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ABSTRACT. For two meromorphic functions sharing two one-point sets and two three-
point sets CM, we consider when one of them is a Mobius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in € = CU{w}, we say that f and g share S CM (counting multiplicities) if
f71(S) = ¢g71(S) and if for each zp e f~!(S) the two functions f — f(zp) and
g — g(z0) have the same multiplicity of zero at zp, where the notations f — oo
and g — oo mean 1/f and 1/g, respectively. In particular, if S is a one-point
set {a}, then we say also that f and g share ¢ CM.

In [N], R. Nevanlinna showed the following:

THEOREM 1. Let f and g be two distinct nonconstant meromorphic
Sfunctions on C and let ay,...,a4 be four distinct points in C If f and g
share ay,...,as CM, then f is a Mdbius transform of g, ie., there exists a
Mobius transformation T such that f = T o g, and there exists a permutation o
of {1,2,3,4} such that a,3), aya) are Picard exceptional values of f and g and
the cross ratio (a1, g(2), Ag(3), do(a)) = — 1.

Also, in [7], Tohge considered two meromorphic functions sharing 1, —1,
oo and a two-point set containing none of them.

THEOREM 2. Let f and g be two nonconstant meromorphic functions on C
sharing 1, —1, oo and a two-point set S = {a,b} CM, respectively, where a,b #
l,-1l,00. Ifa+b#0,ab#1, a+b#2 a+b+#-2, (a+1)(b+1)#4 and
(a—1)(b—1)#4, then f =g. Otherwise one of f+g=0, fg=1, f+g=2,
fH+9g==2, (f+1D)(b+1)=4and (f—1)(g—1) =4 holds.
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By Tohge’s result, we can get a uniqueness theorem of meromorphic
functions sharing three values and one two-point set CM since given three
points are mapped to 1, —1, oo, respectively, by a suitable Mobius trans-
formation. For a finite set S, we denote by #JS the number of elements of S.

COROLLARY 1. Let Si,...,S4 be pairwise disjoint subsets in C with
#S1=#S, = #S3=1 and #S4=2. If two nonconstant meromorphic func-
tions f and g on C share Sy,...,S4 CM, respectively, then [ is a Mdbius
transform of ¢.

Also, by Theorem 1.2 in [6] and its proof, we see

THEOREM 3. Let Si,...,S4 be pairwise disjoint subsets in C with
#S1=#S, =1 and #S3 = #S4=2. If two nonconstant meromorphic func-
tions [ and g on C share S|, Sy, S3, S4 CM, respectively, then f is a Mobius
transform of ¢.

On the other hand, in [5], the second author gave two meromorphic
functions sharing 0, 1, co and a three-point set with a certain specific property
which are not transformed to each other by any Mobius transformation.

ExampPLE. Let « be an entire function without zeros, and consider the
two polynomials; (i) P(z) = z2(z— 1) and (i) P(z) = z(z—1)>. For (i) put

a(ae+1) o+ 1 . 1
=———— and g=————, and for (ii)) put f=———— and
/ a2 +o+1 w2 +o+1’ (i) put f o2 +o+1
2
g x It is easy to see that there exists no Mobius transformation

24 a4 17
T such that f =T og. By simple calculation they share 0, 1 and oo CM,
and we have P(f) = P(g) in each cases. Hence f and g share the zero sets
of P(z) +c¢ CM for any complex number c¢. The functions f and g share
infinitely many such three-point sets, but the sets are very restricted.

How about two meromorphic functions sharing two one-point sets and
two three-point sets? In this paper, we consider two meromorphic functions f
and g on C sharing two one-point sets and two three-point sets CM. If we
study whether there is a Mobius transformation 7 such that f=Tog, it is
enough to consider the case where the one-point sets are {0} and {c0}.

THEOREM 4. Let S; and S, be two disjoint three-point subsets not
containing 0 in C defined by Pi(z) =z 4+ ajz> +biz+c1 =0 and Py(z) =
P 4+ az? + bz + ¢y =0, respectively.  Assume (C1) ay # ax or both by # by
and ¢ # ¢z, and (C2) c1by # bicy or both ciax # ajcy and ¢y # ¢y If two
nonconstant meromorphic functions f and g on C share 0, o, S;, S CM,
respectively, then f is a Mobius transform of g.



