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1. Introduction

In the past several years, from an ecological point of view a number of
authors (e.g. Gurney and Nisbet [11], Gurtin and MacCamy [12], Aronson
[3], Newman [19] et al) have studied spatial spreading population models in which
biological interactions and nonlinear diffusion process called “density-dependent
dispersal’’ are taken into account. This nonlinear diffusion process is described
by an equation of degenerate parabolic type.

In this paper, we are concerned with a model for the spatial diffusion of
biological population which provides a kind of mechanism of aggregation and
which is represented by equation

@y =@ = [ {7 K-, ndylu], xe R >0
subject to an initial condition
(1.2) u(x, 0) = uy(x), xe R,

where u(x, t) denotes the population density at point x € R! and at time >0 and
l<m<oo. We assume the following assumptions on u, and K:

(A1) uy>0 on R! and uye LY(RY) n L*(RY);

(A.2) K is differentiable on R! except for a finite number of discontinuity
points of the first kind, K € L°(R') and K’ € L'(R?Y).

Here K’ means dK/dx. In what follows we denote the problem (1.1), (1.2) by
P(K, uq).

If the term containing K is absent, the equation (1.1) is reduced to the “porous
media equation’’ occurring in the theory of flow through porous media (see. [5]).
The most interesting phenomenon is that, because of the degeneracy of diffusion
at u=0, an initial smooth disturbance with compact support spreads out at a
finite speed (see. [20]) and loses the smoothness (see. [2] and [13]). This
contrasts with the property of the heat conduction case (m=1). For the second
term of the right hand side of (1.1), we give a specific function K defined by
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1 for —-r<x<0,
(1.3) K(x) ={ —1 for 0O<x<r,
0 otherwise,

where 0<r<oo. Then the term containing K is rewritten as

(5740000 - w00}

This provides the mechanism that moves u(x, t) to the right (resp. left) direction
if
x+r x
Sx u(y, Hdy > gx_, u(y, hdy (resp. <).

Hence, in ecological terms, in the case of K given by (1.3) we would expect that
a suitable balance between the diffusion process and the aggregative one gives rise
to a pulse-like pattern exhibiting an aggregation of individuals. In the case of
K given by (1.3) with r=o00, it was shown by Nagai and Mimura [18] that the
phenomenon mentioned just above actually occurs. On the other hand, Satsuma
[22] has dealt with the equation (1.1) in the case when m=1 and K(x)=(k/20)-
coth {nx/(25)} not belonging to L*(R'). He showed two types of exact solutions
for (1.1). One is a stationary solution, and the other is a blowing up solution
depending on the initial values. The type of equation (1.1) occurs in other
fields. Munakata [16] presented it in order to explain liquid instability and
freezing, and also Kuramoto [14] in order to explain rhythms and turbulences
in populations of chemical oscillators.

From the fact that classical solutions of the Cauchy problem for the porous
media equation do not always exist, we have to define solutions of our problem
P(K, u,) in some generalized sense.

DEFINITION 1.1. A solution u(x, t) of the Cauchy problem P(K, u,) is defined
to be a nonnegative function on R! x (0, o) which satisfies the following con-
ditions:

(i) ueL™(R' x (0, T)) n C(R' x (0, ©)) n C((0, ); L'(RY)  for
any T>0;

(ii) S°_° K(x—y)u(y, fdye L*(R! x (0, T)) N C(R* x (0, w))  for
any T>0;
(iii) (u™),e L%(R! x (0, T)) for any T > 0;

(iv) u satisfies the identity
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S: S: [“f' - {(“'")x - (S: K(x—y)u(y, t)dy>u} fe J dxdt
+S: uo(x)f(x,0)dx =0  forany feCL(R! x [0, o0)).

The purpose of this paper is to show the uniqueness, existence and regularity
results for P(K, u,) under the assumptions (A.1) and (A.2), and to give some
properties of solutions.

In Section 2, notations and preliminaries which will be used later are given.
In Section 3, we shall show the uniqueness of solutions for P(K, u,). Section 4
consists of two parts and gives auxiliary results for approximate solutions of
P(K, uy). As an approximation to P(K, u,), we consider the Cauchy problem
for certain non-degenerate parabolic equations. We deal with the local existence
in time in Subsection 4.1 and the global existence in Subsection 4.2. In Section 5,
by making use of the results obtained in Section 4, we shall show the global
existence of solutions for P(K, u,) under the assumptions (A.1) and (A.2). In
Section 6, we shall give some properties of solutions for P(K, u,) such that finite
propagation of disturbances, the regularity result of solutions and the dependency
of solutions for P(K, u,) on K.

The author would like to express his deepest gratitude to Professor Masayasu
Mimura for suggesting this research topic and various discussions. He also thanks
Professor Taka§i Kusano for continued encouragement throughout the course
of this work.

2. Notation and preliminaries

In this section we introduce some notations and give some propositions which
will play important roles in the proofs of uniqueness and existence of solutions
for the problem P(K, u,) and will be used to derive some properties of the solu-
tions.

Let Q be a set in RY (N>1). For a nonnegative integer m, C™(Q) is the set
of all continuous functions in Q having continuous derivatives in Q up to order m
inclusively. For simplicity we denote C°%(Q) by C(Q). C®(Q) is the set of all
functions having continuous derivatives in Q up to arbitrary order. In the case
of Q< R? whose points are denoted by (x, t), for nonnegative integers m and n
Cmn(Q) is the set of all continuous functions in Q having continuous derivatives
in Q up to order m with respect to x and order n with respectto . C%(Q), CF(Q)
and C%"(Q) are the sets consisting of all functions in C™(Q), C*(Q) and C™*(Q)
with compact support in Q, respectively.

B"(R') is the Banach space of functions f in C™(R') having a finite norm

Iflm = =0 Supgs |(d/dx)' f(x)] -
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Let us put Q;=R!'x(0, T) for 0<T<o0. B™"(Q;) is the set of functions
f=f(x, t) in C™"(Qyr) having a finite value for the quantity

[f lmnor = X0 SUPgy [(8/0x)" f(x, D] + Xi=o Supg, [(9/06)f (x, 1)] .

The norm of the Holder space on R! is introduced as follows. For ae(0, 1]
and a positive integer m,

[f1a = Iflo + supxyert If(x) — f(W/1x — y|*

and

[f Tmsa = 2o [(d/dx) f],.

The set of all functions for which [f],< oo (resp. [f]n+.<o0) is denoted by
H*(R")(resp. H™**(R")).

For the closure of Q;=R!x(0, T), say Qr, H**/2(Q,) is the Holder space
consisting of functions f=f£(x, ) on O, which have a finite norm

[f]a,QT = SupQT |f(xa t)l
+ SUP(x,),0e0r [F (X5 8) = (0, DI/(Ix—p|* + |s — 1]*/?).

H*+e:2/2(Q ) (resp. H*** 1+2/2(Q 1)) is the set of all functions f satisfying [f]; 440,
< oo (resp. [f12+4,0r <0), Where

[fli+a0r = [flaor + [9f/0x]), 0.

and

[f24aer = [fdi4aor + [(0/0X)* a0, + [0f/0t]; 0,

For pe[1, oo] the norm of the usual L?(R')-space is denoted by | f| ,, and the
usual norm of LP(Qr)-space is denoted by | fll, o, We simply denote | f],o.
by | f|, if there is no confusion.

For a Banach space X and —oo<a<b< o, C((a, b); X) is the set of all
functions which are continuous from (a, b) into X. LP(a, b: X) (1<p<0) is
the set of all measurable functions f from (a, b) into X such that t—| f(¢)|| belongs
to L?(a, b), where | - | denotes the norm in X.

We next state three propositions which are derived from the definition of
solutions for P(K, uy). Throughout these propositions it is assumed that u,
and K satisfy the assumptions (A.1) and (A.2), respectively. Let u be a solution
of P(K, u,). Then we have

PROPOSITION 2.1. For each t€(0, o) the solution u satisfies the integral
identity
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S . S: {uf, - [("m)x - <§: K(x—y)u(y, t)dy>u] f,}dxdt

+S°_°w u(x, 1) f(x, 7)dx =0  for every feC{R! x [t, 0)).

This proposition implies that the function u(x, t) on R! x [1, o0) is a solution
of the problem P(K, u(-, 7)) on R x [z, 00), and is proved by using the definition
of solutions for P(K, u,) and a calculation similar to that in the proof of Proposi-
tion 1 in [9].

