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Abstract

For a positive integer s and for 0 ≤ a < b, let

K = Ks
a,b =

s−1
⋃

k=0

e2πi k
s [a, b].

We find that the capacity Cap(K) of K is

Cap(K) =
s

√

bs − as

4
· (1)

From this relation we derive several classical results, due to Akhiezer,
Henrici, and Bartolomeo and He, on capacities of some sets in the complex
plane.

An extension relation (1) to more general sets in the complex plane, to-
gether with potential theoretic techniques, is then used to obtain saturation
theorems pertaining to approximation by polynomials with integer coeffi-
cients.
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1 Introduction and Preliminaries from Approximation Theory in

the Complex Plane.

Let E be a compact simply connected set of the complex plane containing more
than one point and let ω = φ(z) map conformally Ext(E) into |ω| > 1 and with
φ(∞) = ∞. The map φ(z) has the form

φ(z) =
z

c
+ a0 +

a−1

z
+
a−2

z2
+ · · ·

The number c > 0 is the capacity Cap(E) of the set E.
The capacity is a concept of fundamental importance in complex analysis and

potential theory where it plays an important role in the theory of removable sets.
It also plays an increasingly important role in partial differential equation of elliptic
type. See [5], [11].

In some few cases the Cap(E) of the set E can be computed explicitly.
As well known

Cap ([a, b]) =
b− a

4
· (1.1)

Another important result (see [8] and [2]) is

Cap

(

s−1
⋃

k=0

e2πi k
s

[

0,
s
√

4
]

)

= 1. (1.2)

This result has been used by Henrici, and Bartolomeo and He (see [2], [9]) in their
study of the Faber polynomials associated with certain regions of the complex plane.

Another standard result states that

Cap ([−1,−a] ∪ [a, 1]) =

√

1− a2

4
· (1.3)

This result has been obtained by Akhiezer (see [1] where the term transfinite diam-
eter is used.)

Another classical result states that

Cap (|z| = b) = Cap (a ≤ |z| ≤ b) = Cap (|z| ≤ b) = b. (1.4)

Then using standard conformal mapping arguments, we obtain another proof of the
well known fact that the capacity of a closed Jordan curve equals that of the set
enclosed by this curve.

It is the purpose of the first part of this work to show that the four mentioned
results are all particular cases of a more general result, namely

Theorem. For a positive integer s and for 0 ≤ a < b, let

K = Ks
a,b =

s−1
⋃

k=0

e2πi k
s [a, b].

Then the capacity Cap(K) of K is

Cap(K) =
s

√

bs − as

4
· (1.5)
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It is clear that relation (1.5) implies (1.1), (1.2) and (1.3).
Note that

s−1
⋃

k=0

e2πi k
s [a, b] =

s−1
⋃

k=0

e2πi k
s [0, b] −

s−1
⋃

k=0

e2πi k
s [0, a).

However this relation together with (1.2) does not imply (1.5) because the set func-
tion Cap( · ) is not an additive set function.

The fact that (1.5) implies (1.4) can be heuristically explained as follows. Let
0 ≤ a < b. Then

lim
s→∞

s

√

bs − as

4
= b. (1.6)

On the other hand

lim
s→∞

s−1
⋃

k=0

e2πi k
s [a, b] = {a ≤ |z| ≤ b} .

This statement must be understood as follows. ∀ε > 0 ∃S > 0 such that s ≥ S

implies
⋃s−1

k=0 e
2πi k

s [a, b] is ε dense in {a ≤ |z| ≤ b} . Hence, if we can prove that

lim
s→∞

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

= Cap (a ≤ |z| ≤ b) , (1.7)

then this relation, together with (1.5) and (1.6), would yield

Cap (a ≤ |z| ≤ b) = b.

Now, letting first a → 0 then letting a → b, we should recover the classical result
(1.4).

However it is possible to construct sets Sn with lim
n→∞Sn = S and lim

n→∞Cap(Sn) 6=
Cap(S). This shows that the above heuristic argument will have to be refined in
order to show that (1.5) implies (1.4). In fact relation (1.7) is true and part of the
work to show that (1.5) implies (1.4) will precisely reduce to proving the validity of
(1.7).

Relation (1.7) will be proved in the Appendix.
We end this introduction with the following celebrated theorem of Walsh and

Bernstein [16] that will play a fundamental role in the sequel.

