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§ 0 Statement of Results.

Throughout this paper, p denotes always an odd prime. We consider a
cell complex
0.1) B, (P):52n+1UeZn’+2[J—1Ue4n+2p,
whose cohomology ring with Z,-coefficient is
0.2) H*(By(p); Zp) =A(u, 2'w), u € H* (B,(p); Zy).

We notice that the p-primary components 7;(B.(p); p) of the i-th homo-
topy groups of B,(p) appear in the following

Tureorem 0.1. For the homotopy groups of the special unitary groups
SU(m) and the symplectic groups Sp(m), we have the following direct sum
decompositions:

n -1
0.3) kglm(Bk(p);p) +k:§+lm(5““; p=u;(SU(n+p); p), for n<p,

n q
0.4) kglm (B2i-1(p); p) t:%lm(s‘”“l; p=ri{Sp(n+q; p), for n <q=(p-1)/2.

These decompositions for n=1 are (1.4) and (1.5) of [6], and the similar
direct sum decompositions for exceptional Lie groups are obtained recently
by Mimura and Toda [4].

As a special kind of B,(p), we have the following

TreoreM 0.2.  There exist cell complexes B,(p) for n =1, satisfying (0.1),
(0.2) and the following two conditions:

(0.5) B.(p) is an S** ' -bundle over S*+2-1,
(0.6) There exists a map
fi S*By(p)——Bai(p) for n=1,

which induces isomorphisms of H;( ; Z) for i<4n+2p+2.
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The purpose of this paper is to compute 7;(B,(p); p) of these B,(p) for
i<2n+1+4+2(p*+p)(p—1)—b5.

From (0.5), we have the following exact sequence:
(07) N iy 71','+1(52"+2p_1) 9, n.i(SZrH 1) i 77-';’(Bn (P» I ni(52n+2p—1) %n Y
and we consider the boundary homomorphisms 8,. We have easily

THEOREM 0.3. an (SZ ')’):afl (271,—]—1)057‘ folr gi/ven T € ni—l (SZ?Z+ZP—3),

where S denotes the suspension homomorphism and o, (2n+1) is an element in
Tons2p_2(S* 1) of order p.

By means of the mapping cylinder construction of the map B,(p)—
2°B,.1(p), induced by f of (0.6), we may regard as B,(p) C2°B,.1(p) and
write

Tueorem 0.4. We have the exact sequence
0.8) - Toom; 1 (QF 27 2usm; (QF ) 42> (QBA(P) L2 mi(QFr 27 2ns

where Q¥ 1= Q(2°S*"+! S§*™-1).  Furthermore we obtain the following com-
mutative diagram of exact sequences:

0.9)

v

v
}ni+l(52n+2p—3) On-1 77.',‘(52"_1) ix ﬂi(Bn—l(P)) I ni(52n+2p—3)

S? S? fxS? i S?

v A A4

v
_ 9, i 4 f x _
e g (ST s (ST L5 Ty (B ()2 Ty 2 (ST ——

248 H® H® l H®
A4 ™ A4

e T QR 2 1 (08 ) T 1 QB ()L T a Q)

|
l P+ D l D+ l Dx
~

P C e S N TN (L LN Ti1(Bao1(p)-L2om; 1 (S2H2073) 5.

S S

By the above diagram, we can investigate 9, by using 9,_; and Theorem
0.3. Using the homomorphisms I’ and I in the exact sequence

(0.10) 45w (S p) Lo Q3 p) Lo mins (ST p)

A1 (ST py L
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of [8; (2.5)], we have the following

Tueorem 0.5. There is an integer x,>0 (mod p) such that
(0.11) 10,I(S*r)=%,812(n+1)p+1)e Sy

Jor any v € m; 1 (S***0P=4; by where B1(2(n+1)p+1) € Tomipp-1 (S2@TDI4L; p)
~ 7, 1s Toda’s element in [8].

Using these three theorems and the known results about the homotopy
groups of spheres in [ 8], we can determine

0, 71'2n+2p_1+k(82n+21’—1;P)_’_)77-'2n+1+k+2(p—1)—1(52”+1;P)
for k<2(p*+p—1)(p—1)—4 except the only one case
0.12) p=3,n=1, k=385.

For the determination of the extensions of groups in the exact sequence
(0.7), we treat Lemmas 6.2 and 6.3 in §6. Consequently, the groups 7,14
(B.(p); p), k<2(p*+p)(p—1)—5, are determined except the following two
cases:

0.13) p=38,n=1, k=37, 38,
0.14) k=2r(p—1)—2, r>p+3, 1<n<r—p—1
and r=2p+1, p*+1, n=r—p—1.

The case (0.18) occurs from the indetermination of (0.12). In the case (0.14),
we can determine the orders of groups.
Summarizing these facts, it is stated as follows:

Tueorem 0.6. For n=>1 and k<2(p®+p) (p—1)—5, we have the following
direct sum decomposition :

7T2n+1+k(Bn(P);P):A~(na k)+B(n> k>+E(n> k)
+ Ua (na k)+ Ub (ns k)+ Uu (n> k)’

where the definitions of direct factors are given in §6.
The subgroups A(n, k)+ B (n, k) (k2 (p*+1) (p—1)—8)+ E(n, k) are
mapped isomorphically into the stable groups 73 (B; p)=lim 7,,.1.:(B.(p); p).

In §1, Theorem 0.1 is proved. The bundles B,(p) of Tﬂheorem 0.2 are con-
structed in §2, and Theorems 0.3 and 0.4 are proved. Theorem 0.5 is proved
in §3. Section 4 is used to quote the known results about the homotopy
groups of spheres. The determination of 9, is in §5 and the proof of Theorem
0.6 is in §6.

The author would like to thank Professor H. Toda who read the manu-
script and gave me many useful suggestions.
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§ 1 Proof of Theorem 0.1.

Since 7;,(S***1) is finite and has no p-torsion if k<n<p, it follows that
72, (SU(k+1)) is finite and has no p-torsion. From the exactness of the
sequence o, 1(SU(n+1)-"%> 4, 1(S* )—> 1,,(SU(n)), there exists a map

fui S5 SU(n+1)

such that the mapping degree of the composition 7f,: $**1——S$**! is prime
to p, for n<p. Weput f,=i,f» for the inclusion i,: SU(n+1)——> SU(n+p).
Since 724,252 (SU(n+p))=0 by Bott periodicity, the map f, is extended to a
map

gt K= S 2-1__ ST(n + p),

where K, is the (2n+2p—1)-skeleton of B,(p). And g} are epimorphisms of
H*( ; Z;), since 2'2:0 holds in SU(n+p) for n<p. According to Imanishi
([2] Theorem 1), the order a of 74u.2,-1 (SU(n+p)) is prime to p for n <
3(p—1)/2. Replacing the attaching map 8 of the (4n+2p)-cell of B,(p) by
a3, we obtain a cell complex B,(p). Obviously we have

LD n:i(B,(p); p)=7:i(Bs(p); p) for all i.
The map g, has an extension
hy.: B,(p)—>SU(n+p) for n<p

and A} are epimorphisms of H*( ; Z;). Using the maps k; and f; and the
multiplication of SU(n+ p), we obtain a map

F=hihohufyorfuva = f
B{(p) % Bi(p) x -+ X By(p) x §%%x §19x oo x S SU(n+p)

which induces isomorphisms F* of H*( ; Z,). Thus, for n<p, the following
isomorphisms hold:

n p—1
1.2) Fy: 2 m:(Bi(p); p)+ 2 7 (§**15 p)—=>m;(SU(n+p); p).

The decompositions (0.3) follow from (1.1) and (1.2).
Similarly we have a map

G: B{(p)x X B}, (p)xS"3x ... x S Sp(n+q)

and isomorphisms G4 of 7;( ; p) for n <¢=(p—1)/2, and the decompositions
(0.4) are obtained.
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§ 2 Definition and Properties of B.(p).

Let 7V, , denote the Stiefel manifold of orthonormal £-frames in R", the
m-dimensional vector space over the reals. Then 7, , is a fibre bundle over
Vo with fibre Vi, p s w, for 1<<k'<<k<m. Especially V;,,5. is an S$**!
bundle over S***2, The characteristic class of this bundle V,,.; . is an ele-
ment 2¢2,.1 € T2,.1(S* 1) =~ Z, which is represented by a map of degree 2.

Let 4 and B be spaces, and /=[0, 1] the unit interval. We denote by
AxB the join of 4 with B, and d: 4 x B x I—> AxB the canonical map. Then
the homeomorphism

h: S™xS'— > §m+2

is given by hd(x, 6, t)=(Ax, xcosd, usinb), A=cos(xwt/2), pu=sin(zt/2), 0
0 <27n. We define a map

. 1
8- V2n+3,2*S —> V2n+5,2

by gd ((%, ¥), 0, t)=((Ax, pcos, xsinb), (Ay, —usind, xcos0)), then we obtain
the following diagram in which the left square is homotopy commutative and
the right one is commutative.

SZﬂ+1*Sl i*1l V2n+3,z*sl Tl 52n+2*sl

o .

2 .
S n+3 iy V2n+5,2 L2 SZn+4

Since V3,3 0%S* has the same homotopy type as S*V s, 3.0, we get the follow-
ing

Prorosition 2.1. There exists a map
& S Vanis,2—> Vauss 2
such that, in the following diagram (2.1), = g= S’z and gS*i ~i hold:

2
S2i S V2n+3,2 Sin

I
(2'1) 52n+3 z SZn+4 ,

1
2n+5,2
where =~ means homotopic.

Let a1(3) be the generator of 7,,(S°; p) ~ Z, with mod p Hopf invariant
one. Then S*a;(8)=a; is the first non-trivial element of the p-component of
the stable homotopy groups of spheres. We put
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(2.2) a1(m)=S8""a1(8) € Tpi2p-3(S™; p) for m=3.

DeriniTION 2.2. We denote by B,(p), the induced bundle of the bundle

Vanis,2 by the map which represents the element 5 a1(2n+2) € Top,2p-1(S**2,
p), for n=1.

