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Introduction

Let p be a prime integer =5, q=2(p—1), and M,=S!U,e? be a Moore
space of type (Z,, 1). Denote by <7, (M,) the stable track group {S*M,, M,} =
Dirlim {[S"*¥M,, S"M,], S}, S being the suspension functor. Then the direct
sum o (M) =2, (M,) is an algebra over Z, with the multiplication
induced by the composition of maps. The structure of the ring 4(M,.) is
studied by several authors [4] [6] [13] [14].

N. Yamamoto [14] has calculated the ring structure of «/4(M,) for degree
<p?q—4,q=2(p—1), from the results [8] on the stable homotopy ring G, =
2.G,, G,=Dirlimr,,,(S"), of spheres. P. Hoffman [4] has introduced a dif-
ferential in o 4(M,) and studied the commutativity of the ring .« ,(M,) using this
differential. H. Toda [13] has generalized Hoffman’s results and obtained
several useful relations involving the elements B € oy, 1)q—1(M)).

The purpose of this paper is to determine the ring structure of o7, (M)
for any r=1, within the limits of degree less than (p2+3p+1)q—6.

Let i (=i,): S'>M, and n (=mn,): M,,—S? denote the natural maps and
setd (=6,)=ine o _(M,). Wehavein Proposition 2.3 a direct sum decomposi-
tion for odd ¢:

L (M) ® Gy ® Z,+ Gy ® Z,+ Gk Z,+ Gy _ %2, .

Let H~ Z,, be a summand of G, generated by an element y. Then H gives
summands Z,m, Z,m+Z,» and Z,., m=min {r, s}, of &, (M), «(M,) and
&y~ 1(Mpr), via the above decomposition. In §3, we construct elements [y]
(=) e A+ 1(M,-) and <y (=(p>,) e (M) for y above, and we see in
Lemma 3.3 that we can take the elements [y], [7]d, {y) and {y)é for the generators
of four cyclic summands of «/,(M ) given by H. Thus the additive structure
of & «(M ) is described by using such elements (Theorem 3.5).

In Propositions 3.8-3.9, we discuss the relations of the products <{a)[f]
and [«] [f] in oZ4(M,) with the composition «f and the Toda bracket {a,
p5, B> in G,. By these results and by employing the differential D (see (1.6)
for the definition) in «&/,(M ), we can calculate the ring structure of 7, (M )
from the results [5][6] on G,.
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We define some elements of o7 4(M,) as follows:
a = [o ], € l(Mp),
By = [BJi € F (sp+s—1)q-1(M}) (I=ss=p+1, s#p),
& =[] e prr1)g-2(M}),
¢ =[e]y € (p211)-1(M)),
G =01 €F g2 4 pa-s(M,),

where ¢=2(p—1), and «a,, B,, ¢, &; and ¢ are the generators of the p-primary
part of G,[6]. The elements a and S, are the same ones studied in [13] and
[14]. For new indecomposable elements, the following Toda bracket formulae
are satisfied (Propositions 5.2 and 6.3):

é € <(ﬂ(])5)l’—1ﬂ(l)’ 0(5-—50!, a6_5a> 'y
& €4a, f1y, 0a(6P1))P~ 1),
@ € (eaP~ 35+ deaP~3, ad — da, d — dar) ,

and the elements &, ¢ and @ are uniquely determined by these formulae and the
relations D(€)=D(e)=D($) =0 and exP~!=0. Then, our results on /4 (M,)
are summarized as follows:

THEOREM 0.1. Let p be a prime integer =5. The ring o (M,) is mul-
tiplicatively generated, within the limits of degree less than (p*+3p+1)q—6,
q=2(p—1), by the elements

ded_y, aed, Po€Lpis-1)-1 1 Ss=Zp+1,5s#p),
€S (p241)g-2> EEA (pr41)q—1 ANd PEA (p24py- 3
of order p, with the following relations:

(i) 6% =0, oa? = —a20+2uda;

(ii) Psox = adP ), afs) = Bsx =0;

(iii) By0By = (st/(s+t—1))B1)0Bs+e-1) for s+t#p, p+1,

B0Bp-s) = 52B1y0Bp— 1)+ 55— 1)/2(B(1yB(p- 1y0 +0B1)Bp-1)) »

ﬁ(s)éﬁ(p+l—s) = s(s— 1)5(2)55(,:—1);

(V) By =0 for stt#p, Bybp-9 = sBubw-1s
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(v) aB)» =0,  (B1)0)B2) =0;

(vi) ade = eda+ dex—ead, oE = &a, ™! = 0;

(vii) &d6a = &ad, adE = déa, g = aé = gad —é&da;

(viii)  B1)Bp-1) = 26?400 —3exP~36 —deaP~3 up to non zero coefficient;
(ix) (s+1)edBs) = 20(6B1))P ' 0B(s+1)0 +(s— 1)6(8B1))*~ " 0B s+ 1)

(s+ DB 08 = (1—5)a(0B1))P™ " 6B s+ 1)0 —20(0B1))" ™' 6B(s+ 1)

Bt = =By = (0B(1))P 1 0Bssry  for s=1,2;

(x) &Py = P1y0&—0x(0P1))P~ 020,

8B (2) = = Bz0% = — - 32(681))" 682,

Bt = Bioy= = ((6(Biu0)7 Baw )5 = 61(8B(1)7 " 6Bss 1)
fors=1,2;

(xi) @0 =-0p, Qa=0p =0, B, ==—0Pu)

B1)P = adf3)0B,~1) up to non zero coefficient.

An additive basis (over Z,) for o (M), k<(p*+3p+1)q—6, is given by
the following elements:

S, 1, a%6%, a~16ad® (1 £s £ p2+43p),
0*(B1y0) ' Byd® (L =r=p+3),  6Bu1y0yBso® ((r,9)el),
0°(B1y0) B2y0B(p-1)0° (r=0,1),  6°a(0B1))6* (1 =r <p),
0%(B1)) 0P (50"  ((r,s) € J), 0%a(0f(1))"0B2)0Bp-1)0° (r =0,1),
0%(B1)0)esd (0=r<=<3), d%aid® (0<i<p-2),
d%ai~10a0® (1ZiZp-3), ea?~ 25009, @o°,
where a, b=0 or 1, and the index sets I and J are given by
I ={rs)0=r<p, 2=s=p+l, s#p, r+s=p+2},
J=I-{1,p+1)}.

Now let A: M,»M . and p: M,.—>M, denote the natural maps. Then we
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define the following elements of .o, =.o7 (M ,2):
0, =imes {=lwspest,, (L =s<p),
Bisy = ABop €L (spis-1)p-1 (1 Ss=Sp+l,s+#p),
g = /lépe.ﬁf;pz+1)q-2, gy = AeiTlpesl payiy-1 (1 SES p—1),
o' = [o,], € pys ¢ =[pl €A p24pg-2

where «,, and ¢ are the generators of the p-parts of G,,_; and G2, ,),-3, Which
are isomorphic to Z ..

THEOREM 0.2. Let p be a prime 25. The ring o (M ,2) is an algebra
over Z,: and it is multiplicatively generated, for degree <(p*+3p+1)q—6,
by the elements 0y, o', @' of order p? and the elements & (1=s<p), Bi5, (1=
sSp+1,s#p), & and g, (1Si<p—1) of order p, with the following relations:

(6,)2 =0, 0,0 = —a'?5,+2a'6,0/, a'é =Ea,
nE =0 for n,{e{&;Pis) &0},
a'n =na' =0 for ne{Bs), & e, '},
o'n=ne’ =0 for ne{ls B},
nol =0om =0 for (0,0) =, &) (G+t#p), by (22),
@, Bls), (o) (Eu@) (&, E),
(@, 80)), (@59, B2y &), (Bisy €y)
555251)—‘5 =5(0'0,—06,0"), 0,8 = ', 0,0 =0,0'E,,
Bisy0281 = E102B(sy, E02B(1) = Bi1)028,
$€(145)02¢1 for i+s=<p-3,
02801y = €(1)0285 = | SpP’ for i+s=p-—1,
[0 for i+s=p-2 and for i+s = p,
BrodaBie, = [(st/(s+t— 1))B1y02B(s+1-1) for s+t#p+1,
s(s—1)B2)02Bp-1) for s+t=p+1,
Bi1)020" = @'0,B(1y = £1028(2)02B(p-1) up to non zero coefficient,

$1(02B(1))? =0, (B(1)02)?B(2, = 0.
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Also the group o (M), k<(p*+3p+1)q—6, is the direct sum of cyclic
groups generated by the following elements (a, b=0 or 1):

(i) 6, 1, o0%, o '0,0'0% (1 <s=Zp+3), 6%5¢'68;

(i) 0%a¢,0% (O=s=<p+2, 1=t<p),

03(B(1)02) ' B(1)08 (1 =r=p+3), 8(B(1)02)"B(s0%  ((r, s) € I),
08(B(1)02)"Bi2y02Bp-1)05 (r=0,1),  858,(828{1))08 (1 =r<p),
0481(028(1))702B(s05  ((r, 5) € J),

0481(62B(1))702B(2)02Bp-1)0% (r=0, 1),

05(B(1)02)7€0% (0=r=3), 56103 (1=Si=p-1),

056105805 (1 =i = p—3);

where the elements in (i) and (ii) are of order p? and p respectively, and I and
J in (ii) are given in Theorem 0.1.

There exists an element o). of G,2,_; of order p* [5] and it is the only ele-
ment of order = p3 in G, for k<(p?+3p+1)q—5[6]. So we only introduce
an element

o = [ap2]3 € & 2,(M,,3) of order p3

to describe the structure of o«/,(M ) for r=3. Let B, be the set of the elements
o' (1=s=<p+3,s#p) and ¢’ of (i) in Theorem 0.2, and B, be the set of the
elements of (i) for a=b=0 in Theorem 0.2. Then the group (M), k<
(p?+3p+1)g—6, r=3, is the direct sum of cyclic groups generated by the fol-
lowing elements:

o, =i,mel _(My), L € oo(M) of order pT;

02AT 30" pr30b € A 2g— g (M ) of order p3;
032 pr-240 for neB, of order p?;
0a)r=2ppr-240 for neB, of order p;

where a, b=0 or 1, and A*: M s~ M ,+. and p*: M ,e+.—M s denote the natural
maps (A°=p°®=1). Also the multiplicative structure of .&#4(M,-), r=3, can be
determined similarly as Theorem 0.2 using Theorem 4.4, and the detailed results
are stated in Theorem 7.5.

This paper is organized as follows: In §1, we introduce a differential D
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in the ring &7 4(M,) due to P. Hoffman [4] and H. Toda [13]. In §2, we discuss
the relations among the differentials in «7,(M,) and &/ ,(M,.) for t'=0 modt
(Proposition 2.2), and the direct sum decomposition for the group </, (M,) stated
above is proved (Proposition 2.3). In §3, we construct and study the above
elements [y], and <y), of &,(M,). The results in §3 are useful to determine
the ring «/4(M,-). In §4, we consider the subring of «/,(M ), 1 <r<3, related
with the family {a,} of G, due to J. F. Adams [1] and H. Toda [9]. For r=1,
this is the subring generated by two elements § and o, and its structure was deter-
mined by N. Yamamoto [14]. Our results for r=2, 3 (Theorems 4.3-4.4) are
more complicated than the case r=1. In §5, we introduce the known relations
among the elements f, from [13], and give the elements & and & of </ (M)).
In § 6, the ring structure of .« (M) is calculated and Theorem 0.1 is proved. In
§7, we treat the ring &/ o(M,-), r=2. In the first half of §7 Theorem 0.2 is
proved, and in the second half the results for o/,(M,), r=3, are stated and
proved. In the final section, §8, several relations on the stable Toda brackets
in G4 are proved. For example, we obtain in Proposition 8.1 the following
formulae from Theorem 0.1:

<(I}1)p, Olps as> = _'_L‘TSB,.+S_2(11 fOP‘ r ; ]’ N g 2, r+s é P+1,

(By)Py oy, 0> = FE, 10ty

§1. A differential in the ring 7, (M,).

For any based finite CW-complexes X and Y, the smash product of X and
Yis denoted by X A Y, and the n-fold suspension S"X of X is defined by the smash
product S” A X of the n-sphere S" and X. For X and Y, one can form the stable
track group

{X, Y}, = Dirlim {[S"**X, S*Y], S},

where [X, Y] denotes the set of based homotopy classes of maps of X to Y.
For a map f: S"tkX —S"Y, we denote usually by the same letter f its homotopy
class in [S"**kX, S"Y] and its stable class in {X, Y},. Especially, 1=14: S"X—
S"X denotes the identity map of S"X and its classes in [S"X, S"X] and in {X,
X}o. For ae{X, Y}, and Be{W, X},, we denote by af e {W, Y},,, the element
represented by a composition fg, where fe [S"tkX, S"Y] and g € [S"T*+IW, S"tkX ]
represent o and f respectively. ay: {W, X}, —>{W, Y}, and B*: {X,Y};—
{W, Y};+, denote the homomorphisms defined by o.(f)=af and p*(a)=0af.
We also denote by

(X)) = {X, X}i.
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Then the direct sum o (X)=2,,(X) forms a graded ring with the multipli-
cation as above; 1y € o/4(X) being the unit. When X =S°,

Gy = (5% (resp. Gy = £ 4(5?))

is the stable homotopy group (resp. ring) of spheres.
In the following of this section and the next section, ¢t denotes a fixed odd
integer. Let

M,(=M)=S'U,e?
be a Moore space of type (Z,,1). Then, there is a cofibering
(1.1) St i, M, =, §?,

and we have the following short exact sequences for finite CW-complexes X and
Y (cf. [2; (1.7), (1.7)']):

0—{X, Y} ® Z,UMws (X M, A Y}, My (X Y}, _,*Z,— 0,
1.2)

0—{X, Y}y @ Z, 2N {M, A X, Y}, GALOY (X, Yy *Z,— 0.