Theorem 1.1. (Walsh-Bernstein) Let E be as above and let Pn(z) be a polynomial
of degree (at most) n with

‖Pn(z)‖E ≤ 1.

Then, for ρ > 1, one has
‖Pn(z)‖Γρ

≤ ρn.

Because of the importance of this theorem in our work, we give a simplified proof
of it made possible by the additional assumption that Br(E) is a Jordan curve. In
that case the maximum principle extends to the extended mapping function.

Proof. Because the Laurent expansion at ω = ∞ of z = ψ(ω) is of the form
ψ(ω) = c ω + b0 + b−1

ω
+ b−2

ω2 + · · · , the function Pn(ψ(ω)) has a pole of order n at
∞. It follows that

f(ω) :=
Pn(ψ(ω))

ωn
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is analytic at ∞. Now the maximum principle yields, for ρ ≥ 1,

sup
|ω|=1

∣

∣

∣

∣

∣

Pn(ψ(ω))

ωn

∣

∣

∣

∣

∣

≥ sup
|ω|=ρ

∣

∣

∣

∣

∣

Pn(ψ(ω))

ωn

∣

∣

∣

∣

∣

.

Walsh’s theorem follows if we remark that

sup
|ω|=ρ

|Pn(ψ(ω))| = sup
z∈Γρ

|Pn(z)|.

�

This paper is organized as follows: In the next section we construct the fun-
damental conformal mapping – and Green’s function – which will allow us to find
the capacity of K. The study of the level curves of this mapping function together
with the Walsh-Bernstein theorem will be the principal tools for proving, in Section
4, our saturation results pertaining to approximation by polynomials with integer
coefficients.

2 Construction of the Fundamental Conformal Mapping and the

Capacity of K.

Recall that the set K was defined by

K =
s−1
⋃

k=0

e2πi k
s [a, b],

with 0 ≤ a < b.

Lemma 2.1. The s-to-one mapping function

ω = g(z) =
2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

transforms Ext(K) into |ω| > 1. Its (continuous) extension to C maps each of the

intervals e2πi k
s [a, b], traversed twice, into |ω| = 1.

Proof. The function
ω = z +

√
z2 − 1

transforms conformally Ext[−1, 1] into |ω| > 1. Hence the function

ω =
2z

b− a
− b+ a

b− a
+

√

√

√

√

(

2z

b− a
− b+ a

b− a

)2

− 1

transforms conformally Ext[a, b] into |ω| > 1. Here the square root in the func-
tion ω = z +

√
z2 − 1 is uniquely chosen in such a way that its branch cut is the

interval [−1, 1]. Its (continuous) extension to C maps the interval [a, b], traversed
twice, into |ω| = 1. Hence the continuous extension of g(z) to C maps each of the

intervals e2πi k
s [a, b], traversed twice, into |ω| = 1. The lemma follows now by direct

computation. �
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Corollary 2.1. The harmonic function

G(z) =
1

s
log

∣

∣

∣

∣

∣

∣

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

is the Green function with logarithmic pole at ∞ of Ext(K) with boundary values

lim
z→z0∈K

G(z) = 0.

2.1 Study of the Level Curve |h(z)| = C.

Theorem 2.1. With 0 < a < b, the level curve

|h(z)| =

∣

∣

∣

∣

∣

∣

∣

∣

s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

∣

∣

=
s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2

passes through the point 0.

Proof. Recall that the square root in the function

f(z) =
2z

b− a
− b + a

b− a
+

√

√

√

√

(

2z

b− a
− b + a

b− a

)2

− 1

is uniquely chosen in such a way that its branch cut is the interval [a, b]. Now if
x ∈ R, x < a < b, then

(

2x

b− a
− b+ a

b− a

)2

− 1 > 0.

It follows that

f(x) =
2x

b− a
− b + a

b− a
−

√

√

√

√

(

2x

b− a
− b+ a

b− a

)2

− 1, if x < a < b.

Here

√

√

√

√

(

2x
b−a

− b+a
b−a

)2

− 1 must be understood as the positive square root of the

positive number

(

2x
b−a

− b+a
b−a

)2

− 1. It follows in a similar manner that, if 0 < a < b,

then

h(0) =
s

√

√

√

√

√−b
s + as

bs − as
−

√

√

√

√

(

bs + as

bs − as

)2

− 1,

where, again,

√

√

√

√

(

bs+as

bs−as

)2

− 1 is the positive square root of the positive number

(

bs+as

bs−as

)2

− 1. Hence

|h(0)| = s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2
·

�
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Remark. If x ∈ R, a < b < x, then

f(x) =
2x

b− a
− b+ a

b− a
+

√

√

√

√

(

2x

b− a
− b+ a

b− a

)2

− 1, a < b < x,

with an interpretation of the square root similar to that of Proposition 2.1.