Proor or TuroreM 0.2. By definition, the conditions (0.1), (0.2) and (0.5)
are satisfied obviously. The space B,(p) consists of pairs (x, y) in S¥*?~1
X Vanss,2 satisfying a(x)=n(y), where a denotes a representative of%a1(2n
+2). We define a map f: S*B,(p)=B,(p) \S*—> B,..1(p) by

F((x, YND)=(x Nz, 8(yN\2),

for any elements (x, y) € B,(p) CS*™***"1x V.3, and z € S?, where Adenotes
the smash product. Then the map f is well defined, since (S%a)(xAz)=
7 (g(y/\z)) by Proposition 2.1. We can verify easily that this map f satisfies
the condition (0.6). q.e.d.

Let X and Y be spaces and let 4 be a subspace of X. We denote by
[X, Y] the set of homotopy classes of base-point preserving maps X— Y, and
(X, A) the space of paths (7, 0, 1)— (X, %, 4) with compact-open topology.
2X=2 (X, ) is the loop space of X. Let p: E—~ B be a fibering and F=
p () the fibre over *, then the boundary map 4: [SX, B]—[X, F] is de-
fined as usual, and the following lemma is verified easily.

Lemma 2.3. 4(aoSR)=4d(x)oB forany €[ SY, Bland Be[X, Y.

Let 0 be the boundary homomorphism in the homotopy exact sequence of
the bundle 7,,,3,. The characteristic class of this bundle is

(2.3) 0 (tan2) =229+,

and the following diagram is commutative:

2.4 Tipr (SPF2P7T) Py, (S7741)
¥ ax 7

E}
Tiv1 (SZ””) ’

where {a} =5~ (2n+2).
Proor or Tueorem 0.3. By Lemma 2.3 for 4=0, (2.3) and (2.4),

.(5')=0 (5 @n+2)o 577 )

:a(tz“zos(% @ (2n+1)OSr>>
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:252“10% a1(2n+1)oSr=a;(2n+1)0 Sy. q.e.d.

Let p: E— B be a fibering with the fibre F=p~'(x), and assume that E, B
and F have the same homotopy types as CW-complexes. Since 2p: 2(E, F)
— 2B induces isomorphisms of homotopy groups, it is a homotopy equiva-
lence. The projection p,: 2(E, F)— F induces homomorphisms of homotopy
groups equivalent to the boundary homomorphism in the homotopy exact
sequence of the pair (E, ). Replacing 2(E, F) and p, by 2B and the com-
position with a homotopy inverse of 2p respectively, we get the following

Lemma 2.4. p: E—>B, F and p, are as above. There is a map
(2.5) 0: 2B—>F
such that p, is homotopic to 0 2p, and the following diagram is commutative:

Tiv1(B)—2>m;(F)
=~ ,L Q2 /’
m;(2B) ‘" .

The following proposition is proved easily.

Prorosition 2.5. Let p: E—> B and p': E'—> B’ be fiberings with fibres
F and F', and assume that the following two conditions hold :

(i) E,B,E,B, Fand F have the same homotopy types as CW-complexes.

(ii) FE', B’ and F' are subspaces of E, B and F respectively, and the follow-
g diagram s homotopy commutative:

F i,EEl p’ B/
\ \ v

F-i>E *,B,

where vertical arrows are inclusions.
Then we obtain the following commutative diagram of exact sequences:

J ! J !

i (B ——o>rn(F) ——n(E) —ni(B) ——
i ¥ l

=i (B) ——on;(F)  ——n(E) ——n(B) ——>-
¥ ¥ l

o——>n1 (B, B)y——>n;(F, F)——>n;(E,E)—>n;(B, B)—>-
i ) i

> 7'[,‘(3/) '—‘)ﬂi_l(F/) ——>7T,'_1(E/) ———>71','_1(B’) —>

¢ ¢ ¢
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Proor or Turorem 0.4. The double suspension S?%: 7;(S?"1)—>
mi 2 (S¥ 1) is equivalent to the map induced by the inclusion S$?”~!——
225*m+1 and the homomorphism H® is defined as follows:

H® =k 2% m;.y ($ = 7fi—1(-9352m+1)—> mi1 (Q3" 1),

for the inclusion £: 28S*"*'——Q3”~1. The projection p: Q3" 1=2(2*S*"*,
S¥m-1—— §?m-1 ig g fibering with fibre £235?"*!, First and second columns
of the diagram (0.9) are obtained from the homotopy exact sequence of this
fibering for m=n+p—1 and n respectively. Similarly, third column of (0.9)
is obtained from the fibering p: QB,_:(p)—> B,_1(p). Then in Proposition
2.5, putting F=Q2S**!, E=Q’B,(p), B=Q*S* %1 =81 F=B, ,(p)
and B'=S%**27-3 we obtain (0.8) and (0.9). g.e.d.

Now we consider the cohomology spectral sequence associated with the
fibering

(2.6) QS+ _2i5 QB (p)-215 QS22

Then EX* ~ Ef*~ H*(2S5**'; Z,) QH*(RS*"+*-1; 7 3 holds, since both £5%"+!
and 25%**2?-! have vanishing cohomology of odd degrees. In more detail:

(2.7) H*(2S8**'; Z,) has the following Z,-basis
{aptap; 0= i< <y, 051y, 7, <p}, deg x;=2np".
And H*(28%+%-1; 7,) has the following Z,-basis
{yyi 0 i <o <dyy 01,0, 15 < p}, deg y;=2(n+p—1)p'.
ProrositioN 2.6. H*(2B,(p); Z,) has the following Z,-basis
e agsbiy b 0= in <o iy 0 /1< <oy 0y, 1o,
0<t1,, ts<p, q,s=1}, and deg a;=2np*, deg b,=2(n+p—1)p".
Furthermore the elements a, and b, satisfy the following conditions:
(D) (R0)*ar=x, and by=(82))* yi, up to non-zero coefficients.
(iD)s 2" a,="b, and P'a,=0 for i>p*.

Proor. Put ay=0u and b,=02'u, for the cohomology suspension ¢ and
u € H*""Y(B,(p); Z,). Since 2' commutes with g, (i), and (ii), hold.

We have the sequence:
(28) 0——>H* (RS> 271 Z,)-275 H¥(2B,(p); Z,)-2i H* (2S**1; Z,)—>0

which is exact as Hopf algebras, with respect to the diagonal map «* induced
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by the loop-multiplication #. The sets of primitive elements in H*(2 8%+~ 1,
Z,) and H*(2S**'; Z,) are spanned by y, and wx, respectively. It follows
from Proposition 3.12 of [37] that

(2.9) The primitive elements of H*(2B,.(p); Z;) are spanned by a, and b,.

Now we consider the case n>1. Assume that there are elements a; and
b, satisfying (i),, (ii), and the following conditions (iii); for £=0, 1, ..., r.

(iii), There exist elements a,€ H**"(2B,(p); Z) and b, € H*"+?-D*
(2B.(p); Z) whose mod p reductions are the elements a, and b, of above. Such
elements satisfy al_,=pa, and by_,=pb,.

From (ii),, a?=2"""a,=0. This means that a«?=pa,,, for some a,., €
H""(2B,(p); Z). From (iii)s, k=<r, p****"**"a,,1=a}"" holds in Z-coef-
ficient. Then we have

pr+l

u* (ar+l> = u* (aO )

1+p+-+p7

P

prii-1 7+l ; TH+1_ s T+1 r+1
=5 (V) )ai@at ™ i+ el ®1+1®a

i=1 !

1 , prit—q 1 Pr+1 . g 8
=p +p+...+p< 'Zl ;m( i >a‘,"’~«.a,,”®a,T-.-a,v+a,+1®1+l®a,+1>,

T 7
where i= ) o, p' and p’"'—i= }] B, p' are p-adic expansions, «,, 8, 0.
t=v t=v

7+1
Remark that Ci:r—}l:(}) ; ) is an integer prime to p, for 0<i<p”*'. So,
we have
p7‘+1_1
(2.10) t¥(ar)=a, 1 R1+1Qa, 1+ X ciaff.-.a,‘}‘”®af’-..a,’?",
i=1

in Z,-coefficient. Using the Cartan formula and (ii),, £ <r, (2.10) implies the
following
(2.11) 2* (PP a, )

THI_y

:gpr+lar+l®1+l®gpr+lar+l+ Z cibf’...b,‘f‘” ®bf,b§,,
i=1

1w (Pa, ) =Pa, 1 QL+1Q Pla, 1 for i>p™th.

On the other hand, we have similarly

prHI_y

(212) ﬂ*(br+1):br+l®1+1®br+l+ Z cib‘rzr"'b?"@bfr"'bf"-
i=1

The elements 2" "a,,1—b,.1 and P'a,,,(i>p" ') are primitive by (2.11) and
(2.12), and so vanished by (2.9), that is, (ii),,, holds. Therefore the proof
can be done by the induction on r.
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For the case n=1, we choose an element a,,; such as (2i)*a, 1=2%,.1.
Then #*(a,..) has a form of (2.10) for some c; € Z,. Applying Hopf algebra

r+1
homomorphism (£2:)* and comparing with #*(x,.1), we have c;:}/—}ﬁ< ; >
The rest of the proof is similar to the case n>1 and omitted. qg.e.d.

Remark (i) In the case n=1, the relations a=5,(k=0, 1,...) hold.

Remark (ii) The following relation in (ii); is essential for the proof of
Theorem 0.5 (§3):

(213) '@p (al)':bl.

Remark (iii) Using Dyer-Lashof’s operations ([1]) and Nishida’s formula
([5]), we can determine the reduced power operations in H*(2B,(p); Z,).
Let L=S?"e?**~2 be the mapping cone of «;(2n), n>1, and Q(L) be the
limit space ]iﬂ)ﬂl" SYL. Then S°L is a subcomplex of B,,:(p). Using f in

N
(0.6), we obtain a map 2B,(p)—> 2°S*LCQ(L) which induces a monomor-
phism of Hyx( ; Z,). Hx(2B,(p); Zy) = Z;[a, b], deg a=2n, deg b=2n+2p—2
and e=2%b hold, where 2% denotes the dual operation of #' in the sense of
[5]. Then a;(resp. b;) is the dual element of a?*(resp. 4**), which can be
written by iterated Dyer-Lashof operations on a(resp. b). And so, applying
Nishida’s formula, the relations (ii), are obtained.

