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ABSTRACT. Oscillation theorems for the damped elliptic differential equation of second
order

N N

> Dilag(x)Dy] + Y bi(x)Diy + c(x, y) =0
ij=1 i=1

are obtained. The results are extensions of averaging techniques due to Coles and
Kamenev, and include earlier known results in literature.

1. Introduction

In the qualitative theory of nonlinear partial differential equations (PDE),
one of the important problems is to determine whether or not solutions of the
equation under consideration are oscillatory. We are here concerned with the
oscillatory properties of solutions of the damped elliptic differential equation of
second order

N N
> Dilag(x)Diy] + Y bi(x)Diy + e(x, y) = 0 (1.1)
ij=1 i1

in Q(rg) =RY, where x = (x1,...,xy) eRY, Djy=0y/ox; for all i, ||x|| =

N 112
{Z xlz} , and Q(rg) = {xe R" : ||x|| > ro} for some constant ry > 0.
i=1

Throughout this paper we assume that the following conditions hold.
(Al) A= (a;(x)) is a real symmetric positive definite matrix function with
a;j € CLY(Q(ro),R) for all i, j, and ve (0,1);
(A2) bieC, (2(r),R) for all i
(A3) ceC).(2(rg) x R,R) with ¢(x,—y) = —c(x,y) for all xeR", yeR;
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(A4) Suppose that there exist functions p € C;,.(2(r9),R) and f e C(R,R)U
C'(R - {0},R) with yf(y) >0 and f'(p) =& >0 whenever y # 0 such
that

c(x,y) = p(x)f(») for all x e Q(ry), y > 0.

In what follows, a solution of Eq. (1.1) is a function of the class
C2(2(ro),R), which satisfies Eq. (1.1) everywhere on Q(rg). We consider
only nontrivial solution of Eq. (1.1) which is defined for all large ||x|| (see [2]).
The oscillation is considered in the usual sense, i.e., a solution y(x) of Eq. (1.1)
is said to be oscillatory if it has zero on Q(a) for every a > ry. Equation (1.1)
is said to be oscillatory if every solution (if any exists) is oscillatory. Con-
versely, Equation (1.1) is nonoscillatory if there exists a solution which is not
oscillatory.

In the absence of damping, namely, b;(x) =0 for all i, there have been
many papers devoted to this case of Eq. (1.1) (see, for example, [7, 9, 11, 12,
15, 16, 17] and the references therein) such as the semilinear elliptic differential

equation

N
> Dilay(x)Dpy] + p(x) f(y) =0, (1.2)

i,j=1

and the more general case

N
> Dilay(x)Dy] + ¢(x, y) = 0. (1.3)
i,j=1

Some of these known oscillation criteria (for instance, [7, 12, 15, 17]) are,
roughly speaking, derived from either the criteria due to Wintner [10] or
Kamenev [3] for the 1-dimensional second order linear ordinary differential
equation (ODE)

y'(0) + py(t) =0, peC([ty,©),R), (1.4)

which respectively state that Eq. (1.4) is oscillatory if

t
lim J p(s)ds = oo,
t—o0 fo
or,

1 t
lim sup WJ (t—9)"p(s)ds = o0 for some m > 1.

— o0 t

In [1], Coles introduced the idea of weighted average to obtain an
oscillation criterion for Eq. (1.4) which extended an earlier result of Wintner
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[10]. Coles’work was subsequently extended by Macki and Wong [5] through
the use of an averaging pair. In a different direction, Phiols [8] introduced the
concept of general means and obtained further extensions of Kamenev’s type
criteria for Eq. (1.4). Recently, Kong [4] established the called interval criteria
for Eq. (1.4), which use only the information above the function p(z) on a
sequence of intervals approaching oo.

In 1980, using the N-dimensional vector Riccati transformation, the
pioneering work of Noussair and Swanson [7] investigated the oscillation of
Eq. (1.3), and established Wintner’s type criteria for Eq. (1.3) (see [7], Theorem
4). Recently, Xu [12] obtained Phiols-type theorems for Eq. (1.2), and Zhuang
et al [17] extended Kong’s results to Eq. (1.2).

However, compared to the undamped equations (1.2) and (1.3), the study
of oscillation of the damped equation (1.1) has received considerably less
attention in the literature. The partial reasons seem that the Riccati trans-
formation, which plays a key role in the proof of the results for (1.2) and (1.3),
is N-dimensional vector function, which prevent simple extension of the existing
work for ODE. On the other hand, it is very difficult for us to find a suitable
transformation, which like the Strum-Liouville transformation for ODE, to
reduce Eq. (1.1) into the undamped equation.