Meromorphic functions sharing sets 103

REMARK 1. Take the transformation w = 1/z which interchanges 0 and oo,
then P;(z) becomes c;i{w*+ (b;j/c))w* + (a;j/c;)w+ (1/¢))} (j=1,2). Hence,
(C2) is the same as (Cl) for these polynomials.

COROLLARY 2. Let Si,...,S4 be pairwise disjoint subsets in C with
#S1=#S, =3 and #S3 = #S4 = 1. Assume that for any Mobius transfor-
mation T mapping S3USy to {0,000}, &+ +8 #E+m+ G, or both

S +m& + 08 # S+l +6E and &l # &y, where T(S)) =
{&m Y (G=1,2). If two nonconstant meromorphic functions f and g on
C share Si, S», S3, S4 CM, respectively, then f is a Mobius transform of g.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank
N. Let G be a torsion-free abelian multiplicative group, and consider a g-tuple
A= (ay,...,a) of elements a; in G.

DeriNITION 1. Let N be a positive integer. We call integers u; repre-
sentations of rank N of a; if

q ¢
Ha/{:j - Hajf (2.1)

and
q
ZWJ =D (2.2)

are equivalent for any integers ¢, & with -7 [g| <N and 327, [¢]| < N.

REMARK 2. For the existence of representations of rank N, see [S5]. How-
ever, according to the construction of them in (5], (2.1) always implies (2.2) for
any integers ¢;, ;. Hence, in Definition 2.1, it is significant that (2.2) implies
(2.1) for any integers &, & with 331, |ej| <N and 321, |ej]| < N.

We introduce the following lemma due to Borel, whose proof can be
found, for example, on p. 186 of [La].

Lemma 1. If entire functions oy, o, ..., 0, without zeros satisfy

ag o+ oy =0,

then for each j=0,1,...,n there exists some k # j such that o;/oy is constant.

Now we investigate the torsion-free abelian multiplicative group G = &/%,
where & is the abelian group of entire functions without zeros and % is the
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subgroup of all non-zero constant functions. We represent by [o] the element
of &/% with the representative o € . Let oy,...,0, be elements in §. Take

q i . .
representations y; of rank N of [y]. For o= oc]?’ we define its index
j=1

J
q 4 .
Ind(«) by > &y The indices depend only on [ oﬁ] under the condition
q =1 j=1
le] < N. Trivially Ind(1) =0, and hence Ind(x) =0 if and only if o is
=1

~

J
constant. Moreover, Ind(a) = Ind(«’) is equivalent to that o/a’ is constant,

a q q q

where o = Hlo;;’ and o = Hlocj’ with Zl le;l < N and Zl lef] < N.
j= j= j= j=

We use the following Lemma in the proof of Theorem 4 which is an

application of Lemma 1 (for the proof see [6, Lemma 2.3]).

LEMMA 2. Assume that there is a relation
Y(ouy,...,00) =0

where ¥(X1,...,X,) € C[Xi,...,X,] is a nonconstant polynomial of degree
at most N of Xi,...,X,. Then each term aX; Xy of Y(Xi,...,X,) has
another term ) )

bX|" ... X,

£, &l & ..
such that of' ...og" and o' . ..o, have the same indices, where a and b are non-
zero constants.

We close this section by introducing the theorem of completely multiple
values and a generalization of Theorem 1.

Let f be a nonconstant meromorphic function, and let ¢ be a point in
C. If each zero of f — ¢ has multiplicity greater than 1, then we call ¢ a
completely multiple value of f. For meromorphic functions defined on C we
have from [4, Theorem E] the following:

LemmA 3. (i) A nonconstant meromorphic function on C has at most four
completely multiple values in C.

(i) A nonconstant entire function has at most two completely multiple
values in C.

(i) A4 nonconstant entire function without zeros has no completely multiple
values in C\{0}.

We give a generalization of Theorem 1 which is a constant target version
of Theorem 1 of [2].