§ 8 Proof of Theorem 0.5.

We shall quote the following four propositions from [87], with respect to
the homomorphisms 7 and I’ in (0.10) and (0.11).

We denote by Y” the Moore space of type (Z,, n—1), i.e., the mapping
cone of a map S”""'—> S”~! of degree p.

Prorosition 3.1 (Lemma 2.5 of [8]). Assume that 2mp—h=6. Then
there exists a map G: Y™™~ " i—— 0"Q3~1 uniquely up to homotopy equiva-
lence, such that G* are isomorphisms of H'( ; Z,) for i <2mp—h—2. For
such a map the following diagram is commutative:

3.1 mi(SPPhE py Ly (YRR by T (8PP RE S p)
s
pSh+? ﬂi(gh?%m—l;P) ySh+s
~ onr

SZmp+1.

ﬂi+h+2(Szmp_IQP)-l—)ﬂ'uh(ng_lSP)41>7Ti+h+3( ) P),
Sfor some integers x, y=<0 (mod p).

ProrositioN 3.2 ((2.12) (ii) of [8]). There exists a map h,: 2S*"+'—>
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28+ such that h} is an isomorphism of H*™*( ; Z,) and that the following
diagram is commutative:

3.2) 7 (25" p) > (285°"1 1 p)
~ T Q2 = T 2

7Ti+1(52'"+1;P)*—>H(2) T2 (Q37 71 P)——>I Tiv1 (Szm“l;}’).

Prorosition 8.3 (see (2.1) of [8]). There exists a map h: Q3" !'—>
235241 sych that

3.3) I=803hy: m;(Q3" 1 p)——> m; (23S¥71; p) «=— 1w, 5(SP™*15 p).
For such a map h the following diagram is homotopy commutative:

(34) Q%m—l h N 93 SZmp+1
T G T i1
YZmp-—Z L4 SZmp—Z’

where i, denotes the inclusion.

ProrosiTioN 3.4 ((2.6) of [8]). The homomorphisms I and I' satisfy the
Sollowing relations:

3.5) I(oB)=1Iao S*B and I'(a/oS*B)=Ta'oR for € m;(S’; p).
By Lemma 2.8 for 4=0, and (8.5), we have
(3.6) 16,1 (ao S* B) = (10, I't)o S°.
Therefore we can assume that
7="C20+pyp-4 110 (0.11),

where ¢, € 7,,(S™) =~ Z is represented by the identity map. By Proposition 3.1,
we obtain the following

B.7)  Tamspyp-3(QF 7Y p= Z, is generated by I'tyn.pyp—1. For isomorphisms
Q: m,(Q3 27 p)——> w1 (RQF 2715 p), 81ty pyp-1 18 Tepresented by the map
Gio, where i, denotes the inclusion S*"+Pr=4 y2nmp=3,

Let p,: 25%+22-1— §?"+1 he a map of (2.5) with respect to the fibering
B,(p)—> S****~1_ Since the diagram (0.9) implies $%0,=0,,:5% we have
the following commutative diagram:

03 g2n+2p+1 2%Pns1 02g2n+3

-1 )

gszn+2p—1 Pn_) SZn+l,
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where vertical arrows are inclusions. Then we can define a map
Qz(p”) : .QQ%’”Zp'l%.Q(.QBSZ"J'z[Hl, QSZnJrzp—l) 5 9(9252n+3’ SZn+1):Q§n+1’

which coincides with the map of (2.5) with respect to the fiberig QB,(p)—>
Q3"*2»~1. Since the homomorphism Gsy: o pyp-a (Y P72 p)o> Toni pypa
(Q%"*1; p) is an isomorphism by (8.1) and [ Y 2" +9?=3 Y20rDr=2 57,0 00p s
(Y2+br=2. p) is an epimorphism, we have

(3.8) There exists a map A,: Y2r+Dp+220-1=3__ 5 y2n+Lp-2 oyoh that the fol-
lowing diagram is homotopy commutative:

IQQ%’”zi"l Qz(ﬂl)_) Q%n+l
te te

Yz(n+p)p_3 M Y2®+1p-2

By (3.7), (8.8) and (8.1), 10,1'(tstns pyp-1) € Tains pyp1(SE"*D?*1: b)Y is represent-
ed by the map S°%(wol,i,) for the pinching map 7,: Y2#+Dr-2___, gn+1p-2

According to Toda [87, Tams1s2ps-1y-2(S*"*1; p) (m == p) are in the stable
range and isomorphic to Z,. We put

(B.9) BL1@2p+1) € mapi1i2pp-1)-2(S**Y; p)=Z, is a generator and (;(m)=
Smo2-lp, (2P+ De 7Tm+2p(p—1)_2(sm;]7) for m£2p+ 1

ProposiTioN 85. Let f: Y7+ 20Dl §™(m >2p+1) be a map and let
K=_8myem =Dl em+20?-1) be the mapping cone of f. Assume that

(3.10) 2. H™(K; Zy)—> H™2-V(K; Z,)

18 mon-trivial. Then the map fi is essential, i.e., fi represents x,B.(m) for
some x,=<0(mod p), where i denotes the inclusion S™+2@-1-2 ym+2p(-1-1

Proor. If fi>~0, then K has the same homotopy type as K,=(S"V
SmH2p-1=1y em+20(-1) (\/denotes the one point union), and 2?=c0 holds in
K. Smashing a subcomplex S™*#®-1-1to g point in K,, we get a complex
K,=8™Ue™ %=1 with non-trivial #?. This contradicts the triviality of
mod p Hopf invariant. q.e.d.

Remark. Additionaly, the converse of above Proposition 3.5 holds. And
0, we can choose f8:(2p+1) satisfying 2? (S™)=(—1)"e™*2*?-1 in (3.10) and
£1(2p+1)=A{fi} for m=2p+1. Thus, the elements 8,(m)(m =2p+1) in (3.9)
are determined uniquely.

The map

(311) ﬂolnioi Sz(n+p)p~4 ) Yz(n+p)p—3 BYZ(”’LD[FZ , Sz(n+1)pf2

represents the element x,3:(2(n+1)p—2) and this coefficient x, € Z, coin-
cides with one in (0.11). From Proposition 3.5, we have
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(8.12) If 2?20 holds in the mapping cone of wyl,, then x,><0 (mod p), i.e.,
Theorem 0.5 is proved.
Now we consider the following fibering:

(313) 9252n+2p+1_gp_nl) .QSZﬂ)rS“—L-QB;Hl(p).

The map 2i has an extension 7: Cq,,  =2S""3UCR*S*"***'—— 2B,..(p),
where C; denotes the mapping cone of a map f. The cohomology ring
H*(Q2S% 2071, 7)) is generated as Z,-module by the elements 1, zo=0 o, z:
and 4z;=0y, for deg<2(n+p)(p+1)—3, where 4 denotes the cohomology
Bockstein operation and y; are the same as (2.7). Therefore H*(Cy, . .; Z,) is
spanned by the following elements for low degrees:

= —p=1 = —p— s T
(3.14) 1, %oy .oy Tg Ly B1y ooy By L, e Zo=P Ko, 21, 71, -+,

where 7 denotes a corresponding element of y for 7 € H*(2S**3; Z,) or y €
H*(@*s*+2+1. 7y and x; are the same as (2.7). For the homomorphism
*: H¥*(2Bn.1(p); Zy) —> H*(Cq,,.,; Z,) and the elements «; and b; in
H*(2B,..(p); Z,), we obtain the following relations:

B.15)  i*(ag) =1%o, 1*(a1)=%1, 1¥(bo) =2, and i*(b,)=4dz;, up to non-zero coeffi-
ctents.

The last relation is obtained by comparing two spectral sequences associated
with the fibering (8.13) and the fibering 2(Q2 8% +%+1 Q§¥+2+1)___5 Q §on+2p+1
and others are obvious.

Applying i* to the relation (2.13) and using (3.15), we have 2z, =4z,
up to non-zero coefficient. Since the map A} in Proposition 3.2 for m=n+1
is an isomorphism of H***Y?( ; Z,), we have

(8.16) In the mapping cone C, of the map g=h,R0,,: 2§+ Q§¥n+3
N QSZ(n+1)p+1,

Pt HX D8 (Cps Z)—> HX PP (C, 5 Z,)

18 non-trivial.

The map g is homotopic to g’k for some g’: (22§ +2P+1 G¥n+2p-1y__,
(2 8§2m+De+l ) and inclusion k: (228%+20+1 x)— > (Q2§2n+2e+1 §in+2p-1y Pyt
g'=2%g": Q03+ 1— Q35+ L+ From definition of H® and Proposi-
tions 3.1, 3.2 and 3.3, we obtain the following

(8.17) The map g'' s homotopic to hQz(0,).
From (3.16) we have easily
(8.18) ot HX"V0=2(Cpr; Z,))——> H*"*00=2(C, o5 Z,) 18 mon-trivial.

By the maps i,: S**+V?-2 Q382+ Lp+1ip (3.4) and G: Y2 +0P=3 5 @Q3r+20-1
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in (3.8), we can define a map i': C,»,— Ci,pn, and @ map G': Cug,p, 56—
Crayp,y Such that '|S*"*D?-2=j, and that G'|2°S*"*V?*'=identity of
238§%m+r+l - Sych.maps i” and G’ satisfy

(8.19) i"* and G'* are isomorphisms of H*"+De=2( . 7.3,

Therefore by (3.17), (3.18) and (3.19), the assumption of (8.12) is proved.
Thus Theorem 0.5 is established.

§ 4 The Homotopy Groups of Spheres.

In this section, we shall quote the main results of [7], [8] and [97.
Let G, be the k-stem group lim 7,,»(SY) and ,G; be its p-primary com-
N

ponent. Then G4+=2G; and ,G«=72 ,G: admit a graded ring structure with
k k
respect to the composition.

Tueorem 4.1 (see Theorems 4.14 and 4.15 of [7], Proposition 4.18 of [7]
and Theorems 15.1 and 15.2 of [8]).

