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Products of parts in class regular partitions
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Abstract. A q-analogue of a partition identity is presented.

1. Introduction

Let l ¼ ð1m12m2 . . .Þ be a partition. Define

al :¼
Y

ib1

imi ; bl :¼
Y

ib1

mi!:

It is well known that the product of al over all partitions l of n is equal to that

of bl. In 2003 Olsson [3] found a ‘‘regular version’’ of this remarkable fact.

Let rb 2 be an integer. A partition l ¼ ð1m12m2 . . .Þ is said to be r-class

regular if mri ¼ 0 for all i. Denote by PrðnÞ the set of all r-class regular

partitions of n. Define

ar;n :¼
Y

l APrðnÞ
al; br;n :¼

Y

l APrðnÞ
bl:

Then one has br;n ¼ rcr; nar;n, where cr;n is defined by the following generating

function:

X

nb0

cr;nq
n ¼ FrðqÞ

X

mb1

qrm

1� qrm
;

with

FrðqÞ ¼
Y

kb1

1� qrk

1� qk
¼

X

nb0

jPrðnÞjqn:

When r is prime, ar;n equals the determinant of the irreducible Brauer character

table C ðrÞ
n , and rcr; n equals the r-part of br;n and hence is equal to the deter-

minant of the Cartan matrix for r-modular representations of the symmetric

group Sn ([3], see also [2]).
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In this short note we present a q-analogue of Olsson’s formula in a natural

combinatorial way.

2. Result

For an r-class regular partion l ¼ ð1m12m2 . . .Þ, a non-negative integer l

and a positive integer i which is not a multiple of r, put

Dlði; lÞ :¼ fð j; kÞ A Z2 j jb l; 1a kami; r
j j kg:

Here is an example. If r ¼ 2 and l be such that mi ¼ 10 for some odd i,

then D0ði; lÞ looks

y y y y y y y y y y

y y y y y

y y

y

:

The k-axis is horizontal from left to right, and the j-axis is vertical from top

to bottom. Define also the set of ‘‘cells’’ for l by

DlðlÞ :¼ fc ¼ ðl; i; j; kÞ A flg � Z3 j ib 1; rF i; ð j; kÞ A Dlði; lÞg

and the disjoint union

Dlðr; nÞ :¼
G

l APrðnÞ
DlðlÞ:

For each cell c ¼ ðl; i; j; kÞ A D0ðlÞ, attach the A-weight AðcÞ and the

B-weight BðcÞ, respectively, by AðcÞ :¼ ir j and BðcÞ :¼ k=r j. In the example

above with odd i, the A-weights and the B-weights are tabulated as follows.

i i i i i i i i i i

2i 2i 2i 2i 2i

4i 4i

8i

and

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5

1 2

1

:

Let Qk ðkb 1Þ be a family of indeterminates. Define the A-monomial

and B-monomial, respectively, for l A PrðnÞ and lb 0 by

wl
AðlÞ :¼

Y

c ADlðlÞ
QAðcÞ; wl

BðlÞ :¼
Y

c ADlðlÞ
QBðcÞ:

In the example, we see that

w0
AðlÞ ¼ Q10

i Q5
2iQ

2
4iQ8i; w0

BðlÞ ¼ Q4
1Q

3
2Q

2
3Q

2
4Q

2
5Q6Q7Q8Q9Q10:
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and

w1
AðlÞ ¼ Q5

2iQ
2
4iQ8i; w1

BðlÞ ¼ Q3
1Q

2
2Q3Q4Q5:

Theorem. For a non-negative integer l,

Y

l APrðnÞ
wl
AðlÞ ¼

Y

l APrðnÞ
wl
BðlÞjQk 7!Q

r lk
:

Proof. Let lb 0 be fixed. One can construct an involution

yl : Dlðr; nÞ ! Dlðr; nÞ

as follows. Take c ¼ ðl; i; j; kÞ A DlðlÞ. Since kami and r j j k, we can write

k ¼ i�r jþj � with some i� with rF i�, and j � b 0. Put k � ¼ ir jþj � so that

ik ¼ i�k �. There exists an r-class regular partition m A Prðn� ikÞ such that l

is the Young diagrammatic union of m and ðikÞ. Let l� be the union of

partitions m and ðði�Þk
�
Þ, which is in PrðnÞ. Let ylðcÞ :¼ ðl�; i�; j � þ l; k �Þ A

Dlðl�Þ. It is easy to verify that ðylÞ2 ¼ id. We also have

AðylðcÞÞ ¼ i�r j
�þl ¼ ik

k � r
j �þl ¼ ikr j

�þl

ir jþj �
¼ rl

k

r j
¼ rlBðcÞ

as desired.

Here is an example. Let r ¼ 2, l ¼ 0 and l ¼ ð1 32Þ A P2ð7Þ. If c ¼
ðl; 3; 1; 2Þ A D0ðlÞ, then one sees that i� ¼ 1, j � ¼ 0, k � ¼ 6, and m ¼ ð1Þ.
Hence one has l� ¼ ð17Þ and y0ðcÞ ¼ ðl�; 1; 0; 6Þ. Therefore Aðy0ðcÞÞ ¼
BðcÞ ¼ 1:

Let us introduce another family of indeterminates Rk ðkb 1Þ, subject to

the relations Qrk ¼ RkQk for kb 1. Then the formula in Theorem in case

l ¼ 1 reads

Y

l APrðnÞ
w1
AðlÞðQÞ ¼

Y

l APrðnÞ
w1
BðlÞðRÞ

Y

l APrðnÞ
w1
BðlÞðQÞ:

Remark that, for l ¼ ð1m12m2 . . .Þ A PrðnÞ,

w0
AðlÞðQÞ

w1
AðlÞðQÞ

¼
Y

ib1

Qmi

i ;
w0
BðlÞðQÞ

w1
BðlÞðQÞ

¼
Y

ib1

Qmi
Qmi�1 . . .Q1:

These give a Q-analogue of al and bl, respectively.

In order to relate our result with Olsson’s formula, we specialize the

indeterminates as

Qk ¼
1� qk

1� q
; Rk ¼

1� qrk

1� qk

17A partition q-identity



with another indeterminate q. We regard

ar;nðqÞ :¼
Y

l APrðnÞ

w0
AðlÞðQÞ

w1
AðlÞðQÞ

and br;nðqÞ :¼
Y

l APrðnÞ

w0
BðlÞðQÞ

w1
BðlÞðQÞ

as polynomials in q.

We also denote

cr;nðqÞ :¼
Y

l APrðnÞ
w1
BðRÞ

with the specialization above. This is a q-analogue of rcr; n , and is known to

equal the determinant of the ‘‘graded’’ Cartan matrix for the Iwahori Hecke

algebra HnðzÞ with z a primitive r-th root of unity ([1]).

Consequenty Olsson’s formula is q-deformed as

br;nðqÞ ¼ cr;nðqÞar;nðqÞ:
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providing an opportunity for their discussions at Hiroshima University. This
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References

[ 1 ] M. Ando, T. Suzuki and H.-F. Yamada, Combinatorics for graded Cartan matrices of the

Iwahori-Hecke algebra of type A, Ann. Comb. 17 (2013), 427–442.

[ 2 ] H. Mizukawa and H.-F. Yamada, Arithmetic identities for class regular partitions,

Hokkaido Math. J. (to appear).

[ 3 ] J. B. Olsson, Regular character tables of symmetric groups, Electron. J. Combin. 10 (2003)

N3. MR1975776.

Masanori Ando

Depertment of Mathematics

Wakhok University

Wakkanai Hokkaido 097-0013, Japan

E-mail: m-ando@wakhok.ac.jp

Hiro-Fumi Yamada

Department of Mathematics

kumamoto University

Kumamoto, Japan

E-mail: yamada@sci.kumamoto-u.ac.jp

18 Masanori Ando and Hiro-Fumi Yamada


