which can be seen as
closed subspaces of Λ⊗̃εE = Λ(E)r, are reflexive. It is well-known then (see, e.g.,
[1], p. 247) that

(Λ⊗̃εE)∗∗ = (Λ∗⊗̃πE∗)∗ = L(Λ∗, E∗∗) = L(Λ∗, E),

and Proposition 2 yields the reflexivity of Λ(E). �

Final remarks. There are examples of Banach spaces Λ and E for which Λ(E)
is reflexive. Such are given by `p(`q) where p, q ∈ (1;∞) and pq < p + q, that is,
q < p∗, the latter being the conjugate of p. The reflexivity follows from Proposition
2 and the fact that L(`p∗ , `q) is reflexive if q < p∗. (See e.g [1] p. 248). Actually,
this condition turns out to be necessary. In particular, the spaces `p(`q) are never
reflexive if 2 ≤ p ≤ q, but they are always reflexive whenever 1 < p ≤ q < 2.
In particular, for every separable Hilbert space H , `p(H) is reflexive if and only if
1 < p < 2.
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