(I) For k<2(p*+p)(p—1)—5, the group ,G; is as follows:
41) Gr=Zy for k=2p*(p—1)—1 (generator a;)

~Zyp+2Zy for k=2(p*—p)(p—1)—1 (generators aj._, and a; f577)

~Zy for k=2sp(p—1)—1and 1<s<p—1 (generator a,)

~Z,+Z, fork=2(p*+1)(p—1)—1 (generators a, ., and a; B 28,)

~Z7Z, fork=2r(p—1)—1,r=0(mod p) and r=xp®+1 (generator ,)

~Z, for k=2(r+s)p+s—1D(p—1)—-20+1),r=0and 1=s<p
(generator 87 B;)

~Z, for k=2(0+s)p+s)(p—1)—20+1)—1,r=0and 1<s<p
except the cases (r, s)=(p—2,1), (p—1,1) and (p—2, 2)
(generator o 85 5;)

~Z, fork=2(p*+1)(p—1)—38 (generator ¢’)

~Z, for k=2(p*+i)(p—1)—2 and 1<i<p (generator ;)

~Z, fork=2(p*+i+1)(p—1)—8 and 1 <i<p—2 (generator a.¢;)

=0 for otherwise k<2(p®+p)(p—1)—5.
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(1) Using the secondary composition, the elements o, (=ra, if r =0 (mod
p)) and &; are defined inductively as follows:

4.2) i1 € {0y, pt, ar} and ;.1 ={e;, pe, a1},

And the following relations hold:

4.3) aa,=a1a;,=0 forr=1,s=1and pra,=p1a;,=0 forr>1,s=>1.
(4.3) a1&'=0 for p>3and a;e'=p1 for p=3.

(4.3)" aie, 2=0.

1 1
43" iy e e da, @, pot for rax—1,0 (mod p), (p+) iy € dats, @,
pe} for s<p, (p*+D)ay: € {an, a1, pe}, Aspir € {an, @y pPet for s<p, ap,i€

3 —
{al, 6522, P C} and ep—l—{alg Ep_24 pl}‘

We mention that ¢ and a;&;(1 <i¢<p—2) correspond to ¢; and ¢}, of [8]
respectively and that the proofs of the non-triviality of a;e;(1<i<p—3)
and {e;, pc, a1} (1 <i=<p—2) and the relations (4.3)"’, deg = 2p*(p—1)—3, are
not given in [7] and [8]. But we can prove those by the similar methods in
(7] with simple calculations of exact sequences in Steenrod algebra. Details
may appear elsewhere.

According to Toda [ 8], there are elements

4.4) «a,(3) € ms,2,-1)-1(S%; p) of order p, S, B)=a, for r=1,
aly(B) € Wsi25pp-1)-1(S°; p) of order p*, S~al,(5)=al, for1<s<p,
Ay (1) € Tri2pp-1)-1(S7; p) of order p*, S=a:(T)=a},

B1(2p—1)¢ 7T2p~1+2p(1;—1)—2(52ﬁ71; p) of order Pz, 5251(2}7—1):31(2}74'1)
m (3.9) and S”B1(2p—1)=p.,

Bs(2P+3)E7f29+3+2($ﬁ+S—1)(1>—1)—2(SZIHS; P) of order P> S”Bs(2P+3)=ﬁ’s
Sor 1<s<p,

a;B:(5) € 775+2(sp+s)(1>—1)43(55;}7> of order P S?a; B:(B)=ay (7)o SB; (2p+3)
Jor 1<s<p,

e@2p(p—2)+1)e€ 71'2p<p—2)+1+2(p2+1)<1>—1)—3(Szp(p—z)ﬂ; p) of order p,
S§=e'@Cp(p—2)+1)=¢,

ei(2p(p—i)+3) € ﬂzp(p—i)+3+z(p2+i)<p—1)_2(Szp(p_ma; p) of order p,
S=e;2p(p—i)+3)=¢; for 1<i<p—2and for p>3,i=p—1,

€2 (11) € 7711+42(S]'1; 3) Of order 3, S>e, (11):62 fO’r p=3’
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18 (2p(p—i—2)+1) € Tappi-zy1s20tristyo-1)-3 (SPPTD4 p) of order
p, S0 e;(2p(p—i—2)+ D =a1@p(p—i—1)+T)eSe; Cp(p—1)+3) for 1 =i
<p—2.

Here all above elements are not in the S%-image.
We define the elements in 7;,,(S™; p) for suitable i as follows:

(45) a,(m)=S""a,)(m=3), a;,(m)=S""a;,(5)(m=5 1=s<p),
ap(my=S""Tap(M)(m="1), Bi(m)=R; (m)epr(m+27—1)p(p—1)—2(r—1))
(m=2p—1), B.(m)=8"""3B.(2p+8)(m=2p+38,1<s<p), RiR:(m)=pi(m)
0Bs(m+2rp(p—1)—2r) (m=2p—1,1<s<p), a1 B (m)=a (m)oBi(m+2p—3)
(m=38), a1B7B:(m)=c,B;(m)eB,(m+2(rp+1)(p—1—2r—1)(m =3, r>1),
a, B:(m)=S""a18,(5)(m =5, 1 <s<p), - ete.

In addition, we shall use the following notations:

(4.6) (i) For v € S°m; o(S* 1 p)=Im SN ,Gi_smp:3, Q"(7) € m;(Q3""1; p) de-
notes an element such that Q" (y)=1I7(2mp—1) and S*y 2mp—1)=7 for some
7@mp—1) € m;, 5 (S p).

(1) For 1€ ,Gi_amps2, Q"(r) € (Q3" 15 p) denotes an element (if it exists)
such that S*I(Q"(y))=7.

Tueorem 4.2 (Theorems 11.1, 15.1 and 15.2 in [87]).

(I For m=1 and k<2(p*+p)(p—1)—>5, we have the following direct
sum decomposition :

4
Tomi1: 4 (S5 p)=A(m, k)+ B (m, k)+ E(m, k)+ ZIU: (m, k).
t=
@47 A(m, k) is defined as follows:
A(m, 2p*(p—1)—1) = Z generated by «,:(2m+1) for m =>3.

A2, 2p*(p—1)—1) = Z,. generated (formally) by p a;2(5) (in this case, the
element a,:(5) exists and is divisible by p, but not divisible by p*, and an element
a:(5) such that p*aj:(5) =a,(5) does not exist).

A(m, 2sp(p—1)—1) = Z,: generated by a;,(2m+1) for m=2,1<s<p.

A(m, 2r(p—1)—1)=Z, generated by o, 2m+1) for m=1 and for r=0
(mod p).

A(m, k)=0 for k=—1(mod 2p—2).
(4.8) B(m, k) is defined as follows:

B(m, 2((r+s)p+s—1)(p—1)—2(r+1)) =~ Z, generated by B;5.(2m—+1) for
m=p—1if r=1and s=1, for m=p if r=0and s=1, for m=p+1 if r=0
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and s=2, and for m=11f (p,r, s)=(3, 3, 1).

B(m, 2((r+s)p+s)(p—1)—2(+1)—1)=Z, generated by c; 378 (2m+1)
Jor m=14f r=1or s=1, and for m =2 if r=0 and s =2, except the case (r, s)

=(p-1,1).

B (m, 2p* (p—1)—3) = Z, generated by a1 B2 (2m+1) for 1 <m<p®—p (re-
mark that, for p*—p<m=<p*—3, a; f?(2m+1) is non-vanishing and divisible
by p, and that o, % (2p® —3)=0 (see (4.17) (iii))).

B(m, k)=0 for the other cases.
(4.9) E(m, k) is defined as follows:
E(m, 2(p*+1)(p—1)—3) = Z, generated by ¢ 2m+1) for m=p(p—2).

E(m, 2(p*+1)(p—1)—2) =~ Z, generated by &;(2m+1) for m=p(p—i)+1
and 1 <i<p, except the case (p, i, m)=(3, 2, 4).

E(m,2(p*+i+1)(p—1)—3)=~Z, generated by aie;(@m+1) for m=
pp—i—2)amd 1 <i<p—2.

E(m, k)=0  for the other cases.
(4.10) U,(m, k) is defined as follows:

(i) Ui(m,2(p’—p+m)(p—1)—2)=Z,+ Z, generated by psxQ™ *(tpr_p 1)
and p*Q'”“(B{’_I) Jor 1=m<2p—1and m=p—1, p.

(i) Ui(m, 2(p*+m+1)(p—1)—2) =~ Z,+ Z, generated by p+Q™+*(a;2) and
pxQ" T (BL72B2) for 1=m<p—1.

(i) Ui(m, 2r(p—1)~2)=Z, generated by pxQ"**@r—n-1) By pxQ"**()
tf m=r—1) for 1<m<r, r=0(mod p) and r-m>p*—p, p*+1.

Gn®  Ui(m, 2((r+s)p+s+m)(p—1)—2(+2))=~Z, generated by
pxQ" H(B1Rs) for m=<—1(mod p), r=0,1=s<p, (r,5) % (p—2, 1), (p—2, 2)
and for (m,r,s)=(p, p—2, 1).

W*® Ui(m, 2(r+s)p+s+m)(p—1)—2(r+1)—1)=Z, generated by
pxQ"  (B1Bs) for m=0(mod p), r =0 and 1 <s<p.

(vi)  Ui(3, 41) = Z; generated by p4xQ*(Bs) for p=38.
vil)  U(m, 20p+1) (p—1)—4) =27, for 2=m<t<p.
(viii) U,(m, k)=0 for the other cases.

Remark that any element 7 of U,(m, k) is characterized by the relations S*r

*) In the third and fourth cases of (11.9) in [8], the cases m=1, r =0, s=2 should not be excluded.
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=0and 7 ¢ Im SZ
(4.11) U, (m, k) is defined as follows:

U;(m, 2p* (p—1) —2) = Z;» generated by an element v,(2m+1) for 3<m<
2
pi—2.

Uy (m, 2sp(p—1)—2)~ Z,: generated by an element y,(2m+1)(y,(2p*—3)
= S%*7,(2p*—b)) for 2<m<sp—1 and for m=p—1, s=1(r1(2p—1)=5:1(2p—1))
except the case 3<m <p®>—2, s=p.