ProOPOSITION 2.2. For any te(0, o) u satisfies

g: u(x, t)dx = SQ_O

uo(x)dx.

This proposition means that the total population at each time is fixed. The
proof is done by using Proposition 2.1 and the same method as in Theorem 1 in
[9].

For solutions of P(K, u,) we consider a transformation which is a useful
tool in giving the uniqueness result and some properties of solutions for P(K, u,).

For a solution u of P(K, u,) define the functions v and v, by

v(x, t) = Sx

u(y, t)ydy for xe R! and te(0, o0)

and
vo(x) = Sx ug(y)dy for xe R,

respectively. Then we have the following proposition.

PROPOSITION 2.3. v is continuous on R'x(0, ©0) and has the following
properties:

(i) lo(-, 1) = voll,—0 as t—0;

(ii) 0<v<|luol, on R'x(0, 00), and v(—o0, )=0 and v(+ 0, t)= ||lu,ll,
for each te (0, o0);

(iii)) v,>0 on R!'x(0, ), v, is bounded on R'x(0, T) for every T >0
and v, e C(R' x (0, o)) n C((0, o0): LY(RY));

(iv) (V)™ v.€ LA(R' x(0, T)) for any T>0;

(v) v satisfies the integral identity
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(707 ot +[@om. = (7 kGe=putr, nay)p, | baxar
+ S:) vo(x)f(x,0dx =0  for every feC§R'x[0, 0)).

Proor. The properties (ii), (iii) and ((v,)™).€ L>(R!'x (0, T)) are easily
derived from the definition of solutions for P(K, u,) and Proposition 2.2. The
property (v) is proved by the same method as in the proof of Proposition 3.2 in
[17]. v,e L%(R'x (0, T)) follows from (v) and ((v,)"),€L*(R'x(0, T)). The
property (i) is shown as follows. Since v,€ L2(R! x (0, T)), for O0<s<t<T we
have

T
0

S lo(x, ) — v(x, s)|?dx < |t — s| S Sw |v,|2dxdt
Combining this relation with the fact

B vo(x)o(x)dx for every ¢ e C{(RY),

lim,- Sw o(x, D(x)dx = S
which follows from (v), we obtain
Sw 0(x, 1) — vo(x)|2dx < tST gw (v)2dxdt
C )—w 0J-»

The relation implies (i). Thus the proof is completed.

The following proposition which is proved in [6] will be used in the proof of
Lemma 3.1 in the next section.

PROPOSITION 2.4. Let f, k; and k be nonnegative continuous functions on
an interval [a, f] and let 0<p<1 and a>0. If

f®O<a +St ki(s)f(s)ds + St k(s) f?(s)sd for any tela, 1,
then

1) < [a‘i +q S' k(s) exp {— q S kl(a)da}ds]”q exp {S' kl(s)ds}

for any te[a, Bl, where g=1—p.
Finally, for the Cauchy problem

Lu=u, — a(x, hu,, + b(x, Hu, + c(x,)u=f in Qr=R' x(0,T),

2.1) [
u(x,00=0 on R!,
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where 0<T< o0, we give an estimate for solutions which will play an important
role in Section 4.

PROPOSITION 2.5. It is assumed that

(i) a, b, c and f belong to B%(Qy),
(ii) there exists a positive constant u satisfying a(x, t)>pu on Qr,
(iii) ae H**/2(Qy) and for any x, ye R! and te[0, T]

Ib(x, 1) — b(y, Ol < Clx — y|* and |e(x, 1) — c(y, O] < Clx — y|%,

where o is some constant in (0, 1] and C is some positive constant. Let ue C?:!
(Qr) be a bounded solution of (2.1). Then for any 6 €(0, 1) we have

[Wli+s,0r < MTOD22| fl 5 0,

where M =M(u, [als,07 1D]lco,05 €l 0,00 T) is a positive constant not depending
on u such that M increases in all variables but p and M 1 o as u | 0.

The proof of Proposition 2.5 is done by using a calculation similar to that in
the proof of Lemma 2 [7, p. 193], because a solution of (2.1) is represented as the
volume potential of f with respect to a fundamental solution of the operator .Z.
In Lemma 2 of [7], only volume potentials on bounded cylindrical domains are
dealt with, and the constant corresponding to M in our Proposition 2.5 depends
on the lower base of the cylindrical domain. However, by slightly modifying the
proof of Lemma 2 of [7], we can remove the dependence on the lower base of the
cylindrical domain.

3. Uniqueness of solutions for the problem P( K, u,)
THBOREM 3.1. Assume the assumptions (A.1) and (A.2) on u, and K.

Then there exists at most one solution for the problem P(K, u,).

This theorem is an immediate consequence of Lemma 3.1 mentioned below.
Before stating Lemma 3.1, we introduce a notation which will be used in the rest
of this paper. Let K be a function on R! satisfying (A.2) and let us put Q=
R'x(0, T) for 0<T<oo. For fe LP(Qr) we define

K[f1e 0 = | K&x=0f0, 0dy.

If fe LP(Qr) and f, e L'(Qr) n LP(Qy) for pe (1, oo], then, by making use of an
integration by parts and Young’s inequality, we obtain

@3.1) IKLf Il p.0r < CCRONS 11,015
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where
(3.2) C(K) = X1y |[K(c;+0) — K(c;—0) + [IK"ll
and {c;} is the set of discontinuity points of the first kind for K.

LemMma 3.1. Let u, (resp.u,) be a solution of the problem P(K,, ug,)
(resp. P(K,, uy,)), where K, and K, satisfy the assumption (A.2) and uy, and
Uy, satisfy the assumption (A.1), and for each i=1, 2 let us define the functions
v; and vy; by

vi(x, t) = Sx u(y, t)Ydy for xeR! and te(0, o)
and
vox) = | uody  for xeR.

Assume vy, —0g, € LA(R'). Then we have the following relation: For any
te (0, T) with an arbitrarily fixed T e (0, o)

los(-, ) = v+, D)l
< e {lvos — vzl + || 10Ky =Ko [s1C-, (-, 9)peeds}

where M =max (||u; | g, |42l )C(K,)+1 and C(K,) is the constant determined
by (3.2) with K replaced by K,.

ProOF. The definition of solutions for P(K, u,) and Proposition 2.3 give us
the relations such that K;[u;](v);€ L*(Q7) (1<p<o00), (0))™x (v); € L*(Q7)
for any T>0 and

(3.3) (vy—=vp), = [(W)™ — (u)"1, — Ky[u1(vy), + Ky[u](v,), ace. in Q.

For each positive integer N let yy be a smooth function on R! such that
0<xy<1on RY, yy(x)=1 for |x] <N, yn(x)=0 for |x|=>N+1, |yl < C, where
C is a positive constant independent of N. Multiply (3.3) by (v, —v,)xy and
integrate over Q, (0<s<oo). Then the use of an integration by parts in the re-
sulting relation yields that

[ Ioute 9 = vato, a0
sgiow IUOI(X) - Uoz(x)lzdx b 25: wa {(ul)m —_ (uz)m} (01 —Uz)vadxdt

2 g; S:o an(vy = 02) (K [uyJuy — Ky[u;Juz)dxdt

= |lvgy — o2l + 1 — 1I.
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Note that {(u)"—(u)"} (v, —v,), (v, —v,) (K [u,Ju; —K,[u,Ju,) e LI(Q,). We
let N pass to infinity to obtain

s

i <2cf @) = @)l oy — valdxdt — 0

0 SNSIJ:ISN-H
and

—2 SO wa (01 —02) (K [y Juy — K, [usJuz)dxdt.
Therefore, for any s e (0, c0) we get
lo1(-, 8) = va(+, 93
< Toor = 0023 = 2 7 010 (KyluJuy = KousJup)dxr
= |lvg, — vo2ll3 + II1.

The term III is rewritten as

-2 SS Sw (v —03) (uy —u)K,[u,]dxdt — 2 Ss Sw (01— oy K[t — 1, ]dxdt
0J—oo o)
-2 So S—oo (v1 —v)uy(Ky — Ky) [uy]dxdt
=11, + I, + 111;.