LemMmA 4. Let f and g be two nonconstant meromorphic functions on
C. Let ay,...,as be four distinct points in C and let by, ..., bs be four distinct
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points in C If f—a; and g—b; share zero CM (j=1,...
Mobius transform of g.

,4), then f is a

3. Proof of Theorem 4

We give a proof by contradiction. Let us assume that

(NM) f is not any Mobius transform of g.

In particular, f #g.
By assumption there exist entire functions without zeros ag, o, o; such
that

[ =g (3.1)
and
P Haf? +bif +¢ =09’ +a9° + bg + )

(j=12). (32

By substituting (3.1) into (3.2) we have
(05 — )9 + a;(ad — o) g* + b0 —op)g + (1 — o) =0 (j=1,2).

Consider the resultant Ry of these as polynomials of g;

g —o ar(0d —oy) bi(ag—o) (1 —ay) 0 0
0 wg —or ar(eg—on) bi(og—on) (1 —ay) 0
Ro — 0 0 acg—acl al(cxé—cxl) by(og — o) (I —oy)
ocg —dp az(fx% —a) ba(og — o) a1l — o) 0 0
0 ocg — o az(ocg —ap) ba(ag — o)  ca(l — o) 0
0 0 ocg — o az(aé —ap) byog — o) (1 — o)
Z Aoprogok o + Z Aspo§of ol
0<k+I<3 1<k+1<3
0<k,1<3 0<k,i<3
+ A7klocgoc{‘océ + Z A6klocgoc{‘océ
1<k+ 153 1<k+1<4
0<k,1<3 0<k,1<3

4k 1
E Aspogofol + E Aot 0y oy

2gk +i<4
0<k, /<3

2<k+l<4

0<k,l<3
3 k.1 2 k.1
+ Aszpogoy oy 4 E Aoy oy oy
2<k lgs 3<k+I<S5
0<k,l<3 0<k,l<3
Agok 0 (3.3
1k10€0061 0<2+ ok10 0y = U, 3)
3gk <5 3<k+1<6
0<k,/<3 0<k,l<3
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where A jkl are complex coefficients. In particular any of the coefficients
A030 = —62 of 061, A()()3 = Ll of 061, A930 = 61 of OCOOCI and A903 = —62 of 060061
are not zero, and the coefficients Aggg of ocO and Ag; of o3 cxz are the resultant
of P; and P, which is not zero by assumption.

Let uy, 4, p» be representations of [og], [ot1], [21] of rank 12. We see
o # 0 by (NM) and assume that 3y, u;, 1, and 0 are distinct.

If 4y <0 and g, 1, > 0, then in (3.3), Aggooy is the unique term with the
minimal index, which contradicts Lemma 2. If g <0 and g, >0, then
A030<Xl3 is the unique term with the minimal index, which is a contradiction. In
the case that u, < 0 and g, ¢, > 0 we get the same contradiction. Hence we
may assume that all 4, u;, 4, are non-negative by taking —; in place of g, if
they all are non-positive.

Consider the case where 0 < 3y, < ;, 4. Note that in (3.3) the ranges of
k, | of the summation symbols of the terms containing oc({ (j=0,1,...,9) are
(11 =5)/3] <k +1<3+[(9—/)/3], where [x] is the maximal integer not greater
than x for a real number x. For such k,/ except k =1 =0, Ind(ajofal) =
Jto +kuy + 1y > (4 3k + 3Dy = (7 +3[(11 —7)/3])uo = Ouy. Hence  the
term Agoootg is the unique one with the minimal index, which is a contradiction.

If 0<py <3pg, iy or 0<uy, <3uy,py, then only Az or Aoz, re-
spectively, has the minimal index, which is a contradiction.

Therefore we conclude that one of 1y = 3uy, 1, = 3uy, 1 = s, 1y =0 and
1, =0 holds.

(I) The case where u; =0 or u, =0.

First we show that g, =0 and u, = 0 are equivalent.

Assume u; =0. Then o; is constant. In (3.3), the term A03oocf is a
nonzero constant and is the unique term containing neither oy nor a,. Hence
there exists another constant term ofo}. Since Ind(xjob) = jug + Iy > 0 for
j >0, such term must be of j =0 and x4, =0. Therefore g; =0 and x, =0
are equivalent.

