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ABSTRACT. Let (Z,d,u) be a space of homogeneous type in the sense of Coifman and
Weiss. In this paper, we give a sufficient condition on the pair of weights (u,v) so
that the fractional integral operator on spaces of homogeneous type is bounded from
LP(%,v) to weak LY(Z,u) with 1 < p < ¢ < .

1. Introduction

Let 2 be a set endowed with a positive Borel regular measure u and a
quasi-metric d satisfying that there exists a constant x > 1 such that for all
X, y,ze€X,

d(x,y) < xld(x,z) + d(y,2)]. (1)

The triplet (Z,d, u) is said to be a space of homogeneous type in the sense of
Coifman and Weiss [6], if u satisfies the following doubling condition: there
exists a constant C > 1 such that for all xe 2 and r > 0,

u(B(x,2r)) < Cu(B(x,r)) < oo. (2)

Moreover, if C is the smallest constant for which the measure u verifies the
doubling condition (2), then D =log, C is called the doubling order of u and
we have that

1(B1) s\
<C, (—) , for all balls B, = B) = 4, (3)
ﬂ(B2) ',
where rp, denotes the radius of B;, i=1,2, and C, is the constant that is
dependent of the parameter pu.

We remark that although all balls defined by d satisfy the axioms of
complete system of neighborhoods in %, and therefore induce a (separated)
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topology in %, the balls B(x,r) for x €  and r > 0 need not to be open with
respect to this topology. However, Macias and Segovia in [12] showed that
there are other quasi-metric d on 2 and a number 6 (0,1) such that d is
equivalent to d and for any x,x’,ye %,

d(x, y) —d(x', )| < Cd(x,x")(d(x, ) +d(x', y)) ™", )

Moreover, the d-balls are open in the c?-topology.
We consider the function d’: % x Z — [0, 00) defined by

¢”Lw:{?MMxﬂnw»+mm%amwm7giii

It is easy to check that d’ is a quasi-metric on 2. Let # be a continuous quasi-
metric equivalent to d’ and satisfy (4). For « € (0,1), define the fractional
integral operator I, as

L16) = | 0:x )1 ()du(y)

with the kernel

_ n(x7y)°"17 if x # y,
0u(x, ) {lu({x})“_17 if x=y and u({x})>0.

There are well known properties related to the boundedness of 7, on spaces of
homogeneous type, shortly, I, is bounded from L?(Z) to LY(Z) with 1 < p <
g<ooand 1/qg=1/p—oa (see [4]), and I, is of weak type (1,(1—o)"") (see
[3]). Moreover, there are versions of these results with different weights. The
result of Bernardis et al. [2] states that for any fixed p e (1,00), there is a
constant C > 0 such that for any weight w,

L 1L f ()P w(x)du(x) < CL ()P M (M) () da(),
where and in the sequel, by a weight w, we mean that w is a nonnegative and
locally integrable function, [p] denotes the biggest integer not more than p, M,
is the fractional maximal operator (see the definition below), M is the standard
Hardy-Littlewood maximal operator and for any positive integer k, M* is the
operator M iterated k times. Martell [13] proved the operator I, is bounded
from L?(Z,v) to weak L%(Z,u) with 1 < p < ¢ < oo, provided that the pair
of weights (u,v) verifies a Muckenhoupt condition with a “power-bump” on
the weight u. Li et al. [11] gave sufficient conditions in terms of Orlicz bumps
for the two-weight strong type (p,q) inequalities (1 < p < ¢ < o) for the
commutators of potential integral operators, which is more general than the
fractional integral operator.
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The purpose of this paper is to improve Martell’s result on the two-weight
weak type estimate for the fractional integral operator. We will prove that if
the pair of weights (u,v) satisfies a Muckenhoupt condition with a “Orlicz-
bump” on the weight u, then I, is bounded from L?(Z,v) to weak L9(%,u) for
any 1 < p<¢g< 0. To state our result, we first recall some notation.