From the fact that u, —u,=(v, —v,), and v,(x, t)—v,(x, t)—0 as |x|> oo for any
te(0, oo) it follows that

11, = (7 =02y v
< WK LDl ) 10aC- 1) = 03, D3,
Noting that (K,[u,]),=K,[(u;),] and using (3.1) for K=K,, we obtain
11, < CK sl | o 0 = oa(-, D3,

Since u; —u,=(v, —v,),, by making use of Hélder’s inequality and (3.1) in III,
we have

11, < o0 1) = oo, D13t + gD ] a0 = -, D3,
Next the term 11, is dominated by

2§ 1K =KD D1 s Dl 1) = 0, Dl
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Hence we obtain
los(-, 8) — vy(-, 9)I13

< ooy = voally + 2M { o+, 1) = v3(:, D3

+ 2S; I(Ky—K3) [u (-, Ouy(-, Dllallog (-, 1) — va(-, Dl2dt,

where M =max (|[ullg,» |42l )C(K;)+1. Using Lemma 2.4 for the inequality
obtained just above, we get

loy(+, 8) = va(+, 93

< e {log, = voglly + || 1K =KD Tu,1C-, s, Dleede )

for any s e (0, T), which implies the desired inequality. Thus the proof is com-
pleted.

4. Auxiliary results for approximate solutions of P(K, u,)

As will be shown in Section 5, a soluton of P(K, u,) will be constructed as a
limit of a sequence of nonnegative classical solutions for the Cauchy problem of
nonlinear (non-degenerate) parabolic equations

4.1) u, = (m(u+e)"'u,), — (K[ulu), in Qr
subject to an initial condition
4.2) u(x, 0) = up(x) on R,

where ¢ is a positive constant, 0 < T< oo and

KT, 0 = * Kee—yyuey, ndy.

Throughout this section we impose the following assumptions on u, and K:

(A.3) upge H***(R'Y)n LY(R') for some ae(0,1] and uy>0 on R?;
(A.4) K satisfies the assumption (A.2) and K € L1(R!).

4.1. Local existence of nonnegative classical solutions for the problem (4.1),
4.2)

In this subsection, for this non-degeneracy of parabolicity we are concerned
with nonnegative classical solutions of (4.1), (4.2). We shall show the local
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existence of nonnegative classical solutions in time for the problem (4.1), (4.2)
under the assumptions (A.3) and (A.4). The result is as follows.

THEOREM 4.1. There is a time T(>0) such that the problem (4.1), (4.2)
has a nonnegative classical solution belonging to H>*%1+2/2(Q ).

The proof of this theorem will be done by making use of the fixed point
theorem for a contraction mapping. Let f be a function belonging to
H1*x2/2(Q).  Consider the Cauchy problem for the equation

4.3) u, = (m(u+ey"'u), — (K[flu), in Qr.

We denote the Cauchy problem (4.3), (4.2) by P/(K, uy, f). If there exists a
unique nonnegative classical solution u of P(K, uy, f), then we can consider the
mapping F assigning u to f. A fixed point of F is a nonnegative classical solution
of (4.1), (4.2). In what follows, by using a series of lemmas mentioned below we
shall show that F has a fixed point if T is sufficiently small.

At first some properties of K[ f] which will be used later are shown in Lemma
4.1, where K satisfies the assumtion (A.4) and has discontinuity points {c,,
Cy,..:, Cyp Of the first kind. The proof is so easy that it is omitted.

LEMMA 4.1. Let feH'**2(Q;) (0<a<l). Then K[f], (K[fD.e€
HYe'2(Q) and (K[ f]).. € H*%%(Qyr). We also have the following estimates:

(1) 1KLL Iw,or < Kl 1l f e, 0r
(i) KL Dl o,0r < CESf Nl o,0r5
(iii) (KL Dixllo,0r < CK S xll 0,015
() [K[f1eor < IKI1[f a0
(V) [(KL[fDsdaor < CK)[fIz0rs
where
C(K) = 21=1 |K(c;+0) — K(c;—0) + [IK']l;.
In what follows we always assume
feHW™%22(Q) (0 < a < 1).

LeEMMA 4.2. The Cauchy problem P(K, u,, f) has a unique nonnegative
solution u € H>**1*2/2(Q ) having the following property: u,,, and u,, exist in
Qr and are locally Holder continuous in x and t with exponents o and a2 in
Qr, respectively.
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PROOF. Let a(u) be a smooth function on R! such that a(u)=m(u+¢e)™!
for u>0, a(u) > m(¢/2)"! on R! and there are positive constants v and u satisfying
v(lul+&)™ ! < a(u) < p(lul+e)™! on R.
Consider the Cauchy problem for the equation
(4.4) u, = (a(uy), — (K[f1u), in Qp

subject to the initial condition (4.2). Noting the regularity properties of K[f]
in Lemma 4.1, we obtain by Theorem 8.1 in [15; p. 495] that there exists a unique
solution u of (4.4), (4.2) belonging to H2*#1*2/2(Q,). By the standard maximum
principle we have :

u(x,)>0 on Qp and u(x,f)>0 on Qr,

which imply that u is the nonnegative solution of P(K, uy, f). By the regularity
results of solutions for the parabolic equations (for example, see [7]), the second
assertion can be shown. Thus the proof is completed.

LEMMA 4.3. The solution u of P(K, uy, f) has the property that u(x, t)—0
and u,(x, t)—0 as |x|—> oo uniformly in te[0, T].

PrROOF. We note that the assumption (A.3) on u, implies
4.5) ug(x) —> 0 and ugy(x) — 0 as |x] — o
and that u satisfies the equation

Lu = u, — a(x, u,, + b(x, Hu, + c(x, Hu =0
where
a(x, t) = m(u+e)y"1 > mem1,
b(x,t) = — m(m—-1)(u+e"2u, + K[f],
c(x, 1) = (KLfDx-

The functions a, b and ¢ are bounded and uniformly Hoélder continuous in Q.
Hence, combining a fundamental solution of the operator .# with (4.5), we obtain
the statements.

LEMMA 4.4. The solution u of P(K, uy, f) satisfies
Sm u(x, t)dx = Xm ug(x)dx  for every t> 0.

It is easy to prove the lemma, so we omit it. In the sequel, for the sake of sim-
plicity we put
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c= g:} uo(x)dx.

A priori bounds for the solution u of P(K, u,, f) are given in the following
lemmas by using Bernstein’s method which was used in [1, 10] to prove the
regularity result of solutions for the porous media equation.

LEMMA 4.5. The solution u of P(K, uy, f) satisfies
u2(x, t) < max [1, 92”“0"30, Ml"(K[f])x"oo’ QT] = Ll)
where M, is a constant depending only on m and c.

ProOOF. Let us define the function v on Q by

v(x, t) = S:D u(y, tydy.

Integrating the equation (4.3) with respect to x from — oo to x and using Lemma
4.3 yield that v satisfies the equation

(4.6) v, = m(v,+ey" v, — K[f]v, in Q.

Define the function ¢(w) by

o(w) = — 2¢ + 6ce Sw e-8'dE for w0,
0

in which q is a constant satisfying
q[l — (m—-1)2"1] = 2.

Here we note that g>2. Since the range of variation [w,, w,] when ¢(w) varies
from 0 to ¢ is determined by ¢(w,)=0 and ¢(w,)=c, we obtain

1/(3e) < wy < w, < 1/2.
For we[w,, w,] we have

"

@ = 6cee ™ > 0, Q" = — 6ceqwi™le ™ <0,
4.7
O"le" = —qwi™',  (¢"[¢) = — q(g—Dwi™? <0.
A function w(x, t) on Qr is defined by
(4.8) u(x, 1) = p(w(x, 7).
Substitution of (4.8) into (4.6) yields that
4.9)  w.=m@w+e)" twy, + m(@'w.+e)" (9" /@) (We)* — K[fIw,.
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Differentiate (4.9) with respect to x and put p=w,>0. We then have

P — m(@'p+e)" ! pyy
= m(m—1)(¢'p+&)" "¢’ px+¢"p))p, + 2m(¢"|¢") (¢'p+)" " PP
+ m(m—1)(¢"/¢") (¢'p+&)"~*(¢' P+ ¢" p*)p?
+ m(¢"/¢)(¢'p+e)"'p* — K[f1p. — (KLfD.p-
Since p attains the maximum on O, by Lemma 4.3, it allows us to consider a point

(xo, to;) Where p takes the maximum on Q. At first suppose that t,=0. We
then have

(4.10)

0<px, < Ip(-,0ll, on Qr,
and hence
0 <u(x, ) = v x, ) < elul, on Qr.
Next suppose that 0<t,<T. At this point (x,, t,) the function p satisfies
=0, p.<0and p,>0.
Combining these with (4.10), we obtain
4.11) = m[{(m=1)(0"P/o'}p + (¢"/¢") (¢'p+e)] (¢'P+e)"?p* < K[f]p.
It follows from (4.7) and the choice of g that
{(m—1)(¢")*/9"}p + (¢"[¢") (¢'P+8)
(4.12) < ¢'p{m—1)(¢"[¢")* + (¢"[¢")'}
< — 6ewi2p.
From (4.11) and (4.12) we have
p* < (Wi (6mo)} (KL Dl o 0 (@' +2)* ™.
It is enough to assume p>1. The relation ¢'(w)=6cee** yields that
(6ce+1)p if 1l<m<2,
“4.19) (p'p+e)>™<
(6c)2—m if m>2.
(4.13) and (4.14) give
p* < MI(KLSf Dillco,0zs

where M is a constant depending only on m and ¢. As a result this inequality
obtained just above implies
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u¥(x, 1) < (6ce*M|(K[fDsllw,0r in Or
Thus we have obtained the desired inequality.

