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ABSTRACT. In [8], we classified all “convex orders” on the positive root system A4, of
an arbitrary untwisted affine Lie algebra g and gave a concrete method of constructing
all convex orders on 4,. The aim of this paper is to give a new description of “convex
bases” of PBW type of the positive subalgebra Ut of the quantum affine algebra
U = U,(g) by using the concrete method of constructing all convex orders on 4.
Applying convexity properties of the convex bases of U™, for each convex order on 4,
we construct a pair of dual bases of U and the negative subalgebra U~ with respect to
a g-analogue of the Killing form, and then present the multiplicative formula for the
universal R-matrix of U.

1. Introduction

In the theory of quantum algebras, it is an important problem to construct
the dual bases of the positive subalgebra U™ and the negative subalgebra U~ of
the quantum algebra U = U, with respect to the g-analogue of the Killing form
which is defined in [12] and [15]. For example, the dual bases of U and U~
were applied to express the universal R-matrix and the extremal projector of
the quantum algebra U in an explicit formula ([12], [13]), and it is known that
the dual bases are related to the canonical bases of U™t or the global crystal
bases of U~ ([3]). The positive and negative parts of the dual bases used to be
constructed as a kind of Poincaré-Birkhoff-Witt (PBW) type bases of Ut and
U~ respectively, and the both parts have several convexity properties con-
cerning the g-commutator and the coproduct of U. We would like to
emphasize that the convexity properties are useful for calculating values of
the ¢-Killing form, so we call the positive or negative parts of the dual bases
convex bases of UT or U~ respectively.

By the way, each convex basis of U* is formed by monomials in certain ¢-
root vectors E, with o positive roots, which are multiplied in a predetermined
total order on the positive root system A, of the underlying Lie algebra g.
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Because the total order on 4. has several convexity properties, we call a such
total order on A, ‘“‘convex order” on A4..

In the case where g is an arbitrary finite dimensional simple Lie algebra,
there is a natural bijective mapping between the set of the convex orders on A4,
and the set of the reduced expressions of the longest element of the Weyl
group, and G. Lusztig constructed convex bases of U™ associated with all
reduced expressions of the longest element of the Weyl group by using a braid
group action on U = U,(g) ([14]). Therefore all convex bases of U" had been
constructed in the finite case.

In the case where g is an arbitrary untwisted affine Lie algebra, in [2], J.
Beck constructed convex bases of U™ associated with convex orders on 4, of a
special type. On the other hand, in [8], we classified all convex orders on 4,
and we found out that there exist new types of convex orders on 4, which was
not used in the Beck’s construction, and then we gave a concrete method of
constructing all convex orders on A, for the untwisted affine case. So we
think that it is natural to extend the Beck’s construction of convex bases of Ut
by using the new knowledge about convex orders on 4.

In this article, we give a new description of convex bases of U™ for the
quantum affine algebra U,(g) in the case where g is an arbitrary untwisted
affine Lie algebra, i.e., the affine Lie algebra of type X,.(l), where X =
A,B,C,D,E,F,G. More precisely, we construct convex bases of U" by using
the concrete method of constructing all convex orders on 4, introduced in the
paper [8]. Theorem 3.2 is a summary of the results of the paper [8]. Then the
main results of this paper are Theorem 8.4 and Theorem 8.6, which are
presented by using the notation of Theorem 3.2. In Theorem 8.4 and
Theorem 8.6, we will use some parameter J, which is an arbitrary non-empty
subset of I:={1,...,r}. Here, the set I is the index set of the simple root
system of the underlying finite dimensional simple Lie algebra g of type X,
introduced in the book [11]. We note that the algebras Uy and U; are
subalgebras of l{ and U™ respectively and that Uy is nothing but U" in the
case where J=1.

This paper is organized as follows. The notations of this paper are
basically the same as the notations of the papers [7] and [8]. So, by referring
to the papers [7] and [8], we omit the description of the notations in this paper.
In section 2, we give notations and preliminary results on the root system of the
untwisted affine Lie algebra g. In section 3, we give notations and preliminary
results on reduced words of the Coxeter group (Wj,Sy) and convex orders on
the positive root system Ay.. In section 4, we give notations and preliminary
results on the quantum algebra U = U,(g). In section 5, we construct the
subalgebra Uy of U associated with Ay and the braid group action on it. In
section 6, we define imaginary root vectors of Uj. In section 7, we give
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several tensor product decompositions of the positive subalgebra U; of Uy. In
section 8, we give a concrete method of constructing convex bases of Uj
associated with convex orders on Ay,. In section 9, we construct the dual
convex bases of Ut and U~ with respect to the ¢-Killing form, and then
present the multiplicative formula for the universal R-matrix of U associated
with an arbitrary convex order on A4,.

2. Preliminary results on the untwisted affine root systems

First of all, we would like to mention that the notations of this paper for
the root system of g follow that in [7] and [8], where g is the untwisted affine
Lie algebra of type X,gl) with X =A4,B,...,G and re N the rank of the
underlying finite dimensional simple Lie algebra of type X,. So we will omit
the description of the notations. However, for writing this paper, we will
make a few changes in the notations and give some additional notations. In
this paper, let us denote by A = [Aij]ly_,- 1 the generalized Cartan matrix of the
type X,A(l) with I={0,1,...,r}. In Oaddition, we assume that [Ay] : is the
Cartan matrix of the type X, with I={1,...,r}. e

_ For each i€l, let & be a unique element of h* such that (¢;|o;) = 6 for all
jel. For each non-empty subset J < I, we set

Py =@, ,Ze, Ty={1liePy}, Wiy=TyxW;cGL(b;)
and set

Aut(4y) := {¢ € GL(bY) [ ¢(4s) = 45, (¢(2)|$(w)) = (2] ) (Y4, € b))},
Aut(AJ,IYJ) = {¢ € Aut(AJ) ‘ ¢(HJ) = HJ}, QJ = WJ ﬂAut(AJ,HJ).
Then Wy= Wy x Q< Aut(4y). For each K = J, we set
Aut(4y)* = {p € Aut(4y) | p(ITK) < 43.},

WJK = WJ ﬂAllt(AJ)K, WJK = WJ ﬂAut(AJ)K.

Note that Aut(4y, 1) = Aut(AJ)J. Let 4y : Wy — Z., be the extended length
function defined by setting Z5(xp) := Z5(x) for each xe Wy and pe Q;. We
note that /(y) = #®y(y) for all ye Wj.

ProposITION 2.1 ([9]). For each connected subset J c i, the assignment
J = pyj = g WoiWo (2.1

defines a bijective mapping from the set J. :={jeJ|(¢|05) =1} to Qy\{1}.
Here, w, and wo; are the longest elements of Wy and Wiy, respectively.
Moreover, the condition that p(6 — Oy) = o; for pe Qy\{1} and jeJ is equiv-

alent to the condition that p = py; with j € J..
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ProoF. Although the setting of Proposition 1.18 in [9] is different from
that of this case, the proof can be applied to this case with suitable mod-
ification.

LemMA 2.2. Let J be an arbitrary connected subset of i and K an arbitmry
subset of J.  Then each ¢ € Aut(4y) can be uniquely written as ¢ = g¥ dx with
#% e Aut(4y)® and ¢ € Wx.

Proor. We first prove the umqueness. Suppose that ¢ = a®ax = b¥bg
with aX, bk eAut(AJ) and ag,bg € Wg. Then aX = b¥bgayg'. Since a¥ e
Aut(4y)® and bgay' € WJ, we have bgag' =1, hence bk = ax and b¥ = aX.
We next prove the existence. By Corollary 3.10 in [11], the automorphism ¢
can be uniquely written as opz with o = +1, p e Aut(4y,Ily), and z e Wj.
Moreover, we see that z can be uniquely written as xy with xe WK and
ye WK Hence ¢ = opxy In the case where o= 1, put ¢* = px and ¢y = y.
Then ¢ ¢ py with ¢¥ € Aut(4y)* and ¢ € WK In the case where o = —1,
put ¢¥ = —pxw, and ¢ = w.y, where w, is the longest element of WK Then
¢ = ¢¥p with ¢* € Aut(4;)* and ¢y € k. O

LemMMA 2.3. Let J and J' be connected subsets ofi which are disjoint from
each other. .
(1) For each jeJ,, there exists a unique element wy; € Wy such that

(1) t,g/.|bj/ = ijVVJj. (22)
Moreover, the following equalities hold:

(i) py = (l,g/) (iil)  wy = (t;)y = WoWo. (2.3)

Here, (,) e W and (1, )y € Wy are unique elements such that t, (l,j)J(t(;/)J,
and w, and w.; are the Zongest elements of WJ and WJ\{ N respectwely
(2) For each ie I\J A= WJ/, and j' € J., the following equalities hold:

!

@) ()" 6]=0, () [&)" =0 (i) [(z)")"]=0.

Here, [,] is the commutator, ie., [a,b] = ab — ba. Moreover,

(i) £((1)"8) = (1)) + (1), (V) ((t)"2) = £((6,)") + £(2),
(Vi) (1) ()" = £(1)") + £((2) 7).

(3) For each jelJd,. and [ e Ay, the equality (ZS/)J(B) = f holds.
(4) For each jelJ,, the element (tgl)J satisfies the following equalities:
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(1) ¢<<tej)J) < AJ(lv_)> (11) ¢<t(9j) N4y = (tﬁ/)J(D(WJj)’
(iii) (2,)"4%1,-) = 47(1,-).

Moreover, /((lej)‘]) =0 if and only if J=1
(5) For each jelJ,, there exists a unique element j~ € J. such that

(i) P.J_/(“j*) =0 — 0y, (ii) Pyi- = (PJ_/)_l
In addition, (ij)2 =1 if and only if j~ = j. Moreover,

(i) (1) s (6 ) gy = s5-000 (V) @((65) "5 (1)) N Ay = {6 — Ou},
V) ()" (15 )\ = Oy} = 4”1,
Vi) 2((6) s (0-)T) = £((8)") + 1+ £((8-)).

Proor. (1) Set wy; := wowo;. Then wy; e Wy. By Proposition 2.1, we
have 1], = PyWyj- On the other hand, by Lemma 2.2, we have i, =
(lé_,.)"(thj)J with  (z, yY'ew? and (t)y € Wy. 1t follows that Iy lyy =
(ZE/)J () y- Hence (2.3) follows from Lemma 2.2. The uniqueness of
the decomposition (2.2) follows from (2.3).

(2) By the part (1), we have (tgj.)‘] L, wJ,l It is clear that [r,,7,] =
[WJ/I, ;] =0, which implies (i). Since (g[x) =0 for all oceHJ/ we have
[t;, 2] = 0. Since wy; € W_], we_see that [ijl,sa] =0 for all ae]?J«. Thus
we get [(t;;].)J,O s, =0 for all « € ITy, which implies (ii). Since (tgj,)" =1l wJ’,JI.,
with wy; € Wy, (iii) follows from (i) and (ii).

It is clear that /((tﬂj) ty) < /((l,) )+/(t£) Since [wy;, ;] =0 we have
tyly, = (tp]) t,wy;, and hence /(¢;t;) < /((tpj) t,) +/(wy;). On the other hand,
we have

/(lﬁjl«fi) = ((ZS/) + /(ts,’) = {/((ZE)J) + ((WJJ')} + /(ZE[)'

Thus we get / ((tnj)‘]) +/(t,) < 2((¢, ) tp) which 1mphes (1v) The assertion (v)
is clear. Tt is easy to see that /((téj) =< ((téj) (tgj_,) )+/(WJ/j/). From
(iv) and (v), it follows that

£(15)"1,) = £((1)") +£((15,) ") + £ wgy):
Thus we get that /((té,)J) £((t.,) ,/) < /((tg/.)"(tgj,)"/), which implies (vi), since
(1) (1,)™) < £((0)") + (1))
(3) Since #,(f) = and 1VJ,(ﬁ) =B, we have (1,)"(B) = 1, w3 (B) = p.
(4) Tt is easy to see that

P(1,) = B((1,)") 11 (1,) @) = A(1.-). (24)
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By (1)(ii), we have Cb((té./)J) N4y, = &, hence we see that (i) and (ii) follow
from (2.4). Since both 7, and wj;' stabilize 47(1,-), the equality ()" = o,y
implies (iii). We see that &(z;) N4’(1,-) = & if and only if J = i, hence the
second assertion follows from (i)(ii) and (2.4).

(5) By Proposition 2.1, there exists a unique element j~ € J, satisfying
(i)(i)). Suppose that (ij)2 =1, ie, (ij)fl = py;- By (ii) and Proposition 2.1
we get j~ = j. Suppose that j~ = j. Then, by (ii) we get py; = (ij)fl, ie.,
(ij)2 =1. By (1)(ii) and (ii), we see that

([t;,-)JSj* (tflj* )J
Since 6 — 0y = py;(0y-), we have pys;- (ij)fl(é —0y) = —(0—6y). Since
(o) = (6= 056 —05) and ((py) (%) o) = (20— 0y) for all ied,

we have s_/f(ij)_l(oc,') = (ij)_l(oci) —%qh which implies that

-1
vy = PySi(Py) (2.5)

PyjSi- (ﬂJ_/)_l () = o — % (6 — 03) = s5-9,(cui)-

Therefore (iii) follows from (2.5). By (4)(i), we see that
5 (1)) = A70,-), (s (6,)7) = {oy YTl D((1,)7),  (26)
since s;-A47(1,-) = 47(1,-). By (4)(iii) and the left equality in (2.6), we have
(1) s (1, )") = 4714, (2.7)
By (2.6) and the equality (tgj)"(ocjf) =0 — 0y, we have
O((1,)"s; (1)) = (1)) {6 — O3} 1L (1,) s D((1,)"). (28)
Therefore (iv), (v), and (vi) follow from (4)(i) and (2.7)(2.8). O

LemMmA 2.4, Let us use the notations as in Proposition 2.1.  Assume that J
is a connected subset of 1 with #J > 2 and that an element je J, satisfies
(ij)2 = 1. Then there exist distinct elements i,i' €1 and an element ze W
satisfying @(z) < A(1,-), o; = z(a;), and 6 — Oy = z(op).

Proor. Let B be the subset of A(1,-) consisting of all f such that
p+oy 440, =00y (2.9)

for some sequence (i}, ...,I,) consisting of elements of I with # € N. Then, it
is easy to see that both B and B’ = BII{0 — 05} are finite biconvex sets.
Hence, there exist unique z€ W and i’ €I such that B= @(z) and 0 — 0y =
z(a) by Theorem 2.4. We next show that

50— 0y)=5—0y, s(B)=B8 (2.10)
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By the assumption of the Lemma and the extended Dynkin diagram of A J, wWe
see that (0 — 0y |a;) = 0, which implies the left equality in (2.10). Let f be an
arbitrary element of B. To prove the right equality in (2.10), it suffices to
show that B includes the o;-string through . Since o; is not a short root, we
see that the length of the o;-string through f is less than 2. If the length is I,
there is nothing to prove. Suppose that the length is 2. In the case where
si(p) = p —o;, we see that s;(f) € 4(1,—) and

si(B) + oy + (o) + - -+ 0y,) =0 — 0y,

which implies s;(f) € B. In the case where s;(f) = f + o, we see that j =i
for some 1 <k <n. Indeed, if j+#i; for all 1 <k <n, then we see that
p+ (o +---+ o) +ma;=0—0y for some m>1 by applying s; to the
equality (2.9). Here we use the left equality in (2.10). This contradicts (2.9).
Hence, j =i, for some 1 <k <n. Thus we see that

Si(B) + (g + -+ o+, + o) =0—0;

with s;(f) € 4(1,-). Here we have n > 2. Indeed, if n =1 then s;(f) =0 — 0y,
which contradicts the left equation in (2.10). Thus we get s;(f) € B.

By the right equality in (2.10) and the equality B = &(z), we see that
D(sjz) = {oy} L s;P(z) = {o;} LI P(z). On the other hand, since P(z) = D(s;z)
and #{P(s;2)\P(z)} =1, we see that D(s;z) = P(z) Il z{o;} = P(zs;) for some
unique i €. Thus we get o = z(o;). O

3. Preliminary results on reduced words and convex orders

We denote by N,, the set {m e N|m < n} for each n e N, and set N, := N
and N, :=N1II {co}, where co is a symbol. We extend the usual order < on N
to a total order on N, by setting n < oo for each n e N. We also set oo +n =
n+ oo = ocon =noo = oo for each ne N,. .

For each non-empty subset J of I we set Sy:=SyI(Q;\{1}) =
HCC:(.IJ)(SJC I Qy\{1}). For each neN,, we denote a sequence consisting of
elements s(p) € Sy with peN, by s= (S(p))peNn, and denote the set of all such
sequences by SJN”. In addition, let us denote by S},V” the set of all sequences
se S’T" such that s(p) € Sy for all p e N,. Several operations (initial p-sections
s|p, products ss’, limits lim, .., s,, etc.) for the elements of S},\I” are defined in
[7], and the same operations can be defined for the elements of S’}V in the same
manner.