Let @ be a Young function, that is to say, @ : [0,00) — [0, c0) is a contin-
uous, convex and, increasing function and satisfies @(0) =0 and &(¢) — oo
as t — oo. Let E be a measurable set with u(E) < oo, define the Luxemburg
norm of f over E as

110 e =0 {2 > 0| (VMg <1}

The main Young function that we will use is @(r) = 7 log(e 4 ¢)° for some
0 > 0. For this Young function, we denote the mean Luxemburg norm of f

over E by Hf||L(10gL)o~,E.
Our main result can be stated as follows.

THEOREM 1. Let 1 < p<qg< oo and o€ (0,1). Suppose that (u,v) is a
pair of weights such that there exists vy > 0 such that for any ball B < X,

1/p’
atl/p'=1/q’ 1/q 1 -p'/p
() e (g |, 000 P00 < €<

Then for any bounded function f with bounded support,

1/p
Sﬁg u({xe X : |Lf(x)| > )v})l/q < C<J7 f(x)|pv(x)d,u(x)> .

REMARK 1. A result analogous to Theorem 1 for the Calderon-Zygmund
singular integral operators on Euclidean spaces was proved by Cruz-Uribe and
Pérez in [7).  And for a version of this result in the Euclidean setting when p = ¢
see [10].  As far as we know, our result is new even in the case of Euclidean
spaces.

Throughout this paper, C denotes the constant that is independent of
the main parameters involved but whose values may differ from line to line.
Constants with subscript such as ¢;, do not change in different occurrences.
For a measurable set £ and a weight w, y; denotes the characteristic func-
tion of E, w(E) = [, w(x)du(x). Given 2 >0 and a ball B, rz denotes the
radius of B, AB denotes the ball with the same center as B and whose radius
is /4 times that of B. For a fixed pe (1,00), p’ denotes the dual exponent
of p, namely, p’ = p/(p —1). For a locally integrable function f on 2 and
a bounded measurable set E, mg(f) denotes the mean value of f over E,
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that is,

For a locally integrable function f, define the Fefferman-Stein sharp maximal
function M#f as

MPf() = sup ﬁj £() = ma()ldu(y),

where the supremum is taken over all the balls B containing x. For fixed
¢ €(0,1), the sharp maximal function M;‘f is defined by

MPf(x) = (MA(1f]7)(x)) V1.
We then give a few facts about Orlicz spaces. Given a Young function @
and «€[0,1), define the fractional Orlicz maximal operator M, ¢ by
M, 0/ (x) = sup[u(B)]"| /4,5

B>x

where the supremum is taken over all the balls B containing x. If o =0, we
denote My ¢ by My simply. If &(r) =t, M, ¢ is just the classical fractional
maximal operator M, defined by

1
M. f(x) = sup WJ S O)ldu(y).

A Young function @ is said to be doubling if there exists C > 0 such that for
all 1> 0, &(2¢t) < CP(¢). Pradolini and Salinas [17] proved that if a doubling
Young function @ satisfies the B, (p e (1,00)) condition, that is, for some
constant ¢ > 0,

[owa

Pt

then My is bounded on L?(Z).

The Lorentz space L”!'(Z,w) will be useful in our discussion. For a
weight w and a measurable function f, let f* be the decreasing rearrangement
of f defined by

@) =inf{s>0:w{xeZ:|f(x)| >s}) <t}
For p,qe (0,0), let

0 dt 1/q
(J [ll/pf*(l)]q_> , if g < oo;
_ 0 t
||fHL!’ﬂ‘l(32",w) -
sup 1'/7£* (1), if ¢ = o0.

>0
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The set of all f* with || £/, < o is denoted by L”4(Z,w) and is called
the Lorentz space with indices p and ¢. Tt is obvious that L7 (Z,w) is
just the standard weak L? space with weight w. For pe(l,o0), we know
that

1o <€ s || rmwednto), ()

Wl 71 gy <

see [8] for details.