Since t#2 mod4, 1,, € o 4(M,) is of order t (cf. e.g. [2; Th. 1.1]), and so
{X,M,AY}, and {M,A X, Y}, are modules over Z, for any finite CW-complexes
X and Y (cf. e.g. [2; (1.8)]), and in particular «,(M,) is an algebra over Z,. Equi-
valently the smash product M, A M, is stably homotopy equivalent to the wedge
SM,V S2M, (cf. e.g. [2; (4.5)—(4.6)]), and hence there are splittings

pne{M, AN M,,M,}, and pe{M,, M, A M,}_,
such that
I A Ly) =1y, (@A =1y, pup=0,
(i A Lyt A 1y) = Lyam M=M,),

(cf. [3;(7.6)~(7.8)]). Since t is odd, &,(M,)=0 and so p and ¢ are unique.
Also p and ¢ are commutative by [3; Th. 7.10]:

(1.4) uT=—u and TP =¢,

(1.3)

where Te o o(M, A M,) denotes the element represented by a map switching
factors. Referring to [12; Th. 6] (cf. [13; Prop. 2.1]), if t%3 mod9, u and ¢
satisfy a sort of associativity:

(1.5) If t#£3 mod9, then
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pdpe A +u(pAly) =0 in {M;\AM, A M, M,},,
(I AP)p—(PAly)p =0 in {M M, A M, AM}_,.
We define a linear map
(1.6) D: A (M)—s(M) by D(&) =p( A 1y)d.

Then, — Do =06D coincides with D of P. Hoffman [4] for the map ¢ defined by
o(&)=(—1)4e9¢¢.  Also our D coincides with 1,,=—6 of H. Toda [13] if ¢ is
a prime integer. According to [4; Th. A] (cf. [13; Th. 2.2]), D is a derivation
and the associativity (1.5) implies that D is a differential:

amn D(&n) = D(n+(—1)*s¢D(n),
(1.8) If t # 3 mod9, D2(¢) = 0.
For i and 7 of (1.1), we put
0 =inesl _(M,).
Then, 6 generates o _,(M,)~Z, and we have immediately
1.9 62=0, D(@) =1, and D(1)) =0.
The following formula is Proposition 2.1 (a) of [4] (cf. [13; Th. 2.4 (iii)]).
(1.10) D(n+(—D*¥'D(m)D(6E) = (—1)**DinD(&) + D(£8)D(n)

for Ee (M) and ne o (M,).
This formula is useful in connection with the commutativity of the ring o/ ,(M,),
that is, we have the following two corollaries of (1.10).

(1.11) ([4; Th. A (b)]) The subring Ker D of o ,(M,) is commutative, i.e.,
&n =(=1)*n¢
for Ee £ (M,) and ne o (M,) with D(€)=0 and D(n)=0.
(1.12) ([4; Prop. 2.1 (d)])
(£ —(—1D*6n = (—DE= V(L6 —(—1)*68)
for any Ee o (M) N KerD and ne o (M,).
REMARK TO THE CASE t=3 mod9. Let «;€G; be an element of

order 3, and put a(t)=ia;me o ,(M,). The elements a, and a(t) (t=0 mod 3)
generate the 3-primary components of G; and «7,(M,) respectively, and a(t)=0
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for t#£0 mod3. By [12; Th. 6] and [13; Prop. 2.1], for the case t=3 mod 9,
the element a(t) is the obstruction to the associativity of u and ¢, that is, the left
sides of the equalities (1.5) are equal to +a(t)(mAnAly) and (G AiA1)a(t)
respectively. Also, by [13; Th. 6.1 (i)], we have the following formula cor-
responding to (1.8):

(1.8) If t=3 mod9, then D2(&)= +(a(t)¢ — Ea(t)).

§2. Relation of 7, (M,) and «,(M, ), t'=0 mod¢.

In this section, let ¢ and ¢’ be odd integers such that
' =0modt¢,
and we denote by
i',n',u and ¢’

the elements for M, in (1.1) and (1.3). Since t'=0 mod¢, there are elements
2.1) rie{M,M.}; and pe{M,, M},
such that

Al = (20, i =pi,
2.2) T =74, np = ('[/Hn’,

pr=(r[tyl,  Ap=(t[)1,

where 1 and 1’ denote the identity maps of M, and M,..
We notice that A and p generate {M,, M, },~Z, and {M,, M,},~Z, res-
pectively and so these are unique.

LEMMA 2.1. The following equalities hold.
(i) G ADup AD+AADP A1) =1"A1.
(i) W@ AD=2ulp A1), (1" Ap)p =4 A Dp.
(i) L@AAL)=2ud Ap), (p A1) =(1 A Dop.
V) wulp Ap)=pi's W@AAND =D,
A AN =¢"2, (o Ap)' =("[1)dp.
Here 1 and 1’ denote the identity maps of M, and M,..
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ProOF. Put p"=p(pAl) and ¢"=(AA1)¢. Then p"(i' Al)=u(pi’ A1)=
HEAD =1, AD)Y" =@ AN DP=(n A)p=1and p"¢" =p(pA A 1) =(r'[)pd =0
by (2.2) and (1.3). Hence for the element =i’ A D)u"+¢"(w' A1)—1"A1, we
have (7' A1),£=0 and (i’ A1)*¢=0. Since &((M, =Z,, generated by 1, and
o (M,) =0, it follows from (1.2) for M, that £=0. This proves (i).

Since {M,, M.}, =0 and {M,, M,}, =0, we have p'(AAD)p=u'(1' AL)¢"=0
and p(p Ap)¢'=p"(1" Ap)¢p’=0. Then, p'(1"AD)=p' (1" AA(I"ADU"+¢" (" A
D)=p'(i’' ADA"=2y" by (1.3) for M,.. Similarly (1’ A p)¢p’'=¢"p, and (ii) is
proved.

Let Teo(M,AM,), T'e (M, AM,) and T"e{M,AM,, M, AM,},
be the elements represented by switching maps. Then, by (1.4) for M, (ii) and
(1.4) for M,, we have f'(AA1)=—pu'T'AA1)=—=p' (I’ AT =—du(p AD)T" =
—AuT(A Ap)=2u(1 Ap) and similarly (p A1) =(pA1)T'¢'=T"(1' Ap)P’ =
T"AADPp=(1AV)Thp=(1 AAX)pp. Thus, (iii) is obtained.

For (iv), we have

wp A p) =up Ap)(i" AW +¢'(n A1)
=plp A )" AW =p(i A p) = pi’,
AN =@ ANGEADpt+d(n A1)
="/ A D= ('[N)u,
AADG =" AVWHP(@ AVNAA DG =@ (AN =4,
and  (p A p)P =((i A Du+d(m A D)p A p)P" = d(rp A p)§" = (t'[DDp.

q.e.d.

PrROPOSITION 2.2. The following equalities hold.

()  D(E)A = AD(pE'A), pD(E) = D(p¢'Ap  for & el (M,).

(i) D(E"p) =AD(p&)p  for &' e{M, M}y,

DALy =AD(E"A)p  for &' e€{My, M}y.

(iii) D(A¢p) = (t'/DAD()p for el (M,).

(iv)  pDENA=(t'|OD(pE'A) for ¢&'est(My).

PrOOF. (i) D(ENA = p'(& A 1)¢'A
=& A1UYAANDP by Lemma 2.1 (iv)
=" ADELA D
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=u(p A )EAL A 1)¢ by Lemma 2.1 (ii)
= Au(pS' A A 1)¢ = AD(p¢'7),
and similarly
pPD(E) = plp A p)E" A 1) = p(p" A 1)A A DpA = D(p'D)p.
(i) D(&"p) = pw'(&"p A 10)" = p'(E" A 1')(p A 1)’
=u(E A1)Y1 A DPp by Lemma 2.1 (iii)
=@ (1" A D" A Depp
=u(p A D A D¢p by Lemma 2.1 (ii)
= Au(p&" A 1)dp = AD(p¢")p,
and similarly
D(AL") = Au&" A D(A" A p)¢" = u&" A 1A A Ddp =AD" Dp .

(iii) and (iv) follows immediately from (ii) and (i) by using (¢'/t)1' =1p and
(t'/H)1 =pA, respectively. g.e.d.

By (1.2), we have the following short exact sequences:
(2.3) 0 — Gy ® Z, =5 {M,, SO, > Gy 1%Z, — 0,
(2.3)* 0— G ® Z, 5 {S°, M)}, -2 G_,*%Z, — 0,
(2.4) 0 — {8 M}z ™ (M) = {S° M}y — 0,
(2.4)* 0 —> {M,, S°};_, > o (M,) = {M,, S°};_, —O0.

ProPOSITION 2.3. The above sequences are split, and hence o« (M,) is
additively isomorphic to the direct sum

Gir1 ® Z,+ G, ® Z,+ G *Z,+ Gy *2Z,.

Proor. Let y be any element of Gy, ,*Z,cG,., (resp. {S°, M}, ;).
The order s of y is a divisor of t.. There is an element y € {M,, S°}, (resp. {M,,
M,},) such that yi;=y for the inclusion i(=i): S'—->M,. For p: M,—»M, of (1.13),
the element yp € {M,, S°}, (resp. &, (M,)) satisfies sp =0 and i*(yp)=y by (2.2).
This means that (2.3) (resp. (2.4)) is split.

Next let y be any element of G,_,*Z, (resp. {M,, S°},_,) of order s dividing
t. Thereis an element § € {S°, M}, (resp. {M,, M},) such that n,j =7 for n(=m):
M,—~S2?, Then, for A: M;—»>M, the element Aje{S°, M,}, (resp. o (M,))
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satisfies sA=0 and =m,(27)=y. Hence (2.3)* (resp. (2.4)*) is split. g.e.d.

PrOPOSITION 2.4. Let r and s be relatively prime odd integers. Then
o «(M,,) is isomorphic, as a ring, to the direct sum & ,(M,)+(M,). If
E+ne i (M,)+ (M) corresponds to { € o/ (M,,) via this isomorphism, then
sD(&)+rD(n) corresponds to D({).

PrOOF. Let a and b be integers such that as+br=1. Let 4, €{M,, M,},,
Are{Mg,M,}o, pr€{M,, M.}, and p,e{M,, M}, be the elements of (2.1).
Set A, =al; and Ay =bA,. Since {M,, M}, ={M,, M,}, =0 by (r,s)=1, we have
p A1 =0 and pA5=0. Also p;A; =1, p,A3=1 and Ajp,+43p,=1 by (2.2).
Define f: /(M) (M)+ (M) and g: & (M,)+ (M- (M,,) by
J©O=p LAy +p,82y and g(E+n)=A¢épi+25np,. Then, we see easily that
fis a desired ring isomorphism and g is its inverse. q.e.d.

§3. Some elements defined from G .

In this section, we treat the case that ¢ and ¢’ in the previous sections are
powers of a fixed odd prime p. Henceforward we set A and p the generators
of {M,,M+1}o and {M,+:, M}, in (2.1). So the s-fold iterations As=
A...A and p*=p...p are the elements of (2.1) for t=p" and t'=p"*s. The elements
i, w and 6 of (1.1) and (1.9) for t=p" are sometimes denoted by i,, n, and 4, if it
is necessary, and so, for t=p" and t' =p"*s (2.2) is paraphrased as

;Lsir = psir+s, ir = psir+s5
(31) n, = 7tr+sﬁ's ’ 7zrps = psnr+s ’

psls = pS.]M (M= Mpr) s lsPS = ps'lM' (M' = Mpr+s) .

We put
5r,s = i,m € {Mp" Mp"}-— 1-
It is well known (cf. [2; p. 80]) that there exists a sequence of cofiberings:
M, 2 My 25 M, 220, SM,

and so we have, for any finite CW-complex X, the following exact sequences:
(3.2) = {X, My} 2 (X, Myr Jo 25 (X, M} 225 (X, My} oy — oo

5:. s

(3.2)* “‘-’{Mps, X}k"Pi) {Mpr+s, X}k'ﬂ’{Mpr, X}k—) {Mps’ X}k_l-_)"'o
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Now let y be any element of G,. Then we define
(3.3) O (=) = YA lyedt (M), M= M, .
The following lemma is easily proved from definitions.

LemMmA 3.1. The following equalities hold.

(i)  D<{y>=0.

(i) i = (=1)%9%y, nly) =yn.

(i) (¢ = (—1)de974e08l(y)  forany { € (M) .

1Av) 20 = ks (90ep® = PP ey

Next let y be an element of G, of order p* and suppose that y generates a
direct summand of G,. Then there is an extension j € {M, S°},_; of y such
that Ji;=y. This element 7 is determined modulo the subgroup G, 7,.
We define an element [y], (=[y]) of ;. (M) by ‘

D(i,y27r)  for r <,

(3.4) Dl ={
D(i,jp""%) for r>s.

