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Introduction

Let BP,( ) be the Brown-Peterson homology theory localized at a prime
p=5. Its coefficient ring BP, is the polynomial ring Z ,[v,, v,,...] over the inte-
gers localized at p on Hazewinkel’s generators v; of degree 2(p'—1) ([2], [3],
[4], [6D).

In the previous paper [14; Th. D, DII, D’, D’II], we constructed the spectra
realizing cyclic BP,-modules BP,/(p, v}, v¥) at p=5 in the following three cases:
1£jsp, 521, (J, )#(p, 1); p+1=j<2p-2, pls; p+1=j<2p, 2p|s. In this
paper, we shall prove the following realizability theorems.

THEOREM 4.3. For p2>5 and s=2, there exist spectra L, such that BP,(L,)
=BP,/(p?, v, v¥).

THEOREM 4.4. For p=S5, s=2 and j with p+ 1< j<2p, there exist spectra
Y, ; such that BP(Y, ;)=BP,/(p, vi, v§*).

Each L is an 8-cell complex and we define the element B/, ) in 74(S), the
stable homotopy group of spheres, by the attaching map of the 5th cell at the. 4th
cell in L,, and similarly we define B,,2;(;, € m4(S) from Y, ; (for the details, see
Definitions 5.1-5.2). Then using methods developed by H. R. Miller, D. C.
Ravenel, W. S. Wilson and others ([7], [8], [9]), we see that the elements f;,2/,,2)
and By, of the same name in H2BP, =Ext 2;*;.(BP,, BP,) [8] survive non-
trivially to E_, term in the Adams-Novikov spectral sequence and support the
homotopy elements of the above.

THEOREM 5.3. For p25, s22, the elements B2y in Msps s sp2— pyg—2(S)
(g=2(p—1)) are nontrivial of order p? and indecomposable. Hence the group
T(sp3+sp2-pyg-2(S) contains a summand isomorphic to Z[p*Z.

THEOREM 5.4. For p25,522, p+1<j<2p, the elements Py, in
Tspr+sp2-jyg-2(8) (q=2(p—1)) are indecomposable and generate cyclic sum-
mands of order p.

The known elements in 7,(S) of order p? are the elements in ImJ [1] and the



428 Shichir6 Oka

three elements ¢, u [12] and ¢, [11]. None of them is of degree even. Theorem
5.3 shows that Coker J contains infinitely many elements of order p? and of degree
even. We shall also construct at the end of this paper the elements ¢, in Coker J
of order p? and of degree odd, for infinitely many =1 and all p>5, as a gener-
alization of the known elements ¢ =¢, and ¢, (Theorem 5.5).

In §§ 1-3, we shall study the spectrum K realizing BP,/(p, v%) and the algebra
A (K)=Y, o (K), «(K)=[2*K, K], consisting of stable self-maps (2 denotes
the suspension). K has a CW-decomposition S® U e! U eP2t! U er?+2, g=2(p—1),
and the smash product KA K is homotopy equivalent to the wedge KV ZK
v Zrat1K y yra+t2K (see Remark 1.6 below). Moreover K is a commutative and
associative ring spectrum (Theorems 1.10 and 2.1), and the projection to the first
factor of the above decomposition is the multiplication u, on K. These facts
are useful to study the structure of the algebra o7,(K). Define linear maps
0: o (K)—> 4 1(K) and ¥ o (K)— )4 50+1(K) by the compositions

0(f): Z¥'1K = L¥(ZK) < Z¥KK A K A S KA K4 LK,
Y(f): ZkpatiK = Sk(Zpat1K) c KK A K- , K A K21, K

for fe o, (K). Then, for any fe «7,(K), the element 1 A f is described, via the
above decomposition, with 16 elements in «,(K), which are written in terms of
0 and y (Proposition 3.3).

~ Let de/_(K) (Lemma 1.7) and &' e o/ _,,-,(K) (Definition 1.9) be the
generators such that 8(8)=y(6')= — 1 and Y(6)=60(5')=0 (Lemma 3.2), and put
€«(K)=Ker0nKery. Simple characterizations of elements in % ,(K) will be
given in Corollary 3.4. We shall prove in § 3 the following results on the structure
of & ,(K).

THEOREM 3.6. (i) & «(K)=%+«(K)RE(S, 6')=E(5, 6' )R ¥ +«(K), where E de-
notes the exterior algebra over Z|pZ.

(i) 4(K) has the two differentials 0 and  of above which are derivative
and commute to each other, i.e., 0>=0, Yy2=0, Oy = — 0 and for d=0, y

d(fg) = (=1'd(f)g + fd(g), feAUK), ge(K).

THEOREM 3.7. The subalgebra % ,.(K) is commutative, and for any fe
€ «(K), the commutators [ f, 6] and [f, '] are the elements in € ,(K).

We constructed the element in «7,(K) realizing the multiplication by v$®
for s=2[14; Th. CII]. We shall reconstruct this element so that it lies in % ,(K)
(Lemma 4.2) and deduce in §4 the above realizability theorems from Theorem
3.7.
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§1. Spectrum K

In this paper, we shall work in the stable homotopy category of CW-spectra.
We denote by S and M the sphere spectrum and the mod p Moore spectrum,
respectively. Here p denotes a fixed prime with p=5. Denote the cofibering
for M by

S-2,S+t,M_=,3%8,
where X denotes the suspension functor.

We shall use the same notations as in [15], for example, [X, Y],=[2*X,
Y] is the additive group of homotopy classes of maps Z*X—Y, and if X and Y
are M-module spectra'), [ X, Y]¥ is the subgroup of [X, Y], of all M-maps?.
We shall abbreviate [ X, X7, to &(X) and [X, X]¥ to #,(X). By the composi-
tion product, & (X)=3Y,(X) is a graded ring and Z,.(X)=3,Z(X) is its
subring.