2. A two-weight estimate for fractional Orlicz maximal operator

This section is devoted to a weighted norm inequality for the fractional
Orlicz maximal operator M, . We will prove that

THEOREM 2. Given 1 < p<qg< o and a€(0,1). Let &, ¥ and O be
Young functions such that for any t>0, ¥~ ' ()@~ '(t) < ®7(t), and O be
doubling satisfying the B, condition. (u,v) is a pair of weights such that for
every ball B,

1/q
[u(B)|*H/a (ﬁ J3u<x>du<x>) Jo~Plly p < C < c0.

Then for any function f € LP(Z,v),
(| rorrumn) < | pwreome)
r B a

For the case that @(7) =t the related result in Euclidian spaces was
proved by Pérez (see Theorem 2.11 in [15]). To prove Theorem 2, we need the
following dyadic sets on spaces of homogeneous type given by Sawyer and
Wheeden in [18], which have a lot of properties in common with the dyadic
cubes in the Euclidean spaces.

Lemma 1. Let (Z,d,u) be a space of homogeneous type. Fix p = 8.
For every (large negative ) integer m, there exist a collection of points {xk } and
a family of sets D, = {5 bk with k=mm+1,... and j=1,2,... such that

(A1) Bk, ph) < £F < B(xf, pht)

(A2) For every k>m the sets {Sk} are pairwise disjoint in j, and

7 =1J€"
(As) If m< k <l then either Ekﬂé’l & or Ek cél
We will refer to D = Um D,, as a dyadic cube decomposition of Z and the

sets in D as dyadic cubes. For every integer k >m, set Df = {5;( b A
dyadic cube will be written as Q, and Q* will denote the ball that contains Q in
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such a way that if Q = 5}‘ , then Q* = B(xf, p**!).  Associated with the dyadic
cubes of D,,, Young function @ and « € [0, 1), we define the maximal operators
as

My, f(x) = sup [w(Q)"f]ls.0
anﬂQED’H

where the supremum is taken over all the dyadic cubes Q € D,, containing x,
and

Ma,¢,111f(x) = sup [:u(B)]“HthDB’

Bax,rg=p™

where the supremum is taken over all the balls B containing x and rg > p™.
Corresponding to the maximal operators Mx o.m and M, ¢, the following
lemma is a generalized version of the dyadic version of Calderén-Zygmund

decomposition.

LEMMA 2. Let a€[0,1), @ be a Young function and f be a nonnegative
Sunction such that [, ®(f(x))du(x) < co. Let ty =0 if u(Z) = o0 and 14 =
OV N if (X)) < 0. Given o > Cyup*P, for each integer | with ¢ > 4,
we have ’

(xeX : My, o nf(x)>a} c U 320",
QeF

where F; < D, is a family of maximal disjoint dyadic cubes satisfying that there
exist positive constants ¢ and c; which only depend on the space ¥, p and o,
such that

Qf ={xex : M, . f(x)>ad'}= ) 0
0cFi

and for any Qe Fy,

16! < [ IS Nl g, < c20". (6)

Proor. We will employ the ideas used in the proof of Lemma 4.1 in [16].
Note that if there exists a dyadic cube Q € D,, such that [u(Q)]*[f]l4 o > aal,
then it is contained in a dyadic cube of this type which is maximal with respect
to inclusion. Let F; = {P;}; = D,, be the family of maximal disjoint dyadic
cubes satisfying [u(P:)]"|| f1lg p, > cia!.  According to Lemma 1, for each fixed
P;, we know that there exist j; € N, k; > m such that P; _£k c U 51‘“
Then for some j; €N,

B(x}f‘,pk") c P c E;‘,‘H c B(xj(‘,’“,pk"”).

i
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The maximality of the dyadic cube P; together with the inequality (3) gives us

that
1 f@M@W)
H(P;) Jp, 43( aal ) H0)
u(B(xy ™ p)) JEluE "
= w(P:) /1(5}?"“) L"; . q§< o’ >d,u(x)
u(B(xt, ph2))
#(B(x), p))
< C/tPZD'
Consequently,

1o’ < [u®)|fllg.p, < Cp*Pera’.