LEMMA 4.6. For the solution u of P(K, ue, f), put w=(u+¢ey™'. Then
w satisfies the following relations:

(i) Iwdx, )* <L, on O,
where
L, = max [1, e[w(-, 0], 12e’L3(I(KLf Dxlloo,07 + I(KLf Dzl o, 07)]
and
Ly = (lullw,or + D™ 15

(ii) For each t with 0<t < T there exists a positive constant C, depending
only on t such that for every (x, t)e Q. r=R'x[7, T]

Iwa(x, DI < max [1, 12e2L;(|(KLf Dxll o, + KL Daxll ,0..7) + C21-

Proor. The proof is done by using the same method as in the proof of
Lemma 4.5. We take the function ¢ defined by

0(z) = — 2L, + 6Lye S e-tde.
0
Let us define the function z(x, f) on O by w(x, t)=¢(z(x, t)) and let us put
p(x, )=z, (x, 1))?, where y=1 in the case of our proving the statement (i),
and ye C*(RY), 0<y <1, y()=1 on [, o) and x(t)=0 on (— o0, /2] in the case
of our proving the statement (ii). We then consider a point where p attains

its maximum on Qr. By making use of the same argument as in the proof of
Lemma 4.5, we can establish Lemma 4.6.

LEMMA 4.7. The solution u of P(K, uq, f) satisfies
luyx, )l <L, on Qr,
where
{LDV? +137(Ly)' ?(m—1)  if 1<m<2,
e2™™(Ly) 2 /(m—1) if m>2,

ProOOF. Since u, = (u+¢)>~™w,/(m—1), Lemma 4.6 implies
[ugl < (u+€)*™(Ly)"?/(m—1) < L.

In order to obtain the Holder continuity of u and w=(u +¢&)"~! with respect
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to t we use the following result due to Gilding [8].

LemMa 4.8. Let ze C*'((a, b)x (7, T)) n C([a, b] x [z, T]) be a solution of
the equation

z, = A(x, )z, + B(x, )z, + g(x, ) in (a, b) x (7, T),

where —o0o<a<b<o,0<t<T<oo and A, B and g are continuous functions
on [a, b] x [, T] satisfying

0<A(x, ) < p |Bx, )l <pu and |g(x,0) <p on [a,b]x [z, T]

for some positive constant u. If z is Holder continuous with respect to x in
[a, b] x [z, T] with an exponent a€(0, 1] and a Héolder constant N,, then for
any 0<d<(b—a)/2 it holds that for t<s<t<s+0<Tanda+d<x<b-—d

|z(x, s) — z(x, t)] < N,|s — t]*/2,
where
6 = d?/(4u(1+d)) and N, =2[N {2u(1+d)!/2}* + péi==/2].
By virtue of Lemma 4.8 we have the following lemma.

LemMMA 4.9. For the solution u of P(K, uq, f), put w=u+¢e)*" 1. Then w
and u satisfy the following relations, respectively:

(i) For x,ye R and t,se[0, T]
w(x, 1) — w(y, s)| < Ls(Ix — y| + [t — s|'/?),
where
Ls = 16p(1+p)
and
p = max [mLs, m(L,)"?/(m—1) + |K[f1ll 0,0z (m—DL3I(KLf Dsllo,0r] 5
(i) For x, ye R' and t, se[0, T]
[u(x, 1) — u(y, s)l < Le(Ix — y| + [t — 5[*/?),
where
Le =8(1+Ly)(1+p)
and

p = max [mLs, m(Ly)'? + [[K[f1llw,0r> Lal(K[fDsll 0,01

Proor. We shall prove only the statement (i) because the proof of the
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statement (ii) is done by the same way as in the statement (i). It follows from
the equation (4.3) that w satisfies the equation

Wy = mwwy, — {mw,[(m—1) — K[fT}w,
= (1-m)(K[fDu+e)"2u in Q.

Let x, be an arbitrarily fixed point in R! and let us apply Lemma 4.8 as [a, b]=
[x0—2, xo+2] and [t, T]=[0, T]. We take p, o, Ny, d and § in Lemma 4.8
as follows:

p = max [mLy, m(L;)'?/(m—1)+ [ K[fllo,0r> (m—DL3I(KLf Dl oo,01] >
a=1, d=1,06=1/8w, N,=(Ly)"?

where L, and L, are the same constants as in Lemma 4.6. Then, in the case
where 0<s<t<s+d< T we can apply Lemma 4.8 to get

[w(x, 1) — w(x, s)] < N,|t — s|'/2,
where
N, =2{232Mp + (u/8)"2}.
In the case where |t—s| >0 we get
Iw(x, 1) — w(x, )| < 2||W|l 007 2|t — 5|12 < 252L,ut/2|t — 5|12,

Hence, taking account of Lemma 4.6, from the inequalities obtained above we
have the desired inequality.

By making use of Lemma 4.1 into Lemmas 4.5-4.7 and 4.9, we obtain that a
priori estimates of the solution u for P(K, u,, f) and w=(u+¢)™"! are given in
terms of m, u, and f.

PROPOSITION 4.1.  The following relations hold for the solution u of
P(K, uo,f) and w=u+¢g)y" 1.

(1) 14llz,0r < max[L, eliol e MyC(KI S llz.0:] = Li.

where M, and C(K) are the same constants as in Lemmas 4.1 and 4.5, respec-
tively;

(i) Nwillw,or < max[1, e[wy(-, ), 4eL3C(K) (|| fllwo,0r + [ f2llc0,02)]
~L,
where Ly = (L, +1)"1;

(1") "ux” ©,QT S E4
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where
_ {(L)'2 + 132 ™(L) 2 (m—1)  if 1<m<2,
e e27m(Ly)'2[(m—1) if m>2;
(iv) [wlijz.0r < Ls,
where
Ls=1L;+ 16p(1+p)
and
p = max [mLs, m(L;)'2|(m—1) + | K|l fllo,0r5 (M —=DL,CK) fllo,0,] 5

(v) [ulijpor < L,
where

and
u = max [mLy, m(L;))"? + K| [ fllw,0rs LaCKI f 0,071 -

In the sequel we shall give the estimates of u and w=(u+¢)", in which u
is the solution of P(K, ug, f).

PROPOSITION 4.2. u and w satisfy the following relations:

() [Ulisnor < [Uoli4s + M, T2
and

Wl +aor < [Woli+a + M T0-0/2,

where wo(x)=w(x, 0) on R* and M;=M,(e, luy|,, |Wola, |fl1,0,0r» T) increases
in all variables but ¢:

(i) [W)z+a0r < M3[Uols 40
where M, =M (¢, [Uol2+e [f]1+a0r T) increases in all variables but e,

ProOOF. Let us prove the statement (i). We shall prove only the statement
for u because the proof of the estimate for w is done by the same method as in the
proof for u. Since u satisfies

Uy — mwi,, = (mwx - K[f])ux - (K[f])xu in QT?

the function v=u —u, satisfies
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v — mwoy, = (mw, — K[fDu, — (KLfD)u + mwug = g in Qr,
v(x, 0) =0 on R

Hence, applying Proposition 2.5, we get

(4.15) [v]1 +a0r < MTO2||g]l 4 0,

where M =M(e, [W]y2,0,> T) increases in all variables but e&. Therefore, com-
bining (4.15) with Lemma 4.1 and Proposition 4.1, we obtain the first part of

the statement (i).
Next let us prove the statement (ii). The regularity results for parabolic
equations (see, for example [15]) give

(4.16) [ul2+0,0r < ClHolz e

where C=C(e, [W]1+4,070 [K[f1)i 400 T) increases in all variables but e.
Hence, with the aid of Lemma 4.1 and the statement (i) in this proposition the
statement (ii) follows from (4.16). Thus the proof is completed.

