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1. Introduction

In the past several years, from an ecological point of view a number of

authors (e.g. Gurney and Nisbet [11], Gurtin and MacCamy [12], Aronson

[3], Newman [19] et al) have studied spatial spreading population models in which

biological interactions and nonlinear diffusion process called "density-dependent

dispersal" are taken into account. This nonlinear diffusion process is described

by an equation of degenerate parabolic type.

In this paper, we are concerned with a model for the spatial diffusion of

biological population which provides a kind of mechanism of aggregation and

which is represented by equation

(1.1) ut = (u>»)xx - [^K(x-y)u(y, t)dy\u^ xeR\t>0

subject to an initial condition

(1.2) u(x, 0) = uo(x), xeR\

where w(x, t) denotes the population density at point xe R1 and at time ί > 0 and

1 < m < oo. We assume the following assumptions on u0 and K:

(A.I) M0 > 0 on R1 and UQEL^R1) n L^R1);

(A.2) K is differentiate on Rι except for a finite number of discontinuity

points of the first kind, K e L 0 0 ^ 1 ) and Kr e L\RX).

Here K' means dKjdx. In what follows we denote the problem (1.1), (1.2) by

P(K, u0).

If the term containing K is absent, the equation (1.1) is reduced to the "porous

media equation" occurring in the theory of flow through porous media (see. [5]).

The most interesting phenomenon is that, because of the degeneracy of diffusion

at w = 0, an initial smooth disturbance with compact support spreads out at a

finite speed (see. [20]) and loses the smoothness (see. [2] and [13]). This

contrasts with the property of the heat conduction case (m = 1). For the second

term of the right hand side of (1.1), we give a specific function K defined by



166 Toshitaka NAGAI

(1.3) K(x) =

1 for -r<x<0,

- 1 for 0 < x < r,

0 otherwise,

where 0 < r < oo. Then the term containing K is rewritten as

This provides the mechanism that moves u(x, t) to the right (resp. left) direction

if

\u(y, t)dy > \ u(y, t)dy (resp. < ) .
Jx Jx—r

Hence, in ecological terms, in the case of K given by (1.3) we would expect that

a suitable balance between the diffusion process and the aggregative one gives rise

to a pulse-like pattern exhibiting an aggregation of individuals. In the case of

K given by (1.3) with r=oo, it was shown by Nagai and Mimura [18] that the

phenomenon mentioned just above actually occurs. On the other hand, Satsuma

[22] has dealt with the equation (1.1) in the case when m = l and K(x)==(k/2δ)'

coth {πx/(2<5)} not belonging to L^iR1). He showed two types of exact solutions

for (1.1). One is a stationary solution, and the other is a blowing up solution

depending on the initial values. The type of equation (1.1) occurs in other

fields. Munakata [16] presented it in order to explain liquid instability and

freezing, and also Kuramoto [14] in order to explain rhythms and turbulences

in populations of chemical oscillators.

From the fact that classical solutions of the Cauchy problem for the porous

media equation do not always exist, we have to define solutions of our problem

P(K, u0) in some generalized sense.

DEFINITION 1.1. A solution u(x, t) of the Cauchy problem P(K, w0) is defined

to be a nonnegative function on R1 x (0, oo) which satisfies the following con-

ditions :

( i ) ueL^iR1 x (0, T)) Π C(RX x (0, oo)) n C((0, oo); L^R1)) for

any T > 0 ;

(ii) Γ K(x-y)u(y, ήdyeL^R1 x (0, T)) n C(RX x (0, oo)) for
J-oo

any T> 0;

(iii) (u^eL^R1 x (0, T)) for any T> 0;

(iv) u satisfies the identity



Nonlinear degenerate diffusion equations 167

Γ 5 1 [uft" {(um)x" 0 1 κ(χ-y)u(y> wy)u}fχ ] d x d t

+ Γ w0W/(x, O)dx = 0 for any fe C^R1 x [0, oo)).
J-00

The purpose of this paper is to show the uniqueness, existence and regularity

results for P(K, u0) under the assumptions (A.I) and (A.2), and to give some

properties of solutions.

In Section 2, notations and preliminaries which will be used later are given.

In Section 3, we shall show the uniqueness of solutions for P(K, w0). Section 4

consists of two parts and gives auxiliary results for approximate solutions of

P(K9 w0). As an approximation to P(K, w0), we consider the Cauchy problem

for certain non-degenerate parabolic equations. We deal with the local existence

in time in Subsection 4.1 and the global existence in Subsection 4.2. In Section 5,

by making use of the results obtained in Section 4, we shall show the global

existence of solutions for P(K, u0) under the assumptions (A.I) and (A.2). In

Section 6, we shall give some properties of solutions for P(K, u0) such that finite

propagation of disturbances, the regularity result of solutions and the dependency

of solutions for P(K, u0) on K.