Now we put o = C.

(i) The case where C = 1.

It follows from P;(f) = CPi(g) that

fP4+fa+a +a(f +g)+b =0. (3.4)
Put E(wi,w2) :=={z€ C: (f(2),9(z)) = (wi,w2) or (f(z),9(z)) = (w2, w1)} for
wi,wy € C, and set S; = {&,n,,(;} (j=1,2).
First we show that E(&,,7,) # & implies E(&,() = & and E(y,,(,) = .
Indeed, if E(&,n,) # &, then we have

f%+fz’72+’7§+a1(62+’72) +b1 =0, (3.5)
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and if E(&,() # O, then we get

E+EG+G+ai(&+0) + b =0. (3.6)

From (3.5) and (3.6) we obtain a; = —(&; + 1, + {3) = a@.  Together with (3.5),
this yields b, = b,, which contradicts (C1). Hence at least two of E(&,,7,),
E(ny,(2), E((s,&r) are empty.  We may assume E(&,7,) = E((, &) = & by
rearranging the elements if necessary. Then f and g share & and {#,,(}
CM, and hence by Corollary 1, f is a Mdbius transform of g, which contra-
dicts (NM).

(i) The case where C # +1.

In this case we have Pi(f)= CPi(g) and E(&,8) =E(@ny,n,) =
E((, )=, We put Ey(wi,wy) :={zeC:(f(2),9(z)) = (wi,ws)} for
wi,wp e C. If any of Ey(&,1,), Eo(&2,0), Eo(n5,{>) are not empty, then
we have P(&) = CPi(n,) = CPi({,) and Pi(yn,) = CP1({3), which deduce
a contradiction C =1. By the same way at least one of Ey(w;,w;) and
Ey(wa,w;) are empty for distinct wy, w, € C.

First assume that Ey(&,,7,) # &, Eo(&, () # . Then all of Ey(n,,$),
Ey(n,,&5), Eo((, &) are empty.  1If Ey((p,7,) # &, then we can get a contra-
diction C =1 by the same way as above. Hence in this case, f omits #, and
{», and we see from P;(f) = CP(g) that f omits also zero. It is impossible
by the little Picard theorem.

Next we assume that Ey(&y,7,) # &, Eo(n,,0) # &, Then Ey(&,,() =
Eo(1y,&2) = Eo(&ymp) = @ Therefore f71(&) = g7 ' (), /(1) = g7'(&2),
f71(&) = g7'(&,), and hence, by Lemma 4 we see that f is a Mdbius trans-
form of g, which contradicts (NM).

In all other cases we can deduce contradictions.

(i) The case where C = —1.

In this case we have Pi(f)=—Pi(g) and E(&,E) =E@,n) =
E((, )=, If any of E(&,n,), E(ny,() and E((p, &) are not empty,
then we have P(&) = —Pi(1,) = P1({,) = —P1(&,;), which is a contradiction.
Hence we may assume that E(&,,7,) = . Now we have

) =g Vg ), (&) =E)US m)

As we have shown above u, =0 and o = —1 in this case. So, similarly we
may assume

) =g Vg ), g (&) =T E)US ).

Since we see that f and g omit 0 by P;(f) = —Pi(g), we get by using the
second main theorem and the first main theorem of the value distribution
theory
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3T(r, f) < 2 N(r,]%éj)+N<r,J%nj>>+N<r,})+S(r,f)

_ N(r, ! )+S(r7f)£2T(ng)+S(r,f)
j=1,2

and 37(r,g) <2T(r,f) + S(r,g) by the same way. They immediately lead to
a contradiction.

(II) The case where p; = 3py or u, = 3u,.

First we show that p; =3y, and u, = 3y, are equivalent.

Assume yu; = 3uy. Then we have pu, # 0, otherwise 3u, = 1, = 1, =0 by
the case (I), which is a contradiction.

We have denied 0 < p, < 3y, x; and hence u, > pu; = 3py. If uy, > 3puy,
Aop3e003 is the unique term with the maximal index, which is a contradiction.