For each se S} with n < oo, we define an element [s] of W by setting
[s] :=s(1)s(2)---s(n). For each neN,, we call an element seS'JN” a reduced
word of (Wy,Sy) if y([sl,-1]) < 4([s],]) for all peN,. Here, 4: Wy—Z, is
the extended length function.
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For each reduced word s = (s(p)),cn, Of (Wy,Sy) with neN,, we set
s71(Sy) = {peN,|s(p) € Sy} and /(s) := #s"(S)), and call the non-negative
integer /y(s) the length of s. We denote by "//7 " the set of all reduced words
with length n and set #j :=[],.x#5" and #; := #511#;*. We call an
element of #; (resp. W;*) a finite reduced word (resp an infinite reduced word)
of (Wjy,Sy). For each neN,, we denote by #j" the subset of W' which
consists of elements seW " such that s(p) e Sy for all peN,, and call an
element se #)" a reduced word of (Wjy,Sy). We set #y:=]],.n7)" and
Wy =Wy #5°, and call an element of #j (resp. #;*) a finite reduced word
(resp. an infinite reduced word) of (Wy,Sy).

For each reduced word s e %*, an injective mapping ¢ : Ny — 45, is
defined by setting ¢,(p) := [sl,(,)—1](%s(x(p))) for each p €N, where the « is a
unique strictly increasing function x : Ny — N such that the image of x equals
to s(Sy), ie., Im(x) =s7'(Sy). We denote by @, (s) the image of the
injective mapping ¢,. Note that if /(s) < co then @ (s)( ) = @y([s])-

For a pair (s,s) of elements of #;°, we write s ~ s’ if for each (p,q) € N°
there exists (po,q0) € Z>, X Z>, such that /J([s|p]7l[s’|pu}) =po—p and
/JA([SI|(]] Us l)) = qo —¢q. Then we see that ~ is an equivalence relation on
Wy (cf. [7 ]) We denote by Wj° the quotient set of #;° relative to the
equivalence relation ~, and by [s] the coset containing s € “/// . Let Wy be
the image of %} by the canonical mapping “/ﬁfc — Wj” Then we can easily
show that Wy = W;°. Moreover, we see that s ~ s’ if and only if @] (s) =
&5 (s") (cf. [7]). Hence we may denote by @5 ([s]) the set @} (s).

Therefore we can set ®j([s]) := @;w (s) for each se ¥

In the case where J = I, we will denote the symbols above more simply by
removing J from them.

DEerFINITION 3.1. Let < be a total order on a subset B of A4;,. We say
that < is a convex order on B if it satisfies the following conditions:

CO(i) (B,y) e B\, <y, p+7eB=BF<B+y<n
CO(ii) peB,yeds \B,f+yeB=B<p+7.

Here we write f < y if f <y and f #y. We denote by < the total order on
B defined by setting g < y < B = y for each pair (f,7) € B?, and call < the
opposite of <. We also say that < is an opposite convex order if the opposite
< is a convex order. For subsets C and D of B, we write C < D if ¢ < d for
all pair (¢,d) e C x D.

For each non-empty subset J — I, we set

€, = {K.:(Ko,K],...,KnHJ:K()QK] 2"'2Kn:@}'
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We note that if n > #J then €,J = ¢, and set €J := ,ﬁl €,J. For ecach
n e Nyy and Kk, € €,J, we set

— o0, __ o0 o0
Wi, .= Wi, XX Way, W = WE X X W

Denote an element (yi,...,y,) € Wk, by y., and an element (so,...,8,_1) €
Wx. by s.. Note that Wk, = {1} and y, =1 for each k, € 6,J and y, € Wk,.

TueoreM 3.2 ([8]).  Let J be an arbitrary non-empty subset of i, and w an
arbitrary element of Wj.

(1) Let <_ be an arbitrary convex order on Ay(w,-), <o an arbitrary total
order on A””, and =, an arbitrary opposite convex order on Ay(w,+). We can
define a convex order < on Ay, by extending <_, <o, =y to Ay, = Ay(w,—) 11
AT I Ay(w,+) in such a way that Ay(w,~) < A7 < Ay(w,+). Moreover, we can
obtain every convex order on Ay, by applying the procedure above.

(2) For each n € Nyjy and K. € 6,J, there exists (y.,s.) € Wk, x Wg. such
that

n

Asov =) = [T, w v g (si1]), (3.1)
C = H;:1 ‘/"KFIJ’_/'—IQSIQ(?,I([S/—I]) € By for each 1 £i<n, (3.2)

where yo := 1. Then we can define a convex order < on Ay(w,—) by applying the
following procedure Steps 1, 2.

Step 1. For each i=1,...,n, define a total order <; on the set R;:=
w1y 1 @g ([si1]) by setting

WAy (p) =W iy (q)  for each p <g

Step 2. Define < by extending <i,...,=, to Ay(w,~) = [[;L, R; in such a
way that R; < Ry for each i <i'. Moreover, we can obtam every convex orders
on Ag(w,—) by applying the procedure above.

REMARK 3.3. (1) Theorem 3.2 gives a concrete method of constructing all
convex orders on Ay, since Ay(w,+) = Ay(ww,,—) with w, the longest element of
V(IJ/J. (2) For each n € Nyj, we call the convex order on Ay(w,-) described above
that of n-row type.

DerFiNiTION 3.4. Let us use the notations as in Proposition 2.1 anod
Lemma 2.3(5). From now on, we often denote the translation #, (jel)
simply by ¢ if there is no fear of mlsunderstandmg Let J be an arbltrary
non-empty subset of I. Foreachse Sy, we define an element 5 W by setting

(gj)"‘ if s=py,;withc=1,...,Cc(J) and j € J.,
Si=4q if s=s; with jeJ, (3.3)
(8/‘(,)‘](3/; (6/;)‘]‘ if §s= S5—03, with ¢ = 1,... ,C(J),
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where we fix an element j. € J., for each ¢ =1,...,CJ). For each p e Qy, we
define an element je W by setting j:= H(C:(P p., where p = H(C:(P p. with
p.€Qy,, and if p, =1 then we set p,:= 1.

For each se Sy, we fix a finite reduced word S; = (85(0)peny, € VA such
that [s;] =5, where si(p)e S for all peNy. For each s=(s(p),cn, €5
with neN,, we set s, :=s(p) for each peN,, and define a sequence §=

(5(P))pen, € SN with 7ie N, by setting

I o / -

. S8, - Sy, if n < o0,

$:=9 4 ) ,
my_. §

(3.4)

s/ .8l ifn= oo,

S5 ASI,

where 71:= Ny + Ny, +---+ N, if n< oo, and 71:= w0 if n=oc0. For the

definitions of the product s;s; ...s; and the limit lim, ., s;s; ...s;, the

Sn * sy

reader is referred to the paper [7]. Note that for each p e N,,

[s[,] = s(Ds@) - - - (). (3.5)

LemMa 3.5. (1) The sequence § = (8(p)),en, defined in Definition 3.4 is an

element of W such that ¢; o f = ¢ for some unique strictly increasing function

f :Nygy — N In particular, s€ W if and only if se Wy°. Moreover, the
following equalities hold:

@) sl

(i) @(s,)Ndyr = Ba(lsl,)), (v) (s, )\ Ba(ls],)) = 471,

oy = s, () [sl,)4%0 o) = 470,

) sl =0 so)

for all peN,. In particular,
(vi) @ (B)NAys = @5(s]),  (vii) @ (E)\@j([s]) = 4”1~
Q) If se Wy, then §€ W™ with the following equality:
@*([5]) = @5 ([s]) L4’ (1,-). (3.6)

ProoF. (1) The assertion (i) follows from Lemma 2.3(5)(iii). By Lemma
2.3(4)(iii), we see that s(k)4’(1,—) < 4%(1,-) for all k eN,. Thus, by (3.5) we
get (ii). By Lemma 2.3(4)(ii) and (5)(iv)(v), we have

D(s(k)) N Ay, = Dy(sk)), D(s(k))\ D@y (s(k)) = AV (1,-). (3.7)
By (i), (ii), and (3.5)(3.7), we have

o([sl,)) = [ T;_, sl @(s(8)), (3.8)
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where [;B] = 1. Therefore we see that (v) holds and the sequence § is an
element of W satisfying (iii) and (iv). It is easy to see that @*([3]) =
UpeNn @([s|,]). Hence (iii) and (iv) imply (vi) and (vi). By (1)(i), (3.8),
and the left equality of (3.7), we see that there exists a unique strictly increasing
function f: Ny — N such that g0 f = ¢,. )

(2) By the part (1), the sequence § is an element of %#™”. In the case
where J=1, we see that 47(1,-)= & and $=s,, and hence the equality
(3.6) is valid. Suppose that J is a proper subset of I. By (1)(vi) and (1)(vii),
and Theorem 7.4 in [7], we see that the set @*([§]) is an infinite real biconvex
set such that @*([s]) N 4y = @5 ([s]) and the set &= ([5])\ @5 ([s]) is an infinite
subset of A7(1,—), which implies the equality (3.6) by Theorem 6.7 in [7].

O

Recall that Bj is the set of all real biconvex sets in Ay, (see [7]).
For each Be®B;, we set Wj(B):={ye Wy|®y(y) = B} and W;y(B) :=
Wy(B) N Wy.

LemmA 3.6. (1) Let B be a real biconvex set in Ay,.. Then, for each pair
(y1, y2) € Wy(B)?, there exists an element y3 € Wy(B) such that ®3(y1)U ®y(y2)
< Dy(y3)- X

(2)  Suppose that a subset Y < Wy satisfies the following condition:  For
each pair (yy,y2) € Y2, there exists an element y; €Y such that ®j5(y;)U
D5(y2) = Dy(y3). Then the set ©y(Y) = Uye y P3(y) is a real biconvex set in
Ay

Proor. (1) By Corollary 7.6 in [7], we have B = @j([s]) for some s € #",
hence B = U;(:sf ®y([s],]). Since @y(y1)UPy(y2) is a finite set and @y([s|,]) <
Dy([sl,]) for p<p’, we see that @Dy(y1)U®Ps(y2) = Py(fsl,]) for some
Po € Ny(y).

(2) Suppose that 5,y € @5(Y) satisfy f+ y € 45.. By the assumption on
Y, we may assume that S,y e ®@5(y) for some ye Y. Then f+ye @y(y),
hence f+ye ®y(Y). It is clear that 4)\@y(Y) = (), {45\ Ps(»)}. Sup-
pose that f,ye A;\®;(Y) satisty f+yedy.. Then f,ye 4;\@y(y) for all
yeY. It follows that f+yed;\@y(y) for all yeY, hence [+ye
A\ Py(Y). O

PROPOSITION 3.7 Let (3,u,y) be an arbitrary element of 2 (see [T]).
Suppose that ¢ € PV satisfies (glo;) > 0 for all i e I\J and (¢|oj) =0 for all jeJ
and that s € Wy satisfies [s| = y. Then V(3,u,y) =, ., Puls]t").

n>0
Proor. Set B= ), ,®([5]7}). By the assumption on &, we see that

Upso @) = A%(1,-). Hence, by Lemma 3.5(1)(iii) and Lemma 2.3(2) in [7],
we see that @([8]t)) = D([s]) 11 [§]@(¢7) for all n > 0. Thus, by Lemma 3.6(2),
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we see that B is an infinite real biconvex set such that B = &([s]) II [s]47(1,-).
Hence, by Lemma 3.5(1)(ii)(iii)(iv) we have BN A4y, = @5(y) and B\®@;(y) =
A%(1,-). Since A7(1,-)\[§]4%(1,-) is a finite set, we see that A47(1,-)\B is a
finite set. By Theorem 6.7 in [7], we get B = ®y(y) 1 4%(1,—). Since ue W
we see that @(u[s]t)) = @(u) L ud([5]¢)) for all n > 0, which implies that

Upeo @]l = o(u) Iul ), ., 23]
= ®O(u) TuB = uds(y) L A u,—) =V(Iuy). O

LemMmA 3.8. Let J and K be connected subsets of I such that K < J, and k
an element of K.. Suppose that [s| =t, with s€ Wy, and write the elements
5] and t,, of W uniquely as [§] = [§]K[§]K and t, = (t,;k)K(t,;k)K with [3]* e WX,

(1) € WX, [§x € W, and (1) € Wi, Then
oK

(i) [s]
Proor. By Lemma 3.5(1)(i), we have []|y = |y, hence [§]|y.. = 1, |y

since by = by'. On the other hand, we see that [5][,, = [§}K|b;{ [s)x and 7, |y =
(lg,()K|b;(/(lgk)K. Thus the assertions (i)(ii) follow from Lemma 2.2.

by — (ZSk)Khﬁ(’? (11) [g]K = (lﬁk)]('

4. Notations and preliminary results on U,
For each ne N, we define [n],,[n]!, (n),, (n),! € Z[t,1'] by setting

n —n 2n
o= =TT = =TT
and set [0], = (0), =[0],! = (0),! := L.

We assume that ¢ is an indeterminate over Q. Let Q(g) be the field of
rational functions of ¢ with coefficients in Q. Let P be the weight lattice of g,
ie, P={1ebh"|<’,2>eZ (Viel)}, and Q the root lattice of g. Let
U = U,(g) be the quantized enveloping algebra over Q(g) of the untwisted
affine Lie algebra g of type Xr(l), that is, the associative Q(g)-algebra U with
the unit 1 defined by the generators {E; F;|ieI}II{K;|.Z€ P} and the
following relations:

KKy = Ko, Ky =1,
KEK;'=q“WE,  KFK;'=q¢®"F,
(i, ) = 05(Ki — K1) /(i — 4;"),

1-A; k (
o DX

1

I*Ai/*k>A/j)(i(k) =0 (with i # j for each X = E, F),
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where ¢; := ¢, K; = K,,, and Xi(k) = X/ /[k],!. The last relations are called
the quantum Serre relations. Let U’ be the Q(g)-subalgebra of U generated
by {E;, F;, K |ieT}, U the Q(g)-subalgebra of U generated by {E;|iel},
U~ the Q(g)-subalgebra of U generated by {F;|iel}, and U° the Q(q)-
subalgebra of U generated by {K; |2 e P}. The multiplication x® y ® z —
xyz defines the following isomorphism of Q(g)-vector spaces: U™ ® U’ ®
U~ = U, which is called the triangular decomposition. Let U=° and U= be
the images of Ut ® U® and U°® U~ by the triangular decomposition,
respectively. Let Q: U — U be the Q-algebra anti-automorphism such that
Q(E)=F, QF)=E, QK;)=K;', and Q(¢g)=¢q'. Let ¥:U— U be
the Q(g)-algebra anti-automorphism such that ¥Y(E;) = E;, ¥(F;) =F;, and
Y(K;) =K.

For each pe Q, let U, be the weight space of U with weight 4. Then
U= @#e o Uu- We call a non-zero element u of U, a weight vector with
weight x4 and set wt(u) :=pu. If a subspace V' of U is stable under the
conjugate action of U® on U, then V = @MEQ V., where V,:= U,NV. For
each u,veQ, uelU,, veU, we set [u,v]q = uv — ¢y, and define a
Q(g)-bilinear mapping [,],: Ux U — U by setting (x,y)+ [x,)], =
Z,u,veQ[xﬂ?yV]q’ where x = Z,ueQx,U (xﬂ € U/l)’ y= ZverV (y\’ € UV)' The
mapping [, ] ; 1s called the g-commutator or the g-bracket. For each x e U, we
define a Q(g)-linear mapping adyx: U — U by setting (adyx).y := [x, y|,.
For each o,fed (o #p), xeU,, yeUs and neZ,, we see that
L (ad,x)"y = 0 (— 1)k gpt A (= ) where Ay =20 e 7,

oM (o)
gz = q"M72, and  x® :=xF/[k], !. In addition, we set (ad,x)".y =
|

——(ad,x)".y. Then the quantum Serre relations can be written as
[n],! q

(at/zlqu)(l—Aij).E/ _ (adqf})(l_Aw-F/ =0 with i # j.
The braid group %y = (T;|i e I) associated with the Weyl group W acts
on U as a group of Q(g)-algebra automorphisms of U via

T(E) = —FK:,  Ti(E) = (adE)"™ E (i #)), (4.1)
Ti(F) = -K'E;, T(F)=QT{(E)) (i#)), (4.2)
Ti(K;) = Ky = KK 7, (4.3)

where i,jel, e P (cf. [14]). For each xe W, we set Ty :=T1,T;,...T;,
where x = s;,8;, ...s;, with n=/7/(x) and i,i,...,i, €I is a reduced expression
of x. The automorphism 7, does not depend on the reduced expressions.
Let .o/; be the localization of the polynomial ring Q[g] at the maximal
ideal (¢ — 1), that is, the Q-subalgebra of Q(g) consisting of elements of Q(g)
which have no pole at ¢ = 1. For each .«/;-module M, we can define a vector

space (M over Q by setting M :=Q®,, M, where Q is regarded as an
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o/ -algebra via ¢ — 1, and call the canonical mapping M — M the special-
ization at ¢ =1. We note that M ~ M/{(q— 1)M}, and denote by m the
image of m e M under the specialization at ¢ = 1.