For any xe{xeZ : M, ¢ .f(x) > o'}, there exists a ball B satisfying
x€B, rpg=p™ and

Bl 5> o

Choose the integer k > m such that p* < rp < p**1, then there is a collection of
dyadic cubes {J;}, = DX verifying J* N B # & for ie[l,c3]. Remark 2.5 in
[13] tells us that

D
e3 < Curc? <r—i+ 2pK> < CupP (i + 26H)P.
p
In what follows, set ¢3 = Cyp?(k + 2k?)P. We claim that there exists at least

one of these cubes, say Ji, such that J1N B # J and

[/‘(B)]x”XJlfH(D,B > UI/C3-

In fact, if it were not true, that is, for any i € [1,¢3], [u(B)]*lxs/ o5 < 0'/c3,
then

TS o s < a,

1B f o s = B Nz 1 Sl s < S L(B)*
i=1

which is a contradiction to the fact that [u(B)]%||f]ls 5 >0o'. It is easy to
check that B < (x + 2x?)J;. A straightforward computation via the inequality
(3) shows that
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! J ¢(M> du(x)

a!

LI q,( erf ()| u(B))* ) aux)
JiNB o'l

[yl +262)"pP)
() 1

#((x + 262)JY) [Cy(rc + 262) P pP)*
- 1

[Cﬂ(K + 2K2)DPD]1+0¢ .

It follows that [u(J1)]*||flle ,, > 16’ with ¢! = [Cu(ic + 262)PpP* ™. Then
there exists a family of maximal disjoint dyadic cubes F; = D,, satisfying that

of=1 0

QeF
and for any Qe Fy,
ao’ < 1/ llg0 < o,

where ¢, = Cﬂpchl. On the other hand, we observe that there exists some
Q € F; such that J; = Q, and then BNQ # . Thus for any xe {xe X :
Moc.dﬁ,mf()o > OJ}>

xeBc (k+2)0Q" < 3k20",
which in turn implies that

{(xeZ : Myonf(x)>0d'} = | 370"
QeF

LemMmA 3. Under the hypotheses of Lemma 2, for every Q € F;, set Q =
o\N(QNQL,)). Then {Q} is a family of pairwise disjoint sets which satisfies that

ProOF. The family {Q} is clearly pairwise disjoint. Applying the in-
equality (6), we get for every Q€ Fy,

i), (a1

and

ﬂ(lQ) J 0 ? (f(X)CE/;(zQ)] ) du(x) < 1.
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It is obvious that Q,d+l c Q. A trivial computation gives that

poneiy= Y W)

(0'eFirr:0'= 0}
IETCIRY
= {QIG]:H»XI;Q/QQ} JQ’é( L’10'1+1 ) ,u(x)
- S () [u(Q)]”
< Cp?Po! JQH% ¢<T> du(x)

< ™o u(0).
It follows that
#Q) = u(Q) — w(QN QL) > (1 = Cup* s~ Hu(Q).
This leads to our desired estimate.

We also need the following generalization of the Holder inequality (see
[14]).

LemmA 4. Let @, ¥ and @ be Young functions such that for any t > 0,
P-1(1)0~1(¢) < @(1), then for any suitable functions f, g and any measurable
set E with u(E) < oo,

179/l £ < Clf v £lldllo, £ (7)

ProOF (Proof of Theorem 2). By a standard density argument we may
assume that f is a bounded function with bounded support. Note that for any
xe X%,

Mx.<15,111f(x) < Maz,‘?,mflf(x) < and lim sz,(D,mf(x) - Moc,(Df(x)'

m——o0

The monotone convergence theorem shows that

fim, | (M0f () u()005) = | (M0 () ()00,

m——ao0 |g x

Then it suffices to prove that for any large enough negative integer m,
. 1/q . /p
([ tmmsnueane ) < o [ reraae) . ®)
Fix a constant ¢ > C,p?”. For each integer / with ¢/ > 74, where 74 = 0
if w(Z) = o0 and ty = [W(Z)) ]S g if £(Z) < o0, set
Q={xeZ:0' <M, pnf(x)<a}
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By Lemma 2, there exists a family of maximal disjoint dyadic cubes F; < D,,
such that

Q c | 30" and (O /g, > cro’.
QeF

For the case u(%) = oo, a direct computation along with the inequality (7)
gives us that for ¢ e (1, o0),

L{,[M%me(x)]qu(x)du(x)
= ZJ (M0 f ()] () ()
< a0
< Do)
< Z Z o-(l+1)qu(3K2Q*)

T QeF

< O3 DTSN, u(3K207)

1 QE]“/

<CY Y IO PIG ol PN, g3k Q7).