PROPOSITION 4.3. For a given f;e H*%2/2(Qp) (i=1,2) let u; (i=1,2)
be a solution of P(K, u,, f;) and let us put w;=(u;+&)*"1. Then we have

[uy = u2dira0r < MsTE 92| fi = foll 0,0, max [[u1.0,0,5 142l1,0,0-15
where M3=M (e, [4o]2+a,0r> Lfili+a0m T) increases in all variables but e.

PrROOF. Let us put v=u, —kuz. The function v satisfies

v, — a(x, v, — b(x, v, — c(x, )v = g in Qr,

where

a =m(l+e" ! > mem 1, b =2m(m—1)(G+¢e)"2 — K[f1],

¢ =m(m—1)(a+e)*""2q + m(m—1)(m—2)(G+&)"*(p)* — (KLfiD

g = K[f1 —f21(us), + (KLfy — f2D),u2

and (ﬁa ﬁa Zj) is a pOint between (ul’ (ul)x’ (ul)xx) and ("2, (uZ)x’ (uZ)xx)' Maklng
use of Proposition 2.5, we have

(4.17) 41 — uzli4a,0r < MTCO"02||g|l 4 0,

where M=M(e, [al, 07> 1Pllw,0r> l€llo,gs T) increases in all variables but e.
Taking Lemma 4.1 and Proposition 4.2 into account, by (4.17) we obtain the
desired estimate. Thus we have proved the proposition.

Now we are in a position to prove Theorem 4.1 under the assumptions (A.3)
and (A.4) by using a series of lemmas and propositions obtained above,
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PrOOF OF THEOREM 4.1: For a given fe H1**2/2(Q;), let u be a unique
nonnegative solution of P, (K, u,, f) satisfying the property in Lemma 4.2.
Define the mapping F from H**2/2(Q;) into itself by

(Ff)(x, ©) = u(x, t) on Qr.
We choose a constant A satisfying
[Uolz+o < A2
and fix it. Define the set X by
X = {fe H'"***%(Qr); [f]i+a0r < 4}

Then, by virtue of Propositions 4.2 and 4.3 we can take a sufficiently small positive
time T so that

F(X7) = Xr
and that there exists a constant k € (0, 1) satisfying

LEfy — Ff2]1+a,Q1~ < k[f _f2]1+a,Q7- for every f,f,eXr.

Hence the application of the fixed point theorem yields that there exists a function
u € X satisfying

u = Fu,
which means that u is a nonnegative solution of the problem (4.1), (4.2). Thus
the proof of Theorem 4.1 is completed.
4.2. Global existence of nonnegative solutions for the problem (4.1), (4.2)

In the previous subsection we have shown the local existence of nonnegative
classical solutions in time for the problem (4.1), (4.2). However, it is expected
that the existence of nonnegative solutions for (4.1), (4.2) is global in time. The
result about this is stated as follows.

THEOREM 4.2. Under the assumptions (A.3) and (A.4) there exists a unique
nonnegative function u on R x [0, o) which belongs to H2+*1*2/2(Q) for any
T>0 and is a solution of the problem (4.1), (4.2) satisfying

(4.18) lull, < max[1, elluolle, M,C(K)],

where M, is a constant depending only on m and |u,l|; and C(K) is the same
constant as in Lemma 4.1.

The uniqueness of solutions for the problem (4.1), (4.2) is an immediate con-
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sequence of Proposition 4.3 in the previous subsection, since a solution u of (4.1),
(4.2) is taken for a solution of P,(K, uq, u). In order to obtain the global ex-
istence of solutions in time it sufficies to show a priori estimates of solutions for
the problem (4.1), (4.2), since we have obtained the local existence of solutions for
(4.1), (4.2) in the previous subsection. Hence, in what follows we shall give a
priori estimates of solutions for the problem (4.1), (4.2).

Throughout this subsection let ¥ be a nonnegative solution of the problem
(4.1), (4.2) belonging to H?**1+*/2(Q.) and let us put w=(u+¢)" ! and wy=
w(-, 0). We note that u is considered as a solution of the problem P,(K, uq, u).

LemMA 4.10. u satisfies
“u”oo,Q-r < Eb

where L, is the same constant as the one appearing in the right hand side of
(4.18).

PrROOF. Since u is considered as a solution of P,(K, uy, u), it follows from
Lemma 4.5 that

lull%,o, < max [1, e?|luol, Mill(K[uDsllw,or 1-
Combining this inequality with Lemma 4.1, we can assume
lul,or < MiC(K)|tllw, 0,
which yields the desired inequality. Thus the proof is completed.
REMARK. The constant I; does not depend on T.
LeMMA 4.11. The function w satisfies the following relations:

(1) Wellw.gr < max[1, e|wpll,, 12¢2L;C(K)M;1=L,, where Ly=(L,+
1y"=1 and

L, +(Ly+1)>™(m=1)  if 1<m<2,
M2 = -~
L, + &"[(m—1) if m>2;

(ii) For each t>0 there exists a constant C, depending only on t such that
for every (x, t)e R' x [1, T]

[wi(x, )] < max[1, 12¢2L,;C(K)M, + C,].

PrOOF. We shall prove only the statement (ii) because the statement (i)
is verified by the same method as in the statement (ii). Let (x,, to)€ R! x [1, T]
be a point where |w,| takes the maximum on Q;. Using Lemmas 4.6 and 4.1,
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we can assume
(4.19) 1< |wy(xo, t0)I? < 12¢2 Ly(C(K)L; + C(K)l|uxllwo 0., ) + Cus

where Q. ;=R x (7, T). Let us consider a point (xy, t;) € 0, r where |u,| takes
the maximum on @, ;. At this point we have

(4.20) lu,l = (u+e)>™w,l[(m—1) < (u+8)>™|wy(xo, to)l/(m—1).
Substituting (4.20) into (4.19), we obtain
[wi(Xo, to)l < 12e2L3C(K){L; + (u(xy, t;) + &> "/(m—1} + C,,
which implies the desired inequality. Thus the proof is completed.
The following lemma is an immediate consequence of Lemma 4.11.

LEMMA 4.12.  [ug]l.0r < La»

where

. {(ED2 4+ 132 EDUm)(m—1)  if 1<m<2,
L,=
| ey vzm — 1 if m>2.

By making use of Lemmas 4.10-4.12 obtained above and the same cal-
culation as in the proofs of Propositions 4.1 and 4.2, we obtain a priori estimates
of u and w=(u+¢)"! which imply that the existence of nonngegative solutions
for (4.1), (4.2) is global in time.

PROPOSITION 4.4. The functions u and w satisfy the following relations:
(i) [Wlier < Ls»
where Ls=L,+16u(1+p) and
p = max [mL;, m(L)'2[(m—1) + |K||,L;, (m—1L,L,C(K)];
(i) [ulier < L,
where Le=L, +8(1+L,)(1+p) and
p = max [mL3, m(L,)"2 + |K|,L,, L,L,C(K)];
(i) [4]i+a0r < [Uoli+qa + M TU-0/2

and
Wli+aor < [Woli4a + M, TU-0/2

where My =M (&, |uols, |Wolz, Le, T) increases in all variables but ¢;
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(iv) [uls+a0r < Myluolzta

where M,=M,(¢, [Uols+q4 T) increases in all variables but .

5. Existence of solutions for the problem P(K, u,)

In this section it is shown that under the assumptions (A.1) and (A.2) a
solution of P(K, u,) is constructed as a limit function of a sequence of solutions
for the Cauchy problem studied in Section 4. The result is as follows.

