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ABSTRACT. We obtain conditions for stable extendibility of some complex vector
bundles over the (2n+ 1)-dimensional standard lens space L"(p) mod p, where p is
a prime. Furthermore, we study stable extendibility of the bundle 7 (7(CP")) induced
by the natural projection 7z, : L"(p) — CP" from the complex tangent bundle 7(CP") of
the complex projective n-space CP". As an application, we have a result on stable
extendibility of ¢(CP") which gives another proof of Schwarzenberger’s theorem.

1. Introduction

Let F denote either the real number field R or the complex number field
C. Let X be a space and A4 its subspace. A t-dimensional F-vector bundle o
over A is said to be extendible (respectively stably extendible) to X if and only
if there exists a z-dimensional F-vector bundle over X whose restriction to A4 is
equivalent (respectively stably equivalent) to o (cf. [8, p. 20] and [5, p. 273]). In
this paper, we use the same letter for an F-vector bundle and its equivalence
class.

For a prime p, let L"(p) = S***!'/(Z/p) denote the standard lens space
mod p of dimension 27 + 1 and CP" = S***!/S! the complex projective space
of complex dimension 7, where S” is the standard sphere of dimension m and
Z/q the group of integers mod gq. Let u, be the canonical C-line bundle over
CP”. Then we define #, = n}(u,), the bundle induced by the natural projec-
tion x, : L"(p) — CP" from p,. We call #, the canonical C-line bundle over
L' (p).

Throughout this paper, we denote by [x] the largest integer ¢ with ¢ < x.
In [2], we have obtained the following result for the stable extendibility of
R-vector bundles over L"(p).
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THEOREM 1.1 ([2, Theorem 1]). Let p be an odd prime and o a
t-dimensional R-vector bundle over L"(p) which is stably equivalent to sr(n,),
where s is an integer with n/2 <s < p"(*=Vl " and r(n,) is the real restriction
of n,. Then the following three conditions are equivalent.

(1) o is stably extendible to L™ (p) for every m > n.

(ii) o is stably extendible to L*(p).

(iii) s <[t/2]

In this paper, we have

THEOREM 1. Let p be a prime and o a t-dimensional C-vector bundle over
L"(p) which is stably equivalent to sn,, where s is an integer with n <s <
pl =Vl Then the following three conditions are equivalent.

(1) o is stably extendible to L™ (p) for every m > n.

(ii) o is stably extendible to L*(p).

(i) s<t

It should be remarked that the implication (iii) = (i) holds even in the
cases where s < n (see the proof of Theorem 1).

Let 7(CP") denote the complex tangent bundle of CP" and 7} (z(CP")) the
bundle induced by the natural projection 7, : L"(p) — CP" from tz(CP").

As an application of Theorem 1, we have

COROLLARY 2. Let p be a prime and m,:L"(p) — CP" the natural
projection.  Then w*(t(CP™)) is not stably extendible to L""'(p) if n>2p — 2.

Using Corollary 2, we have

TueoREM 3. If n > 2, ©(CP") is not stably extendible to CP"*!.

In Appendix I of [3], R. L. E. Schwarzenberger proved the following.
Tueorem 1.2 ([3]). If n>2, t(CP") is not extendible to CP"*!.

Clearly, extendibility implies stable extendibility. Hence Theorem 1.2
follows from Theorem 3. Conversely, we see

Lemma 1.3. If ©(CP") is stably extendible to CP"', it is extendible to
CP"+1.

This shows that Theorem 3 follows also from Theorem 1.2.
For a sufficient condition of stable extendibility of C-vector bundles over
lens spaces, the following holds.

THEOREM 4. Let p be a prime and o a t-dimensional C-vector bundle over
L"(p) which is stably equivalent to sn,. Then o is stably extendible to L™(p)
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for every m > n if there exists an integer a satisfying the inequalities:
s—1< aler[("*l)/(P*l)] <s.
The converse does not hold in general. In fact, we have the following.

THEOREM 5. The converse claim of Theorem 4 does not hold for n=1,
p >3 and o= rj(t(CPY)), where ny : L'(p) — CP'(= S?) is the natural pro-
Jection.