T QeF

It is easy to verify that HU’I/PH.,,?QsCﬂ(3K2p)D||v*1/1’H.,,,3K2Qg. Applying
Lemma 3 and the L”-boundedness of Mg, we obtain that for 1< p <

q< o,
(L[Mmmfu)]qu(x)dﬂ(x>>p/q

<CY D WU 5 ol 1Y, s

I QeF

~ rlq
“Q)
" <ﬂ(3K2Q*) [ “(x)d”(x)>

<CY N inf [Me(fo'/7)(x)] u(Q)

7 Qe}}er

IA

CJ/ (Mo (fo''7)(x)) du(x)
X

<c| 1rwrd.
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For the case u(Z) < oo, write
JI[MI o.mf ()] Tu(x)du(x)

_ J (M. f (%)) “u(x)dpu(x)
{xeZ:My ¢ mf(x)<t2}

+ J (M ()] “2e(x) dpa(x)
{xeZ: My, ¢ mf(x)>10}

=1+1IL

The estimate of the term II is similar to the previous case. To estimate the
term I, note that u(Z) < co implies that Z is bounded, that is, there exist
xo € Z and R > 0 such that & = B(xp,R). Then

(@)= 0P|, pu() < €
and
1ol < inf Mo(fo'/7)()
It follows from the inequality (7) and the L”-boundedness of My that
< cqa( ) = [n(2)] | fo P~ PG yu(2)

< (@S NG o o™ PG ()

< Clu() " inf [Mo(fo!/7)(x))*
q/p
< C(L[M@(fv””)(X)]”dﬂ(x))

<c(], f<x>|f’v<x>du<x>)q/p.

Combining the estimates for the cases (%)= oo and u(Z) < oo yields the
inequality (8), and then completes the proof of Theorem 2.

3. An endpoint estimate for fractional integral operator

In this section, we will establish the following weak type estimate with
general weights for fractional integral operator I,. This estimate plays an
important role in the proof of Theorem 1 and is of independent interest. It
should be pointed out that for the Eculidean space, this result was proved
in [5].
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THEOREM 3. Let a€(0,1) and & >0, then there exists a constant C > 0
depending only on o and e, such that for any weight w and any bounded function
f with a bounded support,

”IlfHL]'“J‘(ﬂ”,w) < CJ&[ |f(x)‘M1,L(log L>1+AW(X)C1,U(X).

To prove Theorem 3, we will invoke some preliminary lemmas.

LEmMA 5 (see [1]). Let (Z,d,u) be a space of homogeneous type, B =
{B. : 1€ A} be a family of balls in X" such that E = | )__ , B. is measurable and
UE) < o. Then there exists a disjoint sequence {B(x;,r;)}; = B, such that
Ec U/. B(x;j, carj) with c4 a positive constant depending only on K (the constant
appearing in the inequality (1)). Moreover, for any te€ A, B, is contained in
some B(x;j, car;).

LeEmMMA 6 (see [9]). There is a constant C > 0 such that for any weight w
and any nonnegative function f with u({xe Z : f(x) > A}) < « for any 1 >0,
(1) if W) = oo, then

L F)w(x)du(x) < € JI M*f (x) Mw(x)du(x);

(i) if u(Z) < oo, then
L S(x)w(x)du(x) < CL{ M7 (x)Mw(x)du(x) + Cw(Z)ma(f).

Lemma 7. Let o€ (0,1) and qe (0,1). Then there exists a constant
C > 0 such that for any x € Z and any function f satisfying that I,f is locally
integrable,

MP(Lf)(x) < CM, /().