U, (1, 2sp(p—1)—2) =~ Z, generated by an element y(3).
U,(sp—1, 2sp(p—1)—2) = Z, generated by S’r; (2sp—3), s =2.
U,(m, k)=0 for the other cases.

(4.12) Us(m, k) is defined as follows:

UsUp+j, 2(r+s+Dp+s—1)(p—1)—2(r+1)—1) = Z, generated by an
element S¥u;z(l, B1Bs) for r=0,s>1,1=>1,0=<;<p—2 except the case r=0,
s=2 the case l=p—1,r=0, s=1, j<p—2 and the case p=3, [=1,r=2, s=1.

Us((p—Dp+j, 2p*(p—1)—38) = Z,: generated by an element
S¥us(p—1,B1) for 0=<j=<p—3 (the element S *us(p—1, B1) is of order p).

Us(Ip+j+1, 2(G+s+Dp+s)(p—1)—20+1)) = Z, generated by an ele-
ment S¥as(l, B1Rs) forr=1,s=1,1=0and 0<;<p—2.

Us(m, k)=0 for the other cases.
(4.13) U,(m, k) is defined as follows:

Us(Ip+j, 2(s+Dp+s—1) (p—1)—3)= Z, generated by an element
S¥uy(l, B) for 1=1,5=2, s+1<pand 0=j<p.

Ui(m, k)=0  for the other cases.

(II) For the elements in E(m, k) and U;(m, k) t=1, 2, 3, 4, we have the
Jollowing relations up to non-zero coefficients:

(4.14) H® 2p(p—2)+1)=Q*""»(8;) and
H® a6, @p(p—i=D+ 1) =@ (81,.).
(4.15)
) H®psQm (@) =Q" (1) and HPp, Q™ () =Q" (an).

(i)  H®psQ" ' (B78:)=Q" (a1 B1Bs), HPpsxQ™ 1 (B1B:)=Q" (1 1 B;) and
H®pyQ' (8:)=Q*(B}) for p=3.
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(i) pxQ®(@sp-1)=a1(B)or], (2p) except the case p=s=3, p4«Q®(as)=
a(B)eas (10) for p=3 (in this case, a§(6) does not exist) and psxQ®(a,)=a1(8)
oat,1(2p) for r<=—1, —2(mod p).

(iV) P*QZ (B{ Bs) 2051(3)06(1 B{ Bs(zp)
(4.16)

(i) SZTS(2m+1)=prs(2m—I—3) Jor 1<m<sp—3, for m=sp—3, s<p and
Jor m=p—2, s=1.

(i) H®r,Cm~4+1)=Q™)p) for 1<m<sp—2, for m=sp—2, s<p and
Jor m=p—1, s=1.

i) prQ™H(@epom-) =pr.@m+ (=04 m=1) for L=m<sp—1,s<p,
prQ™ )= S"1.2sp—3) for m=sp—1,
0" N m 1) =Py @mA+1) (=0 if m=1,2) for 1<m<p?—2,
Q" o) = S%7,(2p* —B)=7,(2p*—8) for m=p*—2.

(iv) 7@ =a1(3)tsp-1(2p), pr:(B)=a1(B)oasy-1(2p+2) and pr,(1)=
ay(Tyoaty1(2p+4).

Note that, in the above two cases (4.15) and (4.16), ay=a, for r=<0(mod p).
(4.17)
i) HPu3(l, p78)=0"(BiB) and HPaz(l, B;8,)=0""(81B:).

(i) ¥ 'us(l, B18:)=pxQ" 7 N B 718:) (=pxQ™** Har) if r=0, s=1),
Szp_4l7,3(l, B{ Bs):P*QUHﬁ(alB{_lﬁs) and Szp—zus(l’ B{ Bs)zszp_zﬂ,g(l, B{ Bs):O-

(i) pS¥us(p—1, B = B2(p—1) p+2j+1) for 0=;=p—3 and
pS? %us(p—1, B1)=a1 B4 (2p*—5) :P*sz—z(aZ)'

(418) H(Z)u4(l, ﬁ’s)'__Ql‘{> (ﬁs)) Szpu4(l, Bs)zp*Q”HtHl(Bs—l) a/’bd SZp+2u4(l, Bs)
=0.

Now let 7, be the limit group lim [ Y**¥ Y] and 7, the direct sum > 7,.
> k

N
Then 74 admits a ring structure with respect to the composition. Moreover,

7y admits an algebra structure over Z,, since ¢= {identity map} generates
To~Zy Ty can be computed from the results on ,Gy« by the following iso-
morphism:

T = Gr1 & Zy+ G R Zy+Tor (Guy, Z,) +Tor (Ge-1, Zy).

Let ¢ € 7_, be the class represented by the map irw; YV !'——>S¥-1 YV
Concerning the map i*7y: 7,—>,G:_1, we have (see Yamamoto [97])



180 Shichiré Oxka

(4.19) There are elements « and S5y 1n 7y uniquely, satisfying the following
conditions:

(@) =ay, i*mi(Biy)=B:1=s<p), aBs=PL»x=01<s<p—1) and
B(s) € {B(s—l), a, 3(1)}-

TueoreM 4.3 (Theorem II of [97]). The ring my, in dim<2p*(p—1)—4,
has multiplicative generators 0 € m_y, ¢ € wo, & € Tap_p AN B(s) € Ta(spss—1yp-1)-1
(1<s<p). These elements satisfy the following fundamental relations:

(4.20)
(1)  0%=0 and 2ada=a’d+0a’.

(i) aBy=Bx=0 and adBy=R0a for s<p—1 and for p>3, s=
p‘—l FOTPZg, S=P—1:2, afﬁ(z): — B(z)a: i‘(ﬁ(l)é\)zﬁ(l) and Oﬁaﬁ(z) = 8(2)6a
modulo the elements (081,)° and (B1,0)°.

t
(il) BBn=0 for p>3, s+t<p and B@)@Bm:ﬁf B1y0Bs+1-1)
Sfor s+t—1<p. For p=38, B1,B1,=0 modulo the element 0cd (B1,0)°.

Remark (i) Strictly speaking, in the case p=3, s=2 of the third rela-
tion of (4.19), the equality should be understood modulo (81,0)*8(1).

Remark (ii) The relation (4.19) (i) implies
a‘dd'=ta’ "' 1oa+(1—t)a* 0 and o’ da’ 0 =da' da* =t T 0ad.
Remark (iii) By the map i*wy: 7,—> ,Gr_1, We have
(4.21) *ry(@)=a,, i*rx((B1y0) Bis)) = B1Bs and i*m (a0 (B1,0)" Bs)) =1 B1hs.

ReMARK (iv) Since m35-1)-1 has a Z,-basis {Bq), a?d, a?~'0a}, the class
of 1, in (8.8) is described as follows:

(4.22) {2} =x4Bay+ yu0?0+z4a? 0 for some xu, yn, 20 € Zp and x, 50 by
Theorem 0.5.
In addition, we shall use the following two results (see §4, §6 of [8] and

[9D:

(4.28) Let 7€ ,Gro1=nn,s-1(S"; p) be of order p. Then there is an element
7' € my such that i*wy(y")=7. Furthermore the element 0y’ € m,_=[ Y V¢ yN+1]
is an extension of ix(y) € w11 (YV; p).

(4.24) The element a0 is an extension of ix(a;) up to mon-zero coefficient,
ie., i*(a* o) =xix(a;) for some x=<0(mod p), where a;,=c;, for k=0 (mod
p-



On the Homotopy Groups of Sphere Bundles over Spheres 181

§ 5 Determination of d,.

In this section, we always assume that k<2(p*+p)(p—1)—5 and m=
n+p—1.
We shall determine the boundary homomorphism

(5.1)k 0. nz?ﬂ+1+k—(2p—3)(52m+1;P)“*)ﬂz““k(sznﬂ;_p)

in the homotopy exact sequence of the bundle B, (p), using mainly Theorems
0.3, 0.4 and 0.5 as follows:

(5.2) 0.(S*)=a1@n+1)o St for any v € Tom_11k-25-3(S" "5 p).
(5.3) §%0,=0,,, 5%

(5.4) H®p,.,=0,H®.

5.5) Pin=0rps.

(6.6) 10, I'(S*)=2x,812(n+1)p+1)eS%, x,°0(mod p),

Sor any 1 € wa W (S PP p).
By Theorem 4.2, we have
BDr Tamrrir—2p13(S* ;5 p)
=A(m, k—2p+3)+B(m, k—2p+3)+E(m, k—2p+3)

4
+ 2, Ui(m, k—2p+3).
=

Note that the elements in (4.10) (vii) do not appear in (5.7), since m = p.
Using properties (5.2) and (5.3) of 9, and relations (4.3), (4.3), (4.3)",
(4.15) (iii), (4.15) (iv) and (4.16) (iv), we have easily

ProrosiTioN 5.1.  For the stable elements, 0, of (5.1), satisfies the follow-
ngs up to non-zero coefficients:

(1)  0.(tamr1)=a1@n+1).
(i) Ou(a, Cm+1)=psQ*(a,-1) for n=1,r=0, —1(mod p),
=7,8) for n=1,r=sp—1,
=prs(®) for n=2,r=sp—1,
=p*r,(7) for n=38,r=p°—1,
=0 for the other cases.

(iii) 0. (!, 2m+1))=pxQ*(a;ss_1) Sfor n=1 except the case p=s=3,
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n=1,
=psxQ*(as) or 0 for p=s=38, n=1,
=0 for the other cases.
iv) 0,88 Cm+1)=a,P;8:@n+1) except the case r=p—1, s=1,
n>p*—3,
=0 forr=p—1,s=1,n>p*—38.
(V) 0.(a18]B:2m~+1)=psQ*(B18:) for n=1,
=0 for n>1.
(vi) 0,(E@Cm+1)=p{2n+1) for p=3,m=p(p—2)=3,
=0 forp>3, m=p(p—1)—1
(vii) 0,(Cm+1)=ai62n+1) for1=i=p-—3,
=0 fori=p—2.
(viii) 0,(a16;2m+1))=0 form=p(p—i—1)—1

For the case p>3, p(p—2)<m <p(p—1)—2 of (vi) and the case p(p—
i—2)=m<p(p—i—1)—2 of (viii), we shall discuss in Proposition 5.2.