In fact, we note that in many areas of their actually application, models
describing these problems are affected by such factors as damping term [cf, [2]].
Therefore it is necessary, either theoretically or practically, to study a type of
equation in more general sense—damped elliptic differential equations. But, as
far as we know Eq. (1.1) has never been the subject of systematic investigations
by the averaging techniques [5, 8] expect for paper [6, 14]. Very recently,
under the assumption when the damped functions b; for all i, are differ-
entiable, Xu [13] and Xu et al [14] extended the Wintner and Philos theorems
to Eq. (1.1). Such extensions can also be found in Marik [6] for the linear
equation

N
Ay+ > bi(x)Diy + p(x)y =0. (1.5)
i=1

It is therefore natural to ask whether the Wintner and Kamenev theorems
can be extended to Eq. (1.1) when the damped functions b; for all i are not
necessarily differentiable. The purpose of this paper is to answer this question
in the affirmative. In fact, by the approach in use of the averaging pair
technique introduced by Macki and Wong [5], we will obtain Wintner’s type
theorem for Eq. (1.1). Further, using the integral averaging technique devel-
oped by Philos [8], we give some Kamenev’s type, and more generally, Philos
and Kong’s type criteria for Eq. (1.1). By choosing appropriate functions, we
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shall present several easily verifiable oscillation criteria. In particular, three
examples are given to illustrate the significance of our main results. It is worth
emphasizing that the obtained theorems here are new even for Egs. (1.2) and
(1.3) and improve the main results in [7, 12, 13, 14, 17].

2. Preliminary results

In order to discuss our main results, we need the following definitions and
lemmas.

DErINITION 2.1. A pair of functions (o,0) is called an averaging pair if
(1) oe€C(ry,),[0,00)) and o(r) >0, « is absolutely continuous on every
compact subinterval of [ry, 00);
(ii) for some ye|0,1),

lim JO a(s) <JO a(u)du)y <J0 cx(u)az(u)du>_]ds = 0.

Note that conditions in Definition 2.1 imply that J";;O o(s)ds = oo (see

(5D

DEFINITION 2.2.  Let D = {(r,s) :r > s >ro} and Dy = {(r,s) : r > 5 >ro}.
We say that a function H = H(r,s) € CI(D, R) belongs to a function class
defined by H € A, if there exist functions hy,hy € C(Dy, R) satisfying the fol-
lowing conditions.
(H1) H(r,r)=0 for r>ry, H(r,s) >0 on Dy,
(H2) 2= hy(r,s)H(r,s) and L = —hy(r,s)H(r,s).

LemMA 2.1.  For two n-dimensional vectors u,v e R and a positive con-
stant a. Then the following inequality

a 1
allu))* + <u,v) > *IIMIIZ—TQHUHZ (2.1)

holds, where <, denotes the usual scalar product in RY.

The proof of Lemma 2.1 is easy and can be omitted.

LemMmA 2.2. Let y = y(x) be a nonoscillatory solution of Eq. (1.1), and
¢ € CY(Q(ro),R"). Then N-dimensional vector function w(x) defined by

1
W) = 5 (V) () (2.2)

satisfies the following partial Riccati inequality
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ep(x)

div(g(x)w(x)) < —p(x)p(x) — e () ()]
mdx( ) -1 _ 2
4 b4 = V(o) (23)

where Jmax(X) denotes the largest eigenvalue of the matrix A and V¢$(x) =
(D1g(x), ..., Dng(x)).

ProoOF. A direct computation shows that

div w(x) < —p(x) —f'(»)(wT A7 w)(x) — <b(x) A~ wT (x)). (2.4)

Note that
(WTA_1W)<X> > ||W(X)||2
T Amax(X)
Then (2.4) implies that
div w(x) < —p(x) — m Iw()[|I* = <b(x) A", wT (x)). (2.5)

Multiplying (2.5) by ¢(x), we get

Av(Bw() < —dp() — -2 )2

Amax (X)
— L)) = Vh(x),wT (x)). (2.6)
By Lemma 2.1, we have
P I + <A = V)07 (1)
( ) _ maX( ) -1 _ x 2
ZAmdx( )|| ()| 260(%) [p(x)b(x) 4™ =Vh(x)[".  (2.7)

Combining (2.6) and (2.7), we obtain (2.3). [

For notational simplicity, let

2(r) =J $(5) s (x)d,

s,

wo-en(f 259)

o) =2 o400,
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max( )
2eh(x)

20y =p){ [ potogas + 50 - n'<r>},

where ¢ e C'(Q2(ry),R") and 5 e C'([ro,0),R) are given functions, S, =
{xeR" :|x| =1}, dS denotes the spherical integral element in R".