For any y' e G,,,, we have D(i,y'nAs"")=D(i,y'n,)=D(,{y'),)=<y">, for
r<s and D(i,y'n,p""%)=p"sD(i,y'n,)=p"~*(y’), for r>s, by (3.1), Lemma 3.1
(ii), (i), (1.7) and (1.9). So, the element [y], of (3.4) is determined modulo the
subgroup prmintnsiG, A ly,.

LEMMA 3.2. The element [y], above is of order p™, m=min{r,s}, and
the following equalities hold.

(i) D[yl =0, if (p,r)#@3,1).
Py for r<s,
(i) =[yli =
Y for r=s.
(iii) [y]¢ = (—1)deol?deasiy]  for any CesfW(M,)NnKerD,
if (p,r)#@G.1).
(iv) A =D+ ih Ddp =plv)es1 for r<s,
)r+1 = Av1p for rz=s.

Proor. (i) follows from (1.8), and (ii) follows from (1.3), (1.6), Lemma
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2.1 and (3.1). By (ii), p™ n[yli=p*~!y+#0, and hence [y] is of order p™. (iii)
follows from (i) and (1.11), and (iv) follows from Proposition 2.2. q.e.d.

LeEMMA 3.3, Assume that G, has a direct summand Z,s generated by an
element y and that r22 if p=3, and let m=min{r,s}. Then, ;. (M) has
a direct summand Z,. generated by the element [y] of (3.4), o« (M) has
a summand Z,m+Z, generated by [y16 and {y) of (3.3), and ,_,(M,)
has a summand Z ,n generated by {y>d. These summands are the ones obtained
from the summand Z ., generated by y, via the direct sum decomposition in
Proposition 2.3.

The following relations hold in o (M) and sZ,_ (M ,-):

ol

Ry for rss,
(3.5) [y1o+(—1*o[y] = [ ‘
<y for r>s,
POy = (= DkpKyyé for r<s,
(3.6) o[y =
oy = (= DXyHé for r>s,
and in particular
(3.6) o[y10 =0 if 2r<s.

To prove the lemma, we prepare the following elementary lemma.

LEMMA 3.4. Let G be a finitely generated abelian group and x be an ele-
ment of order p', r=1, where p is a prime. Then, X generates a direct sum-
mand of G if and only if p*~'x is not divisible by p".

PrOOF OF LEMMA 3.3. By lemma 3.2, [y] generates a cyclic subgroup of
order p™. For sZr, p" tn[yli=ps 'y is not divisible by ps=p™, and so [y]
generates a direct summand, by Lemma 3.4. For s>r, &/(M,) is a Z,-
module and [y] has the highest order. Hence [y] generates a summand. We
have D([y]8)=(—1)¥*1[y] by (1.7), (1.9) and Lemma 3.2 (i), and hence we see
that [y]0 is of order p™ and generates a summand Z,.. By definition, p™{y) =
0. By Lemma 3.1 (ii), pm n{y)=p™ yn+#0 since p™ !y is not p"-divisible.
Hence <y) is of order p™. For s>r, {y)> has the highest order and generates
a summand Z,.. For s<r, we have ps~!'n.(y), A" s=ps lym Ar s =ps~lyn #0
by Lemma 3.1 (ii) and (3.1). So, ps~!{(y) is not ps-divisible by psi*~s=0.
Hence {y) generates a summand Z,., by Lemma 3.4. Since D({y)d) =(—1)*{y>
by (1.7), (1.9) and Lemma 3.1 (i), {y)J generates a summand Z,. of oZ;_;(M).
Let x{y>+y[y]6=0 in &/ (M,). Then, x{y>6=0 and x=0 mod p™, so y[y]o
=0 and y=0 modp™. This means that {y) and [y]o generates a summand
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Zyn+Z .

Using Lemma 3.1 (ii) and Lemma 3.2 (ii), we see immediately by the split
exact sequences (2.3)-(2.4)* that these four summands Z,. of &/4«(M,.) are
regarded as the ones obtained from the summand Z, generated by y via the
direct sum decomposition of Proposition 2.3.

We have 6[y]d =in[ylin=ps~™iyn=ps™"6{y) by Lemma 3.1 (ii) and Lemma
3.2 (ii), and (3.6) is proved by Lemma 3.1 (iii). Applying D to (3.6), we obtain
(3.5). q.e.d.

Combining Proposition 2.3 with Lemma 3.3, we obtain the following theorem,
which determine the additive structure of o7 ,(M ).

THEOREM 3.5. Let the p-primary parts of Gy_,, G, and G,,, be isomor-
phic to direct sums of cyclic subgroups generated by o,...,0,€ Gy_y, By,
Bne Gy and yy,..., v,€ Gy the orders of the elements a;, ; and y; being p®i,
pbiand pci, respectively. Then if p"#3, we have the direct sum decomposition

A (M) = 2 Hi+ 20 K+ 20 (Ki+ 30 Ly,

where H;, K;, K; and L; are the cyclic subgroups generated by the elements
[O‘i:'r’ [ﬁi]r(s’ <.Bi>r and <7i>r5 of order pmin(a,-,r), pmin(b;,r), pmin(b,,r} and
pminfewn respectively. Further if b,<r (resp. c;<r), we can replace the
element {f;>, (resp. <y;>,9) by 6[B:1, (resp. 6[y;],0).

COROLLARY 3.6. Let (e o/ (M,), pr#3. Then, there exists an element
y € G such that E={y), if and only if & satisfies D(¢)=0 and néi=0.

ProoF. The only if part is obvious by Lemma 3.1. Put ¢=Za;[o;]+
Zb[B 10+ Zbi{B;>+Zcy;»d for the decomposition of Theorem 3.5. Then,
D(&)=0implies b; =c¢; =0 and n&i =0 implies a;=0. Hence, for y=2b;p;, we have
E={pd. q.e.d.

CoRrROLLARY 3.7. The properties (i) and (ii) of Lemma 3.2 characterize
the elements [y], for r<s, that is, if y is a generator of a summand Z, of G,
r<s, and an element € s, (M), p"#3, satisfies D()=0 and nli=p*"y,
then £=[y], for a suitable choice of 7 of (3.4).

Proor. Let j be an extension of y. By Corollary 3.6, we have & — D(i,jAs™")
={y’> for some y' € G; ;. Then, the element =% +7'n, is also an extension
of y and we have &= D(i,jAs~") =[y], for this extension 7. q.e.d.

REMARK FOR &7 4(M3). For the case (p,r)=(3, 1), by virtue of (1.8)" the
formula (i) in Lemma 3.2 is replaces by D[y]= 43 liya;n. By using this
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corrected formula, we can see that the above results (Lemma 3.3, Theorem 3.5
and Corollaries 3.6-3.7) hold without the assumption p"#3. Also the last
formula in (3.8) and Proposition 3.9 below hold for the case p"=3 by adding a
minor suitable assumption on the elements a and .

Next we consider the products <{a){f>, <ad[B] and [«][f]. From (3.3),
it follows immediately that

3.7 Ca){B> = {aB>.
By Lemma 3.1 (iii), and Lemma 3.2 (iii),

(38) (B> = (— D@y, [BIw) = (=DM OIBL. If pr#3, [Il]
= (=D**DOOEF] (k= dega, | = deg ).

ProposiTION 3.8. Let o and f be elements of G, and G, such that B
generates a summand Z,,, s21. Assume that the product aff € G, is of order
p° and there is an element y € G, satisfying oaff=p*y, u=0, and generating a
summand Z,s+u of Gyy). Then, for suitable choices of v, B and 7 defining [B],
and [vy],, we have

J [v]. for r=s,
o, [Bl, = ¢ p~*[yl, for s<r<=s+u,
r'[y], for r>s+u.

In particular, <o), [B],=[af], if aff generates a summand.

ProoF. Let fe{M,, S°},_, be an extension with Bi;=p. Since 6% ,(ap)
=apign,=apfn,=y(p*n,) =0, it follows from (3.2)* for X =S° that af =Av*¢
for some {e€{Mp+u, S} 4;—;. We have pUi¥ E=i¥A"*(=af, and so we
can take i¥ ¢ =y replacing y modulo the subgroup G,.,*Z,. of G,.,. For this
y, [y],=D(i,EAst 47 for r<s+u, =D(i,Ep5%) for r>s+u, by (3.4). We have,
for r<s,

o), [ B, = <o), DG, BAr) = (= DED(Ka),i,BAsr)
by (1.7) and Lemma 3.1 (i)
= D(i,afis77) by Lemma 3.1 (ii)
= D(i,SAst ™) = 7],
and for r>s,

<oy, [B], = <>, D(i,Bp"*) = D(i,aBp"™5) by (1.7) and Lemma 3.1 (i)-(ii)
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= D(irfiupr—s)

pr—sD(iréiuhs—r) = pr—s[y]r for r—s g u,

p*D(GE,Epr74) = p*[v], for r—s > u.
q.e.d.

Now before considering the product [a][f] we are concerned with the stable
Toda bracket (secondary composition). Let W, X, Y and Z be either M, or
SO, and let a e {X, W}, Be{Y, X}, and ye {Z, Y},, be elements such that aff=0
in {Y, W},,, and By=0 in {Z, X},,,,. Take representatives fe[S"**X, S"W],
g e[SrHetly, SntkX] and he[SttktitmZ Sntk+ly] of a, B and y such that
fg=0and gh=0. Then, the usual Toda bracket {f, g, h}(c[S*tktitm+1Z SrW7])
is defined as a coset of f,[Srtetitmtlz Qntk X7 4 (Sh)¥[StHk+itly, S"W] as
in [10; pp. 9-10]. Put &W)=0 if W=S°, =1 if W=M,. Then, the stable
Toda bracket

<d, ﬁ! })> (C{Za W}k+l+m+1)

is defined to be the limit of (—1)*~1+e"{f g h} (cf. [10; p. 32] for the
case W=X=Y=Z=S° and [14; p. 52] for the case W=X=Y=Z=M)). It
is a coset of the subgroup oy {Z, X}, ms1+7*{Y, W}is1+1. If this subgroup is
zero, the bracket consists of a single element, say ¢, and we denote simply by
o={a, f,y>. In [10; p. 33] the case W=X=Y=Z=8° is treated and several
properties of the bracket are proved. The linearity [10; (3.8)] and the formula
[10; (3.5), 0)-iii)] are also valid for our bracket. The formulae (3.5)iv) and
(3.6) of [10] are translated to the following

a<ﬁ’ Vs 5) < (_ 1)k+£<aﬂ, Vs 5> )
a(ﬁs Vs 5) = (_ 1)k+l+e<a’ ﬂs ‘)))6 )

where ae{X, W}, and ¢ =¢(W)+¢eX). Also, Propositions 1.7-1.9 of [10]
can be translated to our situation.

PrOPOSITION 3.9. Let o and B be generators of direct summands of G,
and G, of order p* and p', s=t=1, respectively. Suppose that the following
are satisfied:

(i) the subgroup I=0G,,+PG;. of Gyiy4q is trivial;

(ii) the element y={a, p%, B>V is of order p*;

1) We identify G, with Z and the element of G, represented by a map of degree » is denoted
by the integer n.
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(iii) there is an element €€ Gy, ,,, such that p*e=y for some uz=0 and
that & generates a summand.
Then, for suitable choices of ¢, &, P and &, the product [o],[B], € &y +,+2(M ),
pr#3, is equal to

prostule], if r>max{s,t+u},

p“[e], if s>t+u and t+u<r<s,
p2rsT[e], if sSt+u and s<r=t+u,
el if t<rZmin{s, t+u},

Lel- if rst.

In particular, if y=<a, p%, B) generates a summand, then

[o],[B1, = prmininsi[y],.

Proor. Consider the element
¢ =n[a] A Bl € {M,, S®}isy-

Then ¢&i,=n[a] A [flps tis=(n,[a])([Bli) by (3.1) and Lemma 3.2 (iv).
Since (n,[a],)i;=a and n([B]i;) = by Lemma 3.2 (ii), it follows from definition
that &i, belongs to <a, p%, f>. Thus &i,=y by (i). Since 6f (&) =yn,=p'en,=0
by (iii), there is an element ne {M,+u, S}y, satisfying A*(n)=¢ by (3.2)*.
Replacing ¢ modulo the subgroup Gy,,,*Z,., we have ni,,,=¢. For r =t
we have

[e].[A], = D(i,m,[o],[8],) by (1.7), (1.9) and Lemma 3.2 (i)
= D(i,n o] [B1A"") by (3.1) and Lemma 3.2 (iv)

p*

= D(i,£2*™")
= D(inA**v7r) = [e],.
Next consider the case r>t. We put
{=2""[ad[Blp™" € L 14 2(Mp).
By Proposition 2.2 and Lemma 3.2 (i), D({)=0. So we have
{ = D(i,m,{) = D(i,m [a][Blp™™")
= D(i,p™™") = D(ijnA*p"™")
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el for t<r=t+u,
B [p“[a], for r=t+u.
On the other hand,
[o], At for r=<s,
Atla], = {
Ars[a] A5t for r>s,
and hence
(41,08, = Ar=adpr=2 =1 [Blp"™ = p™{  for r<s,
(e8], = [ad A [Blpm" = for r>s.
Thus we have the proposition. q.e.d.

§4. Some subrings parallel to a subring due to Yamamoto.

Let p denote a fixed odd prime integer, and set g =2(p—1).

