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Ascendancy in locally solvable, ideally finite Lie algebras
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In a recent work, N. Kawamoto has obtained conditions which are sufficient
for a subalgebra A to be ascendant in a generalized solvable Lie algebra L. One
such condition is that for each a € L, there exists k=k(a) such that (a)ad* xe 4
for all xe A. The results are obtained when the scalars come from a field of
characteristic 0, a condition which is shown to be necessary for certain of the
results. It seems to be of interest to obtain similar results without restrictions
on the characteristic. Such a result is shown here and some consequences are
derived.

The Lie algebras considered here are assumed to be over a field. The
algebras are assumed locally solvable and ideally finite (see [3]); that is, each
element of the algebra is contained in a finite dimensional ideal. Let 3 denote
the class of locally solvable, ideally finite Lie algebras. Let Le3J and A4 be a
subalgebra of L. For each ae A, let Ly(a)={xeL;(x)adka=0 for some
k=1,2,...} and L,(a)=N\j-, range (ad* a). Since Le 3, clearly L= Ly(a)+ L,(a)
for each ae L. In the conclusion of the main result, a condition which is ap-
parently stronger than ascendancy is obtained. A is w-ascendant in L if there
exists a chain A=A4(0)< A(l)<---A(w)=L where A(w)=\Ugo A(k). The con-
ditions which are sufficient for w-ascendancy are also necessary. This is the
context of the following main result.

THEOREM 1. Let Le 3 and let A be a subalgebra of L. Then the following
are equivalent:

1. A is w-ascendant in L.
2. A+ Ly(a)=L forall aec A.
3. L(a)cA forall ae A.

Proor. That 1 implies 3 is clear. Assume that 3 holds. Let ae 4, xelL
and B be a finite dimensional ideal which contains x. Then B=By(a)+ B,(a)
and xe A+ B=A+By(a)= A+ Ly(a). Hence L=A+ Ly(a) and 2 follows. Now
assume that 2 holds. L is the union of finite dimensional ideals {H(A1)}. Hence
each H(A) contains a chain 0=H(4, 0)=--- = H(A, n(%))= H(A) where each H(4, i)
is an ideal in L and H(4, i)/H(A, i—1) is an irreducible L-module. Since L is
locally solvable and H(4, 1), H(B, 1) are minimal, H(A, 1)H(B, 1)=0. Consider
H(A, j), HP, k). Then T=H(4,j—1)+H(B, k—1) is an ideal in L and
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H(A, )+ T|T, HB, k)+ T|T are either minimal ideals or 0 in L/T. Hence
(H(%, j)+T)(H(B, k)+ T)= T and

We construct a chain of subspaces {Q(i)} such that {4+ Q(i)} is of the desired
type. Let Q(0)=0 and €Q(1) is constructed as follows. If H(A)Z£A, then let
r(4) be the smallest positive integer such that H(4, r(A))ZA4. Let W(4, )=
{ze H(4, r(2)); zA= A}. Now H(4, r(A))+ A/A is finite dimensional and since
Ly(a)+ A=L for all ae A, each a e A induces a nilpotent operator on this space.
Hence W(4, 1)#0. If H(A)c A, then let r(1) be the smallest positive integer
such that H(4, r(A))=H(A) and define W(A, 1) as above. In this case W(4, 1)
may be 0. Since W(A, 1) H(4, r(A)) and H(A, r(A)—1)c A4, W(A, DW(B, DH<
H(A, r(A)H(B, r(B))= A by (x). Also W(A, DA< A. Let (1) be the subalgebra
of L generated by all W(4, 1). Then (4+Q(1))A<A. Now suppose that Q(k)
has been constructed and we construct Q(k+1). If H(A)Z A+ Q(k), let r(2) be the
smallest positive integer such that H(A, r(4))Z£Q(k)+A. Then H(A, r(A))+ A+
Q(k)]A+ Q(k) is finite dimensional and each element of 4 induces a nilpotent
linear transformation on this space. Hence W(A, k+1)={ze H(4, r(1));
zAS A+ Q(k)} is not zero. If H(A)= A+ Q(k), let r(4) be the smallest positive
integer such that H(A, r(1))=H(A) and define W(A, k+1) as before. Let Q(k+1)
be the algebra generated by all W(4, k+1). Then Qk+1)AcA+Q(k). Also
W4, k+1)c H(4, r(4)), HQA, r(A)—1) = A+ Q(k). Hence W(A, k+1)W(B, k+1)
cH(A, r(A)H(B, r(B)) = A+ Q(k) by (). Therefore Qk+1)Q(k+1)<=Q(k)+A
and (Qk+1)+A)(Qk+1)+A)sQk)+A. Since W(A, )= W(4, 2)c--- until
H(A) is reached, H(A)< Q(dim H(1)) and L=\ U, Q(i). Hence {4+ Q(i)} shows
that 4 is w-ascendant in L.