Let .U’ be the .o/;-subalgebra of U’ generated by {E;, F;, K*' |i eI}, and
4U" the of -subalgebra of U’ generated by {E;|iel}. Note that ,U’ is
stable under the action of #y on U. Set ,U/ := 4U*NU; for each ue Q.
Then ,L,U" = ®HEQ\ 4UF. We denote simply by ;U™ and U, the image of
4UT and U,f under the specialization at ¢ = 1, respectively. Since U ; isa
finitely generated .o/;-module without torsion and .o/ is a principal ideal
domain, we see that MlU* is a free .o/;-module of finite rank.

Define sets 4™ and A4, by setting 4™ := {(md,i)|meN,i=1,...,r} and
4, = A 10 A"” Set Z,: =7~y and deﬁne K:Q; — N by settlng

K(y) == #{c /A Zm‘f cla)o + Z;O:I > el iymd = ﬂ}.

ProposiTioN 4.1 ([5], [14]). The Q-algebra \U* is characterized as the
associative Q-algebra with the unit 1 deﬁned by the generators {E;|i €1} and the
following relations: Zi;?”(—l)kl_?l( )EE =0 with i # j, where E( ) =
Elk /kl. Moreover, for each p € Q, the following equalities hold: dimg IU;r

dimq(y) U," = ranky, (4U;) = x(p).

LemMA 4.2, Let V be a vector space over Q(q), W a submodule of V' over
o1, and X = {x,| A€ A} a subset of W with A an index set. Suppose that the
elements of {X; |1 € A} are linearly independent over Q. Then the elements of
X are linearly independent over Q(q). Here, X; is the image of x; under the
specialization at g = 1.  Moreover, if, in addition, the subset X is a basis of V,
then X is a basis of W over <.

PrOOF. Suppose that ), ; k;x; =0 for some finite subset L = 4 with
k; € Q(g)*. Multiplying by a power of (¢ — 1), we may further assume that
k, ey for all AeL. Set n:=max{m=>0]k;/(q—1)" €. for all LeL}.
Then there exists an element A, e L such that k; /(¢ —1)" €./ \(q— 1)</.
Hence the equality >, k,/(¢ —1)"X; = 0 holds in | W with k;_ /(g —1)" # 0.
This contradicts the assumption.

Let us prove the second assertion. Let w be an arbitrary non-zero
element of W. Then w=>,_,c;x; for some finite subset M < A4 with
c¢,€Q(g)". Now we set p:=min{m>0|c;(¢q—1)" €./ for all 1e M}.
We now assume that p > 0. Then there exists an element Ax € M such that
¢;,(q—1)" € o \(g — 1)o/. Hence the equality 0=>",_; ¢,(¢ — 1)’ holds
in W with ¢;,(g—1)” #0. This contradicts the assumption. Thus we get
p =0. Therefore, all ¢; with A e M are non-zero elements of .o7]. O
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DEerFINITION 4.3, For each s € %" and p € Ny(,), we define a weight vector
E,, of U" with weight ¢.(p) by setting E,, := Ts1) Ty - Tsp-1y(Esp). 1If
¢(p) = B, we denote E, by E;pg.

Lemma 4.4. (1) Let B be an element of A'Y, and s an element of W™ such
that B = ¢y(p) for some p € Ny). Then Eg g belongs to {Q/IU[}*\(q — DUt In
particular, the image E, g of Esp by the specialization at q =1 is a non-zero
element of Uy

(2) Let f be an element of A'¢, and x an element of W such that f € ®(x).
We assume that E g€ Q(q)"Ey, 5 for all s\,s; €W satisfying [s1] = [s2] = x.
Then Ey g = E,, p for all s\,s, €W satisfying [si] = [s2] = x.

(3) Let f be an element of A'¢, and x an element of W such that f € ®(x).
We assume that if p=73_ 4 c(y)y with ¢(y)eZy for all ye P(x) then
c(f)=1 and c(y) =0 for all y#p. Then Es p=E,p for all s;,sreW
satisfying [s1] = [s2] = x.

ProOF. (1) By (4.1)-(4.3) and the equality 7;! = PT;¥, it is easy to see
that T;(4U’) = .4U’, and hence T;((¢q —1)4U')=(¢— 1)U’ for all iel
Thus we see that T;(,4,U'\(¢ — 1) 4U’) = 4U'\(¢ — 1)4U’ for all i e 1. Then,
by Definition 4.3, we see that E, s = E;, e,g/IUﬁ*\(q— 1),U*, since Ey, €
AUN\(q—1)4UT and Esp€ UE.

(2) Put /=/(x). Let (p1,p2) be the unique pair of elements of N; such
that ¢ (p;) = for i=1,2. To prove the assertion, it suffices to show the
equality Ey, ,, = E,, ,,. Since s; can be transformed to s, by a finite sequence
of braid relations, we may assume that s; can be transformed to s, by one of
the following (i)(ii)(iii)(iv).

(i): replacing two consecutive entries (s;,s;) in s by (s;,s;) when

AjjAjj = 0,

(ii): replacing three consecutive entries (s;,s;,s;) in s; by (s;,s;,5) when
AijAj' = 1,

(iii): replacing four consecutive entries (s;,s;,5:,5;) in s; by (s;,5;,5;,5:)
when AjA; =2;

(iv): replacing six consecutive entries (s;,s;,s:,S;,5;,8;) in 1 by (s;,5,5;,
Siy8j,8:)) when AyAj; = 3.

In the case (i), there exists a unique my € N such that s;(my) = s, §1(mo + 1)
= 8j, $2(mo) = Sj, $2(mo+1) = 5;, and s1(m) = s2(m) for all m # mg, mp + 1. Sup-
pose that p; < pp. Then p;=mp and py =mg+1 since ¢, (p1) = ¢, (p2).
Thus we get E, , = E,, ,, since E; = T;(E;). Suppose that p; = p>. Then
p1 = p2 <mg or mg+ 1< p; = py since ¢ (p1) = ¢,(p2), hence the equality is
valid since 7;T; = T;T; and si(m) = sy(m) for all m # mg, mg+ 1.
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In the case (ii), there exists a unique myp €N such that s(m) = s;,
Si(mo+1) =8, S1(mo+2) =i, S$2(mo) =8, Sa(mo+1) =5;, S$a(mo+2) =s5; and
s1(m) = sy(m) for all m # my, mo+ 1, my+ 2. Suppose that p; < p,. Then
p1=my and py =mo +2, since ¢ (p1) = §,,(p2). Thus we get Ey p, = Ej, p,,
since E; = T;T;(E;). Suppose that p; = p>. Then there exist three cases (a)—
(c) to be considered: (a) p1 = pr <myg, (b) mpy+2<pr=ps, (c) pr=p2=
mo + 1, since ¢ (p1) = ¢,,(p2). In the case (a) or (b), the equality is valid
since T;T;T; = T;T;T; and s((m) = s2(m) for all m # mg, mog + 1, mg+ 2. In the
case (c), Ey, , and E,, , are not proportional since 7;(E;) and T;(E;) are not
proportional, which contradicts the assumption of (2). Therefore the assertion
is valid in the case (ii). The arguments for the cases (iii) and (iv) are similar to
that for the case (ii).

(3) Put/=/(x). Let (p1,p2) be the unique pair of elements of N; such
that ¢, (p;) =p for i=1,2. Then E 3= Ej , for i=1,2. By Proposition
40.2.1 in [14], we see that

_ (4] (&) (4]
Ey . p = E :(01762_’_”‘01)6(Z+)/ k(fl,czv---,t’z)Esz,lEsz,Z s Esz,l’

where k., .)€ Q(g). Now suppose that (ci,ca,...,¢;) is a sequence such
that k(¢ ¢,...c) #0. Then 211;21 ¢pds,(p) = . By the assumption, we see that
¢, =1 and ¢, =0 for all p # p,. Thus E, , =KkE,, ,, for some ke Q(q)”".
By the part (2), we get Ey, , = E, ,,, 1e., Ey g = Es, p. O

5. The subalgebra Uy associated with A4; and the braid group action

LemMA 5.1.  Let ¢ be an element of j+. If (s1,82) is a pair of elements of
W such that 6 — ¢ e D([s;]) = A(1,-) for i =1,2, then Es s5_, = Es, 5.

ProOF. We may assume that [s;] = [s2], and put x = [s;] = [s»]. Since
y € 4(1,-) for each y € ®(x), there exists d(y) € N such that y = d(y)d + 7 with
yed_. Now suppose that d—e=3 4 c(y)y with c(y)eZ, for all
y€®(x). Then J—e= (3 cpn ()0 + >, can c(?)y, which implies
that ¢(0 —¢) =d(0 —¢) =1 and ¢(y) =0 for all y #06 —e. Thus the assertion
follows immediately from Lemma 4.4(3). O

DeriNITION 5.2, For each ¢ e zﬁ, we define a weight vector E5_, of U™
with weight 0 — ¢ by setting Es_, := E, 5_,, where s is an element of #" such
that 0 —e e &([s]) = 4(1,-). By Lemma 5.1, we see that the vector Es_, is
independent of the choice of s.

DerNITION 5.3.  For each non-empty subset J < i, we define subalgebras
of U over Q(g) by setting
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UJ = <Ex,Kfl,F1 | [PAS] HJ>Q(q)_a1g, Uj) = <Kfl |OC € HJ>Q(q>_a1g,
Uy = E;| o€ y)qg)ale Up" = (E, K o€ Iy ) ates
U.; = <F, | xe HJ>Q(q)-alga USO = <KilaFoc | as HJ>Q(q)-alga

where F, := Q(E,). Note that if J = I then Uy = U’ and Ujf = U*. Define
A < A”” and Ay, c A, by setting A’m .= {(md, j)|meN,jeJ} and 4y, =

Aje 4 j’i, and define xy: Q5. — N by setting for each ue Qy.,

K = #{C : j']+ - Z+ ‘ Zaezl” ne+ Zm 1 Z ((m, 7)) WZ5 'u}

where Qy, = Q. Nspan,I1;.

LEMMA 5.4. Let J and J' be connected subsets of 1 which are disjoint from
each other, and j an arbitrary element of J..
(1) Let j~ be the unique element of J. such that py(o;-) =06 — 0. Then

Xo0, = T(sj)J(Xj*) (5.1)

for each X = E,K,F.  Here, t, is simply denoted by &. Let wo and wq; be the
longest element of Wy and Wy, respectively, and set wy; := wowo;.  Then

T,.=T,T, (5.2)

@' = Ty T,
In particular, Xs_,, = ];g/.Tj_](Xj)ofor each X = E K, F.
(2) For each iel\J, ze Wy, and j' €J., we have

() [Ty T)=0, (i) [T,.T]=0, (i) [T

1 Ty 0] =0.

(5.3)
(3) For each ie i\J, z€e I/?/Jr, and (X,Y) e Uy x Uy, we have

Qi) T,X)=x, (i) T.(X)=X, (i) T

(V) =Y. (54)

(4) For each (X,Y) e Uy x Uy, we have [X,Y]=0.

Proor. (1) By Lemma 2.3(1)(i),(5)(i), and Definition 5.2, we get (5.1).
The equality (5.2) follows from the following equalities: /((¢))”) +/((g);) =
/(&) and (g); = wy;. In the case where J={/}, we see that j~ = and
wy; = s;, and hence X5, = T, T;'(X;) for each X = E,K,F by (5.1)(5.2).

(2) This part follows from Lemma 2.3(2).

(3) Since 1, (x) =0, we see that T;(X,) = X, for each X = E,K,F and
oely. By (5.1) and (2)(i), we have Ty, (X5_g,) = X5_g, for each X = E, K, F,
and hence we get (i). Since z(x) =o, we see that T.(X,) =X, for each
X =E,K,F and a e IIy. By (5.1) and (2)(ii), we have T.(X5_g,) = X5_p, for
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each X = E, K, F, hence we get (ii). The assertion (iii) follows from (i)(ii) and
(5.2).

(4) Since (x]o’) =0, it is clear that [E,, K,/] = [F,, K,/] =0. Let us prove
that [E,, E,/] =0. Suppose that jeJ, and j'€J.. In the case where (o,0o’)
eﬁJOx IOYJ/, it is clear that [E,, E,; ] =0. In the case where « =0 — 0y and
o' € Iy, we have [E,, E,| = T(Cj)J([E‘j*,Em/]) =0 by (5.1) and (3), where j~ is
the unique element of J such that py;(o-) = o. In the case where o =6 — 0
and o’ =0 — 0y, we have [E, E,| = T, T(Sﬂ)y([Ejf,Ej/f}) =0 by (5.1) and
(3), where j'~ is the unique element of J; such that py; (o) =o'. Similarly,
we can prove that [E,, F,/| = [F,, F,]=0. O

PrOPOSITION 5.5. Let J be a non-empty subset of i and Jy, ..., Jcy) the
connected components of J with C(J) the number of the connected components.
If 3. and J.» are different connected components of J, then [X,X'| =0 for all
(X,X') e Uy, x Uy,. Moreover, the following equality holds:

)
Uy = spanQ(q){l_L:l X.| X, € UJ(}. (5.5)

Proor. The first assertion follows from Lemma 5.4(4), and the second
assertion follows from the first assertion and Definition 5.3. O]

PROPOSITION 5.6. (1) Let us use the notation introduced in Definition 3.4.
If peQy and o e Ily, then T3(X,) = X, for each X = E,K,F. In particular,
the restriction Tg|y, is an automorphism of UJ.O

(2) Let J and J' be connected subsets of 1 which are disjoint from each
other. Then [Tz T5) =0 for all (t,6) € Qy x Qp. Moreover, T:(X) =X for
all te Qy and X € Uy.

Proor. (1) By Proposition 2.1, we may assume that p = py; with j € J..
Then we have T; = T, s by Definition 3.5. By Lemma 2.3(4)(i)(iii), we have
f({(sj)J}z) = 2/((sj)J),’and hence Ty = (T(gj).r)z. In the case where o =
0 — 0y, by (5.1), we see that T;(E,) = (Z(sj)")z(]gj*) = T{(aj)J}z(Ej—) = E,(, since
(o) = p(0 —0y) = {(8‘]‘>J}2(O{j7) =ajelly. In the case where o=, the
required equalities are nothing but the equalities in (5.1). In the case where
o€ Iy\{o; }, since p(a) e Iy, the required equalities are clear.

(2) The first assertion follows from Lemma 5.4(2)(iii), and the second
assertion follows from Lemma 5.4(3)(iii). O

ProposITION 5.7. (1) Let J be an arbitrary connected subset of L Then
the Q(q)-subalgebra Uy of U is characterized as the associative Q(q)-algebra
with the unit 1 defined by the generators {E,,K*',F,| o€ Ily} and the following
relations:
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(K, K] =0, KK '=K 'K, =1, (5.6)
KEK, ' = ¢ Ep KK = ¢ VP E, (5.7)

[Ey Fg) = 0up(Ky — K1) /(2 — 4, (5.8)
(ad,E,)" ™ Ep = (ad,F,)" ™) Fy =0 (a # ), (5.9)

where o, € Ily. Moreover, the following equalities hold:
U}— = @l‘EQ.H UJ_;, dimQ<q) UJ-; =Ky(u). (5.10)

(2) For each non-empty subset J < i, the multiplication defines the fol-
lowing isomorphism m of Q(q)-vector spaces: m: U ® Uf ® Uy = Uy.

ProoF. It is clear that all of the claims in (1) and (2) are valid in the case
gvhere J=1. Hence we may assume that J is a _non-empty proper subset of
I. Then we see that the irreducible root system Ay is not of type Eg or Fy or
G», and hence #J. > 1.

Let Uy be the associative Q(g)-algebra with the unit 1 defined by the
generators {E,, F,, KX' |o € ITy} and the relations (5.6)—(5.9) with X, replaced
by X, for X = E,K*' F with «e ITy. To prove the part (1), it suffices to
prove the claim that the assignment X, — X, for X = E,K*! F with o e Il
defines a Q(g)-algebra isomorphism /2y : Uy — Uy. 1In the case where #J = 1,
the claim is nothing but that of Proposition 3.8 in [1]. Hence we may assume
that #J > 2. To prove the well-definedness of /4y, we show that the generators
{E,, K" F,|ae Iy} of Uy satisfies the relations (5.6)—(5.9). The relations
(5.6), (5.7), and (5.8) for o = § are clear. Thus it suffices to prove the relations
(5.11) for o # f and (5.9). In the case where {«,f} < I1;, the relations (5.8)
for o # f and (5.12) are clear.