Proor. First, we consider (i), (ii), (iii), (iv) (except r=0, s=2, m=p+
1(n=2)) and (v). Since any element y which is mapped by 0, is in the S
image, 9, (y)=a;(2n+1)o7'(Sr'=71) holds by (5.2). So, the above results fol-
low from (4.3), (4.15) (iii), (4.15) (iv) and (4.16) (iv).

Second, we consider the case r=0, s=2, m=p+1 of (iv). By (5.3), $°0,
(B, (@p+3) =05 (8, @p+5) =a: B, (1) = S?a: B,(5). And $*: 75,;(S%; p)—>
77,;(S"; p)(j=2(sp+s)(p—1)—3) is monomorphic by Theorem 4.2. So the
above result follows. Similarly, the cases p=3 of (vi) and (vii) are proved.

Finally, the triviality of 0,(r) for y=¢'@Cm+1)(p>3), &,-2(2m+1) or
as1¢;(2m+1) is obtained from the triviality of the homotopy groups contain-
ing 0, (7). q.e.d.

ProrosiTioN 5.2. Up to non-zero coefficients, 0, of (5.1), satisfies the fol-
lowings:

i) 0.(ECm+1)=5"a3(p—38, f182) for m=p(p—2)+j,
0<;<p—2, p>3.

On(a18;(@2m~+1)=S¥a3(p—i—38, B1Bis2) for m=p(p—i—2)+],
0<;j<p-2.
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() 0.(S¥us(l, B1BN=SYas(l—1, B17'8s) for m=Ip+j, 0=j<p—2.
(i) 0,(S¥ms(l, BiB)=0 for m=lp+1+], 0= j<p—2.
(V) 0, (S¥us(l, B))=S¥5s(I—1, B1Bs) for m=Ip+j,0=j=p—2,
=0 for m=Ip+j, j=p—1,p.
Proor. By (4.14), (5.4) and (5.6), we obtain
IH®5,(e))=10,_1H®¢e,=10,_;Q**""V(B;,1)
=10, 1 I'B; 1 2p* (p—i—1)—1)=B1 811 (2np+1),

where e;=¢'Cp(p—2)+1), ;=161 Cp(p—i —1)+1)2<i<p—2) and n=
p(p—i—2)+1. Similarly, we have

IH®g3(p—i—2, B1Bi11)=B1Pi1 Cnp+1).

Since TH®: w4y, 1. 4(S™ 45 p)—Toni1:4(S¥?* Y p) (n=p(p—i—2)+1, k=2(p*
+i+1)(p—1)—4) is isomorphic by Theorem 4.2, 0, (e;)=us;(p—i—2, B1Bi:1)
holds. Thus, (i) is proved.

By (5.6), we have

10,Q" " (a1 81 85) = 10" (a1 811 B,), n=1p—1,
and by Theorem 4.2, we can verify the triviality of the kernel of
I: o1 Q35 p)—> Taniarn (S22 p),
n=Ip—1, k=2(+s+)p+s)(p—1)—2(+2).

So, 0,Q"**"*(a, 7 Bs)=Q" (a1 B77* Bs). Applying psx to this and using (4.17)
(ii) and (5.5), we get 0, (S**us(l, B1B:)=S*"*as(l—1, B7**B,). The kernel
of the (2p—4—2j)-fold iterated suspension into 7,1, (S** 71 p) (0= <p—
2) is trivial by Theorem 4.2, provided that (r, s, 1) (p—2,1,1). Thus (ii)
((ry s, D>(p—2, 1, 1)) is proved. By (3.5) and the relation

H® (o S*B)=HPaoB for a € m;(S**?), B €m_1(S),
we can choose the elements in Us(m, k) as follows:
us(l, BLBs)=us(l, B771Bs)e P12 +1+2(+s+I-1)p+s—1)(p—1)—2r—1)
forr=1,
as(l, B Bs)=us(l, B171B:)eB1(2lp+3+2((r+s+I—-Dp+s)(p—1)—2r)
Sor r=2.
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Then the case (r,s, [)=(p—2,1,1) of (ii) is obtained from Lemma 2.3 for
4=0,.

The element S*a;(l, 878;) is contained in the group mz,.1.:(S***; p)N
Ker $7% n=(1—-1)p+;j+2, k=2((r+s+D)p+s+1)(p—1)—2(+1)—1, and
this group vanishes by Theorem 4.2. So, (iii) is proved.

The relation (iv) is similar to (i). qg.e.d.

Prorosition 5.3. Up to non-zero coefficients, 0, of (5.1); satisfies follow-
ngs:

D 0. (pxQ" () =p+Q" " (B).

(i) 0. (psQ"" " (&r-m-1))=0.

(1) 0, (pxQ™* 1 (B1B))=pxQ" " (BT* Bs).

(Av)  0n(pxQ™* (81 8:))=0.

V) 0.(7s@m+1)=8"u,(s—2, B;) for m=sp—2,3<s<p,
=0 for the other cases.

VD) 0,(S*7.(2sp—3) =S us(s—2, Bs) for m=sp—1,8=<s<p,

=0 for m=sp—1, s=2, p.

Proor. (i), (iii) and (vi) are similar to (ii) in Proposition 5.2, and (iv) is
similar to (iii) in Proposition 5.2. The first half of (v) follows from (vi).
To prove (ii) and the second half of (v), we put

#,2m~+1)=psQ" Nty _m-1) for r==0(mod p) and x.,(2m+1)=7.(2m+1).

For the case (r, m)=(p? p*—2), we have 0,(u,( Cm+1)) € Tani1-20p2:155-1)-3
(815 pynKer S*=0, n=p’—p—1. And so, in the following, we assume
(r, m)=2(p% p*—2). By (4.15) (i) and (4.16) (ii), we have H® u,(2m+1)=
Q" (a)_p)=Ta;_,(2mp—1). The composition 8; (2np+1)ea;_,(2mp—1) is in
the stable range and vanishes by (4.83). Therefore we have TH®9, (u, 2m+
1))=0. Thus we get

0 (ty Cm+1)) € Tani1i0021yp-1y-3(S™*; p)NKer S*NKer IH® =n.
By Theorem 4.2, this group 7 is as follows:
= Z, generated by S¥u;(l, 1) forr=(1+1)p—1,
~ Zy generated by S¥u;(p—1, B1) for r=p*—1,
~ 7, generated by a, B (2n+1) for r=p*—1,
~ 7, generated by S¥u;(1, B2)(p>8) for r=(p+1)p—2,
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~ 7, generated by S¥u,(l, B5) for r=(s+0p+s—2,
=0 for the other cases.

According to the facts 9, (#,(2m+1)) € Ker S* for r=<0(mod p) and 9, («,(2m
+1)) € Ker S* for s<p, we have the following non-zero possibilities:

(A) an(P*Qsp-z(apz_zp)):a52p74u3(1, Bf):a'P*sz_l(% 511)_1) Sfor some a,
a' € Zy, p>3.

B) 0, (psxQ“ PP (as_2y5+1)) =0 S*Pus (I, Bs)=b'pQ" V1 (B 1) for some
b,b € Zy, 2<s<p, I=1, s+1<p.

(C) 0,(rs@sp—38))=cS**2uy(s—2, B;) for some c € Z,, 2<s<p.
Since Q**~'(«}:_,) generates the kernel of
Pt Taripenyp-1)-2 Q3725 p)—> Tap-ssaitep-1300-1)-3 (S 725 p),
the relation (A) implies
00 (0¥ (atpe_2p)) =a'Q** Ny B +a" Q% (ape_py)  for some a” € Z,.
Since the kernel of
Gyt Tapreprryo—ry-2 (Y7272 D) — o pinyp-1y- 2 Q47735 p)
is trivial, we have
it =iy (xa' ) B2 1+ a" atlp_,),  x, a" € Zy, 230,

where i: S2#*+prD@-D-2 y202ip+D(-D-1 gpd § . §4°-20-3C y¥*'-2-2 gre in-
clusions and 1, is the same as (4.22). By (4.23) and (4.24), we have

s (xad'o B oy p) = 1% (a0 (0By)P  +a a1 ba),

and the kernel of

4p2—2p—2,
b

1 e pyo-1)-1> Tagteprtyip-1)-2 (¥ p)

is generated by a?’#¢ and ad (B1,0)?~*. Thus we have
Apsa? " =xa' 0 (0B)? "+ a a0 modulo o’ *0 and ab (B1,0)? 1.

In this relation, the linearly independency of da(681,)? " implies a'=0.
By the similar arguments, we obtain =0 in (B). g.e.d.

§6 The Homotopy Groups of B, (p).

We start from the discussion of the stable homotopy groups



186 Shichiré Oka

ni(B; p)=non1:(By(p);p), N> é%ﬂlj——zj[j_l'

The sequence (0.7) implies the following exact sequence:

Ja ; . i B
(6.1) s> pck-(2p~3)—?—) ka > 71i(B; P) ’*—?pck~(2p—2)‘—)~ Tty

and 0 is composition with a;. The group 73(B; p) is isomorphic to the stable
homotopy group of the mapping cone of «;, i.e.,

2N+2p-1

(6.2)  moni1::(Bu(p); p) = wanc1x (Kn; p)y Kn= S0 o ane1ye
for large N.
We shall use the following notation:

(6.3) For v € yGr_zp-2yN\Ker 0, [7] € n3(B; p) denotes an element such that
j*([?’]):?’-

Prorosition 6.1, For k<2(p*+p)(p—1)—5%, n3(B; p) is generated by
the following elements:

[a,] of order p* and degree 2(r+1)(p—1)—1, for r2<0, —1 (mod p),
Casp-1] of order p° and degree 2sp(p—1)—1, for s<p,

Lay_1] of order p* and degree 2p® (p—1)—1,

[ai,] of order p* and degree 2(sp+1)(p—1)—1, for s<p,

[a,] of order p* and degree 2(p*+1)(p—1)—1,

ixB7 Bs of order p and degree 2((r+s)p+s—1)p—1)—2@+1), forr=0,
1<s<p except the case p=3,r=38, s=1,

[BY] of order p and degree 2p®(p—1)—2,

[ B1Bs] of order p and degree 2((r+s)p+s+1)(p—1)—2(0+1)—1,
Jor r =0, 1<s<p except the case r=p—1, s=1,

ixe’ of order p and degree 2(p*+1)(p—1)—38,

ixe; of order p and degree 2(p*+i)(p—1)—2, for 1<i<p-—2,

[e] of order p and degree 2(p*+2)(p—1)—3, for p>38,

Caiei] of order p and degree 2(p°+i+2)(p—1)—38, for 1<i<p—38,

(e,—2] of order p* and degree 2(p*+p—1)(p—1)—2.