This lemma follows the similar argument in the proof of Lemma 5.1 in
[2]. We omit the details for brevity.

Lemma 8. If e (0,1) and qe (0,1), then for any weight w and any
bounded function f with a bounded support,

[ st < € | ream@ac o)

Proor. For the case of u(Z)= oo, the inequality (9) follows from
Lemma 6 and Lemma 7 immediately. For the case of u(2) < oo, since I,
is of weak type (1,(1 —o)™'), the Kolmogorov’s inequality yields that for
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qe(0,1),

I o .
(|1 f1) < C(W | |f(x)|dﬂ(x)> < C inf [M,/(x))"

Therefore, again by Lemma 6 and Lemma 7, we can deduce that for
e (0,1),

j LS ()| w(x)d <><cj M (Lf) (x)] Mw(x)du(x)

x

+ Cw(Z)ma (|L.f17)

< C | (Mo (01 M)
€ M) w(00dut)

< cj (M f ()] Mo () dp(x).

LEmMMA 9. Let o€ (0,1) and & > 0, then for any weight w and any bounded
Sfunction [ with a bounded support,

||19€f|‘L1v‘f(;7',1t') = C”Mtlf”Ll“‘(,T,ML(IOgL)ew)’

Proor. We will employ the ideas used in the proof of Theorem 3.2 in

[5]. Set p e (1,00) which will be chosen later. The inequality (5) via Lemma
8 tells us that

1 1
NN oy = WD)

<C  swp j L1 ()] 2 g (x)w(x)dpe(x)

920.1lgll 1y ) <

<C s M) M) ()

920,110, <

For any 0 > 0, weight w and function %, define the operator S by

M (hw)

Sh=———"—.
ML(log L)pfl+2(iw

As in the proof of Theorem 3.2 in [5], we can prove that S is bounded from
LYY (2, w) to LP/*I(.?&”,ML(lOgL)p—Hz,sw). Then it follows from the Holder in-
equality for Lorentz spaces that
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|| e a1t

= Lr(fo(x)) 1/p - M(gw)(x) ML(log L)p—l-zo‘w(x)d,u(x)

L(log L)p—l+2(5 W(X)

1
< C|[(M..f) /pHL,),m(@M

L(log L)P—1+20 w)

M(gw)(x)
ML(log L)p—1+2o‘ w(x)

L'\, M 1og £yp—1420W)

< C| M, [ gl

LL=(#,M, Lo L)p71+2(j"t7)

Lr (2, w)"

Choosing 6, p such that 0 <20 <¢ and p=1+¢— 26 gives us the desired
conclusion.

LemMa 10. Let a€0,1) and ¢ > 0. Then there exists a constant C >0
such that for any nonnegative function [ satisfying that My e 1y:f is locally
integrable and any x € X,

MO((ML(log L)ef)( ) < CM L(log L)Hff(x) (10)

PrOOF. Assume that M, Liog L) 1+.f 1s finite almost everywhere, for other-
wise there is nothing to prove. We first claim that if there exists a ball B such
that supp f = B, then

1
#(B)
In fact, by a homogeneity argument we may assume that || f]| I
which means that

j Miiog 1y (D30 < ClIF | gog 11155 (1)

Lf(y) log™¥(e + £(»))du(y) < u(B).

For each fixed 4 > 0, set
Q;, = {x €EB: ML(]og L)ff(x) > j'}

Then for any xe(;, there exists a ball By such that |/, 1) > 4
Applying Lemma 5, we obtain a sequence of disjoint balls {B;}; such that

Q, U 4 B; and HfHL(logL)';.,Bj > 2.
J
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A straightforward computation leads us to that

) < | 150 v0g (e L5 )aut

5 4
J(x) log® (e + %) du(x)

" 19 g (e g
(xeBf(x)>4/2)NB, A )

J{xe B:f(x) < 4/2}NB;

<

NS

(xeBf(x)>2/2)0B,

Therefore,

<C J >
7 HxeBsf(x)>2/2)08 4

<

‘|
{xeBf(x)>1/2} 4

which in turn implies that

JB M p0g 1)ef (¥)du(y)

1 0
_ J (2,)d) + J 1(2,)d)
0 |

< u(B)+C J

U JxeBf>i2) 4

<u(B)+C

(xeBif (x)>4/2} Jl A Ji

< u(B) +C | /() log""(e + /(x))du(x)

< Cu(B),

and then yields the estimate (11).