Corollary 2.2. The one-to-one mapping function

ω = h(z) =
s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1,

with inverse map

z = ψ(ω) = s

√

1

4
(bs − as)

(

ωs +
1

ωs

)

+
bs + as

2
,

maps conformally










z ; |h(z)| > s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2











into

|ω| > s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2
·

Proof. The s root above is uniquely defined by imposing

s
√
z = s

√

ρeiθ = s
√
ρei θ

s .

In view of the previous Theorem 2.1, the level curve

|h(z)| = M

with

M >
s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2

consists of a single analytic curve. Hence with the s root so defined, h(z) = s

√

g(z)

transforms the s-to-one function g(z) into the one-to-one function h(z) and maps

Ext





|h(z)| = s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2







into

|ω| > s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2
·

�
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Remark. In the case s = 1, the above restriction |ω| >
√

b+
√

a√
b−√a

is not needed and,

clearly, in that case, h(z) maps conformally Ext[a, b] into |ω| > 1. However in the

case s ≥ 2, the restriction |ω| > s

√

b
s
2 +a

s
2

b
s
2−a

s
2

cannot be relaxed. This is due to the

fact, as will be noticed as a consequence of Theorem 2.2 below, that the level curve

|h(z)| = C, with 1 < C < s

√

b
s
2 +a

s
2

b
s
2−a

s
2

consists of s non intersecting closed curves.

Our mapping function ω = h(z) allows us to recover, as a special case, the
following result.

Corollary 2.3. (Henrici [8]) The mapping function

z = ψ(ω) =
(

ω
s
2 +

1

ω
s
2

)

2
s

maps conformally
|ω| > 1

into

Ext

(

s−1
⋃

k=0

e2πi k
s

[

0,
s
√

4
]

)

.

Proof. A rather lengthy but, at the same time, elementary computation shows

that the inverse map z = ψ(ω), |ω| > s

√

b
s
2 +a

s
2

b
s
2−a

s
2
, of the conformal map

ω = h(z) =
s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

is

z = ψ(ω) =
s

√

1

4
(bs − as)

(

ωs +
1

ωs

)

+
bs + as

2
·

Letting a = 0 and b = s
√

4 in z = ψ(ω) gives z = ψ(ω) =
(

ω
s
2 + 1

ω
s
2

)
2
s
, |ω| > 1. The

image by z = ψ(ω) of |ω| > 1 is Ext (K) with a = 0 and b = s
√

4. �

Remark. The above expression for z = ψ(ω) shows, once more, that

Cap
(

⋃s−1
k=0 e

2πi k
s

[

0, s
√

4
])

= 1. Indeed, it suffices to notice that the first term of the

Laurent expansion at ∞ of z = ψ(ω) =
(

ω
s
2 + 1

ω
s
2

) 2
s is 1× ω.

We summarize at this point those consequences of Theorem 2.1 and Corollary
2.2 that, in conjunction with the Walsh-Bernstein theorem, will be the principal
tools in the proofs of our main results.

Theorem 2.2. Consider the level curve

|h(z)| =

∣

∣

∣

∣

∣

∣

∣

∣

s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

∣

∣

= C.
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If C = 1, then the level curve |h(z)| = C consists of the set K.

If 1 < C < s

√

b
s
2 +a

s
2

b
s
2−a

s
2

then the level curve |h(z)| = C consists of s pairwise dis-

joint closed curves each of which contains in its interior exactly one of the intervals
e2πi k

s [a, b] making up K =
⋃s−1

k=0 e
2πi k

s [a, b].

If C = s

√

b
s
2 +a

s
2

b
s
2−a

s
2

then the level curve |h(z)| = C is a lemniscate-like curve which

consists of s closed branches, whose only common point is the point 0 and all of which
coalesce at the point 0. Moreover each of these branches contains in its interior
exactly one of the intervals e2πi k

s [a, b].