THEOREM 5.1. Under the assumptions (A.1) and (A.2) on uy and K there
exists a solution u of P(K, uy) which is bounded on R'x (0, c0) and satisfies

5.1 €SS. SUP g<r<oo (EA1) Sw l(u"'),,(x, D2dx < ©
and
(5.2) P o<s<w |, | (EADIWMCx, DlEdxdt < oo,

where tA1=min(t, 1). Also (5.1) and (5.2) hold without tA 1 if ((uo)™)' € L2.

The proof of Theorem 5.1 will be done by using a series of lemmas mentioned
below.
For sufficiently small e>0 take a sequence of functions {u,,} such that:

(i) wug,eB? and 0 < up,(x) < 2|lupll, on R!?
(i) luoels = lluollss |
(iii) wuy, — ug strongly in LP(R!) (1 < p < ) as e—0;

@(iv) lim,,_, Sx ug(y)dy = 0 and lim,_, Sw uo(¥)dy = 0 uniformly in ¢;

(V) [((uoe+&y™)ll2 < 20((uo)™)'ll2 if ((wo)™) € L2.
For K let us define the function K, on R! by
K(x) if x| < 1/e,
K(x) =
0 if |x] > 1/e.

It follows from the assumption (A.2) on K that K, satisfies the assumption (A.4)
mentioned in Section 4. For each é>0 we consider the equation

(5.3) u, = (m(u+e)y"u,), — (K, [ulu), in R' x (0, o0)

subject to the initial condition
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(5.4 u(x, 0) = ug(x) on R

By virtue of Theorem 4.2 there exists a nonnegative function u, on R! x [0, o)
which belongs to H2**1*2/2(Q ) for any T >0, where Qr=R!x (0, T), and is a
solution of the problem (5.3), (5.4). In the sequel we shall construct a solution of
P(K, uy) as a limit function of the sequence {u,}. For this purpose we have to
give a priori estimates of u,.

LEMMA 5.1. u, satisfies

Sww u,(x, )dx = gw

ug(x)dx for any t>0.

PrROOF. Since u, is taken for a solution of P(K,, u,,, #,), this lemma is an
immediate consequence of Lemma 4.4.

LEMMA 5.2. u, satisfies
(5.5) 0<ux, ) < max[l, e|ugllo, M;C(K)] = C, on R! x [0, ).

Here M, is a positive constant depending only on m and |luy|; and C(K) is
determined by

(5.6) C(K) = =1 |K(c; +0) — K(c; = 0)| + IIK]l,, + IK'll;
where {c;} is the set of all discontinuity points of the first kind for K.
Proor. By Theorem 4.2 we have
luell o < max[1, elluollo,, M{C(K,)],

where M, is a positive constant depending only on m and |ug,[l;- We note that
luoelly =lluoll, and

C(K), < X o<1l K(e;+0) — K(e;=0)| + [K'[|; + 2[|K]lo < 2C(K).
Hence we obtain the desired inequality.

LEMMA 5.3. There is a constant C, depending only on m, |lugly, lluolle
and K such that u, satisfies

5.7) U o<y || (e + O (uudxdt < C
and

s+1 (©
(58) 0P g<sen |, | I+ f2dxds < C

PrOOF. Let x; and x, be arbitrary points in R! satisfying x; <x,. Multiply
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(5.3) by u, and integrate the resulting relation on the interval [x,, x,]x [0, s].
Then an integration by parts yields that

J o s s+ D+ (7 7 e o
s+1

- S"‘ (u)2(x, s)dx — 1 /25 S: (K [u,])(u,)dxd

X2
]dt.
X=Xx1

We note that lim,. ., u,(x, t)=lim, 1 (¥,),(x, £)=0 uniformly in te[s, s+ 1]
by Lemma 4.3 and that Lemmas 4.1 and 5.2 give

7 e+ o

X2
X

—x - (1/2)K6[u8] (ue)2

Szz (K [uDuu)dx < CUlul3lluoel, < CKICHuoll,

where C(K) is the constant determined by (5.6). Hence, letting x;— —oo0 and
X,— + 00 in the relation obtained above, we have

s+1
s

(" wren s+ + (7 @t omuw).dxar

SS : ()*(x, s)dx + {C(K)C3/2}[[uoll;-
< C(1+C(K)Cy)uol 1

which implies (5.7).
Next, using (u,),=m(u,+¢e)!""((u,+¢)"), in (5.7), we obtain (5.8). Thus
the proof is completed.

LEMMA 5.4. There is a constant C; depending only on m, |ugll1, 4ol
and K such that

(5.9) SUP o<, < (1A 1)g°° (4, + ey, [2dx < Cy
and
(5.10) P o<sen || | (EA D +ey)dxds < Cs,

If ((uo)™) € L?, then (5.9) and (5.10) hold without t A1 and C5 depends on m,
luolly, K and [[((uo)™) Il

PrOOF. Let us put v=(u+¢)". Multiply (5.3) by v, and integrate with re-
spect to x on an interval [x, x,]. Using an integration by parts, we have
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S"’ (u)wdx + 1/2(d/df) S"’ lo.|2dx

(5.11)

x2
= Uy
X=X1

- (7 & uDapdx - 7 K Iud @odx.

X1

The second term in the right hand side of (5.11) is bounded by

(5.12) AONK LDl |~ wrdx + 612 @yrax

for any 6>0. For the third term in the right hand side of (5.11) using (u,),v,=
(u,)v, and (5.3) and then integrating by parts, we obtain

= {7 KIud @.0x

= — (12K, [u,](v,)?

x2= + 12 S"Z (K, [1,])(v,)2dx

13+ (TR + 7RI (KD 0,

< - (1/2)Ke[ue] (vx)2

IR 7 s

+ ADUK LD+ | @dx + 1K LD |7 @i
The first term in the left side of (5.11) is estimated as follows:

g"’ (u)wdx = (1/m) S (1, + ) m(0)2dx
(5.14) "‘ .
> {(C+Dmfm) (7 (0)2dx.

Choosing 6 =(C; +1)!"™/m and using the fact that
IK[udllo < 1Kl llttolly and (K, [u]):ll < C(K)Cy,
by (5.11)~(5.14) we obtain

S"’ (v)2dx + (d)di) S"’ (v,)2dx

.15

X

< c{|kmder|” [+ 1+ (" @wdx = Fe, x,, 0,

X=X1
where C is a constant depending only on m, |uel,, [[4ol ., K and C,, but not e.

In the case of s e [0, 1], we integrate (5.15) multiplied by ¢ on [0, s] and use
an integration by parts to get
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SO S H(o)2dxdt + s g (0. )(x, s)dx
(5.16) * *
1 (o 1
< So S_ (0,)2dxdt + So F(xy, xq, Ddt.

We note that v,(x, £)—0 as |x|— oo uniformly in ¢ € [0, T] for any T>0 by Lemma
4.3. Letting x,—» — o0 and x,— + o0 in (5.16) and using Lemma 5.3, we obtain

(5.17) So S: Hv)2dxdt + s g: ()%, )dx < C, + C(1+C,),

which implies (5.9) and (5.10) for se[0, 1]. Next we assume ((uo)™) € L?.
Integrating (5.15) on the interval [0, 1] and using [(v)2(-, 0)]l, <2[[((uo)™) |l 2>
we obtain

N
<

[* o 0+ carey

< 2[((uo)y™'ll2 + C(1+Cy).

Let us consider the case when se (1, o0). By virtue of (5.15) we have
(d/dt){(t——s+ 1 S"’ (vx)de} < S (v,)2dx + (t—s+1)F(x,, X,, 1) for t > s,

from which, integrating with respect to ¢t on (s—1, s), we get
g @ 9dx < [* (7 @ordxdr + " Fex,, x,, .
Hence, letting x; —» — oo and x,— + 00, we have
S: (v)%(x, 5)dx < C2C,+1)  for se(l, o).

Next, in order to get (5.10) we integrate (5.15) on (s, s+1) and let x;, > — o0 and
x,— +o00. Taking account of (5.9) with s=1, we can conclude that (5.10) holds.

LEMMA 5.5. For each 1>0 there is a constant C,, depending only on m,
lluoll1> 4ol and K but not on e, such that for any (x;, t;) € R* x [1, ) (i=1, 2)

(5.18) I(ue+e)(x, t1) — (ug+8)"(x2, 1)
< A{C /(A D)2} (Ixy = Xo[112 + 8y — 1,]M4)
and
(5:19)  lu(x1, t1) = ulxz, )| < {Ca/(xA D2} (Ixy — %,™2 + [ty — £5™4).
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ProOF. We shall prove only (5.18) because (5.19) is an immediate con-
sequence of (5.18).