So we get also p, = 3u,. Therefore u; =3y, and u, =3y, are equivalent,
and we can deduce contradictions as in the case (I).

(III) The case where u; = u,.
In this case 0 < u; =y, < 3y, by what we have shown, and o/o; is a
constant. Put C = o,/0y, then

(1= O /g + (a1 — Car) fg* + (a2 — Car) 24
+ (b — Chy) f3g + aax(1 — C)f2g* + (b — Chy) fg?

+ (a1 = Cer) [ + (bray — Carby) f7g + (a1by — Chiaz) fg* + (c2 — Cer)g?
+ (c1ay — Caje2) f* + biby(1 — C) fg + (a1, — Ceran)g?

+ (c1by — Cbica) f + (brca — Ceyba)g + ciea(1 — C) = 0.

If C # 1, then we see from this equation that f and g have neither zeros nor
poles. If C =1, then the above equation reduces to

(a1 — @) f?g* + (b1 — b2) fg(f + 9) + (c1 — ) (f* + fa + %)
+ (b](lz — albz)fg + (Claz — alcz)(f + g) + (C]b2 — b]Cz) =0. (37)

Then if a; # ay and bic; # c1b,, f and g have neither zeros nor poles. In both
cases where C # 1 and where C =1, a; # a, bjcy # byc;, by Lemma 1 one of
f™g" is constant, where m and n are integers with 0 < |m|, |n] < 3. Since f and
g are not constant, mn # 0, and we have |m| # |n| by the assumption (NM).

Without loss of generality we may assume that 1 < |m| < |[n| <3. Then we get
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|m|T(r, ) = |n|T(r,g) + O(1). On the other hand by the second fundamental
theorem

o< E bt

+NE) + N f)+ S0 f)

E(lat ) o)

+N(r,1/9) + N(r,g) + S(r, f)

< 8T(r,g) + S(r, f).

These yield 6|n| < 8|m| which does not hold for any (|m/, |n]) = (1,2),(1,3),
(2,3).
Hence C = 1, and at least one of @y = a» and byc; = brc; hold in the case.
By symmetricity we consider only the case where C =1 and ¢ = a. In
this case, we have o = ap and

ag —o ar(0d —oy) bi(ag—on) (1 —oy) 0 0
0 g —o ar(eg—on) bi(og—on) (1 —oy) 0

Ro — 30 0 ocg—acl al(aé—al) bi(og —ap) (1 —oy)
oy — o al(otg—otl) by(og —ay) (1l — o) 0 0
0 ocg — o a; (ocg —ay) ba(og—oay) el —ay) 0

0 0 ocg—oq al(ocg—ocl) by(og —ap) (1 — o)
ocg—ocl al(ocg—ocl) bi(og —a1) (1l —ay) 0 0
0 ocg—ocl al(ocg—ocl) bi(og —ar) (L —ay) 0

B 0 0 a — o ar(0g — o) bi(ag —oq) (1 —oy)
0 0 bo(og — 1) co(1 — o) 0 0
0 0 0 bo(oco—ocl) Co(l —061) 0

0 0 0 0 bo(oco—ocl) C()(l —061)

g —o ar(eg —on) bi(eg—o) cr(1—oy)

— (2 —m)’ bo(otg — o) co(l — o) 0 0
’ 0 bolog — 1) co(1 =) 0
0 0 bo(og — o) co(l — o)
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= (o —ou)” %
ocg—ocl al(ocg—ocl) by(og — o) (1l — o)
bo(fxo—al) Co(l —:xl) 0 0
0 b()(OC()*OCl) 60(1 70(1) 0
760/C1 (0{8 — 0{1) 7(11(60/6])(0(% — OC]) (b() — b]Co/Cl)(flo — O(]) 0
b()(OC()—O(l) C()(l—OC]) 0
= —(og — o) (1 — o) 0 bo(og — 1) co(l — o)
—C()(OCS - OC]) —01C0(OC§ — OC]) (Clbo - b]Co)(O(o - 0(1)
=0,

where by = b, — by, ¢o = c» — 1. Since <x8 #% o; and oy # 1, the final deter-
minant is identically equal to zero. It is expanded as

bg(c’lbo — blc())((x() — 061)3 — Cg(l — 061)2<O(8 — O(l)
+ albocg(l —ay) (o0 — ocl)(ocg — )

= bg(clbo - blco)(ocg - 30(30{1 + 3ocooc12 — ocf’)

30,3 3 2, .32 3
— ¢y (ay — op — 20500 + 205 + ogoy — 0f)

2 2 2, 2,2 2
+ arbocd(—os + o + apod + adord — apoy — adoy — ooy + o)
= 0.