According to J. F. Adams [1] and H. Toda [8][9], there exists a family
{0, €Gyy—y3 k=1,2,...}, called the a-series, of elements of the p-primary com-
ponent of G, for any p, satisfying the following

4.1) o, is of order p, not divisible by p if k#0 mod p, and defined inductively
by o € <0tk_1, D a1>.
Following N. Yamamoto [14], we set
o = [0(1]1 G.Mq(Mp).

This is uniquely determined, since G, has no p-torsion. Let A(«, J) be the subring
of &/«(M,) generated by « and d=0J,. Then, N. Yamamoto has shown [14;
Th. II, Cor. 5.1-5.2] (cf. [13; Prop. 2.3]) that the following results.

THEOREM 4.1. The subring A(a, d), 6 =08,, has the following fundamental
relations

4.2) 62 =0
4.3) oa? = —a?d+2ada
and is freely generated (over Z,) by the elements
0, 1, ak=160d, o~ 10a, o*d, ok, k=1,2,...

Also, (4.2) and (4.3) imply the following relations:
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4.4) (i) okéat = lakt1=15a+ (1 — Daktid;
(ii) akdatdom = lak+itm=1544;
(iii) any monomial involving three or more &’s is zero.
Proor. Since &, (M,)=0, D(2)=0. So, by (1.11) and (1.12), we have
4.5) ol =C%a  for any {e sl (M)) with D(&)=0,
(a0 —da)é = (—1)4e9¢&E(ad — dar) for any € o o(M)).

In particular, (4.3) follows. (4.4) (i) follows from (4.2) and (4.3) by the induc-
tion on [, and (4.4) (ii)—(iii) follows from (4.4) (i).
The elements o, of (4.1) can be taken such that

o, = maki
[1; Prop. 12.7], and so
(4.6) [0 ], = o* if k#£O0modp.
We have also
4.7) oy = akd—dak = k(akd—oak~15a).

For (4.7), &>, =ioyn=00k6 and (o), =D(6a,>)=D(6akd)=akd — dak.
Thus, by Theorem 3.5, when k#0 mid p, the four summands of «,(M,)
obtained from the element «, are spanned by the elements a*, akd, ak~1da (=
—(1/k)<ot,> mod a*d) and a*~18ad (= —(1/k)<e, ).
When k=0 mod p, the elements o, akd, a*~16a and ak~16ad are also
linearly independent since so are the elements a**1, ak*15, a*do and a*duad.
q.e.d.

Now, by [8] the element a, is divisible by p and not by p?, and the element
«,, satisfying pa; =o, generates the p-component of G,,_,. We define

o = [ap], € p(Mp2).
This is uniquely determined for a fixed a,. We have
of = [‘1}]1
by Corollary 3.7, and so
(4.8) lak? = o'\ and okPp = pa'"
by Lemma 3.2 (iv). We put

_ k.
Okp = M0 i3 € Gypgy -
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Then, poj,=0y, by (4.8) and ajpe{aiy_1),, p*, ;> by definition. J. F. Adams
[1] defined an invariant e: G,—Q/Z such that e(«,)=+1/p. The values of e
on Gy,,-1, k#0 modp, are integer multiples of a rational 1/pi*'b, b#0
mod p. Thus, o, is not divisible by p? and «;, generates a summand, if k#0
mod p. We see therefore

[e;p]y = a*? and [o}p], = o'" if k # 0modp,
4.7y {ahpY, = @' 8y — 0,0 = k(a6 —a'*"5,a').
For the last equality, we use the relation
4.3y 8,0 = —a'?0,+2a'8,0,

which is obtained in the same way as (4.3). Furthermore, the following is proved
in the same way as Theorem 4.1.

PROPOSITION 4.2. The subring A(«’, 6,), generated by o' and 6,, of o (M ,2)
has the fundamental relations (5,)>=0 and (4.3)’, and is additively generated
by the following elements of order p?:

8y, 1, 0% 718,0'8,, /18,0, a8, o'k, k=1,2,...

Also the relations (4.4) with the replacement of « and 6 by o’ and 6, hold.
According to H. Toda [8; Th. 4.14], the element «, belongs to —<a,_;,
o, P>, so we have 7t1<oc;,)1 =0y = —{0p_ 1, 01, PP =—0p_ 1 T;00=—T{0p_ 1)1 %
=m,(aPd; —aP~15,0) by Lemma 3.1 and (4.7), and <o,>; =D(8,{ap>;) =P, —
oaP~16,0. Hence, by Lemma 3.1 and (4.7), Aajp); =kA(a*Pd;—a*P~15,a).
Since Ker D n Ker A* =0, we obtain

Cakpyy = k(a*Po, —a*r=15,0) .
We have immediately from Lemma 3.2 and (3.5) that
[o], = Ao¥ and <oy, = Aakpd, — 5, 0kp if k#O0modp.

From the above discussions, considering the submodule (dierct summand)
of &/ ,(M ) obtained from the elements o, and «j,, we get the following result.

THEOREM 4.3. Let A(x,a',8,) be the subring of «,(M,.) generated by
the submodule A,p*A(x,6,) and the subring A(o,d,), and set &, =Aakpe A(a,
o', 8,). Then, A(x, o', 8,) is the direct sum of cyclic groups generated by the
elements

62, ], a,k, a,kaz, a'k-laza’, a,k_lézal(sz, k = ], 2,... .
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of order p? and the elements
a'k:f,, 52&”‘51, 0("‘5152, 52“”‘6152, k = ], 2,..., ] é l < p,

of order p. The elements 6,,0d',¢,....,E,_; generate the ring A(a, o, 6,),
and the relations among these elements are given by

(0,)2 =0, 6,0’ = —a'?8,+20'6,0', o'é, =&, E&E =0,
8026, =0 for k+l#p, &0,8, = kp(a'd,—650"),
alézék = 62“’5,‘, fkaza’ = ot'f,ﬁz .

For the homomorphisms Ayp*: of (M) (M 2) and pyd*: o o(M,2)—>
A (M) the following equalities hold:

Axp*(0FF) = pa’, Aup*(@FPHY) = a'*E,  Aup*(d*d;) =0,
Agp*(@*18,0) =0  for k# O0modp, Ap*(*P~16,0)

= p(a’* '8, —a'*8,), Aup*(ak~18,06,) = 0;

Pad¥ (@) =0, pyd*(@*0;) = pad*(@’*7'050") = akPSy,
PA¥ (W T10,0'8,) = akPT18,08,, pxA*(@FE) =0, pei*(d,0%E)

= pud* (@ 810)) = 0, peA*(8,0E,8,) = lakP+115,a, .

Proor. It suffices to show the all equalities except the first two.
By (4.8), o'é=AaPtk=¢a’. By (3.1)~(3.2), we have

(A) pL =0, Ap=p, pd,A=6,, 8,p=0 and 16, =0.

By (4.4) (i), (k+ Dokd at =ka**t15, +16,a**! and so, £,6,&,=0 for k+1# p, by (A).
By (4.4) (ii), 8,00, =ka*~18,08,, and puA*(6,0' E,5,) =pd,a' Aalpd,A=35,a*P+15,
=]akP+1=15 06, by (4.8) and (A). We have

(B) (a*P=15,0)p = —ak~DP(aPd, —a?~13,0) p by (A)
= —ak=Drlor p=—a*=Drplay, by Lemma 3.1 (iv)
=—pa'* (5, —6,a') by (4.7)" and (4.8)
= p(a’* 8,0 —a'*8,)

and similarly

©) kP18 ,0) = (o180 —a’*5,)A.
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Hence, o' '£,8,0/"E -, =Aa!PHk§ o m+ Dp=kp = — [ Jor(H+m+ DP=15 qp = — kp(o''* ™8 50!
—o/'""™"18,) by (A), (4.8), (4.4) (i) and (B), and this determines &,6,¢,-, and
Axp*(0FP~15,a).

The other equalities follow from (4.4), (A)-(C) and (4.8). g.e.d.

By [5], the p-primary part of G,2,_, is Z,s, so the element o} is divisible
by p, not by p2. Let aj. be an element such that paj.=a,2, and define

" o_

o = [(XZ:]:; € Mpzq(Mps) ,
"o "y G

Ogp2 = T30 13 € kp2q—1

Then, paj,2 =ajp2 and af 2 generates a summand Z,s if k#0 mod p.  The follow-
ing relations are proved similarly as the previous discussions (k%0 mod p, I:
arbitrary):

[ahp]y = ak??, [afpa]y = o', [ofpa]s =",

[akpls = Ad'*p, [o]5 = A2akp?;

{oppads = 1(@"'d3—a"""'030"), <(afpady = L(&' 76, —a'""7',0'),
Cofp2dy = 1(@P?5, —alP*~15,a), <atfpds = Aa'*pds—834a  p,
oy = A20kp255—54%akp2 .

Here, to describe the elements <a},2>, and <{af,2>, above, we use the formula
of2 € —<{&y2-y, 04, py for a suitable choice of ., which is proved by a similar
way as [8; Th. 4.14].

Let A(«",d;) be the subring of «/,(M,s) generated by «” and J;, and let
A, o, o, 63) by the subring generated by thd submodule 1*p*A(x, o', §,) and the
subring A(«”, d;). Then, from the above discussions we obtain the following
result corresponding to the previous theorems.

THEOREM 4.4. A(a,a’,a",03) is the direct sum of cyclic groups generated
by the elements

83, 1, "%, a" 85, 07650, "7 '5,30"85 (k = 1) of order p3;
Ot"kfzp, Ol"kfzpasa 53“”"5111, 530‘”'({1;»53

(k=20,1<1<p) oforder p?;
o‘”kfuwm, a"k'flp+m53’ 53°‘/lk'ftp+m’ 530‘"k'51p+m53

(k=z0,0=1<p,1 £m<p) oforderp;



652 Shichiré6 OkA

where &,=Aa'lp and &, , =20 damp? =A2a'P*mp2 (1=m<p). The ring A(a,
o’,a", 83) is generated multiplicatively by 65, & and & (1=s<p?) with the
following relations (I, I',m, m’'<p, 1 <s, t<p?):

(63)2 =0, 630" = —0"*63+2a"630", o"& =&,
(& =0 for s£0modp or t#O0modp,
Siplrp = Plasryy  Jor 1+ <p,
= p%a”  for I+1 =p,
=p"lyir—pp Jor I+1'>p,
Cip+m03ly pam = mp*(@"63—0630")  for I+I'+1 =m+m' =p,
=0 otherwise,
Cip+m038rp = Crp03&ipem =0,
1038y = (/U + NS+ ryp03+103Cusry,)  for 1+1' <p,
= lpa"d;+1'péza”  for I+ =p,
= (p/(A+ 1N E sy — 03+ 1030 iy —pyp)  for 141> p,
o"63¢, = 0;0"¢,  for t# Omodp,
= (1(1+PNpa'Eds+1550E,)  for t=1Ip,
Eoza" =a"805  for t# 0modp,

= (1/(I+ p))(a"E;,03 + po3a"E),) for t=Ip.

§5. Some elements of o7 *(Mp).

In the rest of this paper, we shall calculate the ring &/4(M,) up to some
range of degree from the results on the p-primary component of G4 in [5] and
[6], where p will be always greater than 3.

L. Smith [7] has discovered an another family {f;; k=1, 2,...}, called
the B-series, of the p-component of G, the first p—1 elements of which had been
obtained by H. Toda [8], and H. Toda [13] has studied multiplicative properties
of this family and a related family {f,; k=1,2,...} of &/ (M)).

Let f: S""4M,—S"M , be a map representing the element a € o/ (M), where
q=2(p—1). Let C, be the mapping cone of f, and i,: S"M,—»C; and n;: C,—~
Sta*1M, be the natural maps. For the suitable generator f of & (,41)(Cy)=
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Z,, the elements
5.1 By € F wp+i-1)a-1(M), k=1,2,...,
are defined by By =n,f*i;. Then, it follows immediately from definition that
(5.2) ([13; Th. 5.1 (i) and (vi)], cf. [14; Prop. 5.3])

(i) #Buy = Bux =0,

(1) By € <Bur-1y% By -

H. Toda has also obtained the following relations [13; (3.7)', Th. 5.1 and
(5.4)] (cf. [14; Prop. 6.1 and 7.4]);

(5.3 D(ﬂ(k)) =0;

(5.4) B(k)éa = Otcsﬂ(,‘);

(5.5) ﬂ(k)ﬁ(l) = kﬁ(l)ﬁ(k"‘l—l)’ Whlch is zero l_fk+l ¢ 0 modp;
(5.6 BuwdBmy=—k(k=2Bu3Bari-1+(5) BadBari-an

which is equal to
(kl/(k+1=1)B1)0Bk+1-1) if k+1#£0,1modp,
(kl[(k+1=2))B20Bs+1-2y if k+1#0,2modp.
By (5.3) and (1.11)—(1.12), we have
5.7 () Buwé =(—1)39¢¢By,  forany tes (M,) n KerD.
(D) (Buyd+0Buy)é = &(Buyd+06Bwy))  for any el (My).