We shall put g=2(p—1). Let a e/ (M)=Z/pZ be a generator and denote
by K the mapping cone of the element a? € o ,,(M), so we have a cofibering

(1.1 IraM &2, M L, K =, ZratiM,

Since a is the M-map, K is an M-module spectrum by [15; Th. 4.3]. Noting
that o ,(K)=&,(K)=0 and using [15; Th. 1.3, Prop. 5.4, Th. 4.3], we have

ProposiTION 1.1. K is an associative M-module spectrum having the
unique M-action m=my: M AK—K and the unique right inverse n=ng: XK
—-MAK of nAlg associated to myg, i.e., myng=0, (i Al )mg+ng(nAly)=
1yak- The maps i’ and =’ in (1.1) are the M-maps.

LEMMA 1.2. a?Alg=0 in ,(MAK).

Proor. The element nma?iem,,_;(S) is divisible by p ([17], [13; §4])
and 1 is of order p [15; Prop. 1.1]. So (naPi) A 1x=0. Since o7, (K)=0 and
o pg+1(K)=0, we have m(a? Alx)=0 and (a? Alg)n=0. Hence a?Algx=
nmrAl)@ Al (iAlgm=0.

NotATION. For M-module spectra (X, my) and (Y, my), the smash product
X A Y has the M-actions my A1y and (1xAmyX T Aly), T: MAX—>X AM being

1) By an M-module spectrum, we mean a CW-spectrum X equipped with a left inverse
my: MAX—>X of i Aly: X=SAX—M A X; my being called an M-action on X.
2) Amap f: X—Y between M-module spectra is called an M-map, if f is compatible with

the M-actions on X and Y, ie., my(xAf)=fmy.
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the switching map, defined from the ones on X and on Y, cf. [15; (1.6)]. We
shall write the former M-module spectrum as X AY and the latter as X A Y.
Similarly, we use the notations X AYAZ, X A Y AZ, etc.

PROPOSITION 1.3. There exist elements
m'e[R A K, MAKIY¥n[KAK MAKIY,
ne[MAK,KAKIM,, n[MAK KAKIY,,

such that

m'(i’ A 1g) = Lyag, (8" A 1IN = 1pyag, m'n’ =0,
(" A lpm’ + n'(7’ A 1g) = 1gax-

Proor. By (1.1) and Proposition 1.1,

IPaM A K 22AL, M A K AL, K A K AL, Fra+iIM A K

is a cofibering of M-module spectra and M-maps. Applying [15; Th. 4.5] to
~this sequence and using Lemma 1.2, we obtain elements m’'e[K AK, M'A K]¥

and' n'€[MAK, KAKJM,, satisfying the ‘desired equalities: - Since a? A1,

i’Al and n' A1 are also M-maps with respect to M AK and KAK, it follows
from [15; Lemma 4.6] that these m’ and n’ are the M-maps with respect to M A K
and K AK.

DEFINITION 1.4,
py=mgm’: K A K—K, vi=1iAlg: K—K AK,
Hy=@Algm': K A K— XK, v, =("A1png: ZK—> K A K,
Uz =mg(n' A lg): KA K—ZPitIK, vy =n'(i A 1g): ZPat1K

—K A K,
Uy =T A Ig: KA K—2Xrat2K, vy = n'ng: 2r9*2K— K A K.
The above two proposifions show immediately the following

COROLLARY 1.5- ﬂiv,':lx, ﬂivj=0 far i?‘-’], and Vlﬂl+V2/.l2+V3ﬂ3+V4ﬂ4

=1gax
ReEMARK 1.6. These relations give a decomposition
KAK=KVZIKYyZXrtiKy rrat2K,

Hence, the ring /(K AK) is isomorphic to a subring of (4, 4)-matrices on
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& (K) by sending f to a matrix (u;fv;).
We introduced in [15; §2] (cf. [18]) the (additive) homomorphism
6 = emx,my: [X’ Y]k E— [X9 Y]k+1

for M-module spectra (X, my) and (Y, my). 6 has the following properties [15;
Th. 2.3, Prop. 2.5, (2.2), (3.1)]:

(1.2) 0(fg) = (—1D*6(f)g + fb(g) for felY,Z], gelX, Yl
(1.3) 0(f)=0 ifandonlyiffisan M-map;

(1.4) 6%(f) =0 for fe[X, Y], if X and Y are associative, in particular 62=0
on of (M) and o (K);

(1.5) 0,(fAg)=0(f)Ag and 0,(f Ag)=f NO(g) for fe[X, Y], ge[X', Y,
where 0, and 0, are thé operations 0 on [ XA X', YAY'], and on [XAX', Y
A Y]y, respectively;

(1.6) 0(0y)=—1y in o (M), where dyy=in is a generator of o _(M)=Z/pZ.

The element «? commutes with §,,. Hence the following lemma and proposi-
tion are direct consequences of [15; Prop. 7.3, Th. 7.5].

LEMMA 1.7. There exists an .element 6=0ye€ o _ (K) such that_62=0,
0(0)= —1g and 6i' =i'dy.

PROPOSITION 1.8. o 4(K)= B (K)QE(6)= E(0)® & 4(K).

DerINITION 1.9. We put §'=i'n"eof_,,_((K). This satisfies 6(6")=0,
(6")2=0and §'6=—4¢'.

The following result determines the matrix corresponding to the switching
map of K AK.

THEOREM 1.10. Let T: KAK—>KAK be the map switching the factors.
Then,

T =y, Tvy = vy + V0 + v30’ + v,00,
U T= —u, + opy, Tvy, = —v,+ v40,

HsT= —p3+ &y, Tvy = —v3 = V40,

BaT = py — oz + 0'pty + 66'py, Tvy =v,.

In other words, T corresponds to the lower triangular matrix
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1

o -1

¢ 0 -1
66 & —=o 1

ReMARK. The first equality in the above theorem means that K is a com-
mutative ring spectrum with multiplication pu, and unit i'i. By (A ) of Theo-
rem 2.1 in the below, it is also associative.

Theorem 1.10 is an easy restatement of the following

LemMA 1.11. (i) (7" A LT(@ A1) =( A 1g)0 mg + ngd'(m A 1) +
ngdd' mg.