If C > s

√

b
s
2 +a

s
2

b
s
2−a

s
2

then the level curve |h(z)| = C consists of a single closed curve

and contains 0
(

as well as
⋃s−1

k=0 e
2πi k

s [a, b]
)

in its interior.

2.2 The Capacity of K and of the Associated Level Curve |h(z)| = C.

Theorem 2.3. The capacity Cap(K) of K is

Cap(K) =
s

√

bs − as

4
·

Proof. For |u| large we have

√
u2 − 1 = u− 1

2u
− 1

8u3
+ · · ·

It follows that the Laurent expansion at ∞ of

g(z) =
2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

is

2

(

2zs

bs − as
− bs + as

bs − as

)

− 1

2
(

2zs

bs−as − bs+as

bs−as

) − 1

8
(

2zs

bs−as − bs+as

bs−as

)3 + · · ·

Hence the theorem follows from Corollary 2.1. �

Theorem 2.2, in conjunction with Theorem 2.3, allows us to find the value of C
for which the capacity of the level curve |h(z)| = C equals 1. These result will help
us prove saturation results next section.

Corollary 2.4. The capacity of the level curve

|h(z)| = s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2

is

s

√

√

√

√

(

b
s
2 + a

s
2

)2

4
·
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Proof. It suffices to remark that

s

√

√

√

√

b
s
2 + a

s
2

b
s
2 − a

s
2
× s

√

bs − as

4
=

s

√

√

√

√

(

b
s
2 + a

s
2

)2

4
·

The conclusion follows from Theorem 2.3. �

Corollary 2.5. With bs − as < 4, the level curve

|h(z)| =

∣

∣

∣

∣

∣

∣

∣

∣

s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

∣

∣

= s

√

4

bs − as

has capacity one.

Proof. Because bs − as < 4, Cap(K) = s

√

bs−as

4
< 1. On the other hand h(z)

maps Ext(K) into |ω| > 1. It follows that the curve

|h(z)| = s

√

4

bs − as
> 1

is indeed a single level curve of |h(z)|. That the capacity of this level curve is one
follows from an argument similar to that of Corollary 2.4 and again from Theorem
2.3. �

3 Saturation Properties of Polynomials with Integer Coefficients.

Let f(x) be a continuous function defined on [a, b] and let En(f) be the degree of
approximation of f, for the supremum norm on [a, b], by polynomials of degree (at
most) n. Thus

En(f) = inf
P∈Pn

‖f − P‖.

Here Pn denotes the space of polynomials of degree at most n and ‖ · ‖ is the
supremum norm on [a, b]. Let PI

n denote the subset of Pn formed by imposing that
all the coefficients of P ∈ Pn be integers and let

EI
n(f) = inf

P∈P
I
n

‖f − P‖

be the corresponding degree of approximation of f, for the supremum norm on [a, b],
by polynomials of degree (at most) n with integer coefficients.

It is a classical result (see [10]) that approximation by polynomials with integer
coefficients is not possible if

Cap([a, b] ≥ 1) that is to say if b− a ≥ 4. (3.1)

More precisely, if relation (3.1) is satisfied and

lim
n→∞

EI
n(f) = 0,
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then
f ∈ P

I
n

for some n.
A typical question addressed in this section is the following: Let b − a < 4. If

EI
n(f) tends to zero fast enough, can we conclude that f ∈ PI

n? For instance it is
not difficult to find a number ρ > 1 such that the relation

EI
n(f) ≤ C

ρn
∀n (3.2)

implies f ∈ PI
n for some n. As an example consider the case [a, b] = [−1, 1]. Then

relation (3.2) together with
ρ > 1 +

√
2

implies f ∈ PI
n for some n. Indeed in view of Bernstein’s theorem (recalled earlier

in the form of Walsh-Bernstein’s theorem) the relation

En(f) ≤ EI
n(f) ≤ C

ρn

implies that f is analytic in the interior of the ellipse whose foci are −1 and 1 and
whose axes have lengths ρ + 1

ρ
and ρ − 1

ρ
. Moreover the polynomials (with integer

coefficients) Pn converge uniformly to f on the compact subsets of the interior of
this ellipse. Hence P (k)

n converge uniformly to f (k) on the same compact subsets, so

that f(k)(0)
k!