Repeating (4.4), (5.2) (i) and (5.4)(5.7), we obtain the following
(5.8) Every monomial on 6, « and P,’s involving two or more oa’s and one or
more Pyy’s is zero. Furthermore every monomial involving at least one B,
is equal to some multiple of one of the following monomials:

0B )0...0B )0  6%B,0°,
6aa6ﬂ(kl)6...6ﬂ(kr)6b, 5”a5ﬂ(,p)5b N
3B 1y0) 1 B1)Bup-19°»

where a, be{0,1},r 2 1, k;21, k;#£0mod p and 121, and in particular we
have a relation
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ky..k -
Bid---0Bwny = 171 (Byd) ™ Barery

if k=r+p-3, k=k +-+k,.
Now the elements
Br€ Guptr—1)g-2 k=1,2,..,
are defined by
B = ”ﬂ(k)i,

and L. Smith [7] has proved B, #0 (hence B,#0) for arbitrary k.
The following equalities follow immediately from Lemma 3.1, Corollary 3.7
and (5.3).

5.9 [Bli=Bw if Px generates a summand.

(5.10) $Bi>1 = Bayd+Buy-

Applying Proposition 3.8 and using the relations (5.2) (i), (5.4)-(5.5) and (5.8),
we have also

(5.11) [B*B]: = (B1y0)*Byy 1 # —1modp,
[B)*B2Bp-111 = (B1y0)*B(2)0B(p-1)»
[es(B1) By = ab(B(1)0) By,
(%1 (B1)*B2By-111 = ab(B(1)0)*B(20Bp-1)-

Here each equality holds when the left side is defined, i.e., the element y in the
left side [y], generates a summand.

(5.12)  LB*B>1 = (B(1)9)* By +(B(1)0)*Buy,
<B1*B2Bp-121 = (B10)*B(2)0Bp- 1)0 + (B(1)0)*B(2)0B(p- 1>
oy (B)*Bi>1 = ad(B1)0)*B 0 — 608 (1))0B ),
oty (B1)*B2Bp-1>1 = ab(B1)0)*B(2)0B - 1)0 — 6(B(1))*6B(2)0B - 1)-
The following relations are Corollary 5.6 of [13].
(5.13) a(6B1))? = (B1)0)Pa = 0.
(514 (B(1)9)" B2y = B2y(6B(1))? = 0.

Now, we recall the results of the p-component ,G, of the group G, from
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[5](cf. [8]). We denote by
Zyp{yse &)
the Z,-module generated freely by the elements ¢4,..., .
(5.15) () ,Gi=Za} for k=sq—1,s#O0modp, 1 <5< p?,
=Z,{agpy  for k=spg—1,1<s<p-—1,
= Z 2 {tp-1yp} +Z,{0, ()"} for k=(p—1pg-—1,
= Z,s{af2} for k =p?q-—1,
=Z,{(B\yBs} for k=((r+s)p+s—1)gq—2r-2,
0sr<p,1<s<p,r+s<pand(r,s)=(p-11),(p-2,2),
=Z{a,(ByBs}  for k=(r+s)p+s)g—2r-3,
0sr<pl=s<pr+s<p,(rs)#(@-21),(p-1,1),
= 0 otherwise for k < (p?+1)q—3.
(i) ,Gx=2Z,{e'} for k=(p2+1)q-3,
=2Z,{e;}  for k=(p2+1)q-2,
=Z{ap241,0:(B1)P"2B2}  for k=(p>+1)q—1,
=Z{(B1)P3Bs}  for k=(p*+1)q+2,
= Z,{e;,,} for k =(p*+2)q-3,
= Z,{&,} for k= (p?+2)q-2,
=Z{ap24,}  for k=(p*+2)q-1,

= 0 otherwise for (p2+1)q—3 < k < (p%2+2)q.
Applying Theorem 3.5 to the results (5.15) (i) and using Theorem 4.1 and
relations (5.2) (i) and (5.4)-(5.13), we can easily see the ring structure of <7 (M,)
for degree <(p%2+1)q—4.

THEOREM 5.1 (cf. [14; Th. I and II], [13; Th. 5.1 and 5.2]). Within the
limits of degree less than (p>+1)q—4, the ring /(M) is generated by the
elements de f _,, ae A, and By € A (pis—1)9-1, 1 SS<Pp, With the relations:

62 = 0, 5“2 = —a25+2a5d, ,B(s)(sd = daﬂ(s), aﬂ(s) = ﬂ(s)d = 0,
BBy = (st/(s+t—1))B1)0B(s+t-1y> BBy = 0, 2(0B(1))? = 0;
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and it is the direct sum of cyclic groups of order p generated by the following
elements:

o, 1, a5~ 16ad, as~16a, a9, af (1 £s < p?),

3%(B1)0) B(50° (ab=00r1,05r<p,1<s<p,r+s<p
and (r,s)=(p—1,1), (p—2,2)),

0908(B(1)0) B (50° (a,b=00r1,05r<p, 1<s<p,r+s<p).

Next we introduce the following new generators & and &.

PROPOSITION 5.2. There exist elements E€.% ,241),-2(M,) and ce
d(pZ +1)g- I(Mp) Such that

(5.16) (i) D(&) =0, myi*(8) = ¢';

(i) Ee{(Buyd)" Bray 08— 5oty 48— St
and that
(5.17) (i) D(e) =0, myi*(e) = &,;

(i) eela, Bry 6u(8B1))P~ 1>

where &' € ,G241y-3=Z, and &, € ,G241y,-2=Z, are the generators (see
(5.15) (ii)). The element & is uniquely determined and the element ¢ is determined
modulo the subgroup Z,, generated by aP**156—aP*da, of o ,241)-1(M,). For
these elements, we have

o (p2+1)9-4(M)) = Z,{080},

A s 1yg-o(M,) = Z,{56, 5, 8¢5},

o (p2 4+ 119-2(M,) = Z,{E, €0, 88, 508(B(1)0)"~ 2B (2,0, aP*ad}

A (p2+1)9-1(M}) = Z,{e, a6(B(1)6)" 2P 2)0, 60 (1))"~ 2B 2)
aP?**+15, aP?5a},

A (52 +1)(Mp) = Z{00(B(1)0)P "2 2y, 22 *1} .

Proor. We put n=(p2+1)q and y=0d(f1,0)? 2B ). By Corollary 3.7,
any elements & and ¢ satisfying (5.16) (i) and (5.17) (i) are obtained by setting
é=[¢'], and e=[¢,];. For these ¢ and ¢, the assertions on the additive structure
of & (M,), n—4=<k<n, are proved by applying (5.15) (ii) to Theorem 3.5 and
by using (4.6) and (5.11)—(5.12).
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By (5.2) (i), (5.4), (5.13) and (4.3), the stable Toda brackets 4=<(f,6)""*"
By xd—da, ad—0da> and B={a, By, 0a(6f;))?"'> are well defined. We
see from Theorem 5.1 that A is a coset of the subgroup Q generated by dyé and
o?’éad and that B is a coset of the subgroup R generated by yd, a?**15 and a?*a.

Now we recall the definition [6; (12.3)-(12.4)] of the element ¢, of (5.15)
(i), that is, we defined &; =m,i*{a, B(1,0, (B(1,0)?~*a>. Hence &; =mn,i*B. Let
¢ be any element of B. Then D(¢) € &, and D(¢) =xy + ya?**! for some x, y e Z,,.
Then & =&—xyd—yaP?*16=¢mod R satisfies D(¢')=0 and ¢’ eB. Hence, B
contains an element satisfying (5.17) (i), and the element ¢ is obtained. This is
determined modulo R n Kern,i* n Ker D, which is spanned by a?’>*!§—a?*da.

Next, in [5; (6.2)], the element & of (5.15) (ii) was defined by & =<{(8,)?,
ay, o0y). We have myi*A=—<(B)P, ay, a;)=—¢" by n(B,0)""'B1)i=(B1)?
and (ad—da)i=—ia,. Here the sign — occurs from the first formula in p. 645
of the stable bracket. So we change the sign of ¢’ so that n,i*4=¢. Let & be
any element of A. Put D(§)=xe+ ypé+zéy+uar*t15+var*sa. Then 0=
D2(&) =(z+y)y+(u+v)ap>*1 and D(E)=xe+ yD(6y8) + uD(a?*508) = xe mod D(Q),
and hence there exists uniquely &’ € A such that n*i*¢’ =¢’ and D(&') =xe, where
the uniqueness follows from Q n Ker n,i* n Ker D=0.

To prove x=0, we calculate the group «,,,_,(M,). First we have from
(1.11) that

ef =(—1)99¢¢  for any Eeol(M,)nKerD,
and in particular
(5.16) & = ae.

The generator ¢, of ,G,.,-, in (5.15) (ii) is defined by &, =<e,, p, a;) [5; (6.3)],
where the bracket consists of a single element. By Proposition 3.9, we can take
[e,]; =ex and we see that

(%) L yiq-1(M)) = Z{ea, ap**25, ar**15a} .

Since <a, (B(1,0)*~!B(1), @) has full indeterminacy and <a, (B(;,0)P~ '), ®d) has
R as its indeterminacy, it follows that

B, (B(1)0)P~ b1y, 00> = — <, (B(1)0)" ™! B(1y, a6 — ) .

Here the last bracket — B’ is a coset of the subgroup R’ generated by R and §y.
Now we prove x =0 in D(¢')=xe. We have

&(ad—da)e — B'(d —da) = aA 3 aé’,

and hence
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(@6 — ) = aé’ mod R'(«d — o)) = Z,{a?**16ad} .

Put g(ad—da) =aé’ + ya?*+15as. Applying D to this, we have 0=xae+ p(aP>+26
—aP*+15q), and so x =y =0 by (*¥) and (5.16). q.e.d.

From the above discussion on x =y =0, we have a relation

(5.17) aé = gad —eda.

 The following are consequences of (1.11)-(1.12):
(ed+ 0e)é = E(ed+ d¢) for any et (M));
& = ¢ forany (el (M,)NnKerD;
(86—08)8 = (—1)4c9L(80—068) for any (e oLW(M)).

In particular we have

(5.18) ade = edo+ dex — ead,

(5.19 g = aé.

Also we have

(5.20) g0a = Ead = —edad, odé = d&u = dead — deda.

For this, we have &ad—dx)=0 since &ad—da)e (B(;)0)P~ 1 f 1) {ad —ba, ad—oa,
a6_6a>c (ﬂ(l)(s)p_lﬂ(l)d3q_2(Mp)=Zp{(ﬂ(1)6)p_l ﬂ(l)azéaé} =0. SO thc ﬁl‘St
follows from (5.17) and (5.19). By (4.5), (2 — dx)é =0 and the second also follows.

§6. The ring structure of <7, (M,).
We first introduce the results on ,G, from [5] and [6].

6.1)
20 = Z,{o} fork =sq—1, p?+3<s=<p?+3p—1,
s # p2+p+2, p*+2p+3,
Z 2 {o;p} for k=spg—1, p+1=<s < p+3 except(s,p)=(p+3,5),
Z {0tp2 4 sprs+1> 01 (B1)P 2B 2} for k = (p>+sp+s+1)g—1,

s=1or2,

Z o {op2r3p} +Z,{(By)%'} for k =(p?+3p)q—1, p=35,
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Z{(B)PBsy  for k =(p*+s—2)q+25—4, 4=s<p,
Z{(B)P175Bs} for k = (p?+p+s5—2)q+25—6, 1 =s < p+1, s # p,
Z,{(B)P*27sB} for k = (p*+2p+s5—2)q+25—8, 1<s=p+],
s#2, p,
Z{(B)P*3} for k =(p*+3p—1)g -8,
Z,{B2Byp-1} for k = (p? +2P— g—4,
Z,{B1B2Byp-1} for k = (p*+3p—1)q—6,
Z{a (BB for k =(p>+s—1)g+25—5, 3Ss<p,
Z{ay(B)P*1 7B} for k = (p*+p+s—1)g+2s—7,
2<s=p+l, s#3, p,
Z{ay(B)P*2 B}t for k = (p?+2p+s—1)g+25—9,
3<s=Zp-1, s#4,
Z {1 B2Bp-1} for k = (p*+2p)q-35,
Z{01B1B2Bp-1}  for k = (p*>+3p)g—7,

Z (&} for k =(p2+i)q—2, 3Z5i<p,

Z (e} for k =(p*+i+1)q—-3, 25i<p-2,
Z,2{¢} Jor k = (p*+p)g—3,

Z,{(By)e'} for k =(p2+rp+1)g—2r-3, 1<r=3

except (r,p) =(3,5),
0 otherwise for (p>+2)q < k < (p2+3p+1)q—>5.
Here we denote by
Z,{&}
the cyclic group of order p" generated by the element £, and by
Z {855 &5}

the direct sum Z,{&,}+---+Z{&}.
The elements ¢;, 2<i<p, in (5.15) (ii) and (6.1) are defined inductively by
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Ei = <8i—19 b, a1>a

where the bracket consists of a single element [5; (6.3), (7.3)]. Hence by Proposi-
tion 3.9 and (5.17), we can take

6.2) [e]; =exi"! =ai"le for 1 ZiZp—1.
Also by (3.9),
6.2) (&), = et~ 15+ deai~1, 1figp-1,

and by Proposition 3.8, we have
(6.3) [e0,] = <g;p 1o = e~ 1damod 6[;, 114, 1Zigp-3.
The following relation will be proved in § 8.

LeEMMA 6.1.  The bracket <{¢,_,, p, ;> consists of a single element 0.
The following proposition determines uniquely the element .

PROPOSITION 6.2. We can take the element ¢ of (5.17) such that
6.4) Pl =P~ lg =0,
and ¢ is uniquely determined by this and (5.17).