The following corollary will be used to prove Theorem 9 below.

COROLLARY 6. Let p be a prime and m,_y : L?"'(p) — CPP~! the natural
projection.  Then n;‘fl(‘c(CPp’l)) is stably extendible to L™(p) for every
m>=>p—1

It 1s shown in Theorem 5 that the converse of Theorem 4 does not hold
in general, but for p =3 and n = 2k we can show that the converse holds as
follows.

THEOREM 7. Let o be a t-dimensional C-vector bundle over L**(3) which is
stably equivalent to sn,,, where 1, is the canonical C-line bundle over L**(3).
Then o is stably extendible to L™ (3) for every m > 2k if and only if there exists
an integer a satisfying the inequalities:

s—t<a3k <.
For p =3, we have

THEOREM 8. Let m,:L"(3) — CP" be the natural projection. Then
7 (t(CP")) is not stably extendible to L"'(3) if n > 3.

THEOREM 9. 7} (z(CP")) is stably extendible to L™ (3) for every m > n if
and only if n=1,2.

This paper is organized as follows. In Section 2, we prove Theorem 1,
Corollary 2, Theorem 3 and Lemma 1.3 by using results in [7] on the stable
extendibility of some C-vector bundles over L"(p). In Section 3, we recall
some known results on the structure of the K-ring of L"(p), and prove
Theorems 4, 5 and Corollary 6. Detailed results for the case p = 3, that is,
Theorems 7, 8 and 9, are proved in Sections 4 and 5.

2. Proofs of Theorem 1, Corollary 2, Theorem 3 and Lemma 1.3

The following result gives information about stable extendibility of some
C-vector bundles over L"(p), and is useful for the proofs of Theorems 1 and 7.
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THEOREM 2.1 ([7, Theorem 4.5]). Let p be a prime and o a t-dimensional
C-vector bundle over L"(p). Assume that there exists a positive integer | such
that o is stably equivalent to a sum of t+ 1 non-trivial C-line bundles, where
t+1< p/ =V Then n < t+1 and « is not stably extendible to L'(p).

We use the next lemma for the proof of Theorem 1.

LemMa 2.2 ([1, Lemma 2.1]). Let A be a subspace of a space X, and o and
B be F-vector bundles over A of respective dimensions a and b, where b < a.
Suppose that o is stably equivalent to . Then, if [ is stably extendible to X,
SO 1S 0.

PrOOF OF THEOREM 1. (i) = (ii) is clear.

We prove (ii) = (iii) by contraposition. Suppose ¢<s and define
s—t=1 Then [ >0 and r+417=s< pl"/(r=V Using Theorem 2.1, we
have n < s and o is not stably extendible to L*(p).

To prove (iii) = (i), suppose s < ¢. Then, setting 4 = L"(p), X = L™(p)
(m=>n), f=sn, a=t b=ysin Lemma 2.2, we see that « is stably extendible
to L"(p), since i*(sn,,) = si*(n,,) = sn, = B, where i : K(L"(p)) — K(L"(p))
is the homomorphism induced by the standard inclusion i: L"(p) — L™(p).

O

ProOF OF CoOROLLARY 2. Recall that t(CP")@® 1= (n+1)u, (cf. [6,

p. 145]), where @ denotes the Whitney sum. Then z/(z(CP"))®1=
(n+1)n,, where m,:L"(p) — CP" is the natural projection. Note that
n+1< pl/(r=V1if y >2p—2. Thus the proof is completed by the implica-
tion (ii) = (iii) of Theorem 1 by setting « = 7;(¢(CP")), t=n and s=n+ 1.
O

PrOOF OF THEOREM 3. Suppose that 7(CP") is stably extendible to CP"*!.
Then there exists an n-dimensional vector bundle S over CP"*! such that
7(CP") is stably equivalent to j*(f), where j: CP" — CP"*! is the standard
inclusion. Consider the natural projection =, : L™(2) — CP™, where m =n
and n+ 1. Then 7 (z(CP")) is stably equivalent to 7(j*(f)) which is equal
to i*(n;,,(p)) by naturality, where i: L"(2) — L""!(2) is the standard inclu-
sion. Hence =‘(t(CP")) is stably extendible to L"*!(2). If n>2, this
contradicts to Corollary 2. O

To prove Lemma 1.3, we use the following result.