*)  For the smaller £, cf. Proposition 4.21 in [7].
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This proposition follows easily from Proposition 5.1, the relation (4.3)"”
and the following Lemma 6.2.

To investigate the group extensions, we shall use the following two lem-
mas.

Lemma 6.2. Let 7 € ,Gy_(2p-2) be an element of order p'(t =1), satisfying
a17=0. Then the set of all —p'[r] coincides with the set isx{ai, 7, p'c}, where
we tdentify w3 (B; p) with waon. 1.4 (Kn; p).

LEmMA 6.3. Leth: Y**"—— Y" be a map and let a € w;(Y**") be an element
of order p such that hya=0. Let &€ m;.1(C;) be a coextension of a and @€
[Y*E Y*" ] be an extension of a. Then there exists an element v € w; 1(Y™)
such that

PA=j1x7 and 1= —hsa@,

where ji: Y"—> C,=Y"\U,CY*"" is the inclusion and m,: Y'*'—> S'*' is the
projection.

These lemmas are the special cases of Proposition 4.2 in [7] and Lemma
4.7 in [ 8], and proofs are omitted.

Now we consider the homotopy groups 7s.1.:(B.(p); p). Results of the
computations are settled as follows:

Tueorem 0.6. For n=>1and k<2(p®+p) (p—1)—5, we have the following
direct sum decomposition :

Tans1+2(Ba(p); p)
=A(n, k)+B(n, k) +E(n, )+ U, (n, k)+ U, (n, k)+ U.(n, k).
To define the direct factors, the symbol [ 7] is used as (6.3).
(6.4) A(n, k) is defined as follows:

AQ, 2r(p—1)—1)= Z, generated by ixcx,(3) for r=1 (mod p),
AQ, 2(sp+1) (p—1)—1) = Z,2 generated by [a,,(2p+1)] for s<p,
AQ, 2(p*+1D)(p—1)—1) = Z;» generated by [ pa,:2p+1)] for p>3,

= Zy or Zy generated by [Bag(7)] or [ag (7)] respectively, for p=3,
A2, 2sp(p—1)—1) = Z,> generated by ixc,,(5) ix(pa,:(5)) if s=p),
A3, 2p* (p—1)—1) = Z,» generated by iy, (7),

A(n, 2r(p—1)—1) = Z,: generated by [«,_1(2n+2p—1)]
Sfor n>1,r=0, 1 (mod p), r>1,

A(n, 2sp(p—1)—1) = Z,s generated by [ap-1(2n+2p—1)] for n>2, s<p,
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A(n, 2p* (p—1)—1) = Z, generated by [a,_1(2n+2p—1)] for n>3,

A(n, 2(sp+1)(p—1)—1) = Z,s generated by [a;,(2n+2p—1)]
for n>1, s<p,

A(n, 2(p*+1)(p—1)—1)= Z, generated by [, (2n+2p—1)] for n>1,
A(n, k)=0 for k>=—1(mod 2p—2) and for k=2p—3.
(6.5) B(n, k) is defined as follows:

B(n, 2(G+s)p+s—1)(p—1)—2(+1)) = Z, generated by ixB7B:(2n+1)
for n=p—1ifr=1, s=1, for n=p if r=0,s=1, and for n=p+1 if r=0,
s=>2, except the case (p,r, s)=(3, 3, 1),

B(n, 2(+s)p+s+1)(p—1)—2@¢+1)—1)=Z, generated by [a1B]B:(2n
+2p—1)] for n>1, except the case r=p—1, s=1, n =p*—p—1,

B(n, 2p*(p—1)—2)=~ Z, generated by [} (2n+2p—1)] for n>p*—3,
B(n, k)=0 for the other cases.

(6.6) FE(n, k) is defined as follows:
E(n, 2(p*+1)(p—1)—8) = Z, generated by isxe'(2n+1) for n=p*—2p,

E(n, 2(p*+i)(p—1)—2)= Z, generated by ie;(2n+1)
Jor 1<i<p—2 n=p(p—i)+1,

E(n, 2(p*+2)(p—1)—3) = Z, generated by [¢'(2n+2p—1)]
Jor p>3,n=p(p—2),

E(n, 2(p*+i+2)(p—1)—3) =~ Z, generated by [a1¢;(2n+2p—1)]
Jorl<i=p—38,n=p(p—i—2),

E(p+1,2(p*+p—1)(p—1)—2)= Z, generated by ixe,-1 (2p+3) for p>3,

E(n, 2(p*+p—1)(p—1)—2) =~ Z,: generated by [e, »(2n+2p—1)]
Jor n>p+1,

E(n, k)=0 for the other cases.
To define U,(n, k), we shall use the following notations and conventions:
(6.7 For i=1, 2, 3, G; denotes the group isomorphic to Zyn or Zyi+ Z,.

In a few word, we say that G; is generated by v, and 1., when G; is generated
by 11 and Gi=Zyw0or by 11 and v, and G, < Zyi+ Z,.

6.8) U,(n, k) is defined as follows:
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(i) For k=<—2(mod 2p—2) and for k=2p—4, U,(n, k)=0.

So, in the following, we put k=2r(p—1)—2(r>1) and U=U,(n, k), and divide
wnto eight cases by the values of r.

(i) 1<r<p+4,r=0(mod p):

U= Z, generated by [ pxQ**'(a1)] for n=1,r=p+3,
=~ 7, generated by ixpsxQ" 1 (ct,_n_1) for 2<n<r—1,
~ Z, generated by isxpsxQ"*'(¢) for n=r—1,
=0 for the other cases.

(ili) r=p+4,r=0,1(mod p):

U= Z, generated by [ pxQ** ' (at,_p_2)] for n=1,

~ G, generated by [ p+Q" (@ _p_n-1)] and isxpsxQ" " (@r 1)
Jor 1<n<r—p—1,

=~ Z, generated by isxpsxQ" 1 (y_n-1) forr—p—1<n<r—1,
~ Z, generated by isxpsxQ"*'(¢) for n=r—1,
=0 for n=r.
(iv) r=p:
U= 7, generated by ixy1(5) for n=2,
~ Zy generated by ixr1(2n+1) for 3=n<p—1,
=0 for n=1 and for n=>p.
(V) r=sp,2=<s<p:
U= Z, generated by [ psxQ?* ' (tsp_p-2)] for n=1,
~ Z, generated by ixy,(5) for p=38,s=2, n=2,

~ G, generated by [ p«Q?**(@sp-p-3)] and ixy o(5)
Jor n=2 except the case p=3, s=2,

~ G, generated by [ pxQ" " (sp_p-n-1)] and ixy (2n+1)
Jor 2<n<sp—p—1,

~ Zy generated by ixy(2n+1) for sp—p—1<n<sp—1,
=~ Z, generated by ixS’r(2sp—3) for n=sp—1,

=0 for n=sp.
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(i) r=p*

U= Z, generated by [ pxQ?  (ap_p-2)] for n=1,
~ G, generated by [ pxQ’ *(ay_p-3)] and ixr,(5) for n=2,
~ G, generated by [ pxQ” *(ap_p-1)] and ix7,(7) for n=3,

~ G, generated by [ pxQ" *(apr_p_n_1)] and ixy,2n+1)
Sfor 3<n<p*—p—1,

=~ Z generated by ixr,(2n+1) for pP—p—1<n<p®—2,
=~ Z, generated by ixr,(2p*—3) for n=p*—2,
~ 7, generated by ixS*7,(2p*—38) for n=p°—1,
=0 for n=p°
(vil) r=2p+1:
U= Z,: generated by [1.(2p+1)] for n=1,
~G, generated by [1,(2n+2p—1)] and iypsxQ" (azp-n) Sfor 1<n<p,
~ G, generated by [ S’r,(4p—3)] and ixpsQ?*'(a,) for n=p,
~ Z, generated by isxpxQ" (azp-n) Jfor p<n<2p,
=~ 7, generated by ixpxQ"+'(c) for n=2p,
=0 forn>2p.
(viii) r=sp+1,2<s<p:
U= Z,: generated by [7,2p+1)] for n=1,

~ G, generated by [7,2n+2p—1)] and ixpsxQ" ' (tsp-n)
for 1<n<sp—p—1,

~ G, generated by [ pr:(2sp—38)] and isxpxQ" (1) for n=sp—p—1,
=~ Z, generated by ixpsxQ" " (Asp-n) Sfor sp—p<n<sp,
~ 7, generated by ixpsQ""'(¢) for n=sp,
=0 for n=sp+1.
(ix) r=p’+1:
U= Z, generated by [1,(2p+1)] for p>3, n=1,
~ G; generated by [17,2n+2p—1)] and isxpxQ" ' (atpe_n)
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Jor2<n<p*—p—1,
~ G, generated by [1,(2p*—38)] and ixpsxQ"(aps1) for n=p*—p—1,
~ G, generated by [ S*r,(2p*—38)] and ixpsQ" *(a,) for n=p*—p,
~ Z, generated by ixpsxQ" *(ap_n) for pP—p<n<p?
~ 7, generated by iyxpxQ"*'(¢c) for n=p?
=0 for n=p*+1.

For the case p=3, n=1, we have either U= Z; generated by [15(7)], or U=G;3
generated by [73(7)] and ixpxQ*(as).

(6.9) Uy(n, k) 1s defined as follows:
@ U(n, 2(r+s+Dp+s+n)(p—1)—2@F+1)—1)

=~ Z,+Z, generated by ixus(l, B7B::1) and [ pxQ"**(B18s)]
Jor n=lp,r>0,1=s=p—2.