Suppose that {o,f} = {o;,0 — 0y} with jeJ. satisfying ord(py;) = 3.
Then, there exists an element 7 of the cyglic group generated by p,; such that
7(x) and 7(f) are distinct elements of I75. Since A,p = A (,)(p), it follows
from Proposition 5.6 that

T{—([E“,F/g]) = [ET(O(),FT(/;)] = 0, (511)
T:((adE,) "™ Ep) = (adyEx) ™0 E ) = 0, (5.12)
Te((adyF) "~ Fy) = (ady Fy)) '~ ) Fygy = 0. (5.13)

Since T; is an automorphism of Uy, the equalities (5.11)(5.12)(5.13) imply that
the relations (5.8) for a # f and (5.9) are valid in this case.
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Suppose that {o,f} = {a;,0 — 05} with jeJ, satisfying (/)Jj)2 =1. By
Lemma 2.4 and Definition 5.2, we see that E, = T.(E;), Ep = T,(Er), and
Fg = T.(Fy) for some ze W(A(1,-)) and distinct elements 7,7’ €. Since
A, = Ay, it follows that [E,, Fg| = T-([E;, Fi]) =0,

(ad,E,)"™ Ey = T.((ad,E))" ") Ey)) = 0,

(ad,Fy)" ™" Fy = T.((ad,F,)" ") Fy) = 0.

Suppose that {o, f} = {a;,0 — 0y} with j € J\J.. By Proposition 2.1 and
the first assertion of Lemma 2.3(5), we see that py(«) and py;(8) are distinct
elements of 17y for each jeJ.. Put p=py. Since Ay = A, p), it follows
from Proposition 5.6 that the equalities (5.11)(5.12)(5.13) hold with 7 replaced
by p. Hence the relations (5.8) for o # f and (5.9) are valid in this case.

We next prove (2). It is clear that U} < UT, Uy < U°, and Uy < U~
and hence the multiplication mapping m is an injective Q(g)-linear mapping.
In the case where J is connected, by (5.6)—(5.8), we see that m is surjective. In
the general case, the surjectivity of m follows from Lemma 5.4(4).

The surjectivity of Ay is clear. We prove the injectivity of hy. Let UJ+ be
the subalgebra of Uy generated by {E,|oe ITy}, U the subalgebra of Uy
generated by {K}'|ae Il }, and U; the subalgebra of Uy generated by
{F, \oceHJ} Then hy(Uy) = (Uy), hy(U)) = (UY), and hy(Uy) = (Uy).
Set hy :=hy|y: and h§:=hylye. Then we see that hyorm=mo (hj ® hj®
hy), where m is the rnulnphcatlon mapping U} ® UJ ® Uy — Uy. Since both
m and fin are isomorphisms of Q(g)-vector spaces, it suffices to show that
U;f NKer hy = {0} and Uy NKer iy = {0}. It is clear that U} N Ker /; = {0}.
Now suppose that ue UJ‘ NKer hy. Let A be an element of h* such that
2(a|2) /(o) =1 for all e Iy. For each ne N, let p,: U — End(M(n2)) be
the representation of U on the Verma module M (ni) with highest weight nA,
and v, a highest weight vector of M(ni). Set M, := p,(Uy)v,. Since p,(U; v,
= {0}, we see that M, = p,(Uy)v, and UM, = M,. 1t follows that M, =
Dico,, (Mu N Mni),;_,) and dimg,) (M, N M(ni),;) =1, where M(nz),;_, is
the weight space of M(ni) with Welght nl —a. Therefore we may regard the
composition p, ohy as a highest weight representation of Uy on M, with
highest weight nl. Hence there exists a unique irreducible quotient L, of M,
as Uj-module. Since u e UjﬂKer hy, we see that ul, = {0} for all neN.
By the assumptions on /1, we see that L, is an integrable highest weight Uy-
module for each neN. Thus we get ue (), (>, Uy F'1), and hence
u=0. Similarly, we have Uj NKer hy = {0} by considering lowest weight
modules.

The equalities (5.10) follow from the characterization of Uy and Propo-
sition 4.1. [
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ReMARK 5.8. (1) In the case where #J =1, the characterization of Uy
described in the part (1) of Proposition 5.7 is given by J. Beck in [1].

(2)  We will show that the part (1) of Proposition 5.7 is still valid in the
case where J is an arbitrary non-empty subset of 1 (see Proposition 7.1).

LemMA 5.9. Let J be an arbitrary connected subset of L Then, for each
jed, the following equality holds:

Tjly, = hso Tyo hy', (5.14)

where hy : Uy — Uy is the Q(q)-algebra isomorphism introduced in the proof of
Proposition 5.7 and Tj is Lusztig’s automorphism of Uy.

ProOF. We note that the proof is similar to that of Corollary (a) of
Proposition 3.8 in [1]. Let M be an arbitrary integrable U,(g)-module. Then
M can be regarded as an integrable Uj-module via Ay. Let us denote by Tin
the Q(g)-linear isomorphism 7'} : M — M introduced in 5.2.1 of [14]. It
follows from Proposition 37.1.2 of [14] that

Ti(Es-o,)-Tint (m)
= Tjm(Es-g;-m)

_ b b—ac (@) (D) r(c) 17
_Zu,b,c’ZO;fqubfc:nJr(zx/V,&70_|>(_1) 4; “C’Ej FI Ej Eb—(?J'm

_ b b—ac p(a) g(b) g(c) 52
_hJ(Za7b,c20:—a+b—c:n+<ujy,§—HJ>(_1) qj GCE} F; E} E(;,g‘]).m

~ ~ b _ ~ ~ b ~
- hJ(T}(Eé_HJ)Za,b,cZO: 7a+b7c':n(_ l) qlb “CE';G)]«}( >E/(C))m

= hy(Tj(Es-0,))-Tipa(m) = hy o Ty o hy' (Es_g,). Tjar(m)

for all neZ and me M = {me M|K;.m = g'm}. Thus we get T;(Es—q,) =
hyo T;ohy'(Es_y,) by Proposition 3.54 of [l14]. Similarly, we see that
Ti(u) = hyo Tjohy'(u) for u=E,, F, K, with « € ITy. Hence (5.14) is valid
since the both sides are automorphisms of Uy. O

ProposITION 5.10. Let us use the notations introduced in Definition
3.5. Let J be an arbitrary connected subset of 1. Then the following equalities
hold:

To(E,) = —F.K,,  Ts(Ep) = (ad,E,) " By (x#p), (515)
To(F,) = —K;'E,,  To(Fp) = QTs(Ep)  (x#p), (516

_A,
T5:(Kp) = Ky, p) = KpK 7, (5.17)
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where o, € Ily. In particular, the restriction 0]: T5|y, is an automorphism of
Uy. If, in addition, J' is a connected subset of 1 which is disjoint from J, then
the following equalities hold:

(i) Tg(X)=4X, (i) [Tz Tg] =0, (ili) [Tg, Te]=0 (5.18)
for all X € Uy, (a,0') € Iy x [Ty, and 7 € Q.
ProorF. By Lemma 2.3(5) and Definition 3.4, we have

Ts5 =T

So-0y ()" T T(«S/a ) (5.19)

where jo and j; are the fixed elements of J. such that 6 — 0y = py; (o) and
(ijO)f1 = pyj;- Let us prove (5.17). In the case where oo = o; with j e J, the
equality is clear since Ty = T7;. In the case where a=0J—0;, Lemma
2.3(5)(iii) implies (5.17). Let us prove the left equalities of (5.15) and (5.16).
In the case where o = o; with j € J, the equalities are clear since Tg; = 7;. In
the case where o =0 — 6y, it follows from (5.1), (5.19), and Proposition 5.6(1)
that

* (‘5/0)

Since QT = T:Q, we have T (F,) = —K,'E,.

Let us prove the right equalities of (5.15) and (5.16). Since Fp = Q(Ep),
the right equality of (5.16) follows from the right equality of (5.15) and the
equality 7, = YT;¥. Hence it suffices to prove the right equality of (5.15).
In the case where o = o; with j e J, since T = Tj, it follows from Lemma 5.9
that

Ts(Ep) = Tj(Ep) = hyo Tjo hy' (Ep) = hy o T;(Ep)

! T’(; (E/(;) - T(«s‘,o)J (7F107 I(Ia) = —F,K,.

= hy((ad,E) M1 Ey) = (ad,Ey) ") Ey = (ad,E,) " Ep.

In the case where o =6 — 0y and f =o; with jeJ, set y:=pyl(f) = pyi (%),
then we see that T, s(Ep) = E, and T|, \:(E,) = Ep, and hence
,/0 70

Ts(Ep) = T,

(e,O)JTja T(s,a)J(Eﬁ) =T

(g,)" Tjg (E,)

7A/77’ — — Ay
= T((;/O)J((aqu/g)< 0 )~Ey) = (aqu“)( Aﬁ)-Eﬁa
where A;-, = 2(oy-[)/ (o4 [oy; )-
The equality (i) of (5.18) follows from Lemma 5.4(3)(ii)(iii), and the
equalities (ii)(iii) of (5.18) follow from Lemma 5.4(2)(ii)(iii). O

DermNITION 5.11. For each non-empty subset J < i, we define a group
Byp,, called the braid group associated with W), by the generators
{4Ts,,3T; |0 € ITy,7 € Qy} and the following relations:
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(i) 4T, aTs, = 3Ty, 3T, if ord(s.sp) =2,
(i) oTy,-aTy, - 3Ty, = 3T - 3Ts, - 3T, if ord(s,sg) = 3,
(iil) (7T, -aTy)" = Ty, -aTs)°  if ord(s.ss) =4,
(iv) Ty, -3Ty,)’ = Ty, -3T,,)°  if ord(s.sp) = 6,
(V) 9T 3T, =415, 3T, (vi) 5T; 3T0 = 5T, (vii) 4771 =1,

where ord(x) is the order of x. The braid group By, s also defined by the
generators {;T,|x e Wy} and the following relations:

JTx'JTy:JTxy if /J(x)+/J(y):/J(Xy)'
In the case where J = i, we can denote y7, simply by 7.

THEOREM 5.12. Let us use the notations introduced in Definition 3.4. For
each non-empty subset J < 1, the braid group %y, acts on Uy as a group of
Q(q)-algebra automorphisms of Uy via

JTY = T§|UJ7 (520)

where s Sy.  Moreover, the action of yTy on Uy is given by

1Ty = Ty, (5.21)
for each x € Wy, where s is an element of Wy such that [s| = x.

Proor. By direct calculations as in the section 39.2 of Lusztig’s book [14]
using Proposition 5.5-5.7 and 5.10, we see that the automorphisms 73|, satisfy
the relations (i)-(vii) of %y, with ;7 replaced by Ti[,,, and hence the
assignment (5.20) defines a group homomorphism from %y, to the auto-
morphism group Aut(Uy).

We next prove (5.21). Denote the sequence s by s=(s(p)),.n, With
neN. Then

x=[s] = s(1)s2)---s(n),  Ly(x) = Ly(s(1) + L3(s(2) + - - -+ Ly(s(n),

hence the following equality in By, holds:  yTy = yTsu) - 3T50) - - 3Tsm- By
(3.5) and Lemma 3.5(1)(v), we see that

(8] = s(1)s(2) - - - 8(n), ([8]) = £(s1) + £(52) + -+ + £(s(m),

which implies the following equality in #y: Ty =Tg T Ty, Thus
we see that Tigly, = Ty ly, - Ty)ly, - Tigyly,-  Therefore the action of 57 on

Uy is given by (5.21). ]
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REMARIO( 5.13.  Note that 5T, (u) = T,,(u) for each w e I/?/J and u € Uy and
that if =1 then yT\(u) = Tx(u) for each x € Wy and ue Uy. In Proposition
5.20, we will prove that the action of Ry, on Uy is faithful.

LemMa 5.14. Let J be an arbitrary non-empty subset of i and K an

arbitrary connected subset of J. .
(1)  The equality [yTx, T,) = 0 in Aut(Uy) holds for all x € Wy and i € 1\J.
(2) For each k e K,, we have

Es o = 3T, T(,)), (Ex-), (5.22)

where k= is the unique element of K, such that pg,(ox-) =0 — Ox.  In particular,
Es_g. € Uf.  Moreover, Ug = Uy.

Proor. (1) This follows from Lemma 5.4(2)(i) and the equality
[T;,T,] =0 in Aut(Uy) for all jelJ.

(2) Let s be an element of #; such that [s] =1z,. Then, by Theorem
5.12, we have the following equality in Aut(Uy):

3Ty = Tgly,- (5.23)
By (1)(ii),(5)(i) of Lemma 2.3, and (i) of Lemma 3.8, we have
5 () = 6 — Ok = (&) “ (o).

Since @(gx) = 4(1,-), we have @((¢)%) < 4(1,-). Moreover, by Lemma
3.5(1)(vi)(vii), we have ®([s]) = 4(1,—), hence ®([s]*) = 4(1,-). Therefore,
by Lemma 5.1 and Definition 5.2, we have me(Ekf) =E5 9 =T (mx(Ekf).
By Lemma 3.8(ii), we have Tjy = T T, - Since T(;:)K (Ex-) € Uy, by (5.23),
we get (5.22) as follows:  E; g = Tigly, T() (Ex-) = a1, T, (Ex-)-

()K

ProprosITION 5.15.  For each non-empty subset J T and jed, we have
3Ty, = Ty, (5.24)

Proor. Put K = {;}. Then Ok =, (¢)x =s;, and j~ = j. By Lemma
5.14(2), we have

Es o =T, 7}71(5/)- (5.25)

Suppose that jeJ.. Then ¢ = py;(e)y, Z1(g) = 4a(py;) +43((g)y), and py; =

(sj)J. Since ;T =4T), 9T, we get (5.24) as follows: T, = T(E/)J|UJ'
T, luy, = Tyly,- Suppose that jeJ\J.. It suffices to show that

3T, (X) = T, (X) (5.26)

for X = E,, F,, KX' with o€ ITy. In the case where X = K*!, the equality

(5.26) is clear. By (5.25), we have yT,(F;) = —K;, Es—,, = T, (F;) for each
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j€J. In the case where ;' e J\{j}, we have ¢, () = o, and hence ;T (Fj)
= Fy = T, (Fj). Thus (5.26) holds in the case where X = F, with oceIOYJ.
Since [Q2,,T,] =0, the equality (5.26) holds in the case where X = E, with
oe ﬁJ Therefore we have T, | =T, \ K where &J is the Q(g)-subalgebra
of Uy generated by {E,, F,, KI! |oc GHJ} " We next prove (5. 26) in the case
where X = E;5_y,. By Lemma 5.14(2), we have E5 g, = 37, T( o (Ex-), where
k k- eJ* such that Pyi(op-) =0 —0y. Since ke J,, we have JT, = Tﬁk|UJ.
Since T( s (Ex-) € UJ, we have T, T( s (Ex-) =T, T( s (Ex-). In addition, it
is clear that b7, 3T] = 0. Therefore we see that

3Ty (Esmgy) = a T s T, 1) (Ex-) = 9Ty T, T (Ex-)
=T,T, T(;:)J (Ex-) =T,T, T@k‘)‘] (Ex-) = T,(Es_o,)-
The equality (5.26) for X = F5 4, also holds, since [2,;7T,] = 0. O

DEerFINITION 5.16.  Let J be an arbitrary non-empty subset of I. For each
y e Wy, we define Q(g)-subalgebras A;(y) and Ay(p)¢ of Uy by setting

As(y) = {ue Uf 3T, ) e UF°},  As(0) = {ue Uy 3T, (u) € Uy }.

Note that Ay(y) = As(|yl) and As(y)* = Ay(|y]), where y = |ylz,, [y| € Wy,
and 7, € Q;. For each Be Bj, we set

Ay(B):= |J As(y), AsB) = () As(»)°,

ye Wy(B) ye Wy(B)

where Wj(B) = {ye Wj|®y(y) = B}. Here note that Ay;(B)‘ is a Q(q)-
subalgebra of Uj. In Proposition 7.2(2), we will show that A4,(B) is also
a Q(g)-subalgebra of Uj. For each we Wy, we set

Ay(w, =) == Ay(4y0w,-)), Ay(w, =) = Ay(Ayw,-)), (5.27)
Ayw,+) == YAy (4500, +)), Ay(w,+)" 1= P Ay (A500,4))". (5.28)

In addition, we define a Q(g)-subalgebra Ay(w,0) of U; by setting
Ay(w,0) == Ay(w,—) N Ay(w,+)°. (5.29)

In the case where J = i, we will denote the symbols above more simply by
removing J from them.