Ps(x) = 9(x)p(x) — 16(x)b(x) A" = V()|?,

LEmMMA 2.3, Assume that y = y(x) is a solution of Eq. (1.1) with y(x) #0
for all |x| >, t>r. For ¢ eCY(Q(ry),R") and e C'([ro,0),R), let Z(r)
be defined by

20 =p0)|[_ Gw@atdds £n)]. 1z @)
Then Z(r) satisfies the Riccati inequality
Z'(r) < —P(r) — 522(1’), r>r, (2.9)

where v(x) = x/r, r = ||x|| # 0, denotes the outward unit normal to S,.

ProoF. By means of the Green formula in (2.8), and noting that (2.3),
we obtain

20) =20 20+ 50|

Sr

"(r e X)w(x)|?
Y AUPTR p(r){zjs IgCwIN” L py(x)dS — n’(r)}. (2.10)

div(g(x)w(x))dS + 77/(;’)}

 Fmax (%) $(x)

An application of the Cauchy-Schwarz inequality gives

(], tome.ve >ds)2 < (], #wims(ias) (L kool dS)

and equivalently,

g W ()1° Lo(z) Y
JS, ¢( );*mdx(x) a5 = ;(/5( ) <p(}’) ]7( )> ,

which, together with (2.10), implies that (2.9) holds. [

LEMMA 2.4.  Assume that y = y(x) is a solution of Eq. (1. l) with y(x) >0
for |x| €[e,b) < [ry, 0).  Further, for ¢ € C'(Q2(ry),R"), € C'([rg, 0),R) and
ke C'([ry, 0),R"), let Z(r) be defined as (2.8) on [c,b). Then for H € A,
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0"(P) < H(b, O)k(c)Z(c) + %@f(g(hz — Kk, (2.11)

where © is an integral operator in terms of H(r,s) and k(s) as

o.(p) = Jr H(r,s)p(s)k(s)ds, r>1T >y,

T

Jor p e C([ro, ©),R).

ProorF. By Lemma 2.3, Z(r) satisfies (2.9). Applying the operator O] to
(2.9), and noting that H € #, we obtain

O (P) < H(r,0)k(c)Z(c) + O/ (=l + K'k ) Z — g1 Z?)
r —1/2 Ly ! ’
= H(r,c)k(c)Z(c) — O, (g Z+ 39 (hy — k'k ))

1
+ 2009 —K'k)?)

< H(r,c)k(c)Z(c) + % O (g(hy — k'k™1)?).

Letting r — b~ in the above inequality, we obtain (2.11). [
Under a modification of the proof of Lemma 2.4, we have

LEMMA 2.5. Assume that y = y(x) is a solution of Eq. (1.1) with y(x) >0
for |x| € (a,c] < [ro, ). Further, for ¢ € C'(Q(ro),R"), € C'([ro, 0),R) and
ke C'([ro, 0),R"), let Z(r) be defined as (2.8) on (a,c|. Then for H e #,

I'{(P) < —H(c,a)k(c)Z(c) +%F;’(g(h1 +k'k™N?), (2.12)
where I' is an integral operator in terms of H(r,s) and k(s) as
rip) = | Heopoksds, >,
for e C([ry, 0),R).

3. Oscillation theorems

First of all, we will use the averaging pair technique to establish the
Wintner’s type oscillation criteria for Eq. (1.1).
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TuroREM ~ 3.1. Suppose that there exist ¢e C'(Q(ro),R"), ne
C!([ro, ©),R), k € C([ry, 0),R") and an averaging pair (c,g) such that

,122 1y, (J P(s)ds) = o0, (3.1)

where II] is a linear operator in terms of f as
0 :

17 (B(r)) = (j o(s)ds)lj: o(BGs)ds, 1> ro,

Sfor e C(ro,0),R). Then Eq. (1.1) is oscillatory.