For the sake of simplicity let us put f=(u,+é&)™.
For any x,, x, € R and t>t we have

s ) = Feay O < by = 3ol {7 £ 2™

SAG A1} 2]x — x,|'2

For any xe R, t,, t, €[1, o0) with ¢, <?, and 1>0, we have
Af(x, 1) —f(x, 1)

<

[0 10 1) = fun lanae + 7" 176, olaoa
< 2A32supy, <i<4, {S:) [ fe(n, t)[za’n}llz

el = ol (70" e o) paeas]
ty J-o

< AU (TADY2ICY2(2R312 + 2121y — 4,]172),
from which, taking A=|t; —t,|!/2/2, we obtain

Lf(x, 1) = f(x, )] < {4/(z A 1)2}CY2ty — tp]1/4,
Thus we have established (5.18).

LEMMA 5.6. For any T>0 we have

lim,. o | udE 0de = lime ., | e, Dag =0
uniformly with respect to t € [0, T] and e (0, 1).

Proor. For any 6>0 there exists a positive constant M independetn of ¢
such that for any x € R?

0< g’ Uo(E)IE < 6 + Mes and 0 < S“’ Uo(E)IE < 6 + Me™>

Define the function v on R! x [0, c0) by

ox, 1) = 7 e nag,

which satisfies the equation

v, = m(u,+¢e)" v, — K,Ju,Jvo, in R! x (0, 00).
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We consider the function w on R! x [0, oo0) defined by
w(x, t) = 0 + Me*t7t — v(x, t),
where y is determined by
(5.20) Y > m(Ci+ 1" + K| lluolly-
We then see that
Fw=w, — m(u,+&)" w,, + K[u,Jw, >0 in R! x (0, 00),
w(x, 0) > 0 on R!,
|w(x, t)] < Crexp(Crlx|?) on @y for any T > 0,

where Cp is a positive constant depending on 7. Hence, by using the com-
parison theorem we have

w(x, t) > 0 on R! x [0, 0),

which implies that
0< S u (&, DdE < 5 + Mex+r < 26
for sufficiently large —x. Therefore we get

. X
lim,, _, g

u (&, nd¢ =0

uniformly with respect to te [0, T] and e€(0, 1).
Next, using the function w on R! x [0, o) defined by

w(x, 1) = 6 + Me™**7" — (Jluoly — u(x, 1)),

where v is the function defined above and 7 is the same constant as in (5.20),
analogously we obtain

0<{"u( nde <5+ Me=tr,
which implies that
lim,., |~ e, g = 0

uniformly with respect to t€[0, T] and ¢€(0, 1). Thus the proof is completed.

We are ready to prove Theorem 5.1 by means of the lemmas established above.
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PrROOF OF THEOREM 5.1: We use Lemmas 5.3 and 5.4 and |((u, + &)™),
>|((u,)™),] to obtain

(5.21) SWPy<scr | | I 2dxd < C
and
(522) upy <y A D |7 I ax < 5.

Analogously we obtain

(5.23) SUPo<i<s | | (A DI dxds < Cs.
t -0

Also (5.22) and (5.23) hold without sA 1 if ((ug)")’ € L2. Making use of Lemmas
5.2 and 5.5 and Ascoli-Arzela’s theorem shows that from {u,} we can select a
subsequence which converges to a limit function u uniformly on every compact
set in R!x (0, ). We reindex this subsequence if necessary and also denote
it by {u,}. By (5.21)—(5.23) we can assume that for each T>0
((u)™)x — (u™), weakly in L*(0, T: L*(R"))
and weak star in L ((0, o0): L3(RY)),
and
((u))™), —> (u™), weakly in LZ,((0, ©): L*(R")),

as ¢ tends to zero. Hence, we see that u has the following properties:
(i) ueC(R' x (0,0)) and 0<u<C, on R!'x(0,00);

(ii) Sw u(x, t)dx = Sw ug(x)dx for every t > 0;

s+1 (o
(i) supo<s<s | | I 2dxdr < Co;

s -

(iv) ess. SUPg<seus (sA1)§°° |(um),|2dx < C,

and
t+1 (oo
SUPo<t<w S g (s A Dj(u™),)?dxds < C,.
t - 00

If ((ug)™)’ € L2, the relations mentioned just above hold without sA 1.

The fact that lim,_,, K,[u,]=K[u] uniformly on every compact set in R! x
(0, o0) is shown as follows. Let us take 7 and T with 0<t<T and fix them. It
follows from Lemma 5.6 that for an arbitrarily small positive number J there is



Nonlinear degenerate diffusion equations 195
a positive number N such that for any te [z, T]

0< gl u(E nde <52 for 0O<e<l
x|{>N
and

0< S L ul& nde < 8]2.

|x|>
We choose a positive number ¢, so that if 0 <e<g, then
lu(x, 1) — u(x, t)] < 6/2N| K| ,) for every |x| < N and te[r, T].
Then, for te [, T] we have
K[ (x, 1) = K[ul(x, 1)

[ K=o ody]+[§ K=y, day

Iy1>

<

N

{7 IRl 0 = uv, Dldy +(”1KGe= )= KCe=p)luCy, Dy
< IKILS + 6+ IK(x=y) = K(x=)lu(y, dy.

For an arbitrary positive number M let |x|<M. If we choose ¢ so that e<1/
(M +N), then we see that K, (x—y)=K(x—y) for |x]<M and |y|<N. Conse-
quently, for |x|] <M and te [, T] we obtain

|K[u,](x, ) — K[u](x, )] < (IK|lo+1)0

whenever 0 <e<min [y, 1/(M + N)]. Thus we have proved our assertion.
The property u € C((0, c0): L1(R')) follows from u e C(R! x (0, o0)) and

Sw u(x, t)dx = Sw u(x, s)dx for any s, te(0, ).

It is easy to prove the integral identity (iv) for u, so we omit the proof.
Finally we note that the original sequence {u,} conveges to u by using the
uniqueness of solutions for P(K, u,).

6. Some properties of solutions for the problem P(K, u,)

In the case of the porous media equation, that is, the equation (1.1) with
K =0, one of the most important properties of solutions is that the solution u
has a finite speed of propagation which means that for each >0 the support of
u(-,t) in R! is compact in R! if the initial datum has compact support in R'.
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It is natural for us to expect that solutions of our problem also have such an
interesting property.

THEOREM 6.1. Let u be a solution of P(K, u,), where the assumptions (A.1)
and (A.2) are imposed on uy and K, respectively. If the support of uy is compact
in R, then for each t>0 the support of u(-, t) in R! is also compact.

ProOF. Define the functions v on R x (0, o) and v, on R! by

v(x, t) = giw u(y, )dy and vy(x) = X:o uo(y)dy,
respectively. The function v holds the properties (i)-(v) in Proposition 2.3. Let
w be a solution of the problem
(@) + Qw—c)w’ =0 on R!,
(6.1) o(—©) =0, w(+xo)=c,
'(x) >0 on R!,

where c=|uql|;. As wasshown in [18], there exists a solution w of (6.1) satisfying
w(x)=0 on (—o0, a], 0<w(x)<c on (a, ) and w(x)=c on [P, c0) for some
constants « and f. We note that for an arbitrarily fixed point x, € R! the func-
tion w(x+x,) is also a solution of (6.1) because of the translation invariance of
(6.1) with respect to x.

Since the support of u, is compact in R!, we can take a solution o of (6.1)
so that vo(x) <w(x) on R!, and define the function @ by

w(x, t) = w(x+At) on R! x [0, o0),
where 4 is determined by
6.2) A=c+ |K[ulllo.
The function @ satisfies
(6.3) @, = (@)™, + Qo—c+A)w, in R x (0, 0)
and
@(x, 0) > vo(x) on R
In what follows it will be shown that
(6.4) v(x, 1) < @(x, t) on R' x [0, 00).

At first we note that from Proposition 2.3 it follows that ((v,)™),, v,€ L*(Qr)
for any T >0, where Qr=R! x (0, T), and
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(6.5) v, = ((v)™), — K[ulv, a.e.in R! x (0, o0).

Subtracting (6.3) from (6.5) and using (6.2) for the resulting relation yield the
following relation

6.6) (v—w), < [(v)" — (@)"], — K[u](v—®), ae.in R! x (0, ).