Lemma 5.17. (1) For each y € Wy, the multiplication defines the following
injective Q(q)-linear mapping: Ay(y) ®AJ(JC/:)C — Uj.

(2) Let w, be the longest element of Wy. Then the following equalities
hold:

Ayw,+) = P Ay(wwo, —), Ag(w,+)¢ = P Ay(ww,, —)¢, Ay(w,0) = ¥ Ay(ww,,0).
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Proor. (1) Since 7, is an automorphism of the Q(g)-algebra Uy, the
assignment a ® b — 5T, ' (a) ® 5T, ' (b) defines an automorphism (y Ty‘l)®2 of
the Q(g)-algebra Ujm. Let m be the multiplication mapping Ay(y) ® Ay(y)°
— Uy, and m’' the multiplication mapping U;" ® Uy ~ Uj. Then we see that

_1 -1\ ®2
JTy om=m'o (JTy ) |AJ(}’)®AJ(J’)L’

where (JTy_l)®2‘A<](y>®AJ(y)f is the restriction of (JTy_l)®2 to Ay(y) ® A5(y)°.
Since the right hand side is injective, we see that m is injective.

(2) Since Ay(w,+) = Ag(ww,,—) we get the left and the middle equalities.
The middle equality implies that ¥ Aj(ww.,+)¢ = YW Ay(wwows, =) = Ay(w, —)°.
Hence, by (5.29), we see that

Y Ay(ww.,0) = Y Ay(wwo, =) N W Ay(ww,, +)¢ = Ag(w,0). O

DerINITION 5.18. Let 4 be an associative algebra with the unit 1 over a
commutative ring R, and {X;|1e A} a subset of A4 indexed by a totally
ordered set A4 with =< the total order on A. For each function f: X — Z,, we
set supp(f):={xe X |f(x) >0}, and call supp(f) the support of f. If
#supp(f) < oo, we call f a finitely supported function. For each finitely
supported function ¢: 4 — Z,, we set

Ja— (4 2 (4m — am o) ( )
X<C — x° 1) X°< 2) ..X/{cm >, X>C — X;( ) XC( ) 'X)iA] . (5.30)

A 1 ;vZ bm )~Z

where supp(c) = {41, 42, ..., 4n} with 4; < A < -+ < 4,, and call the element
XS (resp. X&) a normally ordered (resp. opposite ordered) monomial of
{X;|Aed}. Here we set X$=XE:=1 if supp(c) = . We denote by
X2 (resp. XJ) the set of all X$ (resp. X¢). In addition, for each X < 4,
we set

X2(2) = {XS|supp(c) = X}, X2(2) = {XS|supp(c) = X}. (5.31)

Note that XZ = XZ(4) and X = X (4).
For each se Sy, we set

{ Es_q, if s = S5—0y. with c=1,...,CQ),
Es - c c

32
E; if s =s; with jeJ, (5:32)

where Es g, is introduced in Definition 5.2. For each se #j" and p € Ny,
we define a weight vector E;, of U;j with weight ¢ (p) by setting

Ew,p = JTs(l) s JTc(p—l)(Ev(p))- (533)
If ¢,(p) =p, we denote E;, by E .

ProOPOSITION 5.19. (1) Let B be a real biconvex set in Ay, s an element of
Wy such that B = ®j([s]), and < the usual total order on Nyy). Then the set
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ES_ (resp. E;_) (see Definition 5.18) forms a basis of a subspace U; -(B)
(resp. Uy~ (B)) of Uj which does not depend on the choice of s.  Moreover, the
multiplication defines the following injective Q(q)-linear mappings:

Uy, <(B) ® A3(B) — Uy, U~ (B)® Ay(B) — Uy . (5.34)

(2) Let Jy and J, be non-empty subsets of 1 which are disjoint from each
other, and (B, By) an element of By x By . Then the multiplication defines the
Jollowing injective Q(q)-linear mappings:

UJ1’<(B]) @ UJ2’<(32) — U+, UJ1’>(BI) ® UJ27>(BZ) — U+. (535)

Proor. (1) We first consider the linear independence over Q(g) of the sets
E, .. Since the proof of the linear independence is similar to that of Lemma
8.21 in [10], we omit the detailed proof, but we give a key point. Since Ej" is a
non-zero element of Ay(s;) with weight ko; for each jeJ and k =0,1,...,m,
the elements Ej" (k=0,1,...,m) of Ay(s;) are linearly independent over Q(g).
Thus it follows from Lemma 5.17(1) that the equalities > ;" E}‘uk =0 with
u € Ay(s;)¢ (k=0,1,...,m) imply that u, =0 for all k.

We next prove the independence of Uj -(B) from the choice of s. For
convenience, we denote by Uy <(s) the Q(g)-subspace of Uy spanned by E; _.
Then it suffices to show that Uy .(s) = Uy <(s') for another element s’ € #™*
such that @ ([s']) = B. In the case where B is a finite biconvex set in 4y,
since s is a finite reduced word, the proof of the assertion is similar to that of
Proposition 8.22 in [10], so we omit that. We will prove the case where B is
an infinite real biconvex set in Ay.. Since @5 ([s]) = @} ([s']), for each
(m,n) e N?, there exists (m',n') € Zs,, x Z-, such that @y([s|,]) = @5([s’'|,,])
and  @D([5|,,]) = @5([s],/]), which implies Uy ([s],,]) = Us <([s'],,]) and
Uy <(sl,)) < Uy.<([s'|,/]). Since Uy -(s) = UPGN Us <(fs|,])) and U (s') =
UpeN Us,<([s'[,]), we get Uj <(s) = Uy <(s'). The proof of the assertion for
E;_ is quite similar.

We next prove (5.34). By Lemma 5.17(1), we see that the multiplication
Ay([s|,]) ® 45([s|,])* — Uy is injective for each peNyy. It is clear that
Uy, <(s|,) = As([s|,])* and A5(B)“ = Ay([s],]). Tt follows that the multiplica-
tion m, : Uy <(s],) ® 4y(B)" — Uy is injective. Suppose that two elements
(a1,b1) and (a2, by) of Uy -(s) x Ay(B)¢ satisfy a1b; = axb,. We may assume
that both a; and a, belong to Uy (s|,) for some peNyy. Then the
injectivity of m, implies that a; = a, and by = b,. Therefore the multiplication
mapping Uy (B) ® Ay(B) — Uj is injective. The proof of the remains are
quite similar.

(2) Set J=J;11J,. Then we see that B; is a real biconvex subset in
Ay.. From (5.18)(i) in Proposition 5.10, it follows that both Uy, -(B>) and
Uy, ~(B,) are subspaces of Ay(B). Thus (5.35) follows from (5.34). O
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ProposITION 5.20. (1) Suppose that B is a real biconvex set in Ay, and set
B.:=BNA4y, for each ¢=1,...,CQJ). Then the multiplication defines the
Jollowing isomorphisms of Q(q)-vector spaces:

R Uy <(B) = Us<(B), @ Us.=(B.) = Us=(B).  (5.36)

(2) Let C be a real biconvex set in Ay, and y an element of Wy(C). Set
D := y Y {C\®s(y)}. Then the multiplication defines the following isomor-
phisms of Q(q)-vector spaces:

Uy,<(») @ 3T, Uy (D) = Uy, (C),  3T,Us~(D) ® Uy ~(y) = Uy ~(C),
(5.37)

where Uy .(y) = Uy <«(Dy(y)) and Uy »(y) := Uy ~(Py(y)). In particular, we
have Uy (y) € Uy <(C) and Uy - (y) < Uy »(C). Moreover, we have:

UJ_<(y) = UJ,<(C) ﬂAJ(y), JTyUJ1<(D) = U_],<(C) ﬂAJ(y)c, (538)
UJ7>(y) = UJ,>(C) ﬂAJ(y), JTyU‘]‘>(D) = UJ,>(C) ﬂAJ(y)( (539)

(3) For each Be B}, we have Uy (B)U Uy - (B) = Ay(B).
(4) The action of #y, on Uy is faithful.

Proor. (1) For each c¢=1,...,cJ), we set s '(Sy):={peNyyl
s(p) € Sy} and n. := #s71(Sy,), and denote by 1. the unique strictly increasing
function from N, to Ny such that Imi =s!(Sy). Then, for each ¢=
1,...,CcJ), we define a sequence s.= (Sc(p))per eS;j"“ by setting s.(p) :=
s((p)) for each peN,,. We see that s. is an element of “/%J”‘ such that
@5 ([sc]) = B.. By Proposition 5.19(2), we see that the multiplication defines
the following injective Q(g)-linear mappings: ®(C:(T) Uy, <(B:) — U" and
@Cq) U, ~(B;) — U". By Lemma 5.4(4) and Proposition 5.10(2), we see

that Hccz(f) E; _=E;_ and HCC:(P E; . = E; ., which implies (5.36).
(2) By definition, we see that for each se ;" and me Ny the mul-

tiplication defines the following isomorphisms of Q(g)-vector spaces:
Uy, <(8],y) ® Tis|, 1Us,<(s|™) = Uy, <(s), a® b — ab, (5.40)

Ty, Us~(s|™) ® Uy~ (sl,,) — Uy ~(s), a® b+ ab, (5.41)

where s|,, is the initial m-section of s and s|™ is the m-shift of s (see [7]).
Let us prove (5.37) in the case where B = @y(z) € By with ze Wjy. Since
D;(y) = Dy(z), we have Dy(z) = @y(y) I yd;(y~'z), and hence D = &y(y~!'z).
Thus we see that there exists an element s € #J" such that [s] = z, [s],,] = », and
[s|"] = y~'z with n=¢(z) and m = /(y). Hence, (5.40)(5.41) imply (5.37).
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Let us prove (5.37) in the case where Be B”. By Lemma 2.5 in [8], we
see that D e By and B= ®y(y) LI yD. Thus there exists an element s € 7}~
such that @;([s]) = B, [s|,,] = », and &5 ([s|"]) = D with m =/(y). Hence,
(5.40)(5.41) imply (5.37).

It is easy to see that both Uy .(») and Uy . (y) are subsets of Ay(y) and
that both ;7,Uy (D) and ;T,Uy (D) are subsets of Ay(y)‘, and hence
(5.38)(5.39) follow from (5.37).

(3) We see that E;_ = UpeNEs’TW< and E;_ = UpeNES*‘W> with Ej _ <
ES*‘M< and E:\p> c EsT,,+1,>’ which implies that Uy - (B) = UPGN Uy, <([s|,]) and

Us>(B) = J,cx Us,>([s],]). Thus both Uy <(B) and Uy -(B) are subsets of
Ay(B), since Uy <([s|,]) U Uy > ([s],]) = 4s([s],]) and [s|,] € Wy(B) for all p eN.

(4) Suppose that jT,[,, =id for ye Wj. Then A;(y) =Q(g). Since
Uy <(y) « A5(y), it follows that Uy (y) =Q(g). Thus we get y=1 by
Proposition 5.19(1). O

DErFINITION 5.21. For each we ﬁ/J, we set
Us, <(w,—) := Uy, <(d5(w,-)), Us,~(w,—) := Uy > (45(w,-)), (5.42)
Uy > (w,+) = YUy (4350w, +)), Uy <(w,+) == YUy~ (450w, +)). (5.43)
Note that
Uy >(w.+) = YUy <(wwo, -), Uy, <(w,+) = YUy > (wws, ) (5.44)

with w, the longest element of V(i/J. In the case where J = i, we will denote
the symbols above more simply by removing J from them.

PrOPOSITION 5.22. For each w € I/(i/‘] and y € Wy(Ay(w,-)), the multiplica-
tion defines the following isomorphisms of Q(q)-vector spaces:

Us,<(y) ® 3T, Uy <(37'w, =) — Uy <(w, ), (5.45)
3T Uy = (577w, =) @ Uy = (p) — Uy = (w,-). (5.46)
ProOF. Since @j(y) = Ay(w,-), we have
Dy(y) Wydy(vtw, =) = Ay(w,-). (5.47)
Thus the assertions follow from Proposition 5.20(2). O

LEMMA 5.23. Let w be an arbitrary element of V(i/J.
(1) For each ye Wy(Ay(w,-)), we have

3T Uypstnt) € Ups(iws), 3T Uscns) & Us <(5 4.

In particular, we have Uy - (w,+)U Uy ~(w,+) < Ay(w,-)".
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(2) For each y e Wy(Ay(w,+)), we have
J’T‘y*1 UJ7<(W7_) < UJ,<()_)71W7_)7 JT'y*l UJ,>(W=_) < UJ,>(J_}71W7_)'

In particular, we have Uy .(w,—)U Uy ~(w,—) < Ay(w,+).
(3) The following (i) and (ii) hold:

(i) ue¥T, Us(1,-)= Ty(u) e Uy s(w+),
(i) ue¥T,, Us~(1,-)= Tw(u)e Uy <(w,+).
(4) The following inclusions hold:
Uy, <(w,—)U Uy > (w,—) = Ag(w,-), Uy, <o, 1)U Uy > (w,+) = Ag(w,+).

Proor. (1) By (5.47), we have @5(y~!) = A5(5-'ww.,—). By Proposition
5.22, we have ;7,1 Uy <(ww.,—) = Uy (3 'wwo,—). Thus, by (5.44), we get

3T, Uy s (v 4) = Wy Ty Uy c(wwe, =) < Uy s (57w, ).

(2) Since @D;(y) < Ay(ww.,—) we have @y(y~!) = Ay(5~'w,—). Thus, by
Proposition 5.22, we get y7,1Uy <(w,—) = Uy <(5'w,-).
(3) By (5.44) and (5.45), we see that the multiplication mapping

TUJ,<(WWO) ® YjT’)«v'wo UJ,<(L*) - UJ,>(1~,+)

is an isomorphism of Q(g)-vector spaces. On the other hand, we see that
Ty, =TTy, and T,,¥ = ¥T, and hence

Tw(u) € TWYITWO UJ.,<(1;*) == TTwwo UJ‘<(17*) < UJ,>(”’7 +)~

The proof of (ii) is similar.

(4) The left inclusion follows from Proposition 5.20(3) and (5.42) and the
left part of (5.27). The right inclusion follows from Proposition 5.20(3) and
(5.43) and the left part of (5.28). O

6. Imaginary root vectors of U;

In this section, we introducoe imaginary root vectors of U, where J is an
arbitrary non-empty subset of 1.

DerNiTION 6.1. For each (i,m) el x Z, we set

o= TRTTNE), = T, (E). (6.1)

im

LemMA 6.2. (1) Suppose that ne N and me Z,. Then

Z'V(x;n) € Us (va)n(ifw(az,v)v T'\'V(x;,rm) e Uc (w, +)m(5+w(o{) (62)

i
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for each i el and we W. Moreover,
Tw(xi) € AUNg = DU, Tw(x],,) € 4UN(g—1)gUT. (6.3)
(2) For each (j,m)ed x Z, we have

o= GT)"TNE), = GT,) " (E). (6.4)

J

Therefore, both x;,, and x/ m are elements of Uy. Moreover, we have x;,, €
Ay(1,-) if m >0, and x, € Ay(1,+) if m=0.
(3) Let (j,m) be an arbitrary element of J x Z., and s an arbitrary

element of Wy such that mo + o; € Dy([s]) = A5(1,+).  Then VE; sy =

+
j m:

Proor. (1) By Definition 5.2, Definition 5.21(5.42), and Definition 6.1, we
see that x;| = FEs, € Uc(l,-)5_,, and hence T,(x;,)= T, T (Es—y,) €
U, “)ps—w() bY (5:45). Let w, be the longest element of w. Then, by
(5.44)(5.46), the multiplication mapping Y U (w,) ® YT, Us(1,-) — U(1,+) is
an isomorphism of Q(g)-vector spaces, and hence

U<(l7+)m5+oc[ < ¥T1,,U.(1,-). (6'5)

On the other hand, by Lemma 5.23(1), we see that x;, = T,"(E;) is an
element of Uc(1,4)544,, since E; € U-(1,+). Combining with (6. 5) we see that

€ Uc(, Hposy, © YT, Us(1,—). Thus, by Lemma 5.23(3)(ii), we see that
T, n(x:“m) is an element of U< (w,+)5110(x)-

It is easy to see that the set ,,U’'\(¢ — 1)U’ is stable under the action of
Ay, on U, which implies that both 7,(x;,) and T,(x;,) are elements of
#U'\(¢ —1)4U’. Moreover, by (6.2) we see that both T,,(x;,) and T, (x],,)
are elements of U'. Thus we get (6.3).