PrOOF. The element exP~! belongs to & (,2.,,-1(M,), and we have
A (52 4 pyg—1(Mp) =Z,{(B(1)0)"~ B2y aP**PS, aP**P~ 160} by Theorem 3.5, (6.1),
Theorem 4.1 and (5.11). Since D(ex?~1)=0, D((B(1,0)?~!B(2)) =0 and D(a?**?§)
=D(aP*+P~150) =aP**?, we can put ga?~! =x(B;,0)P" ! B2+ (0P TPS — aP*+P=150r).
Since myi*ea?~1e{e,_y, p,a;) =0 by Lemma 6.1, and since m,i*(f(;)0)" !Bz =
(B)P1B,#0 and m,i*(a?®**P6—a??+tP~15a)=0, it follows that x=0 and sa?~!
=y(a?**16—ar’Sa)aP~! by (4.4). Replacing ¢ with e+ y(a?’*16—aP’de) and
using (5.17), we have the proposition. q.e.d.

Next we consider the element ¢ € ,G (2 4 pyg—3=Z,2 0f (6.1). This is the only
element of order = p? in ,G, for 0<k<(p2+3p+1)g—35, except the elements oy,
and o:. By [5; Th. 7.9], ¢ is defined by

(6.5) (i) QELE,_3,0y,01)
and there is a relation

(6.5) (ii) PP =&, 0.
By Proposition 3.8, (6.5) (ii), (6.2)" and (6.4),
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(6.6) [o], = (ex?~25+ dea?~2)ar = P~ 25t
and by (3.5) é[¢], =[]0, ie.,
6.7) Oea?~250 = gaP~20ad.

We define
(6.8) () P =L@>1 € A (p24p)q-3(M)).
This satisfies
(6.8) (ii) Dp =0, i*P =—ixp, M9 =T7"Q;

(iii) P = (—1)99,p  for any L€l (M));

by Lemma 3.1. In particular,
(6.9) Pé = —6¢.

PROPOSITION 6.3. The element & belongs to the bracket

{ea?~ 30+ deaP~3, od — dot, ad — Ot ,

and conversely this and D@ =0 determine uniquely the element .

Proor. Since {¢,_,) =eaP~30+0exP~* and {a,)=ad—da, it follows from
(6.5) (i) that @ e<{<e,_5), ay), <a;>) =<{ea?~35+dea?"3, ad— o, ad—oay. We
have the following results:

A 3q-1(Mp) = Z {026, ada},

L (24 p-1)g-2(M ) = Z,{eaP~25, dear=2, aP**P~ 2505},

L (24 pyg-3(M ) = Z,{P, eaP~250d, 6(B1)0)P ™ B(2y0} »

(24 pyg-2(Mp) = Z,{eaP=26a, (B(1,6)"~ B(2)0, (6B(1))" 18P 2y, aP**P~ 150},

from Theorem 5.1, Theorem 3.5, (6.1), Theorem 4.1, (5.11), (6.2), (6.6) and
(6.8) (i). Hence by using (4.4), (6.4) and (6.7) the above bracket is a ocset of
Z,{eaP~26ad}, whose D-image is Z,{exP~20a}. Thus, we see that {exP~35+
dea?~3, ad—da, ad—da) N Ker D consists of a single element. This shows the
uniqueness of @. g.ed.

PROPOSITION 6.4. The assertions on the additive structure of o/ «(M,) in
Theorem 0.1 hold, namely, for k<(p*+3p+1)q—6 a Z,-basis for £ (M) is
given by the following elements
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0,1, a50%, os"16ad® (1 £5s < p2+3p),
3By ' B1)d® (L sr=p+3),  6%B1)0)yBd*(r,s)eD),
6°(B(1)0) B2)0Bp-1)0* (r=0,1),  6°x(6B))'6* (1 =7 < p),
0°0(0f (1)) 0B 0% ((r,5) € J), 0%(0P (1)) 0B 2y0Bp-1)0° (r =0,1),
5°(Buydyes 0Srs<3), o%ais® 0<isp-2),
%t~ 1606 (1 £i < p-3), saP~ 25069, @o°,
where a, b=0 or 1, and the index sets I and J are given by
I={rl0=r<p, 2=s=p+l, s#p, r+s=p+2},
J=1-{1, p+1)}.

Proor. For k=<(p2?+ 1)q the proposition is already proved in Theorem 5.1
and Proposition 5.2. So we consider the case k>(p?+1)q. To apply Theorem
3.5 we determine [y] and <y) for any generator y in (5.15) (ii) and (6.1). For

y=a, and «;,, this is done in §4, and the subring A(«, 6) of Theorem 4.1 is ob-

tained. For y=¢; and ¢ this is done in (6.2), (6.2), (6.6) and (6.8) (i). For
other y, we have {y> =[y]d+(—1)¥6[y] by (3.5) because y is of order p. Hence

we only determine [y]. For y=(B,)B (s#p—1), (B1)B2Bp-1, %:(B,)Bs and
ay(B,)B2B,-1, this is done in (5.11) and (6.3).

Using Proposition 3.8, we have the following values of [y] for other y:
[gt;] = eai~16amod d[s;, ] by (6.3),
(B Bp-11 = (B(1y0) +(6B1)NBp-1)
= (B1)0) Bp-1ymod (6B1)) Bp-1yy 21,
[BreT] = ((Byo) +(8By)NE
= (B1yd0)emod (6f))"E, r= 1.

Thus, the proposition with the replacement of (B(;)0)"B,-1) and (B(;)0)"é by
((B1y9)" +(B1)))Bp-1) and ((B1)0)" +(8B1))")E, r=1, is established by Theorem
3.5. In particular we have

& (p2 4 p—2)g-2(M ) = Z,{ea?~*50i, eaP~35, dea?~3, aP**P~3505} ,

S (p2 4 p+1yqg-3(Mp) = Z,{a(0B1))P~ 1620, 0(8f(1,)P 1 6B (2)} -

We have therefore
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0B 1)Bp-1) € Z,{0eaP~*dat, SeaP=30} = Z,{0[e,-32,], 6[&,- 10},

0B1)& € Z,{60(6f1))P"16B2)0} = Z,{6[;(B)P~' .16},
and hence we can replace (B1)0+6f1))B,-1y and (B(1)0 +B1))€ by B1)0B-1)
and ;)0 respectively. Since B(;)0ex € (p24p+1y9-3(Mp)a=0 by (5.2) (i), (5.4)
and (5.6), we see from (*) (68(;))B,-1,=0 for r=2. Also, (6f))"é=0 for
r=2 by (5.4), (5.13) and (*).
Thus, the proposition is established entirely. g.e.d.

™

In the rest of this section, we study the multiplicative structure of 2, (M ).
PROPOSITION 6.5. There is a relation
(6.10) eaP~30a = 2eaP~ 25+ deaP~2 .
Proor. First we have from Proposition 6.4
L (24 p—1yg-2(M ) = Z ,{eaP~25, SeaP™2, aP**P=25ab} ,
L (p24p-1)g-1(Mp) = Z,{ea?=2, qp**P=1§, qp*+P=250} .

Put eoP36a=xeaP~ 25+ ydeaP~2 + zaP>*P~2505. Then, —ea?P~2=D(ex?™3dx)=
(—x+y)ear=2 4 z(aP>+P~ 1§ —qP*+P~25y) and y=x—1, z=0. Hence eaP 35a=
xeaP~25+(x—1)0eaP~2, By (4.4) and (6.4), 2ea?~28a=200P" 200 —eaP 10 =
ea? 3002 =xeaP~ 200+ (x — 1)dea?~ L =xeaP~ 200, and so x=2. q.ed.

COROLLARY 6.6. The following relations hold.

(i) atead = go” for r £ p-2.
(ii) oatdaieak = jgor~1da— igad + dea” for r £ p-—3,
= jea? 20+ (i + 1)dear~2 for r £ p-—2,
= iga?~2da for r=p—1.
(iii) atealdak = ke~ 160+ (1 — k)ead for r < p-3,

= (k+1)eaP~26 + kdear=2 for r=p=2,

= keaP~20a for r=p—1.
(iv) otgal = gard —ea"" 160 for r £ p—3,
= —goP~25 — deaP~? for r=p=-2,

= —gaP~ 200 SJor r=p—1.
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(v) atdaidakeal = joear~16a— joeard for r < p-—3,
= jear=2§ for r=p-2,
= jeaP~25ad for r=p—1.

(vi) oidaieakdat = iga" 1000 + [dear 1oa+ (1 —[)dea’d for r < p—3,
=(i+l+l)6sa”‘25 for r=p-2,
= (i+1)ea?~260 for r=p—1.

(vii)  aleaidakdal = kea'"10ad  forr < p—3and forr=p—1,

= kdeaP~26 for r=p=2.
(viii)  adaléak = deard —dea Lo for r < p-3,
= —JeaP" 29 for r=p-2,
= gaP~ 26 for r=p—1.

(ix) atéaidok = —ea"" 100  for r < p—3and forr=p—1,
= —Jear~25 for r=p-—2.
(x) atdoddakeatdoam™ = joear16ad for r = p-3.
(xi) aidaieakdatdam = [deam 100 for r < p—3.
(xii)  afda/Eakdal = —dear16ad for r < p—3.

(xiii) Other monomials on 6, « and & involving just one & are zero, and
other monomials on 8, a and & involving just one & are zero.
Here, in every equality r indicates the sum of exponents of a in the left side.

ProoF. These are easy consequences of (4.4), (5.16)-(5.20), (6.4), (6.7) and
(6.10). q.e.d.

By Proposition 6.4, Corollary 6.6 and (4.4), the kernel of a*: & ()24 ,-2)4-2
(M )= (p2 4 p—1y4-2(M ) is spanned by the element 2ea?~4do— 3eaP~35 — dea? ™3,
which is equal to (é—e&d—de)a?~3 =aP~3(é—ed—Jde). The element B(;)B(,-1)=
—Bp-1)B(1) belongs to this kernel by (5.2) (i), and H. Toda [13; Remark 5.4]
showed that f;,B,-1)#0. So, we have a relation

(6.11) ﬁ(l)ﬂ(p—l) = _ﬂ(p—l)ﬁ(l) = 280(”'450(—3506"_38—58a”_3

= (E—ed—0de)aP~3 = aP~3(g—ed—J¢),
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where the second equality holds up to non zero coefficient.
By (5.5) and this relation, we can know the elements S, in our calculations,
and by (5.6) we know the elements 68, for s+t#p. We have also

(6.12) Bs0B -5y = 52B1)0Bp- 1)+ (s(s = 1)/2)(B(1)B(p-1)0 +0B1)Bp-1)) -

For this, put B;=B0B,-s- By (5.5), BsBp-s)=5B1)Bp-1). According to
[13; (5.4)], (2/s)By=—2(s+2)B,_;+(s+1)B,_,=—2(s—2)B;+(s—1)B,. So,
by (5.7), B,—s=B,+5(B1)Bp-1)0 +B1)B(»-1))» and (6.12) follows.

LEMMA 6.7. The bracket {¢,a,, p) contains zero.
The proof of this lemma will be given in §8.
From Proposition 6.4 we have the following results:

(6.13) A (paspyg-3(Mp) = Z,{P,(81))*"'0B2)0},
A (p2 4+ p+ 1)g-3(Mp) = Zp{a0(B(1)0)"™ " B2y8, 6SB 1))~ '8P 2)} »
& (p2+2p)g-4(Mp) = Z,{a6B3)0B - 1)} »
A (p2+2p+2)g-4(Mp) = Z,{60(B1))*~16B(3)6} ,
& (p2+2p+2)g-3(Mp) = Z,{0d(B(1)0)P™ " B(3)0, 08B 1))*~ ' 6B(3)} »
(24 2p+2)g-2(Mp) = Z,{a8(B(1)0)P~ 1 B3y, aP*T2P¥ 1508} .

PROPOSITION 6.8. The following holds.
(6.14) pa =ap =0.

Proor. By (6.8) (iii), ap=pa. By (6.13), we can put @Pa=xE6+ ydéE,
E=ad(B1y0)P"'B2). Then, 0=D(pa)=(x+y)¢ and Pa=x((6—06E). By (6.8)
(i) and (5.11), @ra=xa,(f,)?"'f,m. On the other hand, ¢na={@,«,, p)n.
Hence x =0 by Lemma 6.7. q.e.d.

PROPOSITION 6.9. The following relations hold.
(6.15) Bse = —ePy = a0(B(1)0)P ' Bs+1y  Sforany s=1.
(6.16) 80P 1y = (0P 1y)P~ 6B 2)9, B1yoe = —0a(6B1))?" 102y
Proor. By (5.17) (ii), (5.2) (ii), (5.4) and (5.6), we have
By € Bsy<ats B(1ys 00(8B (1))~ 1>
= {Bsy> % B1)>0(dP1))P!
3 Bs+1)0%(0B(1))P~ 1 = a(6P(1))P "1 0B+ 1)
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and (6.15) follows from By ,+1yg-4(M)00(6f1,)P~! =0 and (5.7).
Next we have

€01y € <&, B(1y, 00(0P1))P~1 )01
= —a{B1), 6B (1))’~ 1, 0B(1)> S (p2 4+ pyg-3(Mp),

and hence &6f(;,=xa(0p))? 0B 20 by (6.13)~(6.14). Applying D and using
(6.15), we obtain x=1. By (5.7), the second formula of (6.16) is obtained. q.e.d.