PrOOF. Suppose to the contrary that there exists an nonoscillatory solu-
tion y(x) of Eq. (1.1). Without loss of generality we may assume that
y(x) #0 for |x| =rg. Define Z(r) on [rg,o0) by (2.8). Then, by Lemma
2.3, Z(r) satisfies (2.9). Integrating both side of (2.9) from ry to r, we
obtain

P(s)ds + J 2°0) 4 < Z(r). (3.2)

ro g(s)
Applying the operator II] to (3.2), we have

I (2() + 11" ( J Zg Z(S) ds) < Z(r) — 1T, (J P(s)ds). (3.3)

o

From (3.1), the right-hand side of (3.3) tends to —oo, hence, there exists r; > rg
such that for r > ry,

o[ £800) <

so that,

Jr a(s)Z(s)ds

o

r s ZZ(u) - .
> J’]a(s) L) o) duds :== T(r). (3.4)

Then, for r > r; > rp, we have ‘(
0z [ o0 [ it ez (] Gt ) (][ o). 09

From the Schwarz inequality, it follows that

ros([ o) «([oora) [ £54). oo




Oscillation theorems 9

Noting that (3.4), (3.5) and (3.6), we obtain

([ 294 ([ oo 7m0

< ([sorton) ([ Z820)r0

_ % (J g(s)az(S)dS> T772(n)T'(r),

ro

that is,

(1755 ) o ([ o) (] st < 7207

Integrating the above inequality from r; to r, we get

(/25 a) [ o ([ owrie) ([ swreoi) "o

< 1 1
T L=y T(n)

< o0,

which contradicts the fact that (o,g) is an averaging pair. []

Next, by using the averaging technique, we will establish Kamenev’s type
oscillation theorem. The following theorems 3.2-3.3 present two criteria for
Eq. (1.1) which are the analogue of Philos and Kong’s criteria for Eq. (1.4).

THEOREM 3.2. Suppose that there exist H € A which the partial deriva-
tive 0H(r,s)/ds is nonpositive and continuous on Do, ¢ C'(Q2(ry),R"), ne
C'([ro, ), R) and k € C'([ry, 0),R") such that

: 1 r 1 r.—1\2\ __
hrrllscllp m@m(P 4g(h2 k'k ))—oo. (3.7)

Then Eq. (1.1) is oscillatory.

ProOF. Assume that Eq. (1.1) is not oscillatory. Then Eq. (1.1) has a
solution y(x) # 0 for |x| € [r, 00) where r; > rg. Let Z(r) be defined by (2.8).
It follows from Lemma 2.4 that

0, <P— %g(hz - k'k1)2> < H(r,r)k(n)Z(r1) < H(r,ro)k(rn)|Z(r1)l,

which further yields that
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r 1 - r r 1 _
On (P — g9t Kk 1)2) = (05 + @rl)(P — 590 — K'k 1)2)

n

<o

o

k(s)|P(s)|ds + k(rl)|Z(r1)|] .

Dividing both sides of the above inequality by H(r,ry) and taking limsup as
r — o0, we obtain a contradiction to (3.7). [

THEOREM 3.3. Suppose that for each T >ry, there exist He #, ¢e€
C'(Q(ro),R"), neC'([ry,©),R), keC'(ry,0),R") and a,b,ceR* with
T <a<c<b such that

1
H(b,c)

; ¢ _l 17,—1\2 b _l Y, _1\2
H(c,a)r"(P 4g(h1+kk ) >+ o, (P 4g(h2 K'k)?) > o.
(3.8)

Then Eq. (1.1) is oscillatory.

Proor. (3.8) implies that both (2.11) and (2.12) do not hold for the given
¢, and hence every solution of Eq. (1.1) must have a zero either for |x| € (a, (]
or |x| € (¢,b]. By virtue of the fact that 7T is arbitrary, we see that every
solution of Eq. (1.1) is oscillatory. []

ReEmARK 3.1. For Egs. (1.1) and (1.3). Let ¢(x) =1, y=0 and o(r) =
1/g(r) in Theorem 3.1. Then Theorem 3.1 improves Theorem 4 in [7] and
Theorem 3.1 in [13]. For Eq. (1.5), let y =0, Theorem 3.1 extends Theorem
3.7 in [6].

ReEMark 3.2. For Egs. (1.1) and (1.2). Let ¢(x) =1, Theorem 3.2 gen-
eralizes Theorem 2.1 in [12] and Theorem 3.1 in [14].