The author would like to express his deepest gratitude to Professor Masayasu

Mimura for suggesting this research topic and various discussions. He also thanks

Professor Takasi Kusano for continued encouragement throughout the course

of this work.

2. Notation and preliminaries

In this section we introduce some notations and give some propositions which

will play important roles in the proofs of uniqueness and existence of solutions

for the problem P(K, u0) and will be used to derive some properties of the solu-

tions.

Let Q be a set in RN (N> 1). For a nonnegative integer m, Cm(Q) is the set

of all continuous functions in Q having continuous derivatives in Q up to order m

inclusively. For simplicity we denote C°(β) by C(β). C°°(Q) is the set of all

functions having continuous derivatives in Q up to arbitrary order. In the case

of Q c= R2 whose points are denoted by (x, t), for nonnegative integers m and n

Cm'n(Q) is the set of all continuous functions in Q having continuous derivatives

in Q up to order m with respect to x and order n with respect to t. C^(Q), C§(Q)

and Cgf "(6) are the sets consisting of all functions in Cm(β), C°°(β) and Cm-n(Q)

with compact support in Q, respectively.

B^R1) is the Banach space of functions / in C^R1) having a finite norm
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Let us put QT = R1 x(0, T) for 0<Γ<oo. Bm>n(Qτ) is the set of functions
f=f(x, t) in Cm'n(Qτ) having a finite value for the quantity

\f\m,n,QT = Σ?=O^PQτ\(d/dxYf(x, t)\ + Σ?=0 SUPβχ |(δ/3ί)7(^ 01

The norm of the Holder space on Rι is introduced as follows. For α e (0, 1]
and a positive integer m,

[/L = l/lo + supx>yeΛl \f(x) -f(y)\/\x - .y|α

and

[/]-+. = ΣΓ=o [(<*/<**)'/]«•

The set of all functions for which [/]α<oo (resp. [/]m + α<oo) is denoted by
H'iR1) (resp. H^'iR1)).

For the closure of Qτ = Rίx(09 T), say β Γ , H«>a/2(QT) is the Holder space
consisting of functions /=/(x, t) on β Γ which have a finite norm

[/]«,Qτ = SUPβτ l/(̂ > 01

-y\a + Is - ίlα/2)

^i+«,α/2(ρ r)( r e s p # 2 + α ' 1 + α / 2 (β Γ )) is the set of all functions / satisfying [/] 1 + β f Q τ

< oo (resp. [/] 2 + α ) Q τ < oo), where

[/]i+ α j Q τ = t/]« i Q τ

and

For p e [1, oo] the norm of the usual Lp(i?1)-space is denoted by | |/| |p, and the
usual norm of Lp(βΓ)-space is denoted by | | / | | P ,Q T . We simply denote ||/||p,Qoo

by ||/Up if there is no confusion.
For a Banach space X and — co<a<b<oo, C((α, b); X) is the set of all

functions which are continuous from (α, b) into X. Lp(a, b: X) (l<p<oo) is
the set of all measurable functions/from (a, b) into X such that ί->||/(OII belongs
to Lp(a, b), where || || denotes the norm in X.

We next state three propositions which are derived from the definition of
solutions for P(K, u0). Throughout these propositions it is assumed that u0

and K satisfy the assumptions (A.I) and (A.2), respectively. Let u be a solution
of P(K, u0). Then we have

PROPOSITION 2.1. For each τe(0, oo) the solution u satisfies the integral
identity
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Γ J l {uft~~ [(Mm)^ " ( Γ α o X ( x " 3 ; ) l l ( 3 ; > 0^)u]Λ}dχdί

u(x, τ)/(x, τ)dx = 0 /or «*rj> / e C ^ * 1 x [τ, oo)).

This proposition implies that the function w(x, t) on I?1 x [τ, oo) is a solution
of the problem P(K9 u( , τ)) on R1 x [τ, oo), and is proved by using the definition
of solutions for P(K, u0) and a calculation similar to that in the proof of Proposi-
tion 1 in [9].

PROPOSITION 2.2. For any te(0, oo) u satisfies

/•oo rao

\ u(x, t)dx = \ uo(x)dx.
J— oo J— oo

This proposition means that the total population at each time is fixed. The
proof is done by using Proposition 2.1 and the same method as in Theorem 1 in

[9].
For solutions of P(K, u0) we consider a transformation which is a useful

tool in giving the uniqueness result and some properties of solutions for P(K, w0).

For a solution u of P(K, u0) define the functions v and v0 by

(x

v(x, t) = \ wθ, t)dy for xeR1 and ίe(0, oo)
J-00

and
Γx

vo(x) = \ uo(y)dy for xeR1,
J-00

respectively. Then we have the following proposition.

