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Products of parts in class regular partitions
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ABSTRACT. A g-analogue of a partition identity is presented.

1. Introduction

Let A= (1™2"...) be a partition. Define

a; = Him[, b; = Hm,'

i>1 i>1

It is well known that the product of @, over all partitions A of n is equal to that
of ;. In 2003 Olsson [3] found a “regular version” of this remarkable fact.
Let r>2 be an integer. A partition A= (1"12"2...) is said to be r-class
regular if m,; =0 for all i. Denote by P"(n) the set of all r-class regular
partitions of n. Define

App = H a, r H bl
AePr(n) AePr(n)

Then one has b, , = r“"a, ,, where ¢, , is defined by the following generating
function:

l m

§ n
Cronq 1 — rm ’

n>0 m>1

with

=S

n>0

o= I

When r is prime, a, , equals the determinant of the irreducible Brauer character
table 9’,5"), and r¢» equals the r-part of b,, and hence is equal to the deter-
minant of the Cartan matrix for r-modular representations of the symmetric
group S, ([3], see also [2]).
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In this short note we present a g-analogue of Olsson’s formula in a natural
combinatorial way.

2. Result

For an r-class regular partion /4 = (12" ...), a non-negative integer /
and a positive integer i which is not a multiple of r, put

D,(i,2) = {(j,k) e Z?|j=¢,1 <k <my,r |k}.

Here is an example. If r =2 and 4 be such that m; = 10 for some odd i,
then Dy(i,4) looks

o O O

O O O O o O
©) O O O
O

ONONONG)

The k-axis is horizontal from left to right, and the j-axis is vertical from top
to bottom. Define also the set of “cells” for A by

() = {e= (ki j,k) € {2} x L2 |i = L,r ki, (j,k) € Dy(i, 2)}
and the disjoint union
y(r,n) = || 2(2).
LePr(n)

For each cell ¢ = (4;i,j,k) € Zo(A), attach the A-weight A(c) and the
B-weight B(c), respectively, by A(c) :=ir/ and B(c) :=k/r/. In the example
above with odd i, the A-weights and the B-weights are tabulated as follows.

SR A T B R B A 1 23456789 10
2% 2 2 2 2 1 2 3 4 5
4i 4i and | 2 '

8i 1

Let Qi (k>=1) be a family of indeterminates. Define the A-monomial
and B-monomial, respectively, for 1€ P"(n) and / >0 by

wh (4 H O wB H Os()

ce (2 ceDy (2

In the example, we see that

wi(2) = 0/°03,05.0si,  Wwh(A) = 0103030303 0607 0509 Q1.
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and

wh(2) = 05,05 0si, wp(2) = 07 0303040s.

THEOREM. For a non-negative integer ¢,

H wi(A) = H wi(4 )‘Q/(HQ/,

2 Pr(n) LePr(n)
Proor. Let />0 be fixed. One can construct an involution
0 : Zy(ryn) — Zy(r,n)

as follows. Take ¢ = (4;i,j,k) € %,(A). Since k < m; and r/ |k, we can write
k =i*r/*/" with some i* with rti*, and j*>0. Put k*=ir//" so that
ik = i*k*. There exists an r-class regular partition x € P"(n — ik) such that A
is the Young diagrammatic union of x and (i*). Let 1* be the union of
partitions ¢ and ((i*)*), which is in P"(n). Let 0,(c) := (A%;i*, j* +/,k*) e
2,(37). 1t is easy to verify that (0,)> =id. We also have

ikri’ Yk

J / /
r — r"—=r"B(c
k* ir/ r/ (c)

A(0,(c)) = i*r/ 0 =

as desired.

Here is an example. Let r=2, /=0 and A= (13%)eP*(7). If
(4:3,1,2) € Zo(A), then one sees that i*=1, j*=0, k*=6, and u=
Hence one has A" = (17) and 0p(c) = (4";1,0,6). Therefore A(0p(c)
B(c) =1.

Let us introduce another family of indeterminates R (k > 1), subject to
the relations Q. = ROy for k> 1. Then the formula in Theorem in case
¢ =1 reads

c=
(1).
)=

[1 i@ =TI ws®R T whi(Q).

AePr(n) AePr(n) AePr(n)

Remark that, for 1 = (1"2"...) e P"(n),

A wB 2)
o =l e" V0 =1 2nQm-1-
A

i>1 /L i>1

These give a Q-analogue of a, and b,, respectively.
In order to relate our result with Olsson’s formula, we specialize the
indeterminates as
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with another indeterminate ¢. We regard

wa(A)(Q) R IR I(%)
2P (n) ‘/VIL(A)(Q) and brn(q) : e Pr(n) W;(}.)(Q)

as polynomials in g¢.
We also denote

ar,n(q) =

calg) = [ wh(R)

AePr(n)

with the specialization above. This is a g-analogue of r“» and is known to
equal the determinant of the “graded” Cartan matrix for the Iwahori Hecke
algebra H,({) with { a primitive r-th root of unity ([1]).

Consequenty Olsson’s formula is g-deformed as

br, n (q) = Ci'-, n (q)al‘«, n (q) .

The authors thank Shun-ichi Kimura for his interest in this work and for
providing an opportunity for their discussions at Hiroshima University. This
paper is dedicated to Kiyosato Okamoto on his eightieth birthday.
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