(i) m'T@" A 1g) =@ A Lmg — ng(n A 1g) + ngdmy.
(iii) (' A1 )Tn' = —(i A 1 mg + ng(n A 1) — ngdmy.
(iv) m'Tn’ =0.

Proor. (i) By [S5; Th. 7.10] ([18; Lemma 1.3]), the switching map T,,:
M AM->M A M satisfies the equality

(1.7) Ty =@ A Lymy — npy(m A 1pp) + npdpmpy,

where m,, is the multiplication (M-action) on M and n,, is its dual. Since i’
and n’ are the M-maps, we have

(1.8) mg(ly A V) =i"my, ngi’ = (1 A iy, n'mg = my(ly A ), (1 A n')ng
= —nym'.

Then,
("' ADTGE AL =y AiNT(1p A )
=1y A A Lmy(Lyy A7)
=y A i A L)y A )
+-(1pg A iInpbpmp(13 A7)
=(i A D)i't’'mg + ngi'n’'(m A 1) + ngi'dpn'mg
= (i A 1)0'mg + ngd'(m A 1) + ngdd'my,

by (1.7), (1.8) and Lemma 1.7.
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(i) By (1.7) and (1.8), m'T(I' AD(1y Ai)Y=m'(i' Ni")Tyy=(p A i) Tyy=
(A Dmg—ng(n AD)+ngdmg) (1, Ai’). Since (1, Ai')* is injective in degree 0,
(ii) is obtained.

(iii) Similarly, (I, A7)V A DT =1y A )= (A Dmg + ngln A 1)—
ngdmyg) and (1, A '), is injective in degree 0.

(iv) Since T lies in [RAK, KARI¥n[KAK, RAK]Y, m'Tn’ lies in
[MAK, MA K]{,‘{,H NIMAK, MA K]M .1, which is trivial by easy calculations.

§2. Associativity

The purpose of this section is to prove the following associative formulas.
THEOREM 2.1. (i) (Associativity of p,)
(A (g A ) = (= DSesmidennip (4 A 1)
for i=j#£2,i=4,(i,))=2,1) or ((i,))=@G,1).
(Azz) m(lg App)=—pa(pa Alg) if p27,
and there is an element &€ Z[pZ{(a,f3} A 1x)0'} such that
Ha(lx A pz) = — oz A L) + Sus(us A ) if p=>5.
(Ai))  mlx A p) = (=Diu(u A 1) + (= D) eesripu; A 1x)
for (i,))=(1,2),(1,3),2,4) or (3,4).
(Ar)) 1 A pa) = paug A1) + (i A 1) + pa(uz A 1) — pa(is A 1g).
(Az3)  malg A ps) = —pa(py A 1g) — pa(pa A 1g).
(As2) 13l A pz) = pals A 1) — iy A 1)
(ii) (Associativity of v;)
(A}, ) (Ig A vy = (—1)desvidesvi(y, A 15)v;
for i=j#£3,i=1,00()=2,4 or ((,j)=G,4).
(A3,3) (g Avavs= =3 Algvs if p27,
(g Avavz= —(v3 Alvs — (v A Lvo§ if p=35,
where £ is the same as in (A, ;).

(AL (g Avjvy= —=(=Di(v; A L)y, — (= 1)7%9e8%(v; A 1)y
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for (L,)=@21,31,42 or (473).
(A%,3) (g Ava)va= =02 A 1gJvs + (V1 A Lgva.
(A3,2) (Ig Ava)vs=(v3 A 1gvz + (v A Lg)Va.
(A4, 1) (g Avva= (1 A Ldva + (V4 A LV + (03 A 1g)va = (V2 A Lvs.

LEMMA 2.2. Let 6, and 0, be the operations 8 with respect to KR AK and
K AR, respectively. Then

(i) 0,(u) =0, 0,(uy) = —py, 0,(u3) =0, 0,(us) = s,
0,(vy) = vy, 0,(vy) =0, 0,(v3) = vy, 0,(v4) = 0;
(ii) 02(#1) = 0’ 02(vi) =0 for i= 1’ 2’ 3, 4.

Proor. By Proposition 1.3 and (1.3), 6(m’)=0 and 6(n")=0. By Propo-
sition 1.1, (1.5) and (1.3), 6(i’ A1)=0 and 6z’ A1)=0. By [15; Lemma 5.1],
0,(iAnD)=ng and 0,(xAl)=-—mg. By [15; Prop. 5.4] and Proposition 1.1,
0,(my)=0 and 0,(ng)=0. We have easily 0,(i A 1)=0,(n A 1)=0,(mg)=0,(ng)
=0. From these values of 6;, using (1.2) we obtain the lemma.

LEMMA 2.3. Let 0, and 0, be the operations 0 with respect to KAKAK
and K AK AK, respectively, and 0, and 0, be as above. Then

(i) 0101 A pp) = (=1)%840,(u) (L A ),
0y A 1)) = (= 148450, () (u; A 1) + p01(1) A 1);
(ii) 0501 A ) = p(1 A 0,(ny)),
05(ui(p; A 1)) = (= 14840, (u;) (; A 1);
@iii)  07((1 A v)v) = (1 A vpOi(v),
1 A Dv) = (= 1)28*(0,(v)) A Dv; + (v; A DO,(v);
(iv) 65((1 A vyv) = (—1)8(1 A 0,(v)))v;s
2(vi A Dv) = (v; A DO(v).

Proor. By (L.5), 01(1 App)=0,(1) Apu;=0 and 67(1Av;)=0. Hence (i)
and (iii) follow easily from (1.3) and Lemma 2.2 (i). The elements (1 A p;)
and p(u; A1) pass through K A K, and the 6,-images of these elements do not
depend on M-actions on the intermediate spectrum KA K. Considering the
M-action KAK, we have 05(u(l Ap)=p(L A0 (1)) £ 0,(u) (1A pj)=p(1 A
60,(u)) by (1.2), (1.5) and Lemma 2.2 (ii). Also, considering the M-action K A K,
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we have 05(u(u; A1) =(—1)3840,(u;) (u; A1), and (ii) is obtained. (iv) is
similar to (ii).