LemMA 6.10. Suppose that s# —1mod p. Then, the bracket
<°‘5ﬂ(s)5, a, ﬂ(l))

contains  (1/(s+1))6adfss1) + (s/(s+1))adBs+1)0 with the indeterminacy
Bty (sp+s+1)q-2(M,). Further if s<p—1, the bracket consists of a single
element.

Proor. To prove the lemma, we introduce some notations and results from
H. Toda [13]. Let V(1) be the mapping cone of «, and i, € {M, V(1)}, and
ny € {V(1), M}_,_, be the natural maps [13; pp. 216-217]. There is an element
B e L (4 1),(V(1)) which defines ) by B, =m,pi; [13; pp. 217-218]. Also there
exists an element a” €./, _,(V(1)) such that «"i; =—i,6aé and ma" = —dadm,
[13; Lemma 3.1 and (5.6)]. These elements satisfy pra”ps=sp*s~ta"f+(1—
s)pr*sa” [13; Prop. 4.7 (ii)].

Now, this relation implies (s+ 1)f%a"f=sps*1a” +a”p5*t1. Since (— =, B%a")i,
=P s0ad =adf 0 and m,(Bi;) =P, the bracket contains an element (—m,f"):
(Bi,) which is equal to

—(s/(s+ D)y pt1a"iy —(1/(s+ D))myo" B+ iy
= (s/(s+ 1))B(s+1y000 + (1/(s +1))0adB s+ 1)
= (s/(s+ 1))adB s+ 1,0 +(1/(s+ 1))5a5ﬁ(s+ 1)-

The rest of the assertions is proved by an easy calculation. q.e.d.

PrROPOSITION 6.11. The following relations hold.

6.17)  Brayde = ——5-ad(Bi1,0)7 Brayd =2 64(3B1)3B sy
8B (2) = - 46(B(1))P B33 +—5- 843P 1 )P 3B ) -

(6.18) By=eBy = —% (@0(B1y0)P~ 1 B2y0 —0a(6B1))P" 1B (2)) »
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80P 1y = B(1)0E—30(SB 1)) 1 B(2)0 .

(6.19) ﬂ(z)é = éﬁ(z) = _-:1;-(0‘5(&1)5)”—1/3(3)5_6“(6/3(1))"_15/3(3)) s

ééﬂ(2) = _ﬁ(z)éé = ———;- 5&(5ﬂ(1))p_15ﬂ(3)5 .

Proor. We first prove (6.18). Set £ =ad(B1)0)?~ !B and t=(p*>+p+1)q—
3. As is seen in the proof of Proposition 6.8, «,(M,) N Ker D is generated by
£6—0E. So we can put B, é=x(£6—05¢). By using (5.16) (ii), (5.5), (5.2) (i)
and (5.4), we have

ﬁ(l)é € <ﬂ( 1) ()3(1)5)"— ! I3(1), ad — day(ad —ba) = — A(ad—da),

where A ={B), B1) 0x(6B1,)’" '), which is a coset of the subgroup Z,{nd}
of o, 1 (M,)=Z,{nd, on, sx?~2da, aP**P=16a6}, n=(B(1,0)? P2, Since on=
0, a4 consists of a single element, and we have

od = —<a, ﬂ(l), ﬁ(l)>50‘(5ﬁ(1))’)_1 .

According to N. Yamamoto [14; Prop. 7.3], <«, B1), B1)> contains —(1/2)B,),
and so

aAd = (1/2)B3)0a(6B1))*~* = (1/2)¢.
Considering the kernel of ay: &, (M ,)> o, (M), we see
A = (1/2)6nmod Z ,{nd, sa?~25at} .

Hence B(;)é= — A(ad—da)=(1/2)0¢ mod Z ,{{d}, and we obtain x=—1/2. This
shows the first equality of (6.18). The second follows immediately from (5.7).
Next we prove (6.17). We have

e8P 2y € <eP1y % Byy by (5.2) (ii)
=(&,q,B4) by (6.16)
> (B1)9)"™ ' <adB2)0, & Bayd
5 (2/3)(B1)0)P~adB3y0 = (2/3)¢'6 by Lemma 6.10,

where ¢=wd(f(1,0)*" !Bz and &' =ad(f(;)0)P"'B3). As the indeterminacy of
(&6, a, B(y)> is generated by 6’, we can put

e0P 2y = (2/3)¢'6+x0¢'.
Applying D to this and using (6.15), we obtain x =1/3, and the second of (6.17)
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is proved. The first follows immediately from (5.7).
Finally we prove (6.19). Similarly as above, we have

é18(2) € <éﬁ(1)» a, ﬁ(1)> by (5.2) (ii)
< —(1/2)KE8, a, Byy) +(1/2)X0¢, , Byy> by (6.18)
5 —(1/3)&'6+(1/2)6¢’ by Lemma 6.10 and (5.2) (ii),

and so &,y = —(1/3){’0 mod Z ,{6&'}.  Since D(&()) =0 and D(&')=0, we obtain
B2)E=8By=—(1/3)(¢'6~06¢&"). By (6.13), we can put &6f,,=x6¢'6 and B,)0&=
y6&'6. Then &P,y =D(&6f ;) =x(¢('6—06¢") and x=—(1/3). Similarly, y=1/3,
and (6.19) is proved. q.e.d.

PROPOSITION 6.12. There exists a relation

(6.20) By? = — @By = 26 2)0B -1y,

where the second equality holds up to non zero coefficient.

Proor. By (6.8) (iii), 1)@ =—oPy. By (6.13), we can put B ,¢=
x00B2)0Bp-1)- Then —pB,p=mn,i*B\@=x0,8,8,-,. Hence we have x#0
by the relation (14.2) of [6]. q.ed.

Now, we prove Theorem 0.1 in the introduction.

ProoF oF THEOREM 0.1. The additive structure is determined in Proposi-
tion 6.4. All relations (i)-(xi) in Theorem 0.1 are already obtained in previous
discussions, that is, (i) is (4.2)—(4.3), (ii) is (5.4) and (5.2)(i), (iii) is (5.6) and
(6.12), (iv) is (5.5), (v) is (5.13)~(5.14), (vi) is (5.16), (5.18) and (6.4), (vii) is (5.17)
and (5.19)—(5.20), (viii) is (6.11), (ix) is (6.15)-(6.17), (x) is (6.18)—(6.19), and (xi)
is (6.9), (6.14) and (6.20).

Multiplying o to (viii) from the right, and using (i) and (ii), we obtain the
relation (6.10). Multiplying da to (6.10) from the right and using (i) we have
(6.7). Hence (i), (ii), (iv), (vii) and (viii) imply all relations in Corollary 6.6.
Similarly, we can see by tedious and easy calculations that any relation is implied
from (i)—(xi). qg.e.d.

REMARK. The element f,) € & (21 ,—1)-1(M)) of (5.1) does not appear in
Theorem 0.1, since our results (6.1) give no information about the element f,.
But we see easily that

By = eaP™2 = aP~2g,

where the first equality holds up to non zero coefficient. This is a slight generaliza-
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tion of the statement [13; (5.4) (ii)] for t=1.

§7. The ring structure of &7, (M), r=2.

We start from the discussion on the ring &/ ,(M,:). We recall the elements
52 = i27T2 € Jf_l(Mpz), A€ {Mp, Mp2}0a pE {Mpz, Mp}o

in (1.9) and (3.1).
The element 6, =i,n, € & _,(M,) is simply denoted by 6. The element J,
is of order p2, and /, p and § are of order p. These satisfy

.1 A =0, dp=0, pi=0,
(7.2) PO A =96, Ap =ply M =M,).

We define some elements of .7 (M ,.) as follows:

(7.3 (i) G =lafpe (M),
(ii) Bisy = ABop € H (sp+s-1)9-1(M)2),
(iii) & =AEpe 2s1yg-2(M;2),
(iv) &y = At p e 2 1py,-1(M2).

Then, Lemma 3.2 (iv) implies [a,],=¢; for k#0modp by (4.6), [B1.=F'
for 1Ss<p+1, s#p by (5.9), [e'], =& by (5.16) (i), and [¢;], =¢(;, by (6.2).

By (7.1)«(7.2), for &, ne oty (M)), Alp=0 if {=¢'6 or 6, and A(Eon)p =
(A¢p)o,(Anp). Then, we have

(7.3) (V) (B1)02)Bisy = AB1)9) Bsyp = (B Bs]2 »
(vi) (B1)02) Bi2y02Bp-1) = AB1)0) B2)0Bp-1)p = [(B1)B2Bp-112
(vii)  &1(828(1))702B(s) = 2a(8B(1))"0B(syp = L1 (B1) Bl
(viii)  &1(02B(1))702B(2)02B(p-1) = A(8B(1))"0B(2)0B - 1)P
= [1(B1)"B2Bp-112,
(ix) (Bi1y02)8" = A(B(1)0)ep = [(B1)¢ ]2,
(x) euydy8, = dea~1oap = [gj0,], .

Consider the submodule &y =214p* (M) of o#4(M,2). Then the follow-
ing lemma is proved immediately from Theorem 0.1, (7.1)-(7.3), Proposition 2.2
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and (1.12).

LEMMA 7.1. B, is a Z,-vector space, and its basis is given by the elements
(7.3) ()-(x) for degree<(p?>+3p+1)q—6. The following relations hold:

én=0 for any &, ne &,;

D) =0 forany e RBy;

§0yn = (—1)@eastD@eanting, & for any &, ne By.
For the last elements £3,7, we have the following

LeEmMMA 7.2. The following equalities hold.
fs‘szﬂ(z) = ﬁfz)ézés =0 for s 2 2.

(st/(s+t—=1))B(1)02B(s+1-1) for s+t # 0,1 mod p,
(st/(s+1=2))B(2)02B(s+1-2) for s+t #0,2mod p.
Bisy92Bip-s) = 52B(1)82B(p-1) -
8028 = 80,8, = 0.

st)azﬂ(r) = [

8€(i+5)9281 for i+s < p—3and fori+s=p-—1,

£0280y = €1)0285 =
otherwise.

Bi2y028 = &80,B(2) =0, Pis)028(iy = &(iy02B(s) =0 fors=1,2.

Proor. For any e/ (M), denote by &’ the element Alp. Then, by
(7.1)-(7.2),

§'0an' = (810my)" if  &on = &,6n, mod 6o/ (M) + o7 (M )0

Then the lemma is an easy consequence of the relations (4.4), (5.2) (i), (5.6),
(6.12), Corollary 6.6, (6.16), (6.17) and (6.19). q.e.d.

Next we recall the element
o = [a,] €, (Mp2)

in §4. This is of order p? and satisfies D(a') =0. Also, a'* =[a;,]; € & p(M2)
for s#0modp. The following relations are proved in Proposition 4.2 and
Theorem 4.3.

(7.4 (0)2 =0, 6,0'2 = —a'25,+2a',0 .
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(7.5) & =0, Ca't =a't¢ =&,
(1.6)  &£03¢, =0 for s+t#0mod p, &,,-,02¢, = tp(a'*d,—a's"13,4),
§s0,0"" = £a''0, = &;p1 05, 4''0,8; = 0,08 = 0554
LeEMMA 7.3. The following relations hold.
o' Bisy = Bisya' =0, 0,8y = Biryd22’ =0.
e =¢8'a' =0, a'd¢ =¢&d,0' =0.
o'glyy =gpHe’ =0, a'dye() = g;d0 =0.

ProOF. Let {=p, & or eai™?!, and set &'=A,p. By (4.8) and (B)~(C) in
the proof of Theorem 4.3, the element o’ satisfies

AaP =o'A, oPp = pa',
AP~ 180 = (6,0’ — o' d,)A, aP~1dap = p(0,0' —a'S,).

By (5.2) (i) and Corollary 6.6, we have éa? =aPé =0 and &P~ lda=a?"1daé =0.
Hence, o'é' =laPép =0, &'a’ =AlaPp =0, a'0,E =(a'd,—,0')E' = — AP~ 16aép =0,
and &'6,a' =&'(6,0' —a'd,) =AaP~1dap =0. g.e.d.

To describe the ring structure of &7 ,(M,.), we finally introduce an element
¢’ by

(1.7) ¢ = [0]: € g2 4 a2 (M,2).
This is of order p? and satisfies
.7y D(¢") =0, M0, = .
We have also (@), =¢'d,—5,¢’ by (3.5), and hence
(7.8) Q'L = deaP~ 200, po' = eaP"2dap,
(9'0:—06,9002 =2,  p(¢'6,—020") = Pp,
by Lemmas 3.1-3.2, (6.6) and (6.8) (i).
LEMMA 7.4. The following relations are satisfied.
€s028(p-1-5) = E(p-1-5028s = 5P’y APp = p(¢'6,—-6,0"),

és(p’ = ‘Pfs = 0: éﬁz‘ﬂ’ = ¢,62€s =0 ’
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’ ’ 1,7

Bio' = ¢'Bisy =0, a'¢" =¢'d,
Bi1y020" = ©'028(1y = £162B(2)02B8(p-1) »
where the last equality holds up to non zero coefficient.

Proor. By Corollary 6.6, (7.8) and (7.2), &0,€(p—1-5)=8(p—1-5)02&5=
sieaP~20ap =spp’ and App=(¢'6,—0,0)Ap=p(p’'6,—35,¢"). Since EeaP~2fa=
gaP~20aé =0 for £ =a* and By, s=1, by Corollary 6.6 and (5.2) (i), it follows from
(7.8) that &5@'=¢',;=0 and B0’ =0¢'B;,=0. By (1.11), &’¢’=¢'a’. By (7.8)

and (6.14), we have £0,0'=—¢&(9'6,—0,0")=—Aa*pp=0 and also ¢’d,&,=0.
Similarly, the other equalities follow from (6.20). q.ed.