Since 0 < x4, < 3y, among all terms which appear in the above the term o3o?

is the unique one with the maximal index. Hence its coefficient ¢y =0, i.e.,
¢] = ¢3, which contradicts (C1).
Now we have completed the proof.

4. Exceptional cases

In this section we treat the cases which are excluded by Theorem 4;
(a) a) = dp, bl = bz; (b) a) = dy, €1 = (2, (C) C1b2 = blcz, Cc1dy = a)cy, (d)
c1by = bica, ¢y =c¢;. The final case is equivalent to that ¢ = ¢y, b; = by,
and we treat only the cases (a) and (b) since the case (c) is equivalent to the
case (a) by symmetricity. For simplicity we write o = 0.

(a) The case of a; = az, by = bs.

In the proof we obtained these on treating o«; = 1 as a contradiction. In
that case we have

(fP+fa+9*>) +a(f+g)+b =0. (4.1)
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By substituting (3.1) into this we get (o> + o+ 1)g% + ay(a+ 1)g + by = 0, and
rewrite as

20+ a4+ Dg+ai(a+ 1)} =a(a+1)> —4bj (o0 + o+ 1)
= (a? — 4b))oa® + 2(a} — 2by)o+ (a} — 4by).

The entire function o without zeros is nonconstant by (NM). So, since it has
no completely multiple values by Lemma 3, a? — 4b; = 0 or the final side above
is a perfect square of o which implies (a? — 2b,)* — (a? — 4b;)* =0, i.e., by =0
or by =a?/3.

(1) The case of by = a}/4.

Take an entire function f such that ? = o, and let

ai afp?

TR RRTZEY EuTY

They satisfy (4.1), but we can see that one of them is not any Mobius

transform of the other. In this case the defining polynomials of §; are
2

a
Pra+ e (j=1,2).

4

(2) The case where b; = 0.

Let
_ai(a+1) _ a(a+ 1)
A I and /= o+ a+1"

They satisfy (4.1), but one of them is not any Mobius transformation of the
other. In this case the defining polynomials of S; are z° +a1z? + ¢ (j = 1,2).
(3) The case where b, = a}/3.
Let

_ar(mo+ ;)
a2 tatl

_arwo+ )

and / o2 4o+ 1

where w; and w, are the two roots of 3z2 +3z+1=0. Then f and g satisfy
(4.1) and there is no Mobius transformation 7 such that f = T og. In this
2

case the defining polynomials of S; are z° + a;z? +%lz+cj (j=1,2).

(b) The case where a; = ay, ¢ = ¢s.

In the proof we obtained these on treating a,/o; = 1 as a contradiction.
Moreover note that f and g have no zeros since otherwise byc; = ¢1b, by (3.7),
and hence Py = P,, which is a contradiction. Then we have from (3.7)

f9(f +9) +aifg—c1 =0. (4.2)
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Rewrite this as gf2 + (9> +a1g9)f —c1 =0 and
29f + (¢* + @9)}* = (6> + a19)* + 419 = g(g° + 2a19* + aig +der).

Since g omits 0, it has at most two completely multiple values by Lemma 3.

Hence the cubic polynomial z3 + 2a;z% + a?z + 4¢; has a multiple zero. We
3
. a . . . .
can obtain ¢; = =L by simple calculation. Take an entire function £ such that

p> = o and put
2
ap @
— and g=———.
3(B+1) 3p(p+1)
Then f and g satisfy (4.2), and there exists no Mdbius transformation 7' such
that f =T og. In this case the defining polynomials of §; are 24 a2+

3
(j=1,2).

f=

a
ij+2_,l7
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