RemMARK 3.3. For Eq. (1.2). Let ¢(x) =1, Theorem 3.3 covers Theorem
2 in [17].

REMARK 3.4. Theorems 3.1-3.3 will be specialized to a perturbed linear
equation

N N m

Y Dilay(x)Dy] + Y bi(x)Diy + c(x)y + Y () fi(») =0, (39)
i=1

ij=1 i=1

where ¢, ¢; € C(2(ro),R), f; € C'([ry, 0),R") with £/(y) =0 for y > 0 and all
i. Define

p(s) = min{e(0).c1(x).....ca®)}  and () = y+ 30 A0
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Then,

m

c(X)y+ > elx)fi(y) = p(x)f(y),

i=1

and hence Theorems 3.1-3.3 can be applied.

4. Corollaries and examples

The theorems given in section 3 are presented in form of a high degree of
generality. It is possible to obtain new criteria for Eq. (1.1) with the appro-
priate choices of the functions ¢, #, kK and H. In this section, we will give
some interesting corollaries. Finally, we provide three examples to illustrate
the significance of our main results.

COROLLARY 4.1. Suppose that there exists ¢ C'(Q(ro),R") such that
2y(r) =1° and
1 r N
lim —J J Py(u)duds = oo, 4.1
= F ) Ji

where 0 € R and Py(r) = JS ps(x)dS/r°.  Then Eq. (1.1) is oscillatory.

ProOF. Let 5(r) =0r°!/e and o(r) =1. An easy computation shows
that

en*(r _
M=% e)=2, P <2;,71¢Er) _ﬂl(r)> e

lim J a(s) (JO a(u)du>7 (JO g(u)az(u)du>lds

and, by (4.1),

lim 77 <J P(s)ds) = lim H J Po(u)duds—m] = o
r—o0 ro r—ow (r ro Jro }"0

It follows from Theorem 3.1 that Eq. (1.1) is oscillatory. []

As an immediate consequence of Theorem 3.2, we get the following
corollary.
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COROLLARY 4.2. Let the assumptions of Theorem 3.2 hold except (3.7) is
replaced by

1
li ——0! (P)= 4.2
P H(r,ro)@")( )= 42)
and
. 1 r 17—1\2
ll{gil)lp Hrro) 0, (g(hy —k'k™")") < oo. (4.3)

Then Eq. (1.1) is oscillatory.

COROLLARY 4.3. Suppose that there exists ¢ € C'(Q(ry),R") such that

liminf A(r)Py(r) > Zi’ (4.4)
r— o0 &
where
A(r) = Jr s and Pi(r)= J py(x)dx
o /1¢(S) : Q(r) ’ '

Then Eq. (1.1) is oscillatory.
PrOOF. By (4.4), there exist two numbers b > ry and & > 1/(2¢) such that

A(r)Pi(r) =&, r>b, and lim A(r) = co.

F—0o0

Let
Hirs) = [0) = AP, a0) =~ k() =
Then,
p(r) = A(r) and  /n(r,s) = 0 EA(s) )ngl(s)
Hence,
r 5 11
64(P) = | 140) ~ AP A6 (~Pi) 4 3, 515
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\Y

J;: (flz((sr)) +34(s) — 4/1(V)>A’(s)ds

(¢-2)

(5 _ %) { (m A(F) = In A(h) — ;)/P(r) +AAB)A(r) — %/ﬁ(b)},

and

4

&

Op(g(hy = k'k™")?) =~ [A4(r) — A7(b)].

It follows from Corollary 4.2 that Eq. (1.1) is oscillatory. [

COROLLARY 4.4. Suppose that there exist ¢ C'(Q(r)),RY), ne
C!([ro, ©),R) and for some | > 1 such that

limsup G~'(r) J [G(r) — G(s)]' P(s)ds = o, (4.5)

Fr— o0

where G(r) = frro 1/g(s)ds. Then Eq. (1.1) is oscillatory.

ProOOF. Let

Then,

Hence,

O3(ah: — Kk = [ [6() - G5 a6t
b
~ 6t - oy
= 160) - 60"

It follows from Corollary 4.2 that Eq. (1.1) is oscillatory. []

By Theorem 3.3, we have following result.
COROLLARY 4.5. Suppose that for any T >ry, there exist He H, ¢ €
C'(Q(ro),R"), € CY([ro, 0),R) and k e C'([ry, 0),R") such that

limsup I (P — %g(hl 4 k/kl)Z) >0, (4.6)

r—0o0

and
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. 1
lim sup 6, (P — 90— k’k‘1)2> > 0. (4.7)
r—o0
Then Eq. (1.1) is oscillatory.