(2) Since both E; and Tj’l(Ej) are elements of Uy, the equalities (6.4)
follow immediately from (6.1) and Proposition 5.15. Since T, is an auto-
morphism of Uy, by (6.4) we see that x— € Uy. In the case where m > 0, by
(1) we have x;, e UyNU* = Uy. In addltlon by the left equality in (6.4), w
see that (3T3,) " (x;,) = —Kj’le e U7, and hence X, € Ay(1,-). The proof
of remains is similar.

(3) Firstly, we prove the fact that if (s;,s;) is a pair of elements of 7
such that mod + o; € @y([si]) = 45(1,+) for i=1,2 then Es nsis = Egymota-
We may assume that [si] = [s;], and put x = [si] = [s;]. Since y € 4y(1,+) for
each y e @y(x), there exists d(y) € Z; such that y=d(y)0+7 with e 4;,.
Now suppose that md +a; =3 4 €(7)y with ¢(y) € Z, for all ye ®y(x).
Then md+o; = (32, ey €(7)())0 + 2, ey €(»)7,  Which implies ~ that
c(mé+ o) =1 and c(y) =0 for all y# md+ a;. Thanks to Theorem 5.12
and (5.33), by applying Lemma 4.4(3), we get Eg msio = Egymoto-

l m
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Thanks to the fact above, to prove the required equality, it suffices to show
that YEy 514, = xjfm for some s’ € #5 such that mo + o; € @y([s']) = Ay(1,+).
Put [ = /5(t_,) and write ¢_,,, as s1s2...5;p With s1,52,...,57€ Sy and p € Q;.
Let Ey,, = y7T,(E;) with s;11 € Sy, and define s" = (s'(p)) en,,, € Si*1 by setting
s'(p) == s, for each p e N;;;. Then we see that the sequence s’ is an element of
Wy satisfying @y([s']) < A5(1,+) and ¢ (/ + 1) = md + o;.  Thus it follows from
the right equality in (6.4) that

X;:m = SUJ Tfms,-(Ej) = yIJ TleTsz .- 'JTS[(ESH]) = YIES’,méJroc/- ]
DeriNiTION 6.3, For each (i,n) elx N, we set

Pin = [x;n, E,-]q =x; ,Ei — qi_zE,-x»_ (6.6)

and also define ¢;(z) € UT[[z] by setting ¢;(z) := (g — ¢;') Yo, ;02" In
addition, we define J; , € U} by the following equality in U™[[]]:

1) =log(l +0(2) = Y ()", (6.7)

where ;(z) == (qi — ¢;7 ') >0 Linz"

Lemma 6.4. (1) For each we W and (i,n)eixN, both T, (p;,) and
Tw(lin) are elements of 4Ux\(q—1)4U*.  Moreover, both T,(¢;,) and
T,(I;,) are non-zero elements of (U, 5

(2) For each we V(IJ/, the elements of {T\,(I; )| (i,n) e I x N} are linearly
independent over Q. A

(3) Suppose that je€J =1 Then both T\(¢;,) and T.(1; ) are elements
of Uy for each we Wy and neN.

Proor. (1) Suppose that w(w;) >0. Then we have Tw(Ei)E,mle‘T,(m).
Hence, by Lemma 6.2(1), we have T,(x;,) € MU;(LW(M, and hence T, (¢, ,) =
[Tw(x;,), Tw(Ei)], € 4UT. Suppose that w(e;) < 0. Then we see that w=
w's; and /Z(w)=/(w')+1 for some w’eV(I)/, and hence T, =T, T; and
T, (E) e 4U*. Thus T,(x7,) = TwT{T'(E)) = T,w(E;) € ,U. Combin-
ing with Lemma 6.2(1), we get

Tu(gi.1) = Tullxio 51l,) = [Tw(E), Tulxi)], € U™
In the case where n > 2, by Lemma 6.2(1)(6.3), we have
Tw(pin) = Tw’([xijnflvxzrl]q) = [Tw(x;,,,ﬂ, Tw‘(x;,rl)]q esU".

Therefore we see that T,,(¢;,) € ;U for each we W and (i,n) eI xN. By
the definition, we see that
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Tu(h) = Tulp) + Yot
< (g7 = a) 2" Tulolioly - olih). (6.8)

and hence T,,(I;,) € ,U". By Theorem 4.7 of [1], we have
(X s Lin) = (s20(AG)) " [AG] X i/ 1 (6.9)

Combining (6.9) with Lemma 6.2(1), we see that 7),(f;,) € 4 U \(¢— 1)U,
and hence T, (¢;,) € 4U"\(¢ —1)4U" by (6.8).

(2) We may assume that w=1. Hence, it suffices to show the linear
independence over Q of the elements of {/; ,|i € I} for each ne N. Now we
suppose that Z, vilin =0 w1th vieQ. By (6.9), we see that [Es_,. oo I, Iin) =
(sgn(Ay)"Ayx, /n for all j eI which implies that Z, L vi(sgn(ay))"A; =0

o U, n+1
for all j el. Thus Vi, .., v][(sgn(A ,,))"A,]] el = [0,...,0]. Since the matrix
[(sgn(A,-f))"A,j]i/ef is mvertlble we get [vy,...,v] =[0,...,0]. Therefore the

assertion is valid.

(3) By Lemma 6.2(2), we have x;, € Uy, and hence ¢; , =[x, E], €
Uy. By (6.8), we have I, ,, € Uj. Since Uy is stable under the action of 7,
both T'.(¢; ,) and T, (I; ) are elements of Uy. Thus we get the assertion in (3)

by combining with the first assertion in (1). O

DEFINITION 6.5. For each w e V?/‘], we define a Q(g)-subalgebra Uy(w,0) of
Uy by setting Uj(w,0) := {Ty,(I;.n) | (j,n) € I X N)q(g)-ale- Note that Lemma
6.6( ) implies UJ(VL70) c U*.

PROPOSITION 6.6. Let w be an arbitrary element of I/?/_], and =< an arbitrary
total order on J x N.  Then Uy(w,0) is a commutative Q(q)-subalgebra of Uy,
and the set T, (L) (see Definition 5.18) is a basis of Ujy(w,0).

ProOF. We may assume that w=1. By Theorem 4.7 of [1], we see that
Us(1,0) is a commutative Q(g)-subalgebra of Uj, and hence the set I spans
Uj(1,0). Thus it suffices to show the linear independence over Q(g) of the set
IZ. Let us denote by IZ the image of I by the specialization at ¢ = 1. By
Proposition 4.1, Lemma 6.4(2), and the PBW Theorem of Lie algebras over Q,
we see that 2 is linearly independent over Q. Combining with Lemma 4.2,
we see that I is linearly independent over Q(gq). O

Lemma 6.7. (1) For each te Ty, there exists an element t' € TyN
Wy(A4y(1,-)) such that tt' € TyN Wg(AJ(l,—)).

(2) Let w be an element of Wy, and y an element of Wy(Ay(w,—)). Set
w' = 3~ w. Then there exist elements t,t' € TyN Wy(A5(1,-)) such that wt =
yw't' and Ly(wt) = £(w) + 45(t) = 4 (y) + (W) + 45(2).
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Proor. (1) Clear. Let us prove (2). Since @;5(y) < 45(w,—) we have
O(w) M wdy(1,-) = Agw,—) = Dy(y) L y{@(W") T w'A5(1,-)}.
Hence we see that /5(wz) = /(w) + 45(z) and Z(yw'z") = 43(y) + (W) + 43(2)

for all z,z'e Wj(45(1,-)). Since yw' = yw' =w, we have yw' = wi, with
ueQy. By (1), there exists an element 7, € TyN Wy(4y(1,-)) such that
tuty € TyN Wy(45(1,-)). Set t=t,t, and ¢ =t,. Then wt= yw't’. Since

t,t' € Wy(45(1,-)) we have
(W) +43(0) = Ly(wi) = L(w't") = 4 (p) + (W) + 4 (). O

ProposiTiON 6.8. (1) If te€ Ty and u e Uy(1,0), then yT,(u) = u.

2) Ifwe I/OVJ and y e Wy(Ay(w,-)), then JT;IUJ(W,O) = Uj(57'w,0). In
particular, Uy(w,0) < Ay(w,—)".

(3) If we VCI)/J and y € Wy(As(w,+)), then 31,1 Us(w,0) = Us(3~'w,0). In
particular, Uys(w,0) < Ay(w,+)".

@4) Ifwe Ij/_], then Ug(w,0) = Ay(w,0).

Proor. (1) This follows from Proposition 5.15, Proposition 6.6, and
Proposition 3.12 of [1].

(2) Set w' =y~ 'w. By Lemma 6.7(2), we see that T, - 3T, =T} - Ty -
3T for some t,¢' € TyN Wy(45(1,-)). By (1), for each u e Uy(1,0), we have
3T,(u) = 3Ty (u) = u, and hence JT},‘] T, (u) = T, (u) € Uy(5-'w,0). Thus the
assertion is valid.

(3) Since @y(y) < Ay(ww,,—), we have (I’J(y) O yAy(57—'wwe, =) = Ag(wwe, —),
and hence @y(y~') = 4y(57'w,~). By (2), we get Uy(5~'w,0) = yT,-1 Us(w,0).

(4) This follows from (5.29), (2), and (3). O

7. Decompositions of U into tensor products of subalgebras

In this section, we give several decompositions of Uj into tensor products
of subalgebras, where J is an arbitrary non-empty subset of L

ProrosiTioN 7.1. (1) For each we I/%/J, the multiplication defines the
Sollowing isomorphism of Q(gq)-vector spaces:

Uy <(w,—) ® Uy(w,0) ® Uy > (w,+) = Uy (7.1)

Moreover, the following equality holds:
Uy(w,0) = Ay(w,0). (7.2)
(2) The multiplication defines the following isomorphism of Q(q)-algebras:
QN U, = Uy (7.3)
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(3) The part (1) of Proposition 5.7 is still valid in the case where J is an
arbitrary non-empty subset of 1

Proor. Let us prove (1) and (2). Let s and s’ be elements of #;* such
that @5 ([s]) = 45(w,-) and @F ([s']) = 45(w.+). By Proposition 5.19(1), we see
that £ _ and WE; _ are bases of Uy ~(w,—) and Uy - (w,+) respectively. Let <
be a total order on J x N. By Proposition 6.6, we see that T, w(I2) is a basis of
U(w,0). By Proposition 5.19(1), (5.29), the right part of (5.38), and the left
part of (5.43), we see that the multiplication defines the following injective

Q(g)-linear mapping:
Uy, <(w,=) @ A3(w,0) ® {Ay(w, =) N Uy (w0, 4)} < Uy (7.4)

By Proposition 6.8(3), we have Uy(w,0) = A5(w,0). By Lemma 5.23(1), we have
Uy~ (w,+) € Ay(w,—)¢. Thus we see that the multiplication defines the follow-
ing injective Q(g)-linear mapping:

my 2 Uy <(w,—) @ Uy(w,0) ® Uy > (w,+) — U}_. (7.5)

Hence the elements of the subset E;_T,(IZ)¥(E; ) of Uy are linearly
independent. In the case where J is connected, by (5.14), we see that the
set Ef _T,(I2)¥W(E;_) is a basis of Uy, and hence the mapping (7.5) is
bijecti{/e. To consider the general case, we write w uniquely as w = H(C:(P We
with w, € I/Ci/,](_. Then the multiplication defines the following isomorphism of

Q(g)-vector spaces:
Us,,<(we. =) @ U, (we,0) @ Uy, > (we, ) — Uy (7.6)

for each ¢=1,...,Cc(J). By Proposition 5.20(1) and Proposition 6.6, we see
that the multiplication defines the following isomorphisms of Q(g)-vector
spaces:

®CC:<‘1]) UJ“<(WC-, _) ; UJ <<W, _)) ®S:(f> UJL., >(WL'7 +) ; UJ‘ >(W7 +)? (7'7)
QR Uy, (we,0) = Uy(w,0). (7.8)

Therefore we have the following diagram:

Uy, <(w,—) @ Us(w,0) ® Uy > (w, +) c\ Uy

(p’[ Tm;

RV (U, <9 =) ® Uy, (10,0) ® Uy, 5 (wee 1)) —— RV U

Here, mj is defined by the multiplication and ¢ is defined by setting
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QYW (=) ® 1e(0) ® ue(+)

Cc(J) cJ) C(J)
= (H uc<—>> ® <H uc(0)> ® (H uc<+>>,
c=1 c=1 c=1

where u.(-) € Uy, <(we, ), Uc(0) € Uy, (we,0), and u.(+) € Uy, > (we,+). By Lemma
5.4(4), we see that the diagram above is commutative. By (7.6)—(7.8), we see
that ¢ is an isomorphism of Q(g)-vector spaces, which implies the injectivity of
my. By Proposition 5.5, we have the surjectivity of m;. Thus both of m3
and m; are isomorphisms of Q(g)-vector spaces. Moreover it is easy to see
that the multiplication defines the following isomorphisms of Q(g)-vector
spaces:

m QW uy Suy,  md:QWul = v (7.9)

c=1 =

Thus, by Proposition 5.7(2), we see that the multiplication defines the following
isomorphism of Q(g)-vector spaces:

m: @ Uy = Uy, (7.10)

It is easy to see that m; is compatible with the standard Q(g)-algebra structure
of the tensor product ®CC:(“1]) Uy,. The equality (7.2) follows from Lemma
6.8(4), (7.1), (5.29), and Lemma 5.23(4).

Let us prove (3). The characterization of Uy in terms of the generators
and the defining relations follows from the part (2) and the first assertion of
Proposition 5.7(1). The equalities in (5.14) follow from the part (1) and
Proposition 6.6. ]

ProposiTioN 7.2. (1) For each ye Wy, the multiplication defines the
Sollowing isomorphism of Q(q)-vector spaces:

Ay(») ® Ay(»)¢ = Uy (7.11)

(2) Let B be an arbitrary real biconvex set in Ay.. Then the following
equality holds:

Uy, <(B) = Ay(B) = Uy ~(B). (7.12)
Moreover, Ay(B) is a Q(q)-subalgebra of Uy .

ProoF. Let us prove (7.11). We may assume that @;(y) = Ay(w,—) for
some we Wjy. Then there exists an element s e #3° such that @7 ([s]) =
Ay(v,-) and [s,] = y with p=7/(y). Let s’ be an element of ¥} such that
Dy([s']) = A5(w,+), and < a total order on Jx N. Then the product set
E; _T,(I2)¥(E; ) is a basis of Uy. From Lemma 5.17(1), it follows that the
multiplication Ay(y) ® Ay(y)° — Uy is injective. Moreover, we see that
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EsTp,< < AJ()/), JTy( sT”,<)TW(I<*)lIIEs*’,< < AJ(y)c7

and E:\p <.]Ty(E‘:‘p’ .) = E; _, where s|, is the initial p-section of s and s|” is the
p-shift of s (see [7]). Therefore we see that the multiplication 45(y) ® A5(y)¢
— Uy is bijective and that the sets Es*,” . and jT,(E, 0. ITW(I2)P(ES ) are
bases of Ay(y) and Aj(y)¢, respectively. Since Es*‘p’ _ is also a basis of
Uy <(y), we get Uy (y)=Ay(y). Similarly, we can prove the equality
Uy~ (y) =A4y(y). Hence (7.12) is proved in the case where B= ®y(y)
with y e Wj.

Let us prove (7.12) in the case where Be By. Suppose that @} ([s]) = B
with se #y°. Then Uy <([s|,]) = 4s([sl,]) = Uy ~([s,]) for all peN. Since
Us,<(B) =, en Us <([s],)) and Uy~ (B) =, n Us,>([s],]), we have Uy (B)
=Us>(B) =, cn4s([s],)). It follows that Uj(B)= Us-(B) < Ay(B),
since Ay([s],]) = 45(B) for all peN. Let y be an arbitrary element of Wy(B).
Then we have Ay(y) = Uy <(y) = Uy <(B). Thus we get Ay(B) = Uy ~(B) =
Uy ~(B). Therefore (7.12) is valid.