Proor oF THEOREM 2.1. Let (i, j)=(2, 4), (4, 2) or (4, 4). Then, by Lem-
mas 2.2-2.3, (A;;) implies (A;_, ), (A;;-) and (A;_, ;_,) by operating 6}, 6,
and 0,6, to (A, ;), respectively. So, we prove (A, )).

Since py=nn' A1, pg(1 Apj)=p(nn’ A1 A1)=pi(us A1), in particular (A, ;)
and (A, 4) follow. Similarly, (1 Apg)(vy A1)=v,u, and so p,(1 A pg)(vy A1)=0.
Since 1 Aps=(us AD(T A1), we have py(1Apa)(vie AD)=p2((paTvi) A )= p,(
A1) for k=2, = —pu,(6 A1) for k=3, and =y, for k=4, by Theorem 1.10. By
definition, u,(8’' A D)=F@A1DM'F AR Al)=an'Al=p,. To prove u,(6Al)
=0, we prepare the following

LEMMA 2.4. m'(1g A d)n’ =0.

Then we have p,(1A)=@A DM (LA ADM =(r A1y Ad)m'=—d(n
AD)m'=—6u, and similarly u, (1 Ad)=m(lyy Ad)m'=(m—n A l)m'=8u, —u,,
by Propositions 1.3, 1.1 and Lemma 1.7. Hence u,(6 A 1)=u,T(1A6)T=0 by
Theorem 1.10. Therefore uy(1 A pa)= 2 iit2(1 A pa) (Ve A D (e A D)= pa(pa A1)+
Ux(pga A1) and (A, ,) follows. Thus, we have obtained (A;;) except for (i, j)
=(1, 1), (1, 2), (2, 1) and (2, 2).

By using Lemma 2.3 (iii), (iv) instead of (i), (ii), we can similarly obtain
(A}, ;) except for (i, j)=(3, 3), (3, 4), (4, 3) and (4, 4).

We next consider (A, ,). We have py(1A u) (" ATAD)=p(i" ALy A ity)
=mAD(IyApa)=—pa(tALAD)=—py(u; AD) (" AT AL), and hence py(LAp,)
=—paop AD+E (s A+ &g A ) for some &, e[KA K, K1Y, and ¢&,
e[KAK, K]M, by [15; Th. 4.5]. Using exact sequences derived from (1.1),
we can compute %, (K) for small k from the results on #Z,(M) [13], and we ob-
tain the following results:

gpq—l(K) = Z/PZ, ‘@pq(K) = 01 gpq+ I(K) = 09
[ Z|pZ{B} for p27
2 —3
" ZIpZ{B} + ZIpZ{(@, B3 A 198} for p=5,
0 for p=>7
gqu+ 1(K) =
Z|pZ{i'nn'} for p=35,
gqu+2(K) =0,

where B satisfies n'Bi’' =Py € B pq— (M), ay=naien,_,(S), By =1 )i € Mpy-2(S)
and ’7=°‘(5Mﬁ(1))3 ([13], [19D).
From these results, &, =¢&yu, +xBus+Eps+E4py and &, =Eu, for some &,



436 Shichir6 OxA

€ By 1(K), X€Z|PZ, £ € Bp(K)|(B)s Ean &5 € Bapgsr(K) (G Eur Es=0 if p27).
By (A3j,1) and (A],3), (v A Dvi=(LAv)v3—(L Av3)vy, and so S3=pu,(1 Aps)(vs
A1)v;=0. The functional PP-operation for f, is nontrivial [19], and hence
x#0 implies P?#0 on H¥(KAKAK; Z/pZ). But Pi=0 on H*K; Z/pZ) for
i=1 and the Cartan formula shows PP=0 on H¥ K A K AK; Z/pZ), so x must
be trivial. Thus we have

(Az2) (1 A ) = —pp(uy A1)+ Eus(us A1)+ Capalps A D) + Espa(pg A 1).

By considering 0, 6, and 6 6}-images of (A, ,)’, we also have
(A1) wa(L A py) = py(uy A1)+ Sapaus A ),

(A2 w(UA )= —py(uy A D)+ pp(uy A D+ (Es — EDus(us A1), ‘

and the associativity (A, ;) of u;. Incase p=7, &, &, and &5 are trivial, so (A, ,),
(A;,;) and (A,,,) are obtained too.

In a similar manner to the above discussion on (A, ,), we obtain (Aj,3),
(A%,4), (A4,3) and (A} 4) in case p=7, and a weak form of (A}, ;)

A Avvz= =3 A Dy 4+ (v A D 8" + (v3 A Dvi&ly + (vy A D&

in case p=5. By (A4;3); (As3) and (A, ;) pa(ua A D)= —py(1 A pa) = Spa(L A )
Feaus(WAp)+(Es—C)ua(1 Apz) and so &=p(ua AL AV3)vy=—¢ By
(Az,3) and (Ay,1)'s pipa AD)=py(1 A py)+Eaps(1 Aps), and so Sy=py(uy A1
Av3)vz=&,. Similarly we have &s=¢5 from (A; 3), (A,,;) and (A; ;). We have
therefore obtained, in case p=>5,

(A3,3) (LA vyvz= =3 A D3 = (v2 A Dvad + (02 A Dvia + (0 A Drpds,
(A3,4) (LA VY3 =(v3 A Dvg + (v A Dvady,
(A%,3) (LA Vv =(g A3 — (3 A Dvg+ (v2 A Dva(&s — &)
and (A}, 4).
The proof of £,=¢5=0 in case p=>5 is delayed to the end of this section.

PROOF OF LEMMA 2.4. Since & ,(K)= p,,(K)=0, we can put m'(1
Ad&n'=ngfmg for feol,,_(K). Then (1pAd)nfm—nfm(ly Ad)=m'(1A0d)
IADMA AR +m'(1L ASn'(n’ A 1)1 A Sn'=m'(1 A 62)n’=0. Compositing
m from the left and using 8(6)= —1;, we have fm=0. Therefore m'(1 Ad)n’
=nfm=0.