For each fixed x e Z and a ball B containing x, decompose f as

2/ (x) f(x) log’ (e N 2f (x

)

log*(e + 1)u(B;) + J &) log* (e + @) d(x).

A

) o+ 7)),

/() log® <e + ZfT(x)> du(x)dA

) didu(x)

S ) =FWxas(V) + fDxaraes(¥) = [i(y) + L(3).

403
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Write
1 1
WJ My og 1yef (9)dpu(y) < WJ Mytog 1y i (1))
" W JB M qiog 1y /2(y)du(y)
= I1 + 12.

The inequality (3) together with the inequality (11) gives us that

1

I < CLU(BWWL BMLaogL)”fi(J’)d/vt(J’)

< Clu(B)] OCHfHL(log L)' 2B

S CMO(,L(lOg L)H»sf(x).

On the other hand, it follows from an estimate of Bernardis et al. (see [2,
Lemma 4.4]) that for any y e B,

[1(B)]* Mg 1)f2(y) < € Inf M, 110g 1)2/2(2).

Applying the fact that M, r o 1)/ (x) < M, ;0. 1)1/ (X), We have

L<C _llelfl; M%L(log L)“fz(z) =< CMac,L(log L)“fZ(x) =< CMa,L(log L)”“f(x)a

and then completes the proof of Lemma 10.

ProOOF (Proof of Theorem 3). It suffices to prove that there exists a
constant C > 0 such that for any weight w and 4 > 0,

C

w{xeZ : M,f(x)>1}) < IJ G [Mow(x)dp(x). (12)
2

If we can do this, our desired result follows from Lemma 9, the estimate (12)
and Lemma 10 directly.

We now prove (12). The argument is familiar and standard. For any
A >0 and x €  with M, f(x) > A, there exists a ball B, containing x such that

o
[1(B.)]'"™

Our hypotheses on the function f guarantee that u({xe 2 : M, f(x) > 1}) <
c. By Lemma 5, we can obtain a sequence of disjoint balls {B;}; such that

{xeZ:M,f(x)>2} = ()b
J

JB. Fdu(y) > 4.
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and

Therefore,

IA
>J\ 9
%

i

i

IA

4. Proof of Theorem 1

For each fixed 1 < p<g< oo and y >0, set &(r) =t log' (e 4 ¢) with
0 <e<y/q. Note that if we choose 0 = y —¢gq, then

¢ /4

o ()~ =
) log"™(e+1) log®~1/4(e + 1)

x 114 10g4=1+/4 (¢ 4 ¢)

P (e (),

where ¥(r) = 19 10g% (e +1) and O(f) = 14 log7' @' V(e +1). It is easy
to verify that ¥(¢'/4) ~ t1og? """ (e + 1), @ is doubling and satisfies the B,
condition. We then obtain from Theorem 2 that M, ¢ is bounded from
LY, u=97) to LV (X,07P"/P).
On the other hand, for each A > 0, set
Q,={xeZ:|Lf(x)] > 1}.

The set is bounded, then u(Q2;) < co. By duality, there exists a nonnegative
function g e L (%) with lgllzs' (2 =1 such that

u(2;)"1 = ||u1/q)(9,»_|\u(xz>
- j () g () du(x)

JEJJ |/ (x) |Ma,4>(u1/qg) (x)du(x)

IA
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IA

IA

% ( J | f(x)|pv(x)dﬂ(x)>l/pv

7

where the first inequality follows from Theorem 3, the second inequality follows
from the Holder inequality, and the last one follows from the boundedness of

Moc.(D-
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