∈ Z. Now with ρ > 1 +
√

2, we have ρ − 1
ρ
> 2 (and ρ + 1

ρ
> 2

√
2.) It

follows that this ellipse contains in its interior a disk centered at 0 and with radius
a > 1. Hence for the function f we have

f(z) =
∞
∑

n=0

anz
n

with
an ∈ Z

and
1

lim supn→∞
n

√

|an|
≥ a > 1.

It follows that
an = 0, n ≥ N

for some N, so that f ∈ PI
N−1.

We will see (again in the case [a, b] = [−1, 1]) that the condition
ρ > 1+

√
2 is unnecessarily strong and that ρ > 2 is sufficient to ensure that f ∈ PI

n.

More precisely we will see that the condition

∞
∑

n=1

2nEI
n(f) <∞

guarantees that f ∈ PI
n.
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More generally we will show: Let

K =
s−1
⋃

k=0

e2πi k
s [a, b]

with 0 ≤ a < b. Approximation by polynomials with integers coefficients is not
possible if bs − as ≥ 4.

Theorem 3.1. Let s be a positive integer and let 0 ≤ a < b with bs − as < 4. Let K
be as above. If

∞
∑

n=1





s

√

4

bs − as





n

EI
n(f,K) <∞

then

f ∈ P
I
n.

Theorem 3.1 is a typical saturation result. Saturation-type results tell us that
the rate of convergence cannot exceed a certain speed no matter how smooth the
function is, unless it belongs to a very special class. A classical example is provided
by the Bernstein polynomials, Bn(f), of a given function f. Bn(f) cannot tend to f

faster than O
(

1
n

)

no matter how smooth f is unless f is a polynomial of degree 1.
Saturation theory is extensively treated in the classical books of G. G. Lorentz and
H. S. Shapiro, [10] and [13]. For a treatment of saturation theory from a slightly
different angle, see [3].

3.1 Proof of Theorem 3.1.

We have now built the necessary tools to prove the main result of this section that
we reproduce here for convenience.

Theorem. Let s be a positive integer and let 0 ≤ a < b with bs − as < 4. Let

K =
s−1
⋃

k=0

e2πi k
s [a, b].

If
∞
∑

n=1





s

√

4

bs − as





n

EI
n(f,K) <∞ (3.3)

then

f ∈ P
I
n.

We will prove this result in the case 0 < a < b and then indicate the necessary
modifications pertaining to the case 0 = a < b.

Proof. We first remark that, in view of Theorem 3.1,

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≥ 1



432 M. Hasson

if
bs − as ≥ 4.

It follows that, if bs−as ≥ 4, then EI
n(f,K) cannot tend to 0 as n tends to ∞ unless

f ∈ PI
n for some n. See [10].

Let then bs − as < 4 and assume that relation (3.3) holds. With Pn ∈ PI
n such

that
‖Pn − f‖K = EI

n(f,K),

we have

Pn − f =
∞
∑

k=n

Pk − Pk+1,

where the convergence takes place for the ‖.‖K norm. Let Γρ be the level curve

Γρ =

∣

∣

∣

∣

∣

∣

∣

∣

s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

∣

∣

= ρ.

Hence, with

ρ = s

√

4

bs − as
,

‖Pn − f‖Γρ
≤

∞
∑

k=n

‖Pk − Pk+1‖Γρ
.

It follows from Walsh-Bernstein’s theorem that

‖Pn − f‖Γρ
≤

∞
∑

k=n

ρk‖Pk − Pk+1‖K.

Hence

‖Pn − f‖Γρ
≤ 2

∞
∑

k=n

ρk EI
k(f,K).

Because ∞
∑

n=1

ρn EI
n(f,K) <∞,

lim
n→∞ ‖Pn − f‖Γρ

= 0.

Thus the function f is analytic inside the level curve Γρ and continuous up to the
boundary Γρ. Moreover the sequence Pn converges uniformly to f on this level curve
(as well as on its interior.) But Corollary 2.5 tells us that the level curve

|h(z)| =

∣

∣

∣

∣

∣

∣

∣

∣

s

√

√

√

√

√

2zs

bs − as
− bs + as

bs − as
+

√

√

√

√

(

2zs

bs − as
− bs + as

bs − as

)2

− 1

∣

∣

∣

∣

∣

∣

∣

∣

= ρ

has capacity one. Hence by the fundamental result on approximation theory by
polynomials with integer coefficients [10], f ∈ PI

n for some n.
In the case 0 = a < b, the level curve Γρ consists always of a unique analytic

curve (of capacity one) and the proof remains unchanged. �
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A Proof of Relation (1.7).