The rest of this section is devoted to show £,=&¢5=0. Let W be the mapping
cone of a2 € B,,(M), g=2(p—1), and denote the cofibering for W by
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(2.1 T2aM 2, M lw, Waw, p2atipM

Since & ((W)=u,(W)=0, W is an M-module spectrum having the unique
associative M-action my and its dual ny. Also, by [15; Th. 4.3], iy and ny
are the M-maps. Let L be the mapping cone of a, =na?i € n,,_,(S) and

2.2) F29-1§ %2, 8§ L ] ™, ¥248

be the cofibering for L. By easy calculations, &, (W)=0, o, ,;(W)=0, and
hence a2 Aly=ny(a, Aly)my. Since W AW is the mapping cone of aZ Aly,
W A W is homotopy equivalent to WV (ZLA W)V Z24+2W with the inclusions
iy WoWAW,i: SLAW-SWAW and iy: 229" 2W—->W AW and with their
left inverses p;: WAW—oW, p,: WAWSZLAW and py: WA W—ZX22972W such
that iy =iyiA ly, (i, A ly)=(iw A lw)nw, (AL A Ly)pr=my(nw A ly) and py=
any A ly. Putting py=p,, uw=p2 vw=1i3 and vy =i,, we have easily the fol
lowing

PROPOSITION 2.5. There are elements
uw€[WAW, Wlo, uwelWAW,LAW]_,,
v €W, WAW]_ 25, VwelLAW, WAW],,
which satisfy the following relations:
(1) pwliwi A 1y) = Ly, gy = Lpaws (Mg A Lp)vy = 1y,
vy =0, pyvw = 0, wiy(iwi A 1y) =0, fiyvy =0, (nmy A Ly)vy = 0;
(i) (iwi A Lpduw + Vit + vy A 1y) = Lyaw
(i)  uwliw A lw) = my, (tw A Ly)vw = ny,
Hw(iw A 1w) = (i A 1y) (A 1), (e A Lw)vip = (0 A 1p) (e A 1),
(m A Lduw = my(mw A Ly), v(ip A 1y) = (iw A Ly)ny.

ReEMARK. From this proposition, we see that W is a ring spectrum with
multiplication uy, and unit iyi. We can also prove that puy is commutative and
associative. We notice that in case p=3 this proposition and the commutativity
of puy also hold but the associativity does not (cf. [15; Th. 6.3]). In a forthcoming
paper, we shall prove that the mapping cone X; of a/ is a ring spectrum for
p=3 and j=1 except for (p, j))=(3, 1), i.e., the spectrum V(1) at p=3 (cf. [18]).

LEMMA 2.6. (i) pwe [W AW, WIMn[WA W, WIN.
(i) puwe[WAW, LAWIM, and 0(uy)=—(i, A gy for 8 on [WAW,
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LAW]_,.

ProoF. Let 0, and 0, be the 6's with respect to WA W and WA W, re-
spectively. Using exact sequences derived from (2.1)-(2.2), we have

[WAW, W]y =0 and [WAW, LAW], =Z[pZ{(i, A 1w)iw}

from the known results on «,(M) ([13], [19]). Hence 0,(uy)=0 and 6, (uy)
=x;(i, A y)uw, x;€Z|pZ, i=1, 2. By considering 6,-images of the third equality
in (iii) of Proposition 2.5, we have x, = —1 and x,=0 as desired.

By [15; Th. 4.4], there exists the M-map
(2.3) p: K—— W such that pi’ =iy, and nyp = ar 27
LEMMA 2.7. There hold the relations
pw(p A p) = ppy and py(p A p) = (iy A Ly)ppa.

Proor. By Lemma 2.2 (ii), the group [KAK, W]¥ is determined from
[K, WM via the decomposition of Remark 1.6. From the results on %Z,(M),
we have [K, W]¥=Z/pZ{p}, [K, W]¥ =0 for k=1, pg+1 and for k=pq+2,
p=7, and [K, WM, ,=Z/pZ{iy(n'} for p=5, where {=a;f?Alyec Bu(M).
Since 6,(pp,)=0 and 0,(iw{n'u,)#0 by Lemma 2.2 (i), we obtain

[KAK, WI¥ n[KAK, WI¥ = Z/pZ{pu,} .

By Lemma 2.6, the element puy(p A p) lies in this group. Since uy(p A p) (i’ A 1g)
=mw(1p A p)=pu; (i’ A lg), the first equality is obtained.
By computing [K A K, LA W]M,, the second one is similarly obtained.

LEMMA 2.8. There hold the associative formulas:

(1) pw(lw A pw) = (1L A pw) (1w A 1)

() LA X T, Alw) (L A pi) = =1L A pw) (i A 19) + tw(iw A Lw),
where Ty, 2 WAL—LAW is the switching map.

Proor. We abbreviate 1y, uy and py to 1, p and p’. By Proposition 2.5
(iii), we have

WAARWEr ALAD =G ADu(rALAY
= AW ADGr ALAT,

(e A (Tw,e A DA A @) Gy A LA D) =g A mp)(Ty A Dy A ),
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WA= AW Ay ATLATL
= Wmy AD = (L A Dp(m A LA D,

where Ty, : M AL-LAM is the switching map. By Lemma 2.6 (ii), —(i, A )u
=0,(W)=1LAmy)(Ty L A1y Ap')(ny A1) and hence

(I A my)(Ty A DIy A @) = p'(my A1) = (i A Du(m AT AL,

Thus, we see that the desired relations hold if (iyy A 1 A 1)* is injective on [W A W A
W, LAW]_,.

From the results on &74(M), we have & (W)=Z/pZ{1}, o1, (W)=Z]
pZ{a, A1} and & (W)=0 for k=1, 2,2q, 29+1,2q+2, 29+3,4q+1, 4q+2,
4q+3. Therefore [M AW AW, LAW],;,=0, and so (iy A1 A1)* is injective as
desired.