Now we prove Theorem 0.2 in the introduction.

Proor oF THEOREM 0.2. By using (6.1) and (7.3), the assertion on the
additive structure is an easy consequence of Theorem 3.5. By Lemmas 7.1-7.4
and (7.4)—(7.6) the relations are proved except the following

£1(62B:1))" =0, (B(1)02)PB2) =0, o'¢’ =0.

The first two relations are obvious by (5.13)—(5.14).

The element a'¢p’ =¢'a’ belongs to & (,243,)4-2(M,2) N Ker D which is equal
to Z,{Bip+1)02+02B(p+1)}. Set k=(p*+2p)g—2. We have a'¢p’'A=2laPeaP~25a
=0, and hence a’'¢’ belongs to

(M ,2) n Ker D n Ker 2*,

Applying the result on «/,(M,) to the exact sequence (3.2) for X=M,, r=s=1,
we see that AB,,,0#0 in {M,, M:},. So, we have A*(B(,+1)0;+0,8(p+1)) =
ABp+1yP02A=2AB,+1y0#0. Hence o (M,.) N KerDnKerA*=0 and o'¢p’=0.
We can check by easy and tedious calculations that all relations are exhausted
by the previous ones. q.e.d.

In the rest of this section, we discuss the ring structure of &7 (M) for r=3.
We define

¢ =A"1asprl € o (M) for s #0mod p,

lop = A2 p "2 € A, (M) for s #0mod p,
$pr = A3 p 3 € o 2 (M),) p=a" if r=3),
By = A" Bsyp" ! € H (sprs-1)9-1(Mpr)

él = }»r_lépr_l € M(p2+1)q_2(Mpr),
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gy = Aleat " prt € A pryiyg-1(My)  for 1 SiS p—1,
(p” = Ar—lq)’pr—Z e'Sj(pz-*p)q—Z(Mp")’
where o” =[a}:]3 € & ,2,(M3) is the element in Theorem 4.4,

THEOREM 7.5. Let p be a prime=5 and r=3. Then, the group /(M)
for k<(p®+3p+1)q—6 is the direct sum of cyclic groups generated by the fol-
lowing elements:

0, = i,m,, Iy of order p;
Ep2s 6,802, £p20,, 6,820, of order p3;
088,08 (s#0mod p, 1 <5 = p+3), 62¢"0% of order p?;
0807 (s #0mod p, 1 <5< p?+3p),
0r(Bi1)0) "' Biny07 (1 =5 = p+3),
32(B(1)0,) Byt (OSs<p,2St<p+l,t#ps+tsp+2),
07(B(1)0:)*Bi2)0:Bip-1)07 (s =0,1),
02816,(Bi1)0,) 1 Biiyd (1 =5 <p),
078,0,(B(1)0,)°Bi0f (0= s<p,2st=p+l,t+#p,
s+t < p+2,(s, ) # (1, p+1)),
02810,(B(1)0.)°B(2)0,B(p-110% (s =0,1),
07 (Bi1y0,)%€'67 (0=s=3),
Ofe(id? (1sisp-1),
0fe(iy0,£,00 (1 =i p-3) of order p;

where a, b=0 or 1.

The ring £ (M) is generated, within the limits of degree less than (p* +
3p+1)g—6, by the elements 6, E(s<p? for r=3,s<p*+3p forrz4), B
(I1SsSp+1,s#p), &, e;(1Si<p—1) and ¢", with the following relations:

(i) () =0
(ii)) ¢ =0  forn, {e{&, Bis)» &, &y @} except the case (n, ) = (&5, &) .
(iii) If r=3, then &, = Peis+nyp  Jor s, t, s+t#0mod p,
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Enlprowy = Py for sEOmodp, Eué, = &y = Eprs
for s#¥0mod p?, and £, =0  for other s, t.
If r=4, then {8, = &8, = pépass, for s#0mod p,
and EE, =0  for other s, t.
Ifr25, &£ =0.
iv) 76, =0m =0 for (n,0) = (& Biey)(s 2 2), (€5 €,
&5 )5 (Bi2ys &), (Bisys €Giy) -
Bis9:81 = &10,B(s),  E0,Biyy = Bi1)0:E's  B(1)0,0" = ¢"0,B(4)
= £,0,B(2)0,B(p-1) up to non zero coefficient.
(v) Ifr =3, then
8:038p2—s = sp?(£,203—65€,2)  for s # Omod p,
= tp,203+(p—1)pdsé 2 for s = tp # Omod p?,
€038y = (P/(s+DN5Es 40,03+ 10385 4),)  for s, t, s+t # Omod p,
£p203¢, = 038,245 for s # Omod p,
= (1/(t+PNPEp2 44503+ 1638 p24p)  for s =tp # Omod p,
£038p2 = &p21403 for s # 0mod p,
= (1(t+ PNt p2 4,03+ P03 p2+,p)  for s =tp # Omod p?,
£03E, =0  for others, t.
If r =4, then 0482 —5p = 5P*(£5204—048)2)
Ep0alpr = (sp/(s+D)p2+5p04  for s # Omod p,
$p2048sp = (SP/(s+P))04p2+sp  for s # Omod p,
and £0,E =0 for other s, t.
If r =25, then £9,6, =0.
(vi)
(st/(s+t=1)B¢1)0,Bis+1-1)  Sfor s+t # p+1,

ﬂés)arﬁb) =
s(s=1)B2)0.Bip-1) for s+t=p+1
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J532i+s)5r€1 for i+s £ p-3,
ésérsii) = eii)érés = SP(P” fOI‘ its= p_l ’

[0 for i+s =p—2and fori+s = p.
(vi))  &1(6,B(1))? =0, (B(1)0,)"B(2)=0.

Proor. Except the relations (iii) and (v), the results coincide with the case
r=2, and are proved in the same way as Theorem 0.2. The relations (iii) and
(v) are easy restatements of Theorem 4.4. q.e.d.

§8. Some bracket formulae in G,.
In this section we give some relations on the stable Toda bracket in G, and
prove Lemmas 6.1 and 6.7. Here we assume p=5.

ProrosiTION 8.1. Let r=1,s=22 and r+s=<p+1. Then,

15, 50 forr+s < p—1and forr+s =p+1,

<(ﬂ1)p, Ay, as> =
0 for r+s = p.

<(ﬂ1)ps oy, a;;> = iep— 1%g.
Here the brackets have trivial indeterminacies.

PROOF. Set A=<{(B1)0)? !By, ad—dar, asd—6ay. Then by an easy
calculation we see that 4 has an indeterminacy Z,{saP**"*s=26a6} and that nAi=
+<(B,)?, a,, oy mod zero. Since a'é—du"= —r(ad—da)ar! =—rou " (ad— )
by (4.4), it follows that

A = rSBOtH'S_Z fOr B = <(ﬂ(1)6)P"lﬁ(l), aa_éa, 0(5—5(1) .

As is seen in the proof of Proposition 5.2, B=&+ Z {0y, a?*50d}, y =a(df )"~
B2y- By (5.2) (i) and (5.4), adyd =dyda=0, and hence by (4.4) and (5.19) « com-
mutes with any element of B. Also, the element ad —da commutes with any
element by (1.12). Therefore,

A =rsa"ts72B = trsorts73a, (B1)0)7 ! Byy, 0 — Sy (ad — dax)
= i rS(O((S - 5(1)0('+s—3 <a, (B(l)é)p_ lﬁ(l), 065 - 5(1} .

As is seen in the proof of Proposition 5.2, the last bracket contains the element
—&. So, we have TAi=rso €, 14—, =rS€,4+5_20; Up to sign. Thus we obtain the
first formula.
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Next consider A’'=<{(B(1)0)* 1By, ad—da, aP6—o?~'6ay. Then, (aPd—
aP~16a)i =<, Yi=—ia, and mA'i=+{(B,)?, oy, a,>. Similarly as above, we
have A'=+ (d—0a)aP~2{a, (B(1)0)* ! B(1), a0 —0a) 3 + adaP~2e=+ eaP~2a.
Thus the second formula follows. q.e.d.

Now to prove Lemma 6.1, we introduce some results on the unstable groups
7, +1(S") from [5; §8] and [11]. Set k=(p?+p—1)q—2, and let S*: w, . (S")—
G, be the natural homomorphism. By Theorem 15.2 of [11],

(8.1) There exists an element e=¢,_;(2p+3)€m;,43+4(S2P*3) of order p such
that S*e=¢,_, € G,.

Following [11], we denote by Q3"~! the space Q(Q2S2"*+1, S27~1) of paths
in the double loop space 225271 starting from the subspace S2"~! and ending to
the base point *. Denote by H®): x;, ,(S2"*)—n,_,(Q%" 1) the homomorphism
defined from the induced homomorphism from the inclusion (22S82"*!, ¥)—
(Q282n*1, §2n=1) For y€ ,G;_3,p+3, denote by Q"(y)e ,m(Q3""!) the image
of y by the homomorphism I': ,G;_;,,+3~ ,7;42(S2"P~ ) - 1,(Q3""1). (Cf.
[5; pp. 331-332]).

LEmMMA 6.1. <e,_y,p,2;> =0 mod zero.

Proor. As is well known, §°: m,,,_,(S")—G,_, is an isomorphism of p-
components for n=3. Let aem,,,,(S?) be an element such that pa=0 and
S®a=a;. Then we consider the Toda bracket {a, pcyp+4, S&} STyt 2,45(S7),
whose S*-image is equal to our bracket <e,_;, p,a,;> up to sign, by [10; (3.9),
0].

Next we calculate the groups ,m.4,-5(S??73) and ,m,,4,-3(S??7!). By
[5: A1, s ap-s(Q37 ) =Z,{Q" 2@y242)} ANd ,ysqp-o(037-2)=Z,{Q7 -
(@p241), Q7" 1(a; f572B,)}. By the discussions in [5; pp. 332-333], we see that
pnk+4p—5(szp~3)=Zp2{vp——2} and pnk+4p—‘3(szp_l)=zp2{))p—1}+Zp{ﬂ}’ where
Yp-2and y,_, are called the unstable elements of second type and satisfy H®)y,_,
=Qp_2(“p2+2)’ H(z))’p—l =Qp_1(ap2+1)’ SZYp—2=pyp—1 and S4’yp—2=0’ and the
element f satisfies H(2)f =0QP~(a,$572f,). We have therefore S°,m; ;. 4, 5(S2773)
=0. Since S2P71%{a, pry,i4, S} C My 4,-5(S2273), it follows that S<{a,
Pt2p+as SE}=0. q.e.d.

REMARK. Set k=(p>+p—1)q—2 and I=k+q. The stable groups ,G,
and ,G, are generated by ¢,_, and f57!8,. For the element fe 1, ,,_,(5%77),
we see further that S*f=p5"18,, i.e., the element =15, belongs to S*°m;,,,
(827~1) and not to §°m;, 5, 3(S2773). This is true for the case p =3, but the above
proof is negative for p=3 since (8.1) does not hold for p=3.

Finally to prove Lemma 6,7, we employ some results of [5] and [6]. Let
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K, (n) be the space obtained from S" by attaching cells of dimension greater than
n+k and killing the homotopy groups =, (S") for j=k. Here n is a sufficiently
large integer. Set k=(p?+p)g—3. By (1.3) of [5] and Theorem 13.1 of [6],
we have the following results on the cohomology group H¥(Ky(n); Z,):

(8.2) H"= Z,{a,}, H™ ' =2Z{f}, H"™*2=2Z/{f, b},
H" +3 = Z {a, 4b}, H"*+4 = Z {a'}, H"* a1t = Z {c},
Hrntk+a — Zp{Ac}, Hntktatl — Zp{Plf}, Hntktat2 — ZP{APIf, P‘f’},
Hrktatd3 = Z {Pla, AP'f', P'4b}, H'=0 otherwise for
O0<is=n+k+q+3,

where H'=H (K (n); Z,), a=a,2,p,, @’ =ap24p, b=b5"1 and c=cf§ in Theorem
13.1 of [6], and 4 and P! denote the Bockstein operation and the reduced power
operation.

LEMMA 6.7. ' {p,a,, p>30.

Proor. From (8.2) we see easily that the elements a,, f, P1f and AP!f form
a subcomplex of Ky (n) up to mod p homotopy equivalence. In more detail, there
exist a complex

L=S"y en+k+l U en+k+q+1 U en+k+q+2

and a map F: L—Ky(n) such that H¥(L; Z,) is spanned by F*(a,), F*(f), F*(P'f)
and F*(4P'f). The (n+k+1)-skeleton of L is the complex P}(f) of Definition
2.1 of [5], and so it is the mapping cone of ¢ by the fact ¢(¢p)=f for the homo-
morphism ¢ of [5; (2.1)] and by Lemma 2.2 of [5]. Since F*(P'f)=P!F*(f)
and a, is detected by P!, the (n+ k+ g+ 1)-skeleton of L/S" is the mapping cone
of a,, and since F¥*(4P'f)=AP!F*(f), L/(S" U e****1) is the mapping cone of p €
G,. So the existence of such L leads us to the lemma. q.ed.

REMARK. By an argument similar to Lemma 6.7, we can also prove Lemma
6.1 without the assumption p=5.
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