We reproduce here for convenience Relation (1.7).

Theorem A.1. Let 0 ≤ a < b. Then

lim
s→∞Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

= Cap (a ≤ |z| ≤ b) .

Proof. Recall that for a compact (infinite) set E ⊂ C

Cap(E) = lim
n→∞

sup
zi, zj ∈ E





∏

1≤i<j≤n

|zi − zj|




1

(n
2)
.

See [15]. Clearly

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≤ Cap (a ≤ |z| ≤ b) .

Hence

lim sup
s→∞

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≤ Cap (a ≤ |z| ≤ b) . (a.1)

As well known

sup
zi, zj ∈ {a≤|z|≤b}





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

is a decreasing function of n. (See [15].) Hence

sup
zi, zj ∈ E





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

≥ Cap (a ≤ |z| ≤ b) .

Let z1, z2, · · · zn ∈ {a ≤ |z| ≤ b} designate the complex numbers for which the
above supremum is reached. So, with those values for z1, z2, · · · zn, we have





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

≥ Cap (a ≤ |z| ≤ b) . (a.2)

Observe now that the function

f(z1, z2, · · · zn) :=





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

is uniformly continuous for z1, z2, · · · zn ∈ {a ≤ |z| ≤ b} . Let now n ∈ N be an
integer whose value will be determined later in such a way that relation (a.5) below
holds true. Hence there exists δ > 0 small enough such that

∣

∣

∣zi − z
′

i

∣

∣

∣ ≤ δ, i = 1, 2, · · · n
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implies
∣

∣

∣f(z1, z2, · · · zn) − f(z
′

1, z
′

2, · · · z
′

n)
∣

∣

∣ ≤ 1

2
ε

Pick now s so large that
x ∈ {a ≤ |z| ≤ b}

implies

dist

(

x ,
s−1
⋃

k=0

e2πi k
s [a, b]

)

≤ δ.

Now perturb z1, z2, · · · zn ∈ {a ≤ |z| ≤ b} for which





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

≥ Cap (a ≤ |z| ≤ b)

into
z
′

1, z
′

2, · · · z
′

n

in such a way that the following properties hold:

1. z
′

1, z
′

2, · · · z
′

n ∈
s−1
⋃

k=0

e2πi k
s [a, b]

and

2.
∣

∣

∣zi − z
′

i

∣

∣

∣ ≤ δ, i = 1, 2, · · · n.

Because of our choice for s, such a perturbation is possible.
Remark now that





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

≥




∏

1≤i<j≤n

|z′i − z
′

j|




1

(n
2)
.

It then follows that





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

−




∏

1≤i<j≤n

|z′i − z
′

j|




1

(n
2)

≤ ε

2
. (a.3)

Hence, from relations (a.2) and (a.3),





∏

1≤i<j≤n

|z′i − z
′

j|




1

(n
2)

≥ Cap (a ≤ |z| ≤ b) − 1

2
ε. (a.4)

But because z
′

1, z
′

2, · · · z
′

n ∈
s−1
⋃

k=0

e2πi k
s [a, b],

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≥




∏

1≤i<j≤n

|z′i − z
′

j|




1

(n
2)
− 1

2
ε (a.5)
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if n is choosen big enough. This is the value of n referred to above after the obser-

vation that the function f(z1, z2, · · · zn) :=
(

∏

1≤i<j≤n |zi − zj|
)

1

(n
2) is uniformly

continuous for z1, z2, · · · zn ∈ {a ≤ |z| ≤ b} . The term − 1
2
ε above in (a.5) is

needed in general because, as previously noted,

sup
zi, zj ∈ E





∏

1≤i<j≤n

|zi − zj|




1

(n
2)

is a decreasing function of n. Hence (a.4) and (a.5)

yield

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≥ Cap (a ≤ |z| ≤ b) − ε.

Because this inequality holds for all s big enough,

lim inf
s→∞

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

≥ Cap (a ≤ |z| ≤ b) − ε. (a.6)

Because ε > 0 can be chosen arbitrarily small, it follows from relations (a.1) and
(a.6) that, for 0 < a < b,

lim
s→∞

Cap

(

s−1
⋃

k=0

e2πi k
s [a, b]

)

= Cap (a ≤ |z| ≤ b) ,

as was to be proved. �
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