ProoF oF THEOREM 2.1 (continued). To accomplish the theorem, it suf-
fices to show £,=¢5=0 in case p=5. By Lemma 2.7, we have

(e A Dpua(M A p) =AW ApADP),

(e ADpp(ua A=A AW AN AP AP,

(i A Dpus(L A ) = (e A (T, ADLA (P A p A P,
(L A Dppa(uy AD)=p' (WA ApAPp),

where 1=1y or 1k, u=puy and p'=py. By Lemma 2.8 (i) and (A, ;)’, we have
(i A1)pEaps(ps A1)=0, and by Lemma 2.8 (ii) and (A, ,)', (i A 1)p(€s — Eadua(us
A1)=0. Hence, (i, A1)p¢;=0 for j=4, 5.

Since [K, Wl¥,,+1=0 for p=7, =Z/pZ{iynn'} for p=5, where g
=a(dpP1))?, and since [K, W]¥,_,),+2=0, we see that ((i, A1)p), is injective
on &,,,4+1(K). Therefore {,=¢5=0, and the theorem holds entirely.

§3. Algebra &, (K)
DEerFINITION. We define a linear map
V: oK) — A 4 pg+ 1(K)
by the formula Y(f) = u;(1x A f)vs.

LemMma 3.1. (i) yy=0.
(i) Yo = —0y.

Proor. (i) By (A%,3) of Theorem 2.1,  (u; A1)(1 Avs)v3=0. Hence, by
(Ay,1) of Theorem 2.1, YY(f)=pu,(LAu)AALTA L)L AV3)vs=p,(p AD(IAL
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ANAAvIvs=p (LA f) (g A (1 Av3)v3=0 for fe o (K).
(i) By (1.5), 61 A f)=1A6(f) for @ on [KAK, KAK]*. Then, 6y(f)
=0(u,(1 A f)vs)=(—=1)%8v3y, (1 AO(f))vs= —yYO(f) by (1.2) and Lemma 2.2(ii).

LemMA 3.2, Y(8)=0, Y(6')=—1.

Proor. The first equality is immediate from Lemma 2.4. By Theorem
1.10, l//(‘S’)=ﬂ1 T(il A 1) (n' A 1)TV3 =—1.

ProrosITION 3.3. Let fe o/ (K). Then
wA Af)y; =0 for i>j;
f for i=1,4
w1 A f)y; = [ _
(=D*f for i=2,3;
(LA, =0(f), p3(1 A f)ve = (=1D*0(f);
(LA fv3 =0, po(1 A f)ve = — (=D"(f);
(LA f)ve = 00(f) = —¥O(f).
In other words, 14 A f corresponds to a triangular matrix
;o () 0y (f)
(=D 0  —(=DY(f)
(=DY  (=D*(S)
f

Proor. We put ¥;;(f)=u(lg A f)v;, in particular ,3(f)=y(f). From
the relations

mAANDEAD) =D ADA AN =1y Af,
mly ANGAD=(=Dn A DUy Af)n =1,
@ ADAANE AD=0, wADAy ANGEAD=0,

we see easily that Y, (f)=0 for i>j, Y (f)=(=Dkesnf and y,,(f)=
(= DM34(N)=06(f).

The homomorphism ¥, satisfies
(*)  Va3(gh) = (=1)%89gy,5(h) + (—1)%3,3(9)h  for g, he A W(K),

because ¥23(9h) =2 W2(gWis(h)=V22(9)¥23(h) +¥23(9)¥33(h). By Proposition
1.8 and [15; Th. 7.5], any element f can be written as f=60(g)+60(h)d for some
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g, he o (K). Then ¥,30(9)=V23¥12(9)=p1(p2 ADAATAG)(vi A)va+(v3 A
1)v,)=0 by Theorem 2.1 (A, ;) and (A% ,). By Lemma 2.4, ,3(6)=0. Hence
¥23(f)=0 by (%). X

Considering the M-action K A K, we have Oy(f)=u,(1 A £)0,(v3)+6,(u,)(1
A fva=y4(f) by (1.2), (1.5) and Lemma 2.2 (i). Similarly we have 0=0y,;(f)

=Y24(N)+(=D"15(f)s s0 Y24(f)=—(=1D*¥(f). Thus, the proposition is
proved.

We shall introduce a subalgebra of Z,(K).
DErINITION. Z(K)=Z(K) nKery, € (K)=Y ,Z(K).

From the above proposition, we see that fe €,(K) if and only if 1z A f cor-
responds to a diagonal matrix, and hence

CoRrROLLARY 3.4. Let fe o/ (K). The following statements are equivalent
to each other.

(i) f liesin €(K).

(i) w(x AS) =Ffu.

(i) u(Ix AS)=(=D*fu, and p(1x A f) = (=D*fus.
(iv) (g Afva=(=D*vyf and (g A f)vs =(—1)*v,f.
(V) (g ASf)vg = vaf.

ReMARK 3.5. For fe%,(K), the element f Alg is not a diagonal matrix,
in fact, f A 1; corresponds to the triangular matrix

s
[6, /1 (-DY
(o', /1 0 (=DY
6, 06, /11 [f,61 —-Lf81 £,

where [ , ] denotes the commutator: [f, g]=fg—(—1)dc8fdess gf. Also, the
elements d A 1; and 6’ A 1 correspond to
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respectively. By Theorem 3.6 (i) below, the matrix corresponding to fAlg
for any fe o7, (K) is computed from the above matrices.

THEOREM 3.6. (i) & (K)=%«(K)RE(J, 6")=E(, 6")®F «(K).

(ii) &7 4(K) has the two differentials 0 and  of above which are derivative,
i.e., for d=0, y, there hold d>=0 and

d(fg) = (=1)'d(f)g + fd(g), fe#(K), geL(K).
Furthermore, Oy = — /6.

Proor. (i) By Proposition 1.8, it suffices to show Z,(K)= & (K)®E(J")
=E(0")®% «(K), which follows from Lemmas 3.1 (i), 3.2 and Definition 1.9
in the same way as [15; Th. 7.5].

(i) By (1.2), (1.4) and Lemma 3.1, it suffices to show that y is derivative.
We have Y/(fg)= > 1(f):3(g9), where y;; are the same as in the proof of Propo-
sition 3.3, and hence Y(fg)=(—1)"¥(f)g+f¥(g) by Proposition 3.3.