Let AcLe3. We investigate the subalgebras of L in which A4 is w-
ascendant. First a well-known lemma on subinvariant subalgebras is obtained
in the present setting. Let L2L2?2--- be the lower central series of L and L®=
N Lk,

LEMMA 1. Let L be a Lie algebra over a field and A be w-ascendant in
L. Then A°< L.

ProoOF. Let A=A(0)<A(1)<s---A(w)=L where A(w)=\U A(i). Let xeL.
Then x € A(n) for some n and A is subinvariant in A(n). Since A®<1 A(n), xA®
€ A® and A°< L.

LEMMA 2. Let Le3J and let A, H, K be subalgebras of L such that A<
HnK. If Ais w-ascendant in H and K, then A is w-ascendant in {H, K).

Proor. We may assume that L=<{H, K). Then 4°<H, K, hence A°<aL
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and we may assume that 4°=0. Let ae A. Then H,(a)= A by Theorem 1.
Let xe H. Then there exists k such that xad*ae A4 and then, since A®=0,
x € Ly(a). Hence Ly(a)=H and similarly Lo(a)2 K. Therefore Lo(a)=<H, K)
=L for each ae A. Hence A is w-ascendant in L by Theorem 1.

THEOREM 2. Let A= Le3. Then there exists a unique maximal sub-
algebra of L in which A is w-ascendant.

PrOOF. Let & be the collection of all subalgebras of L in which 4 is w-
ascendant. Clearly &#¢@. Order & by inclusion and let T(1)=T(2)<:-- be
an increasing chain in &. Let R=\U T(i). If xeR, then x e T(n) for some n.
Let ae A. Then there exists k such that x ad* ae 4, hence R;(a)= A for each
ae A and A is w-ascendant in R. Hence & has a maximal element S by Zorn’s
lemma. Let Ue%. Then U+Se& by Lemma 2. Hence U<S and S con-
tains all elements of &.

The maximal subalgebra of L in which 4 is w-ascendant will be denoted by
o(A4, L). Note that a(A4, L) is the maximal subalgebra B of L such that B,(a)< 4
forallae A. We use a(A, L) to prove the following

THEOREM 3. Let ASLe3. Then the following are equivalent:

1. A is w-ascendant in L.

2. A is w-ascendant in every subalgebra B of L such that ASB and
dim B/ A is finite.

3. A is w-ascendant in (A, x) for every x e L.

4. A is w-ascendant in {A, Aad x) for every xe L.

ProOOF. Since each of the conditions clearly implies the next, it remains to
show that 4 implies 1. Suppose that A is w-ascendant in (A4, 4 ad x) for every
x €L but 4 is not w-ascendant in L. Then (A4, L)#L. Let xeL, x&a(A4, L)
and let N be a finite dimensional ideal of L containing x. Then a(4, L) has
finite codimension in a(A4, L)+ N, hence there exists a minimal subalgebra of
(A4, L)+ N which contains a(A, L) properly. Hence we may assume that there
exists A< L e 3 such that 4 is w-ascendant in (4, Aad x> for all xe L, 4 is not
w-ascendant in L but A is w-ascendant in a maximal subalgebra M of L. We
break off the next piece of the proof as

LEMMA 3. There exists x € A such that A+ Ly(x)=M.

PROOF. Since M is maximal in L and Le 3, M is of finite codimension in
L. Let K be the maximal ideal of L contained in M. Then K has finite
codimension, for let N be a finite dimensional ideal of L which supplements M
and let C;(N) be the centralizer of N in L. Then C (N)n M=J<L and since
C.(N) has finite codimension in L, J does also. Furthermore since 4 is w-as-
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cendant in M, M < A+ Ly(x) for all x e 4, hence we need only to find x € 4 such
that Lo(x)& M. Now A+ K/K=A4 is subinvariant in M/K=M and M is self-
normalizing in L/K=L. Now L is a primitive algebra and by the same proof as
[1, Theorem 4, Case II], there exists x € A such that M=A+ Ly(X). (Note that
[1, Theorem 4] is under stronger assumptions that the L in this situation but the
Case 1II still carries through.) Then Ly(x)< M since if ye L and y ad" x=0, then
(y+K)ad" (x+K)=(yad"x)+ K=K and y € M, hence ye M and Ly(x)= M.

We now complete the proof of Theorem 3. We show that if ye&& M, then
{A, Aad y>=L. Hence A is w-ascendant in L, a contradiction. Let x € A such
that M=A+ Ly(x). Suppose that (4, Aad yp>#L. Then {4, Aad y)<a(4, L)
=M by Theorem 2 and xye M. Let B be a finite dimensional ideal such that
y€B. Then yeBy(x)+B(x)=Ly(x)+L,(x). Let y=s+t where se Ly(x),
teL(x). Now t&M since se M. Then xt=xy—xse M. However, ad x is
non-singular on the finite dimensional space L,(x) and M n L,(x) is ad x invariant.
Hence if zeL,(x) and xze M n L,(x), then ze M n L,(x). In particular this
holds for z=t, a contradiction. Hence {A, Aad y>=L and a(A4, L)=L. There-
fore, 4 implies 1 and Theorem 3 is shown.
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