THEOREM 2.3 ([4, Theorem 1.5, p. 100])). If o and p are two t-dimensional
F-vector bundles over an m-dimensional CW-complex X such that
dm+2)/d -1y <t and a ®k = ® k for some k-dimensional trivial F-vector
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bundle k over X, then o = f§, where d =1 or 2 according as F =R or C and {x)
denotes the smallest integer q with x < q.

PrROOF OF LEMMA 1.3.  Suppose that 7(CP") is stably extendible to CP"*!.
Then there exists an n-dimensional C-vector bundle y such that i*(y) ® k =
7(CP") @ k for a k-dimensional trivial bundle k, where i: CP" — CP"! is
the standard inclusion. Putting F = C (and thus d = 2), o = i*(y), f = t(CP"),
X=CP", m=2n and t=n in Theorem 2.3, we obtain o« =pf, that is,
i*(y) = t(CP"). Hence t(CP") is extendible to CP"*!, ]

3. Proofs of Theorems 4, 5 and Corollary 6

For the canonical C-line bundle #, over L"(p), set o,=
n, — (e K(L"(p))). The structure of the ring K(L"(p)) is determined in
[6] as follows.

THEOREM 3.1 (|6, Theorem 1]). Let p be a prime and n=s(p—1)+r,
where s and r are integers with s >0 and 0 <r < p—1. Then

K(LH(P)) = (Z/p‘wl)’ + (Z/ps)p—r—l-

(Here, (Z./ q)k denotes the direct sum of k-copies of the additive group of integers
mod q.) The first r summands are generated by a) a2 ... a!, and the last

s O
(p—r—1) summands by '™, 6!*2 ... a?~\.  Moreover, the ring structure is

determined by the relations:

(on+ DI (=n?)=1 and "' =0.

n

Fact 3.2 ([6, (2.10)]). Let p be a prime. Then, for 1 <i<p—1, gl is
Of. order p]"'[(”_i)/(I’_l)]'

The cohomology groups of L"(p) are known as follows.

Fact 3.3 (6, (2.1)]).

Z/p if i=2k for some 1 <k <n,
H'(L"(p);Z) =< Z if i=0or2n+1,
0 otherwise.

ProoF OoF THEOREM 4. In the setting of Theorem 4, let us assume that
we can take an integer a satisfying the inequality below

s—1< aplﬂ(”*l)/(l’*l)] <.

Since « is stably equivalent to sz,, we have o =sy,+¢—s in K(L"(p)). By
Fact 3.2, the equality ap'*l"-D/(»=Dl(» — 1) =0 holds in K(L"(p)) for our
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integer . Hence we obtain the equality
o= (s—ap'T=D/P=0yy 4 p 5 4 qpH=D/(0=1)

in K(L"(p)). Set U=s—ap"t=0D/r=D and V =t —s4 ap' =D/,
Then we have o« = Uy, + V, and U >0 and V' >0 by the assumption for
a. Since the Whitney sum Uy, @ V is extendible to L™(p) for every m > n,
o is stably extendible to L™(p) for every m > n. O

PrOOF OF THEOREM 5. We show that the bundle o= 7j(z(CP')) is
extendible to L™(p) for every m > 1, but there does not exist an integer a
satisfying the inequalities of Theorem 4 for « and p > 3. Let BU(1) be the
classifying space for U(1) = S!, and let {: L'(p) — BU(1) be the classifying
map of the bundle «. The obstructions for extending { to L™(p) (m>1)
consist in the groups

H"™ (L™ (p), L' (p); m(BU(1))) (= H™'(L"(p), L' (p); -1 (S1)))

which are easily seen to be 0 for each r (cf. Fact 3.3). So o is extendible to
L"(p) for every m>1. Now, t=dima=1, and s=2 since a ® 1 = 2z,.
Then there does not exist an integer a satisfying the inequalities: 1 <ap <2
if p>3. O

ProOF OF CoROLLARY 6. Note that dimz; (z(CP”"'))=p—1 and
that 7y (z(CPP" ") @ 1= pn, ;. Then, for n=p—1, a=n'(z(CP'")),
t=p—1and s= p in Theorem 4, we have the result, because a = 1 satisfies
the inequalities: 1 < ap < p. O

4. Proof of Theorem 7

PrOOF OF THEOREM 7. The “if” part of the theorem follows immediately
from Theorem 4 since p'*l"-D/(»=D] =3k for p =3 and n = 2k.