THEOREM 3.7. The subalgebra € .(K) is commutative and
[€x(K), 0] = €(K), [€x(K), '] = Fxu(K),
where [A, f] denotes the subgroup generated by commutators [a, f] for a€ A.

Proor. Let fe¥y(K),ge¥(K) and put h=f56'e By_,,—(K). Then
Hi(h ADvy=p TAA h)Tvy = —py(1 A h)vy—py(1 A h)ved = —y(h)— (O (h)o=f
by Theorem 1.10, Proposition 3.3 and Theorem 3.6 (ii). Then, u,(hAg)vs
=p (AL AGIvs=Zpi(h A Dvip(L A g)vs=p,(h A Dvsyss(g)=(—1)'fg, and
similarly p,(hAg)vs=(=1DE Dl (1 A g)(hA vy =(—1)¢"Digf.  Therefore
gf=(—=1)kfg as desired. Since 6(6)=y(6')= — 1k, Y(6)=060(0")=0 and 6 and ¥
are derivative, we have O[f, ]=y[f, 61=0, 0[f, &'1=y[f, 6']=0 for any fe

CoROLLARY 3.8. Let f be any element in €,(K) of even degree. Then
fP commutes with any element in o ,(K).

Proor. By the second half of Theorem 3.7, f6—46f and fé'—4d'f are in
€«(K), and hence (f6—45f)f=f(f6—4f) and (f6'—6'f)f=f(f6'—5'f) by the
commutativity of €,(K). By the induction, we have f*6—dfk=k(f*6—
f¥18f) and f*¢'— o' fx=k(f*é' —f*~18'f) for k=1. In particular, fP6—5fP
=0 and f?§'—8'fP=0. Therefore, fP commutes with any element in .« ,(K),
by Theorems 3.6-3.7.

ProrosITION 3.9. The following homomorphisms are isomorphic:
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i ¢(K)— [M, K]¥,
71';: %k(K) I [Ks M]kM—pq—l'

Proor. For fe[M, K]¥, we have i’*y(fn')= —f by easy calculations using
Theorem 1.10. Hence i’* is a split epimorphism and —yx'* is its right inverse.
Next, let fe € (K)nKeri'*. Then f=gn’ for some ge[M, K1¥ .+, by [15;
Th. 4.5]. Since i'* is onto, g=hi’ for some he €, p+1(K). Then 0=y(f)
=y(hé')=—h and f=0. Hence i'* is isomorphic. The second half is similar.

§4. Realizing BP,-modules

Let X; be the mapping cone of a/e Z (M), j21 (X,=K and X,=W in
§2), and

4.1 TiaM M A, X, L, Fiett M

be the cofibering for X; (i,=7, n,=n" in (L.1), i;=iy, n,=ny in (2.1)). By
[15; Th. 4.3], X is the M-module spectrum and i; and n; are the M-maps. By
[15; Th. 4.4], there exist the M-maps A=1;: 29X;_,—X; and p=p;: X;»X;_,
such that

4.2) Aij_'1=;'ja, mA=m;_y; pij=i;_y, TWj_p=oan;

(A=A and p=B in [14], and the element p in (2.3) is equal to p3---p,).
Let M’ be the mod p? Moore spectrum S° U ,2e!. It is homotopy equivalent
to the mapping cone of §,;, and so there is a cofibering

4.3) M 2m, M ox, M.

Since aPd, =J,0P, there exists a': XPAM'—>M’ such that o'l =Ay0P and pyo’
=aPp, [13; §4]. The mapping cone K’ of &’ is homotopy equivalent to the one
of §=0;. We therefore have the following two cofiberings:

(44) (i) 1K -3, K-, K';
(i) M’ o, K’ =, pratipf,

Notice that all spectra and maps in (4.3)«(4.4) are M’-module spectra and M’-
maps.

Now, we shall consider the Brown-Peterson homology of the above spectra
and maps. It is clear that

BP,(M) = BP,[(p), BP«M’) = BP,/(p?).
By L. Smith [16],
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ay = v;: BPy/(p) — BP,/(p), o4 = vi: BP,/(p?) — BP,/(p?)
for a suitable choice of «’. From (4.1)(4.4), we have immediately

LemMa 4.1. (i) BP,(X;)=BP,/(p, v{), BP,(K')=BP,/(p?, v}).
(i) (i)« and iy are surjective, (n;),=0 and ny=0.

(iii) A,=v, and p, is surjective.

(iv) (Ax=p.

The following lemma is an improvement of [14; Th. DII].

LEMMA 4.2. For s22, there exist elements f.€ % ,,+1)(K) such that
(f)s=0¥.

Proor. By [14; Th. C, D], there is the M-map
Rp_1 . Z‘p(pﬂ)po_l RN Xp_1

such that (R,_),=v5. By the relation () in the proof of [14; Th. CII] and
by [15; Th. 4.5], there are M-maps

gy DI LK, 522,

such that gA=A(R,_,). Write g,=h,+h;6' for h,, h;e €x(K). Then (h),
=(gA)s=0v,0¥ by Lemma 4.1, and hence (h)),=v¥ mod (v5-!): BP,/(p, 1)
=B. In degree 2p(p+1)q, B=0 and (h,),=v3P. In degree 3p(p+1)gq, B is
generated by v 105~ lv;. Put (h3)y=v3P+avi w5 'v;. Then the ideal (p,
v%, v3P+ av~1v5~1v,) is invariant under the coaction of BP,BP, and hence we see
that a must be trivial ([10], cf. [3; §7]). Hence we can take f,,=(h,)* and

Sas+1=(hy)*"'hs.
THEOREM 4.3. For p=5, s=2, there exist M'-maps
F,: Zsp*(e+1)ag’ — 5 K’

which induce the multiplications by vP>, and hence the mapping cone L, of
F, satisfies BP,(L,)=BP,/(p?, v&, v¥?).