Let h(s) be a nonnegative bounded function on R! such that h is continuously
differentiable, i’ >0 on R!, h(s)=0 on (— o0, 0] and h(s)>0 on (0, c0). Multiply
(6.6) by h(v(x, t)—a(x, t))yy(x) and integrate on R!'x (0, s) for every s>0.
Here for each N=1,2,..., yye C®, 0<yy<1, xp(x)=1 on [—N, N], xx(x)=0
on R\[—-N—1, N+1] and | xyllo <M, where M is a constant independent of N.
Integrating the resulting relation by parts and using

So S: {0)™ — (@)™} (v, — D (v—w)yndxdt > 0,
we get
S: H(v(x, 5) — @(x, 5))xn(x)dx
67 <" How) - ot - (7 (@ - @mhe-opdxar
- So S: K[u](v—@).h(v— d)yndxdt
for every s>0, where

H(w) = Sw h(o)do for we R'.
0

It follows from vo<w on R! that H(vo—w)=0 on R'. Since (v,)"— (@)™,
K[u](v—®), € L'(R") n L*(R?), letting N— o0 in (6.7) we obtain

(6.8) Sw H(o(x, 5)—@(x, s))dx < —S‘ Sw K[u] (v— @), h(o—D)dxdt
—o0 0J-m
for any s > 0. The right hand side of (6.8) is rewritten as
S’ Sm (K[u]),H(v—@)dxdt,
0J~

which is bounded by

IKTuDl ({7 Ho - @)dar.

As a result of the estimates we conclude that
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(7 Hex 9 - @ ax < IKED . () 7 Ho-@dxd
for any s > 0, which yields that
H(v(x, s) — @(x, s)) = 0 for xe R! and s > 0.

Hence we have obtained the desired inequality (6.4).
Next we choose a solution @ of (4.1) such that w(x)<vy(x) on R'. Define
the function w by

a(x, t) = w(x—At).

Here A is the constant determined by (6.2). By using the same calculation as in
the proof of (6.4), we obtain

(6.9) o(x, ) < v(x, t) on R! x [0, 00).

Taking account of the property of w and the definition of v, by (6.4) and (6.9) we
obtain that for each >0 the support of u(-, ) on R! is compact. Thus the
proof is completed.

REMARK. In the case when K(x)=k; on (— o0, 0] and K(x)= —k, on (0, o)
for some positive constants k, and k,, it has been shown in [18] that a stronger
result than Theorem 6.1 holds: There are constants « and f, depending on the
amount of the support of u,, such that

u(x, t) = 0 outside of a < x — kt < B,

where
k= (ke — k2 {7 uo(x)ax.

As concerns the regularity of solutions, in the case of the porous media
equation more precise estimates for the smoothness of the solution # have been
obtained by Aronson [1] and Gilding [8]. The former has shown that u is Holder
continuous with respect to x with exponent a=min [1, 1/(m—1)]. It is shown
from the exact solution obtained by [4] and [21] that this exponent « is the best
possible. The latter has shown that u is Holder continuous with respect to ¢
with exponent «/2. In the case of our problem P(K, u,), we have not obtained the
same results as that mentioned just above when m>2.

THEOREM 6.2. Let u be the solution of P(K, u,), where it is assumed that
uy and K satisfy the assumptions (A.1) and (A.2), respectively. Then u holds the
following properties:
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(i) wu is a classical solution of the equation (1.1) in a neighbourhood of
a point in R x (0, c0) where u is positive;

(i) If 1<m<?2, then for each 1€(0, ) there exists a positive constant
C, depending only on 1, m, |uyll; and |uyll, such that for x, ye R' and t<
s, 1< 0

lum=1(x, t) — um1(y, s)| < Cflx — y| + |s — #|1/?);

(iii) The derivative (u™), exists and is continuous on R'x(0, o) if 1<
m <2, and moreover u, exists and is continuous on R! x (0, o) if l<m<2.

Proor. At first we shall prove (i). Let {u,} be the sequence of approximate
solutions of P(K, u,) constructed in the previous section. We define the function
v, by

v(x, f) = Sx u,(y, )dy for (x, t)e R* x [0, c0).
v, satisfies the euqation

(ve)t = m(ue+£)m_1(ve)xx - Ke[ua] (De)x in Qoo = R! x (09 <XD)

[v:]1,0.. is estimated independently of & by using Lemma 4.8, and it follows from
Lemma 5.5 that for each >0

[ua]m/Z,va < Ct and [(us+8)m_1](1.. 2m),Qz, —<— Cn

~71

where C, is a constant depending on 7 but not on ¢ and Q. ,=R!x[1, o).
We note that

K [u](x, ) = K(1/e)o(x—1/e) — K(—1/e)v(x+1/e)

+ Tier (K(ei=0) = Kl Outx—e) + [ K= ywe=ydy,

where {c;} is the set of discontinuity points of the first kind for K, from which it
follows that

[Ka[ua]]l,Qm < C and [(Kz[ua])x]I/Z,pr < Cn

where C, is a constant not depending on ¢ and C, depends on 7 but not on e.
Hence, by the method similar to that used in the proof of the statement (ii) of
Theorem 3 in [10] we can establish the statement (i).

It follows from Lemma 4.11 that if 1 <m <2 then for each >0 there is a con-
stant C,, depending on 7 but not on ¢, such that

I(ue+e)"1(x, ) — (u,+)" 1y, 5)| < Cllx — y| + |t — s[1/?)
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for x, ye R and t<s, t<oo. Letting ¢—0, we obtain the statement (ii).
The statement (iii) is obtained by using the same method as in the proof of
the statement (iii) of Theorem 3 in [10]. Thus the proof is completed.

REMARK. In the case when K(x)=k, on (— o0, 0] and K(x)= —k, on (0, o)
for some positive constants k; and k,, the statement (ii) and the first part of state-
ment (iii) in Theorem 6.2 are valid without the condition on m [17].

Finally we state the dependency of solutions for P(K, u,) on K.

THEOREM 6.3. Let u, satisfy the assumption (A.1) and let K and {K,} be
a function and a sequence of functions satisfying the assumption (A.2), re-
spectively. Assume that

(i) there is a positive constant L such that |K||,<L, |K,|,<L, C(K)<L
and C(K,)< L, where C(K) and C(K,) are the constants defined by (3.2);

(i) lim,,, K,(x) = K(x) a..in R
Then, for the solution u of P(K, u,) and the sequence of solutions u, of P(K,, ug)
we have

lim, o u,(x, )=u(x, t) uniformly on every compact set in R* x (0, ©).
‘ProoF. Using Lemma 5.2, by the condition (i) we obtain that sup {||u,|l,; n}
is finite for every pe[1, co]. We then use Lemma 3.1 to obtain

(6.10) o, (-, ) —o(-, Dl < eM* S; I(K =K [ul(-, sju(-, s)l.e~Msds

for every t>0, where v and v, are the functions on R' x (0, c0) defined by

X

v(x, t) = Sx u(y, )dy and v,(x, t) = g

. u,(y, ydy

respectively, and

M = Lmax [sup {llu,ll; n}, lulo]-

Since u e L'(R! x (0, T)) n L°(R! x (0, 00)) for any T >0, by using the conditions
(i) and (ii), Lebesgue’s convergence theorem guarantees that

(K-K,)[u]— 0 as n— 0 ae. in R!
for each te€(0, T). We note that
(K= Ky) [ulll o < 2LJJuoll;-
Hence, from (6.10) it follows that for every 7>0

lim,,_,o SUPo<¢<T ”U,,(' ) t) - U( hE) t)“z = 0.
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Noting that v,(x, ) —v(x, )—0 as |x|— o0, we obtain
(o5, D = o, 02 =207 (0,00, ) = 0, D) G0 ) = uCy, D)y

< 2flo, (-, 1) = o(+, Dz supo<i<rliu,(-, 1) — u(-, D,
which yields that
lim, o SUP,ept,0<r<t [0,(X, 1) —v(x, )| =0

for every T>0. Since {u,} is bounded and equi-continuous on R! x[1, T] for
any 0 <7< T< 00, by using Ascoli-Arzela’s theorem and u,=(v,),, we have

lim, ¢ u,(x, ) = u(x, t) uniformly on every compact set in R! x (0, c0).

Thus we have established the proof of Theorem 6.3.
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