COROLLARY 4.6. Suppose that for any T >ry, there exist ¢e
C'(Q(ry),R"), € C'([rg, 0),R), and for some 1 > 1 such that lim G(r) = oo,

and e
. 1 " ! I?
hrrlls;lp Gl—l(r)JT[G(S) — G(T)|' P(s)ds > Sk (4.8)
and
. 1 r ! ?
hrrlls;}p GT(V)JT[G(V) — G(s)] P(s)ds > 1 (4.9)

Then Eq. (1.1) is oscillatory.

Proor. Let k(r) = 1. Noting that lim G(r) = co and proceeding as the
F— o0
proof of Corollary 4.4, we have

2

. 1oy , B
111;25;)1[) WJTH(F’ T)g(s)hi(r, T)ds_l—l’ (4.10)
and
lim 1 Jr H(r,s)g(s)h3(r,s)ds = r (4.11)
msup ey | A9k $)ds = :

Thus, by (4.8) and (4.10), we get
lim su ;F" P—l (h +k'k™)*) >0
P ) T\U T g ’

which infers that (4.6) holds. Similarly, (4.9) and (4.11) implies that (4.7)
holds. Hence, by Corollary 4.5, Eq. (1.1) is oscillatory. []

To illustrate the significance of our main results, we provide the following
examples.

ExampPLE 4.1. Consider the equation (1.1) on Q(1) with

1 1
A(x) = diag| —,..., 7 bie C"(Q(1),R" i=1,...,N
(X) lag<||x|| Y Y ||x||)) € ( ( )7 )3 l Y Y I

1 + v sin||x]|
p(x) = W" FO) = y+ %, (4.12)
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where N =2, ve(0,1), veR, 0< o<1, e=1, Amax(x) =1/|x]| and b(x) =
(b1(x),...,by(x)) might not be differentiable and satisfies

J b0\ 2dx < MFN2, (M > 0).
Q(r)

For Corollary 4.1, let ¢(x) = 1,0 = N — 1. A direct calculation gives that

~ I+osin|x]|] 1

py(x) = W ) [ x]l ||b(x)||2»
then,
oy(1+vsinr) 1 ’
PO(V): o 72},1\1_2 s, ”b(x)” ds,

where wy denotes the surface area of the unit sphere in RY, ie., wy =
27N/2 /(N /2). Thus, for 0 < p <1,

lim lj J Po(u)duds
1

r—oo p 1

T 4 osi 1
— lim [ﬂj J wduds——J —J ||b(x)|2de‘L'] = .
S:

r—ow| r 1 h ue 2r 1AL-N72
Hence, by Corollary 4.1, Eq. (4.12) is oscillatory.

ExaMPLE 4.2. Consider the equation (1.1) on Q(1) with

1 1
A(X) = dlag <—21—2)7 b(x) = <i4vi4>v
[l 11l [l [l

p(x) :ﬁ, ) =y+y, (4.13)

where N =2, u>1/2, =1 and Jpax(x) = [|x]| 2.
For Corollary 4.3, let ¢(x) = ||x||. A simple computation yields that

A(r):%(r—l), Pl(r)zzg.

Then,
liminf A(r)Pi(r) = p.

r— o0
Hence, by Corollary 4.3, Eq. (4.13) is oscillatory if x> 1/2.

ExampPLE 4.3. Consider the equation (1.1) on Q(1) with
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A(x) = diag(1,1), b(x) = <ﬁ7ﬁ>’
p(x):#’ f(y)ZY+y57 (4.14)

where N =2, u>2, ¢e=1 and Anax(x) = 1.
For Corollary 4.6, let ¢(x) = 1/||x||, n(r) =0. It is easy to show that

P =1, G =g =1, ()=

Hence, for /> 1,

lim i [ (60) - 6 Psyas

T
. I (=1 u
2% o) JT R Ty (4.15)
By using Lemma 3.1 in [4], we have
" (r—s) J (s—1)
JT 2 ds > - ds. (4.16)

From (4.15) and (4.16), for u > 2, there exists / > 1 such that x/(2(/ - 1)) >
I?/(I—1). This means that (4.8) and (4.9) hold for same /. Applying
Corollary 4.6, we find that Eq. (4.14) is oscillatory.
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