Proor. By Lemma 4.2 and Corollary 3.8, (f,)?0=46(f)?. Hence, by
(4.4) (i) and [15; Th. 4.5], there are M’-maps g, such that g Ay=A,(f)?. By
Lemmas 4.1 (iv) and 4.2, (g,),=v¥* mod (p)BP,/(p?, v§). For s=2,3, if
(p?, v8, v¥* + px), deg x=sp?(p+1)g, is invariant, then x is a multiple of v
Hence (g, =(1+a,p)v¥¥?, a,e Z/pZ, for s=2, 3, and we can take F,=(1—-a,p)g,
for s=2, 3, Fp,=(F,)* and Fj,4 =(F;)* 'F;.

ReMARK. R.S. Zahler [20] showed that the ideal (p2, v}, v}) is invariant
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if and only if p2|t. Hence, BP,/(p2, v%, v4), p=5, t# p?, is realizable if and
only if p2|t. We do not know the realizability of BP,/(p?, v}, v5°).

THEOREM 4.4. For p=S5, s=2, p+1=Z j<2p, there exist maps
G,z PPt aX; — X,

such that (G, j)x=v%¥", and hence the mapping cone Y, ; of G,; satisfies BP (Y, )
=BP*/(ps U'{, vipz)‘

Proor. By Lemma 4.2 and Corollary 3.8, (f,)?6'=46'(f,)*. Inthe same way
as [14; Th. C'], we can construct maps g, ;€. ,2,+1)(X;) such that g ;A
=19, ;-1 and g, ,+,;A=A(f)?. Similar discussions on the invariance of (p, v],
v¥*+v{~1x) as in the proofs of Lemma 4.2 and Theorem 4.3 imply (g, ;)y=0v%"
for s=2, 3 by replacing g, ,,, suitably. Then, we can take G,,;=(g, ) and

Gis+1,;=(92,7)" 93,

§5. Constructing homotopy elements
DEeFINITION 5.1. For p25, s22, we define elements B2/, ) in m4(S) by
ﬁ!pzl(p.Z) = Tm"F,i"i,

where i: S—M’ is the inclusion and 7: M’ XS is the projection.  Each B,2,.2)
is of degree (sp3 +sp? — p)g —2 and satisfies p2f,,2/,,2)=0.

DEFINITION 5.2. For p25, 522, p+1=<j<2p, define B, ;) € my(S) by
Bsp2(y = 7m;G, i .
The degree of B,z is (sp* +sp? —j)g —2 and there holds pf,,z;,=0.
We shall consider the Adams-Novikov spectral sequence for BP:
Ey(X) = H*(BPy(X)) = m(X)(p

where H*M =Ext}%p,pp (BPy, M) for a BP,BP-comodule M. The following
is useful to prove the nontriviality of the elements of Definitions 5.1-5.2.

THeoreM ([7; Th. 1.7], [9; Lemma 2.10]). Let W>X—->Y -2 ,ZW be a
cofiber sequence of finite CW-spectra such that h,=0 in BP-homology. De-
note by 6: H'BP,(Y)—>H!*'BP (W) the connecting homomorphism associated
to the short exact sequence 0—BP,(W)-BP,(X)->BP,(Y)-0. If xeE,(Y)
converges to an element a€m,(Y),), then 8(x)e E,(W) converges to hy(x)e

(W) -
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Let :8,: H'BP,/(p?, v]) > H'*'BP,/(p?) and &,: H'BP,/(p?) > H'"'BP,
be the connecting homomorphisms. associated -to the exact sequences

0 — BP4/(p?) =25 BP,/(p?) — BPy/(p?, v%) — 0,
0— BP* L—»BP* e BP*’/(pz) — 0.

Since (F,i"i), =0’ € H°BP,/(p?, v}), the element v$"* € E$-*(K') converges

to F i”ien*(K')(p). Smcé (n")4=0 and 7#,=0, the above theorem shows that

0,(v¥*)e H'BP,/(p?)=E}-*(M’) converges to n"F,i"ien(M’), and 6,5,(v5*)
€ H2BP, = E}-*(S) converges to B,2/(p.2) € Tx(S)(p)-

Recently, H. R.-Miller, D. C.-Ravenel and W.S. Wilson ([8], [9]) have
completely determined H2BP,. In particular, 8,8,(v%*)=B,,2(p.2) IS nontrivial
and generates a summand Z/p2Z. -Since any element in E2*(S) can not be hit
by a differential, 6,6,(v$*) survives nontrivially to E,, and hence B, 2 #0
in m,(S). Since f,2p,2) in H2BP, is indecomposable, B,2/(,.2) in 74(S) gener-
ates a summand Z/p2Z and is indecomposable. Thus, we have obtained

THEOREM 5.3. The elements B ,2i(,.3), S22, of Definition 5.1 are indecom-
posable and generate cyclic summands of order p? in T4 sp2—pyg-2(S).

In the same way as above, we also obtain

THEOREM 5.4. The elements. ﬁspzl(_,), s22, p+1=j=2p, of Definition 5.2
are mdecomposable and generate cyclic summands of order p in

T(sp®+sp2 - j)g - 2(S).

" At the end of this section, we notice that the results of H. R. Miller, D. C.
Ravenel and W. S. Wilson on H3BP, imply the existence of infinitely many ele-
ments in 7,(S) of order p? and of degree= —3 mod q. In [14; Cor. 7.6], we have
proved the relation o 8,,= pe, in Tp244p),-3(S) for p=5and t21. ¢, is of order
p?if o, B,,#0. Hence, by [9; Th. 2.13].

THEOREM 5.5. Let p25,n20, ptsz1, and assume that s#—1mod p,
s=—1mod p**3 or s—p—l Then, the element (g in Mgpn+aygpneyg—3(S)
is nontrivial of order pZ2.

Note added in proof. In the previous paper [15], Theorem 4.5 is incorrect, and we have used
this theorem in the proofs of Prop. 1.3, Th. 2.1, Prop. 3.9, Lemma 4.2 and Th. 43.  But these
results can be proved without thi§ errorieous theorem. The details will be seen in the correction

vof [15]:* 'Wé'would like to appreciate Professor ‘Z. Yosimura who kindly pointed.out the etror
‘of the proof of [15; Th. 4.5, Lemma 4.6].
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