Let us prove the second assertion of the part (2). Suppose that u; and u,
are elements of Ay(B). By Definition 5.16, we may assume that u; € A5(y;)
with y; € Wy(B) for i=1,2. By Lemma 3.6(1), there exists an eclements
y3 € Wy(B) such that @5(y;)U®dy(y2) = @y(y3). By Proposition 5.20(2)
and the equality Uy .(y) = A(y) for ye W, we see that Ay(y3) is a Q(q)-
subalgebra of Uj such that Ay(y;)UAy(y2) < A5(y3), and hence uj + un,
ujuy € Ay(y3) = Ay(B). Therefore Ay(B) is a Q(g)-subalgebra of Uj . O

ProprosITION 7.3.  For each w € Wy, the multiplication defines the following
isomorphisms of vector spaces:

Ag(w,—) @ Ay(w,0) @ Ay(w,+) 5 U}r, (7.13)
Ay(w,0) ® Ay(w,+) — Ag(w, )¢, Ag(w,—) ® Ag(w,0) — Ayow, )¢, (7.14)

Az(w,—) ® Ag(w,—)¢ = Uy, Ay, +)¢ ® Ayw,+) — Uj. (7.15)

ProoF. The isomorphism (7.13) follows from (7.1), (7.2), and (7.12).
The left isomorphism in (7.14) follows from (7.13), Lemma 5.23(1), and
Proposition 6.8(2). The right isomorphism in (7.14) follows from (7.13),
Lemma 5.23(2), and Proposition 6.8(3). The isomorphisms in (7.15) follow
from (7.13)(7.14). O

PropPOSITION 7.4.  Let B and By be arbitrary real biconvex sets in Ay, such
that B = By. Then the multiplication defines the following isomorphisms of
Q(q)-vector spaces:
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A3(B) ® {A5(B) N Ay(B1)} — Ays(B1), (7.16)
{A4y(B) N As(B1)} ® Ay(B1)¢ = Ay(B)*, (7.17)
A3(B) ® A5(B)¢ = Uy . (7.18)

Proor. Let us prove (7.16). By Proposition 5.19(1) and (7.12), we see
that the multiplication defines the following injective Q(g)-linear mapping:

Ay(B) ® A3(B)¢ — Uj. (7.19)

Since Ay(B) < Ay(B1), we see that the multiplication defines the following
injective Q(g)-linear mapping:

Ay(B) ® {As(B) N Ay(B1)} — As(Br). (7.20)

Hence it suffices to show the surjectivity of (7.20). In the case where B e B,
and B = @;(y) with y € Wy, the surjectivity of (7.20) follows from Proposition
5.20(2) and (7.12). We next suppose that Be By and @7 ([s]) =B with
seWy°. Let u be an arbitrary weight vector of A4y(B;) with weight f.
We use the induction on wt(u) = . In the case where ue Ay(B)“ N Ay(By),
there is nothing to prove. So we may assume that there exists y € WJ(B)\{1}
such that u=3%",_, X;Y,, where X, and Y, are weight vectors of A;(y) and
Ay(y)“N Ay(By) respectively with wt(X;) > 0. Since all wt(Y;) are lower than
f, by the induction, we see that all ¥, belong to the image of the (7.20). Since
Aj(y) is a subalgebra of Aj(B), we see that u=)",_,X;Y,; belongs to the
image of the mapping (7.20).

Let us prove (7.18), i.e., the surjectivity of (7.19). Let w be an element of
Wy such that B < Ay(w,—). By using (7.16) with B; = 45(w, —), we see that
A3(B) ® {A3(B) N Ay(w,—)} — A3(w,—). Moreover, since  Ay(w,—)‘ <
Ay(B)¢, we see that {Aj(B)*NAy(w,—)} ® Ay(w,—)" — A5(B)°. Com-
bining with (7.13), we get (7.18). The assertion (7.17) can be proved by using
(7.16) and (7.18). O

LEmMmaA 7.5. Let y be an arbitroary element of Wy, s an element of Wy such
that [s] =y, and ¢ an element of PV such that (¢la;) >0 for all ie I\J and
(elej) =0 for all jed. Then, for each ne L, we have

A([S)NUY = A5(p),  ABEE) N UY = Ay(y)". (7.21)

Proor. By the definitions of the action of y7, on Uy and the subalgebra
A([s]t!) of UT, we have

AN Uy ={ue UF [ T,"5T, (u) e U=} = Ay(p),
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where the second equality follows from Lemma 5.4(3)(i) and Lemma 5.14(1).
The proof of the right equality in (7.21) is similar. O

PROPOSITION 7.6. Let B be a real biconvex set in Ay., and set B:=
BI1 A%(1,-). Then B is a real biconvex set and the following equalities hold:

Ay(B)=AB)NUJ,  A3(B)=A(B)NU;. (7.22)

PrOOF. We may assume that J & I Suppose that Be By. Then B =
®y(y) for some y € Wy. Let s be an element of #} such that [s] = y, and ¢ an
element of PV such that (elo;) > 0 for all ieI\J and (g|oy) =0 for all jeJ.
By Proposition 3.7, we see that Un>0 [8]¢e!) = B, hence Be B” by Lemma
3.6(2). Thus, by Lemma 7.5, we have

AB)NUS = {U, 20 AEINUS = U, o{4[E) N U} = 45(B),

AB) NUS = {20 A[E)INUS = (2o {A B N U} = 45(B)".

Suppose that Be By. Let s be an element of #;* such that &5 ([s]) = B.
By the definitions of Ay([s|,]) and A,([s|,])*, for each peN, we see that
As(fsl,)) = A(lsl,]) N Uy and Ay([s],))* = A([s],) N Uy. By Lemma 3.5(2), we

have UpeN | ) = B, and hence Be B~ by Lemma 3.6(2). Thus we get
AJ(B) UpeN {UpeN }nUJ - (é)ﬂU}7
As(B) = (N, enAs(sL,) = {,en A, YN Uy =4B)NUY. O

8. Convex bases of U;

The aim of this section is to construct convex bases of U; associated with
all convex orders on Ay, where J is an arbitrary non-empty subset of I.

ProprosITION 8.1. Let C; and C, be real biconvex sets in Ay, such that
Cy c C. Write Cl and C, uniquely as Cy =VyK,w,y) and C, = Cy I wyB
with K< J, we WJ, v € Wk, and Be Bg. Then the following equality holds:

Ay(C1) NAy(Cy) =T, - yT,Ax(B) (8.1)
and the multiplication defines the following isomorphism of Q(q)-vector spaces:
A3(C) @ T, - 3Ty Ak (B) — A5(Cs). (8.2)

Proor. In the case where C;e€ By, we have K=J and C; = &y(y),
which implies that w =1 and B = y~'{C)\®y(»)}. Thus A;(C) N A5(Cy) =
3T,A5(B) by Proposition 5.20(2) and Proposition 7.2(2). Therefore (8.1) i
valid in this case.
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We next suppose that C € B. Then K £ J. Let ¢ be an element of P
such that (elo;) > 0 for all je I\K and (¢log) = 0 for all k €K, s an element of
Yk such that [s] = y, and s, an element of %" such that @k([s2]) = B. _Set
Ci:=C 141, -) and G :=C1A%1,-). Then C; =V(Kwy) and G =
C1 IIwyB. Thus, by Proposition 3.7, we have

Cr = Upoo @0VT51), = Upo Uy @08l ). (83)
By Proposition 7.6, it follows that
A5(C)° = ﬂn>o{A(W[§]f§)" nuy}, (8.4)
A3(C2) = U,y Uy [s2],)) N US 3, (8.5)
where
AW NUf ={ue Uf [T,"5T,' T, (u) e U}, (8.6)

AWl ) VU = {ue U | T LT3 T ) e US) (87)

Here, by Lemma 5.4(3), we see the fact that T "(x) =x for all x € Ax(B).
Combining the fact with (8.4) and (8.6), we get T, - JT yAk(B) = A3(Cy)°.
Combining the fact with (8.7f)vand the equality kT = vzl |UK> we see that
T, - 3Ty Ak ([s2],]) = A(w[s]e)[s2],]) N Uy for all 1 <p< /(s;). and hence T, -
3Ty Ax(B) = Ay(C,) by (8.5). Therefore we get T, -yT,Ak(B) = A5(Ci)“N
Ay(Cy). By (7.16) in Proposition 7.4, we see that the multiplication m :
Ay(C) @ {A45(C1) N A3(Cy)} — Ay(Cy) is an isomorphism of vector spaces,
which induces the injective linear mapping:

gDSAJ(C])@T,V'JTyAK(B) ‘—)AJ(CQ) (88)
Since C; IIwyB = C,, by Proposition 5.19(1) and (7.12), we see that

dimg( (Im ¢), = dimgyy) 45(C2), = #{c C—Z |y, . c(ff= ﬂ}
for each g e Qy,. This implies that ¢ =m with the equality (8.1).
The (8.2) follows immediately from (8.1) and (7.16). O

CoROLLARY 8.2. Suppose that B is a real biconvex set in Ay, satisfying
B < Ay(w,—) for some we Wy and that

B = V(K wX, ), B wXyAx (5 wg,—) = Ay(w,-)

for some K<J and ye Wx. Then the multiplication defines the following
isomorphisms of Q(q)-vector spaces:
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Ay(B) ® Tk - y Ty AR (7 'wi, =) — Ag(ow,—), (8.9)
ok 3Ty AR (7 vk, —) ® Ag(w, )¢ = Ay(B)”. (8.10)
Proor. By (8.1), we have
Ay(B) N Ayw,—) = Tk - 3Ty Ak (7 'wk, —). (8.11)
Hence, (8.9) and (8.10) follow from (7.16) and (7.17) respectively.

DerINITION 8.3. Let A be a totally ordered set with < the total order on
A. Then we call a subset I = A a section of A with respect to < if [A, 4], =T
for all A, uel satisfying A <p, where [Apul.:={ved|i=<v=u}. If in
addition, I < (A\I) then we call I an initial section of A with respect to <.
Moreover, for each 1€ A4 we set (x, 4], :={ued|u =<1}, (4,%) = A\(x, 4],
(%, A) 2 ={ued|u< 4}, and [4, %) = A\(x, ).

Let 4 be an associative algebra with the unit 1 over a commutative ring R,
and {X; |4 € A} a subset of 4 indexed by the totally ordered set 4. Then we
call the set X2 = X (A) (resp. X} = X*(A4)) (see Definition 5.18) a convex basis
of 4 if XZ(I) (resp. XJ(I)) is a free R-basis of the R-subalgebra {X; |4 € I>g
of A for each section I of A with respect to <.

THEOREM 8.4.  Let (1,K., Vo, Ss) be an element of Nyy x €,J x Wx, X Wy~
satisfying the conditions (3.1) and (3.2) (c¢f. Theorem 3.2(2)), and < the convex
order on Ay(w,—) associated with the (n,Ke, V.,8.). For each o€ Ay(w,-), we
define a weight vector E, = E< , € Uy with weight o by setting

Ey=E<y:=Tyw - gTy, 3T ) - - JTsi—l(Pfl)(ESi—l(PO? (8'12)

where ot:wK"*‘yi,lqﬁsH(p) with ieN, and peN. Then each of the sets
EZ(A3(w,—)) and El(Ay(w,-)) (see Definition 5.18) is a convex basis of the
Q(q)-algebra Ay(w,—) and of the </ -algebra o Ayow,—):= Ayow,—)N HUT.
Moreover, if I is an initial section with respect to =<, then I is a real biconvex set
in Ay, and the following equalities hold:

CEy |0 € IDqg)-aty = As(1), (8.13)
CEy |0 € IDq(g)aty = As(T) NV As(w,-), (8.14)
where 1€ := Ay(w,—)\L.
Proor. By (3.1)(3.2) in Theorem 3.2(2), we have

A(w,—) = Hln:l WK"*‘y,-,l(1513(61‘;l ([si-1]), (8.15)

Ci I WK""yi_1¢1€4([Si_1]) =C; e By for each 1 <i <, (8.16)
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where yp:=1 and Cy:= . We set B,_|:= @I‘Ql([s,»,l]) for each ieN,.
Then, by (8.2) and (8.16), we see that the multiplication defines the following
Q(g)-linear isomorphism:

Ay(Ciet) ® Ty - 3Ty, Ax,  (Bio1) — Ay(C) (8.17)

for each ieN,. Since C, = Ay(w,—) and C; = By, the multiplication defines
the following Q(g)-linear isomorphisms:

&y Ty - a Ty A (Bio1) = As(w,-), (8.18)
®Jl:1 TWK/‘*I : JTyjflAKjfl (ijl) ; AJ(CZ)7 (8'19)
iy Tt 9Ty A (Biot) = Ay(Ci) N Ay(w, ). (8.20)

Here, A; 1 := T, x, -37T,, Ak, ,(B;j_1) is located on the left side of 4;_; in the
tensor products above if j < j’. By (8.18), we see that EZ(4y(w,—)) is a basis
of Ay(w,~). Moreover, by Lemma 4.4(1) we see that EZ(45(w,-)) is a subset of
#Asw,=)\(q¢ — 1)1 Ay(w,-), and hence that the set EZ(4y(w,~)) is also a basis
of .4 Ay(w,—) over o/ by Proposition 4.1 and Lemma 4.2.

We next prove (8.13)(8.14). Since 7 is an initial section, it is easy to see
that 7 is a real biconvex set in 4y;. Let us consider the case where I = (x, o],
and let ieN, and peN be unique elements such that o = wKi y,-,lgbs,_f](p_).

We put x:=[s;1],] and B | := xYB; \®xk,_,(x)}. Then we see that
I=Ci  TIwS 'y &y, (x), C;=IT1Iw" 'y, 1xB]_,. (8.21)

By (8.2) and the left equality in (8.21), we see that the multiplication defines the
following Q(g)-linear isomorphism:

Ay(Cimt) ® Tywiy - 3Ty, Ay, (x) = As(1). (8.22)

By (8.19) with i replaced by i — 1 and (8.22), we see that E.(I) is a basis of
Aj(I) and that (8.13) holds for 7 = (x,«]<. By (8.1) and the right equality in
(8.21), we have
As(I) N Ay(C) = Ty - 3Ty, - 3TiAx, (BL)). (8.23)
Since I = C; < 4y(w,—), it follows from (7.17) that the multiplication defines the
following Q(g)-linear isomorphism:
{AJ(I)C N AJ(C,)} ® {AJ(Ci)C N Ay(w, —)} 5 AJ(I)C N Ag(w,-). (824)

By (8.20)(8.23)(8.24), we see that EZ(/¢) is a basis of Ay(I)°N Ay(w,—) and that
(8.14) holds for I = (*,0],. The assertion for /= (*,a), can be proved
similarly.
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For each o < 8, we see that EZ([x,*).) N EZ((*,f]<) = EZ([o, fl<) and

<E'7|’7 € [a7*)<>Q q—algn<E'7|77 € (*aﬂ]<>Q (¢)-alg <E |77 € [a ﬂ] >Qq )-alg*

Thus EZ(I) is a basis of <{E,|n € I>q(-ay for I = o, f];. Similarly, we can
prove the assertion for any sections with respect to <. Therefore EZ(4y(w,-))
is a convex basis of Aj(w,—), and hence the set is a convex basis of ., Ajy(w,—)
over .o/ by Proposition 4.1 and Lemma 4.2.