We prove the “only if” part of the theorem by contraposition. Assume
that every integer a satisfies

a3k <s—1¢ or s < a3k,

Let M be the minimum integer such that s< M3 Then, since
s> (M —1)3*, we have (M —1)3¥ <s5—1t by the above assumption. Put
l=s—1t—(M—1)3* Then />0,

t+l=s—(M—-1)3k<M3*— (M —1)3kx=3F  and

(1 + D = {5 = (M = 1)3 Yy = sy — (M — 1)3*
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since {(M —1)3¥}(ny —1) =0 by Fact 3.2. Hence, by Theorem 2.1, 2k <
s— (M —1)3% and « is not stably extendible to L™(3) for m = s — (M — 1)3*.
O

5. Proofs of Theorems 8 and 9
We recall some known facts for the proof of Theorem 8.

Fact 5.1.  The total Chern class C(n!) of n! is given by C(n}) =1+ iz,
where z, = Ci(n,) is the generator of H*(L"(p);Z)(= Z/p).

Fact 52. Let p be a prime and let a=>_,_,a(i)p’ and b=
So<iemb@)p’, (0<a(i) < p,0<b(i) < p). Then

(o) = L () et

ProoF oF THEOREM 8. If n >4, zn}(t(CP")) is not stably extendible to
L"1(3) by Corollary 2.

We prove that 7} (z(CP")) is not stably extendible to L""!(p) for p =3
and n=3. Suppose that there exists a 3-dimensional C-vector bundle f
over L*(3) satisfying i*(8) = n}(z(CP?)), where i: L3(3) — L*(3) is the stan-
dard inclusion and 73 : L3(3) — CP? is the natural projection. According to
Theorem 3.1, there exist integers ¢ and b such that

B —3=aoy +ba; € K(L*(3))(= Z/3 + Z/3%).

Applying the induced homomorphism i* : K(L*(3)) — K(L*(3)) to the both
sides of the above equality, we obtain

i*(B—3) = aos +bas e K(L*(3))(= Z/3* + Z/3).
On the other hand, we have
i*(f—3) = n;(z(CP?)) — 3 = dyg; — 4 = 4o3.
Hence ¢ =9x+4 and b = 3y for some integers x and y. So
B—3=(9x+4)0s+3y0; = (9x +4)(my — 1) +3p(n, — 1)°
={9(x—y)+3(y+ 1)+ 1}y, +3ym3 —9x+3y — 4.

Define 4 =9(x— y)+3(y+1)+1 and B=3y. Since we may take a and b
with a > 2b >0, we consider that x and y satisfy inequalities: A4 >0 and
B>0.
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Now, by Fact 5.1, the total Chern class of f is given by
C(P) = Cna)" €)= (1 +za)" (1 +224)" = (1 +20)"(1 = z9)",

where z4 is the generator of H?(L*(3);Z)(=Z/3). Thus the 4-th Chern class

of f is given by
ap =3 (A) (f)<_1>fzg.

i+j=4

Here, by Fact 52, (5) = 1; =0 (mod3) for j=124, ()=} =

1 (mod 3) for i=0,1, () = y+1 (mod 3) for i = 3,4, and (§) =y (mod 3).
Hence we have C4(B) = (—y+y+1)z§ =z; #0.
On the other hand, C4(f) =0 since S is 3-dimensional. This is a

contradiction. O

PrOOF OF THEOREM 9. In the proof of Theorem 5, it is proved that
7} (z(CPY)) is extendible to L™(3) for every m > 1. Putting p = 3 in Corollary
6, we see that 75 (c(CP?)) is stably extendible to L™(3) for every m > 2.

The “only if” part follows immediately from Theorem 7. O
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