~ Zy+Z, generated by isxus(l, Bs:1) and [ pxQ" ?(B:)]
Jor n=Ilp,r=0,1<s<p—2.

=~ Z, generated by [ pxQ"?(B;B,)] for n=0(mod p), r=0,s=p—1
and for n=<0, 1(mod p), r =0, s=1.

(i) Us(n, 2(+Dp+s—1(p—1)—3)

~Z,+Z, generated by ixS?u,(l, Bs) and [ S *uy(l+1, B, 1)]
Jor1>1,5s >3, s+1<p,n=(+1)p.

~ 7, generated by [ S *us(1, Bs_1)] for 1=0,5=>8, n=(+1)p.

~ 7, generated by [ S*?u (141, B_1)]
for 1 =0,5=3,s+1<p, n=(+1p+1.

~ 7, generated by ixS¥us(l, Bs) for 1=1,s=2, s+1<p,
n=Ip+j, 0<j<p except the case s=2, j=p—1.

(i) Up(n, 2(c+s+Dp+s—D(p—1)—-2¢+1)—1)
~Z, generated by ixu;(l, 87*1) for n=Ip,r =0, s=1.

~ 7, generated by ixS¥us(l, B; B;)
Jor n=Ilp+j,1<j<p—2,1>1,r220, s=>1 except r=0, s>1.

iv) Uy(n,2((r+s)p+s+n)(p—1)—2(r+2))
=~ Z, generated by ixpsxQ" "' (B 8s) for n>1, nax—1(mod p),
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r=0, s=1 except the case n=0(mod p), s =>2.
) U(—Dp+2+j,2(C+s+Dp+s+1)(p—1)—2(+1))

~ 7, generated by [ S¥us(l, B1B:)] forr=1,s=1,1>1,0<j<p—2
except s<p—2, j=p—2.
vi) U,Up, 2(r+s+Dp+s)(p—1)—2@F+2))

=~ Z,+ Z, generated by ixpxQ"?* 1 (B1Bs) and [ S *az(l, B77 Bs-1)]
forr=0,s=>2 1>1.

(vil) U, (n, 2(sp+s+n)(p—1)—3)
=~ Z, generated by ixpxQ" " (B;) for nx0(mod p), s =2
and for p=3, n=3, s=2.
(viii) For the other cases, we put U, (n, k)=0.
(6.10) U,(n, k) is defined as follows:

Ui(n, 2(tp+0) (p—1)—4) =2, for2=n<t<p.

U,(n, k)=0 for other cases.

Remark that, under the projection S™: 72u.1.2(Ba(p); p)—> 73 (B; p)
the subgroups A4 (n, k), B(n, k) (k=2(p*+1)(p—1)—38) and E(n, k) are map-
ped isomorphically into the stable group 73 (B; p), and the subgroup U, (n, k)
+ U, (n, k)+ U, (n, k) (+ B (n, k) if k=2(p*+1)(p—1)—38) coincides with the

kernel of S™.

The following proposition is obtained easily from Proposition 6.1 and the
above definitions (6.4), (6.5) and (6.6).

PropositioN 6.4. The subgroups A(n, k)+B(n, k)+E(n, k) are direct
Sactors of the groups man.1.: (Bu(p); p).

To investigate U, (n, k) and U, (n, k), we shall discuss the exact sequence
(0.8). As a consequence, we obtain

ProrosiTion 6.5. There exists a map G: C, =Y*" D=2y Cy?r+»r-3
—>QB,(p), n=1, such that G* are isomorphisms of H*"*Y*=3( ; Z,) and
HX0p=3( o 7.5 and that the following diagram is commutative:

6.11) -5 (3" s p) > m(QBu(p); p) > (Q3 Y )T

T& T& T&

P —2. ] . f g% —2.
o (VRIS p) B 15 (Co, s P mp (YOI

where j, denotes the inclusion and j, denotes the projection.
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Proor. By Lemma 2.8 in [8], we obtain the following

(6.12) H*(Q3"*'; Zp) = A(ao0) @ Zy[dao](deg ao=2(n+1)p—38) for deg<
pCn+1Dp—2)—2 and H¥(Q3"*71; Z,)=A(bo) ® Z,[ 4bo] (deg bo=2(n+p)p
—3) for deg <p@2(n+p)p—2).

Then the spectral sequence associated with the fibering

Q31 —'—)QB,, (P) _f_>Q%n+2p~1
is trivial for total degree<p(2(n+1)p—2)—2 and so, we have

(6.13) H*(QB.(p); Zy)=A(x0, y0) @Zp[ dxo, dy0], i*(x0) =ao, yo=j*(bo) for
deg<p2(n+1)p—2)—38.

The map iG2,: Y?"r-3 5 y2etr=2__ g3ntl_50B,(p) is null-homo-
topic. Hence there is a map G: C.,—> QB,(p) which is an extension of iG,
that is, iG=Gj, holds. Similarly, we have a map G': Y*"+»?-2— Qgn+2o-1
satisfying jG~G'j,, since C;, is homotopy equivalent to Y2**»?~2  The map
G’ is homotopic to G: Y*"+9)?-2___5 92»+2s-1 by the uniqueness of G in Proposi-
tion 3.1, and the required conditions of G follow from (6.12) and (6.13). q.e.d.

Now we consider the subgroups U, (n, k) and U, (n, k).

ProrosiTioN 6.6. The subgroups U, (n, k) are direct factors of the groups
Tontltk (Bn (P) 5 P)

Proor. By the dimensional reason, U,(n, k) and U, (n, k) overlap in the
following two cases:

(A k=2(p"—p+n)(p—1)—2, 1<n<2p—1, np—1, p. In this case,
Toni1:6 (S p) /Im 0,=<Z,+Z, is generated by pxQ" " (B:7') and psxQ"*!
(@prp-1)y AN Tani141(S 21 p)NKer 0, = Z, is generated by pxQ"*?(@yr_2p-1)-

B k=2 +n+1)(p—1)—2,1<n<p—1. In this case, s, 1.4(S™"**;
p)/Im 0,~Z,+ Z, is generated by pxQ" ' (812B2) and psxQ" (), and mani1i
(72t pynKer 0, Z, is generated by p+Q"*?(ay_,).

Now we consider the case (A). By (38.1), (4.15) (i) and (4.24), we obtain

the following
H®p, 0" (atpe_gp 1) = xGxir*a? 222 0a  for some x<0 (mod p),

where i; denotes the inclusion and G: Y2 +2-1r=3___, 322+2-3 {5 the map in
(6.11) (replacing n by n—1). The element ifa?* " "'0q ¢ 7;(Y*®+2-Dr=3; 5y
i=2n+1+4+k—4, is of order p and contained in Ker 4,_,-. Let 7€ m,
(C,,_) be a coextension of yi=xija?” *"'0a. Replacing & and a by 2,
and 7; in Lemma 6.3, there exists 75 € 7;,1(Y?*?72; p) such that jixrs=pr:
and 7%7;=—2A,_.a? "2 '0a hold. Since A,_pa? * 10 =ca’ t'0ad =
entita ? 0a(c € Zp) and n¥ i w1 (Y2272 p)y——>[ Y, Y2 =100 pp1)-2
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is monomorphic, we obtain 73=c’ifa?’?~10a for the inclusion i: S**1C Y+?
and for some ¢’ ¢ Z,. Therefore Gyy;=c"H® psxQ"* ' (ap_5-1) holds for G:
Y#r-2 (%! and for some ¢”" € Z,. From the diagram (6.11) (replacing n
by n—1), we can determine the group extension at 7s,.1.:(B,.(p); p) by the
investigation of the extension of the following groups:

0—>m (Y25 p) /Im 2y 1o—> i1 (Cr, 5 p)—>
T (Y- De=2 s pyKer 2, 1:—>0,

ie, Toni1a(Bu(p); p)=Zp+Z, if "0, and~Z2Z,+2Z,+ 2, if ¢"=0. Thus,
we see that iy ps«Q”*(B271) generates a direct factor of 7sui1.2(Bu(p); p).
The case (B) is similar to the case (A). q.e.d.

On the groups U,(n, k), we need to investigate the group extensions in
the following cases: the first and the second cases of (6.9) (i), the first case of
(6.9) (ii) and the case (6.9) (iv).

In the case (6.9) (i), we have H®p, Q" ?(8;B:)=CGxiF¥x (B1)0) Bsy, =<0
(mod p) and 2,-1:(81)0)"Bs»=0, and so the splitness of the case (6.9) (i) is
established by Lemma 6.3.

By the similar arguments, we obtain the following

Proposition 6.7.  The subgroups Uy(n, k) defined in (6.9) are direct factors
of the groups mon.1.2 (Bn(p); p).

By the dimensional reason, the subgroups U,(n, k) are direct factors.

Thus, Theorem 0.6 is proved entirely.

As a corollary of Theorem 0.6, we get the following uniqueness on the
homotopy type of B,(p):

ProrosiTioN 6.8. Let n<p®—2p and let B=S*" "1\ 21\ ye'"+? pe q
cell complex having the cohomology ring

H*(B; Z,)=A(v, ?*v), deg v=2n+1.

Then, there is a map f: B—> B,(p), such that fx are isomorphisms of m;( ;p)
Jor all i.

Proor. Since the attaching map of the (2n4-2p—1)-cell of B represents
an element xa, (2n+1)+ 8, r8=0, for some x, r=0(mod p), there is a map
fo: K—> B,(p) such that f§ are epimorphisms of H*( ; Z,), where K denotes
the (2n+2p—1)-skeleton of B. Let g: S*"***~'—— K be the attaching map
of the (4n+2p)-cell of B. The group 7s.2,-1(B.(p)) is finite and its order s
is prime to p, since 7uni25-1(B.(p); p)=0(n<p®*—2p) by Theorem 0.6. Then
we can construct a complex B’ and maps f,: B—> B’ and f,: B'—> B,(p)
such that ¥ and /¥ are isomorphisms of H*( ; Z,) and that f, is an extension
of fo, where we may take B’ as the mapping cone of the map gh for the map
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h: StrrEr=l— g4 +20-1 of degree s. Then, the map f=f,f, satisfies the re-
quired conditions. g.e.d.
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