The proof of the assertions for EJ(Aj(w,-)) is quite similar. O

ProproSITION 8.5. The following equalities hold:

Ay(1,+) = | j€d,me Zidqqg)-ag (8.25)

/m
Ay(1,-) = <E(578>x;n | €€ AJ+>j edne N>Q(q)—alga (826)

where both xj wm and X, are introduced in Deﬁnmon 6.1, and Es_, is introduced

in Definition 5.2. Moreover for each we W the following inclusions hold:
[Ay(w,+), Ay(w,0)] = Ay(w,+). (8.27)

ProoF. Since the proof of (8.26) is similar to that of (8.25), we prove only
(8.25). Set Xj :=<x{,|j€d,meZi)qqay Then, by Lemma 6.2(2) we
have Ay(1,+) > Xy . To prove the opposite inclusion Ay(1,+) = X}, let / be an
element of QJ \{O} such that 4=} ke with k; e N for all jeJ, and
$1,82,-..,5, elements of Sy such that s;s,...5, =¢_; with n =/¢j(¢_;). Here,
we define an infinite sequence s = (S(p))peN e SN by setting s(p) := sj for each
peN, where peN, such that p=p modn. Then the sequence s is an
element of #;* such that @} ([s]) = 45(w,+), and hence the convex order < on
Ay(w,+) associated with s is of l-row type (see Theorem 3.2 and Remark
3.3). Since Ajy(1,+) =<VE<,|oedy(1,+ )2Q(g)-alg» 1t suffices to show that
YE-,e Xy for all oedy(1,+). We use the induction on ht(). Firstly,
we consider the case where ht(&) = 1. Then o =md + o; with (j,m)eJ x Z,.
Hence, by Lemma 6.2(3) we see that YE< 51, = X, € Xj". Secondly, we
consider the case where ht(a) > 2. Let [, 7] be a minimal section of Ay(1,+)
satisfying o« = f+ 9. By Theorem 8.4 and P_roposition 4.1, we see that there
exist elements ci, ¢, € #1\(q — 1)/ such that E< ,E< g = ciE< ,+ c2E< gE< .
Since ht(f),ht(¥) < ht(&), by the hypothesis of the induction, we see that

1 c
V(Exy) = - W(Exp)P(Exy) = 2 W (E<) V(Exy) e X

By (8.25), Proposition 6.6, and Theorem 4.7 in [1], we have

[A5(1,+), A3(1,0)] = Ay(1,+).
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Let w, be the longest element of V%/‘]. Since 4y(1,+) = Ay(wo,—), by (5.27)(5.28)
and the right equality in Lemma 5.17(2), we have

[Ay(we, =), Ay(ws,0)] = Ay(wo,—). (828)

Set w =wew™!. Then T, =T,T, and T, Ay(w,0) = Ay(w.,,0). Since the
multiplication U.(w') ® Ty Uy, <(w,—) — Uy <(w,,—) is an isomorphism of
Q(g)-vector spaces, we have T, Aj(w,—) < Ay(w.,—). Therefore, by (8.28),
we have

[TW/AJ(W, =), TW/AJ(W,O)] < Ay(we, —).
Since [T, Ag(w,-), Ty Ay(w,0)] = Ag(w.,—) N A(w'), we see that
[TW/AJ(WV _)) TW/AJ(W%O)] < TW/AJ(WV _)7

hence [Ajy(w,—), Ag(w,0)] = Ay(w,~). By the left and right equalities in Lemma
5.17(2), we see that

[AJ(W, +),AJ(W,0)] = [AJ(W, +), quJ(lfL’LL’D7O)] c Ayw,+). O

o
THEOREM 8.6. Let < be an arbitrary convex order on Ay., and w e Wy the
unique element such that Ay(w,—) < 47" < Ay(w,+). We define <_, <o, and <
to be the resfriction of X to Ay(w,-), A", and Ay(w,+), respectively, and define a
total order <Xy on the set

APt = A" x J={(nd,j)|neN,jel}
by setting

no <on'o if n#n,

8.29
j<j if n=n'. ( )

(15, ) 20 (W0, ]') & {

In addition, we define a total order =< on the set

Ay =AY, LA = Ay, ) TLAT T Ay(w,+)

by extending <_, =,, and <. so that AJ(W,—)QJj’f_ < Ay(w,+). For each
nedy., we set

E< if nedsw-),
E,,] = E<7,7 = Tw(lj,n) lf‘ '] = (}’lé, ]) € A}Z’ (830)

T(Ejip,n) lf’ ne AJ(W7 +)a
where < is the opposite order of <i. Then each of the sets E;(JH) and
EX(4yy) (see Definition 5.18) is a convex basis of the Q(q)-algeb;:a Uy and of

the <o/\-algebra Uy = ,UYNUS.  Moreover, for each n,( € Ay, satisfying
n < ¢, the following equalities hold:
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[Ep B, = Y hES  [EpEl,= Y geES,  (831)
supp(e) = (17,{) 5 supp(e) = (17,{) 5

where he,g. € /.

ProoF. By Proposition 6.6, Proposition 7.1(1), Theorem 8.4, and Prop-
osition 7.2(2), we see that E;‘(j J+) is a basis of Uj. Moreover, by Lemma
4.4(1) and Lemma 6.4(1), we see that E%(4y,) is a subset of U \(¢ — 1)U}
Hence, it follows from Proposition 4.1 and Lemma 4.2 that the set EZ(4y) is
also a basis of the .o/-algebra ,U; .

Suppose that 5 € Ay(w,~). Since (x,7]z = (*,7]- , by (8.13), we see that
E((x,7]3) is a basis of A5((x,7]5). By (8.14), (7.17), and the left equality in
(7.14), we see that EZ((17,%)3) is a basis of Ay((*,7]3)".

We next suppose that 5 € Ay(w,+). Here we remark that ¥ is an anti-
automorphism of the Q(g)-algebra Uy. Since (n,%)z = (1,%)< , by (8.13), we
see that EZ((n,*)z) is a basis of ¥ Ay((17,%)3). By (8.14), (7.17), and the right
equality in (7.14), we see that EZ((*,1]2) is a basis of PAy((n,%)z)

We next suppose that 7 € 4'!. By Proposition 6.6, (7.2), (7.13), Theorem
8.4, and Proposition 8.5(2), we see that EZ(I) is a basis of the subalgebra
CEy|n € 1)q(g)-ay in the case where I = (x,77]5 or I = (1,%)x.

Therefore we see that EZ(I) is a basis of {Ej|n € I)q)ay in the cases
where I = (x,5]z or I = (17,%) for each n € 45,. Similarly, we can prove that
EZ(I)is a basis of {E,|ne I>(_)(q)_a,g in the case where I = (x,7)z or I = [, %)%
for each n e 4y,.

For each #<{, we see that EX([7,%)3) N EZ((x,{]5) = EX([7,{]5) and

<El7 |]7 € [’77 *)3>Q(q)-alg N <EI7 |’7 € (*a €]3>Q(q)-a/g = <E77 ‘ ne [”v 5]3>Q(q)-a/y'

Thus EZ(1) is a basis of <E, |7 € I>q(g)-ay in the case where I = [5,{]5. Sim-
ilarly, we can prove that EZ(7) is a basis of (E, |1 € I )q(y)-qy for each section /
with respect to <. Therefore EX(4y,) is a convex basis of Uj. Since
Ej(JH) is also a basis of the .-algebra Uy, it is easy to see that
E%(4yy) is a convex basis of ,,Uj. The proof of (8.31) is similar to that
of Proposition 7 in [2]. ]

9. Dual convex bases with respect to the ¢-Killing form

Firstly, we introduce a well-known standard Q(g)-bilinear form between
U=% and U=°, which is called the ¢-Killing form since it can be regarded as a
g-analogue of the Killing form on g. Secondly, we introduce Damiani’s work
concerning detailed computation of values of the ¢-Killing form on the



178 Ken Ito

subalgebras generated by the imaginary root vectors. Thirdly, we will con-
struct the dual convex bases of UT and U~ with respect to the ¢-Killing form.
Finally, we will present the multiplicative formula for the R-matrix of U,(g)
associated with an arbitrary convex order on A4..

Let my be a positive integer such that my(P|P) = Z, and F an extension
field of Q(g) such that F contains an my-th root ¢'/™ of q.

THEOREM 9.1 ([15]). There exists a unique non-degenerate Q(q)-bilinear
form (|): U= x U= — F which satisfies the following equalities:

(X[ yy2) =(AX) [ 11 ®32),  (vx2]y) = (2 @x1[4(p)),
(K| K)=q ", (E|K) = (K F)=0,  (E|F)=0;/(¢;" —a),

where x,x1,x,€ UZ% y,y1,3,e U= i, jel, u,ve P, and A is the coproduct of
U defined by

AME)=EQRI+K®E, AF)=FE®K'+1®F, 4(K,)=K,®K,.

Here we use the notation (|) also for the Q(q)-bilinear form (|): (UZ%)®* x
(U=®? S F induced by (x1 @ x2| y1 ® y2) = (x1| y1)(x2] 32).

LemMa 9.2 ([10]). (1) For each u,ve Q;, x€ U/j', yeU-,, and & neP,
the following equality holds: (xKz | yK,) = 6,,q~ " (x| y). Moreover, the re-
striction of the form (|) to Uf x U~ is non-degenerate.

(2) For each (x,y) e Ut x U™, the following equality holds: (¥(x)|¥(y))
— (x| )

(3) For each iel, xe A(s;)", ye A (s;)¢, and m,n € Ly, the following
equality holds:

(XE" | yF") = Gpn(x | )(E]" | F") = Oa(x] ) (m), 1/ (g7 = q)™. (9-1)

Proor. Although in [10] the assertions are proved in the case where g is
an arbitrary finite dimensional simple Lie algebra, the proof can be applied to
the untwisted affine case. O

PROPOSITION 9.3.  For each ye W, ae W(A(y)), and b e ¥(A(y)°), the
following equality holds: (T, (a)|Ty(b)) = (a|b).

ProoF. Since the equality is clear in the case where y =1, we may
assume that /(y) > 1. We use the induction on / =/(y). In the case where
[ =1, we can apply the proof of Proposition 8.28 in [10] to this case. In the
case where / > 2, there exist i€l and y' € W such that y = y’s; and /(y’) =
I—1. Then we see that 7, =7T,T;, Tia)e¥(A(y)), and T(b)e
Y(A=(y')°). Hence, by the inductive assumption, we have the following
equalities:

(Ty(a)| Ty(b)) = (T Ti(a) | Ty Ti(b)) = (Ti(a) | Ti(b)) = (a|b). O
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PROPOSITION 9.4. Let B be an arbitrary element of B*. If x; € A(B)S,
x,e A(B), y1eA (B), yae A (B), then the following equality holds:
(x1x2| y1y2) = (x1 | y1) (%2 ] y2).

ProoF. We first prove the claim in the case where B = &(y) with y e W.
By Proposition 7.2(2), we have A(B) = A(y) = U-(y) and A= (B) =4 (y) =
U-(y). We use the induction on /=/(y). In the case where /=0, since
y=1, we have U.(y) = U-(y) = Q(g), which implies the equality. In the
case where / > 0, there exist ieI and y’ € W such that y =s;" and /()') =
[—1. By Proposition 5.20(2), there exist m,ne€ Zso, a}e T;U-(y’), and
by e T;UZ(y") such that a = a}E" and by = byF". Then T;'(d})e U-()')
and T;7'(by) e UZ(y'). In addition, we have T;'(a;) € A(y') and T; (b)) €
A~ (y"). By Lemma 9.2(3), Proposition 9.3, and the inductive assumption, we
see that

(ar1ay| biby) = (a1ayE" | biby F') = (aray | biby) (E[" | F}')

T )Ty (ap) | T3 () T (B)) (E]" | FY)

(
= (
= (T; N a) | T, ()T (a0) | T (B3)) (] | FY')
= (a1 |b1)(ay | b3)(E]" | ") = (ay | by)(az2 | b2).

We next prove the claim in the case where Be B”. By Proposition
7.2(2), we have A(B) = U-(B) and A~ (B) = UZ(B). Then, by Proposition
5.20(2), there exists y € W(B) such that x, € A(y) and y, € A~ (y), and hence
x1 € A(y)° and y; € A7 (). Therefore the equality is still valid in this case.

O

ProposITION 9.5. (1) Let w be an arbitrary element of W, If X, e
Aw,+), Yy e A (w,+), Xo€ Aw,0), Yoe A~ (w,0), X_€ Aw,-), Y_€ A (w,—),
then (XyXoX_|Y, YoY_)=(X;|Y)(Xo| Yo)(X-]Y).

(2) Let = be an arbitrary convex order on A(w,-). Set FS:=Q(EF).
Then

(B ES) = e [,y (€, 1/ (0" = 4:)°. 9.2)

Proor. (1) Since X, Xy e A(w,—)¢ and Y, Yy e A (w,-)¢, by Proposition
9.4, we see that (X XoX_|Y,YoY_ )= (X:Xo|Y,:Yo)(X_|Y_). Moreover,
since A(w,0) = A(w,+)¢ and A4~ (w,0) = A~ (w,+)¢, by Lemma 9.2(2) and Prop-
osition 9.4, we see that (XX | Y, Yo) = (X1 | Y:)(Xo| Yo). Thus (1) is valid.
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(2) We assume that Supp( )U Supp( /) = {ﬂhﬂ% s 7ﬁm} with ﬂl < ﬁZ
<--<pB,, and put I = (x,4,].. By (8.13)(8.14) in Theorem 8.4, we see that

ESR ESR e A, §<§l>eA( ), FS\ FEP e 4= (1)¢, and FSJY

A~(I), where F< J = Q(ES ) for each a € A(w, ). Hence, by Lemma 9.2(1 ),

Proposition 9.4, and the 1nduct10n on m, we see that

(BB = (ESf - ESES) P P P )
= (B By TP .F;f%”x L)
=1L ey ﬂff“) e m(w,,><E§E°2|F;F?>.
The equality (9.2) follows from Lemma 9.2(3) and Proposition 9.3. O

Thanks to Proposition 9.5, to complete the computation of values of the ¢-
Killing form, it suffices to compute the values on A(w,0) x A~ (w,0). For the
completion of the task, we refer to the following work of I. Damiani
concerning detailed computation of the values of the ¢-Killing form on the
subalgebras generated by the imaginary root vectors.

PROPOSITION 9.6 ([6]). (1) For each neN and i, j el with i < Jj, there is a
solutlon {Al € Qg )\i<lei} of the following system of linear equations:
Zz<1A11 (sgn(Aj))" [nAy], /n =0 under the condition A ) %0,

(2) For each (i,n) el x N, one set I,n = ZK,AZI I;,, and J,n = Q( ,,1)
Then the elements {I;,|neN, zeI} satisfy the following conditions (i)(ii):

(i) for each neN, the sets {I,,|ie I} and {I; ,|ie I} respectively, are
bases of the same Q(q)-vector subspace of U™;

(i) for each pair (c,c’) of finitely supported L. -valued functions on I x N,
the following equality holds:

(T i 2 1T cion T ) = Oce Ty i€l i | i) 7,

where the value of ( in |J, n) 1s given by
o | Tin) = AT A (sen(Ap) A, Hn(ar " = a0} (93)

REMARK 9.7. For each neN and i ]eI with i < j, a solution {A,, €
Qlg)li<le I} of the system of the linear equations in the part (1) of Prop-
osition 9.6 is given in Proposition 7.4.3 of [6].

THEOREM 9.8.  Let us use the notations as in Theorem 8.6 and Proposition
9.6, and assume that J = L For each ned,, we set
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Ejﬂq J ﬂEA(W,*),
E,=E.,:={ Tw(Iix) if n=(nd.i)ed™, (9.4)
W(Ejzpw) lf ne Ad(w,+),

and set F,=F<, = Q(E<,). Then the sets E;‘(L) and F;(zﬁ) (see Def-
inition 5.18) are convex bases of U and of U~ respectively satisfying

(BS|FE) =0ce [ ] s (€m), (E=y | Fx )< (9.5)

'764’_+

X H("I&,i)eéfi” (C(n(57 l))!(il,n | ‘ii’n)c<n6,i)7 (9.6)
where the value of (I ,|Ji.,) is given by (9.3). Therefore, the convex basis
E';*(zh.) of UT and the convex basis

{F:/(E; |F>°) le: A, — Z, s.t. #supp(c) < oo}
of U™ form a pair of dual bases with respect to the q-Killing form (|).

ProoF. By Proposition 6.6, (7.2), and the definition of I ,, we see that the
set E;‘(ji") is also a basis of the commutative subalgebra A(w,0). So, in the
same manner as in the proof of Theorem 8.6, it is easy to see that the first
assertion is valid. By Proposition 9.6(2) and Proposition 9.3, we see that

(BS | ES) = dciet [ [ 5.1y i (€000 DN Ti | To) (9.7)

for each pair (c,¢’) satisfying supp(c),supp(c’) = Zﬁf’. Let w, be the longest
element of Wj. Then A(w,+) = A(ww,,—). Hence, by Proposition 9.5(2) and
Lemma 9.2(2), we see that

(ESIES) = 0ce T gy (€00, (0" = 4:) (9.8)

for each pair (c,¢’) satisfying supp(c), supp(c¢’) = 4(w,+). Therefore the equal-
ities (9.5) and (9.6) follow from Proposition 9.5(1)(2), (9.7), and (9.8). The last
assertion follows from the first assertion and the equality (9.5). O

COROLLARY 9.9. Let us use the notations as in Proposition 9.6 and
Theorem 9.8. For each convex order < on A, the universal R-matrix R of
U,(g) can be expressed as follows:

_ > > > 7
R = (Haezl(wur) @ja) (HaeAj:” @j,x) (Haezl(wﬁ_) @5“)6] ’
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where T €eh)* ® b™ is the canonical element of the inner product (|) on b* and

CXP%((%I —q.)E< . ® F< ) for o€ A,
exp(Xry Tu(lin) ® To(Jin)/Tin | Jin)) for o =ndeA™.

Here, O« , is located on the left side of O , in the product above if o' > o, and
expy, (x) = 3=, X"/ (m),, !

ProOF. Let @ be the canonical element of the restriction of the g-Killing
form to U/ x U;. Then it is known that the universal R-matrix # of U,(g)
can be expressed as follows (cf. [15]): # =60 -q 7. By Theorem 9.8, we see
that

O,y =

ES @ F¢ E<”®F<,7

= Z Ec |Fc Z HneA+ (E< '7|F< ”)C('?)

s 1 (E Fo,\ s E Fo,\,
=10 > I O ) 1L, e, T
ned, =0(m)y, '\ (E<.y | Fx.p) neds (E<p | F=<.p)

- (H;A<w_+> @f’“> (HneA‘"’ O ’7) (H:GA(W.*) @ﬁ=“>

where @, = exp(T,,(L;n) ® Ty(Jin)/(Lin| Jin)) for = (nd,i)e A™. Since
the elements of {Tw(f,;n) ® T, (Ji.n) | (i,n) e I x N} are commutative with each
other, the factor (H;E jim @<.y) of @ can be written as

> >
[ ISCRUE | (S § (CORRVES | (SR
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