PROPOSITION 2.3. v is continuous on R1 x (0, oo) and has the following
properties:

( i ) \\υ(.9t)-vo\\2^0ast^0;

( i i) 0 < i ; < HMOIII on R1 x (0 , oo), and υ(-oo, ί) = 0 and t< + oo, ί ) = | | M O | | I

for each te(O, oo);

(iii) vx>0 on /^^(O, oo), vx is bounded on R1x(09 T) for every T>0
and υx eC^x (0, oo)) Π C((0, oo): L^R1))

(iv) ((vxr)x, vteL2(Riχ ( 0 , T ) ) f o r a n y

(v) t; satisfies the integral identity
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roo ( r /rco

Wt + \ ((vx)
m)χ - (\ κ(χ- y)u(y

J-oo { L \J-oo

vo(x)f(x, fydx = 0 for every fe C&R1 x [0, oo)).

PROOF. The properties (ii), (iii) and ((vx)
m)xeL2(R1 x(0, T)) are easily

derived from the definition of solutions for P(K9 u0) and Proposition 2.2. The
property (v) is proved by the same method as in the proof of Proposition 3.2 in
[17]. i v e L ^ x C O , T)) follows from (v) and ((vx)

m)x e L\Rι x (0, T)). The
property (i) is shown as follows. Since vteL2(R1x(0, T)), for 0 < s < ί < Γ w e
have

Γ \v(x, t)-v(x,s)\2dx<\t~s\[T[™ \vt\
2dxdt

J-oo JO J-oo

Combining this relation with the fact

Λoo Γoo

lim^o \ v(x, t)φ(x)dx = \ vo(x)φ(x)dx for every
J-oo J-oo

which follows from (v), we obtain

\v(x, t) - vo(x)\2dx< t \T Γ (vt)
2dxdt

o JO J-oo

The relation implies (i). Thus the proof is completed.

The following proposition which is proved in [6] will be used in the proof of
Lemma 3.1 in the next section.

PROPOSITION 2.4. Let f, kγ and k be nonnegative continuous functions on
an interval [α, β~\ and let 0 < p < l and a>0. If

f(t) <a+[ k^mds + [' k(s)fp(s)sd for any te [α, β] ,
Jet Ja

f(t) < [fl« + q £ /c(s)exp | - q j * k1(σ)dσ}dsj/<l exp | j ^

then

for any t e [α, β], where q = l — p.

Finally, for the Cauchy problem

Ξ M ( - a(x9 t)uxx + b(x, t)ux + c(x, t)u =f in Qτ = R1 x (0, T),
(2.1)

I u(x9 0) = 0 on R\
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where 0<Γ<oo, we give an estimate for solutions which will play an important
role in Section 4.

PROPOSITION 2.5. It is assumed that

( i ) a,b9candf belong to B°(QΎ\

(ii) there exists a positive constant μ satisfying a(x9 t)>μ on Qτ,

(iii) a e Hα α / 2(5T) and for any x, yeR1 and t e [0, T]

\b(x9 t) - b(y9 01 < Qx - y\" and |φc, t) - c(y, t)\ < C\x - y\*,

where α is some constant in (0, 1] and C is some positive constant. Let u e C2*1

(QT) be a bounded solution of(2Λ). Then for any <5e(0, 1) we have

where M = M(μ, [ α ] α , Q τ , ||&|IOO,QT> IICIIOO,QT> T) is a positive constant not depending
on u such that M increases in all variables but μ and M t oo as μ I 0.

The proof of Proposition 2.5 is done by using a calculation similar to that in
the proof of Lemma 2 [7, p. 193], because a solution of (2.1) is represented as the
volume potential of/ with respect to a fundamental solution of the operator ££\
In Lemma 2 of [7], only volume potentials on bounded cylindrical domains are
dealt with, and the constant corresponding to M in our Proposition 2.5 depends
on the lower base of the cylindrical domain. However, by slightly modifying the
proof of Lemma 2 of [7], we can remove the dependence on the lower base of the
cylindrical domain.

3. Uniqueness of solutions for the problem P(K9 u0)

THEOREM 3.1. Assume the assumptions (A.I) and (A.2) on u0 and K.
Then there exists at most one solution for the problem P(K, u0).

This theorem is an immediate consequence of Lemma 3.1 mentioned below.
Before stating Lemma 3.1, we introduce a notation which will be used in the rest
of this paper. Let K be a function on Rι satisfying (A.2) and let us put Q τ =
R1 x (0, Γ) for 0 < T< oo. For fe LP(QT) we define

*[/](*, 0 = Γ K(x-y)f(y,t)dy.
J-00

If feLp(Qτ) and /, e L\QT) Π LP(QT) for pe( l , oo], then, by making use of an
integration by parts and Young's inequality, we obtain

(3.1) \\KUΔ\\P,Qτ < C(K)\\f\\PiQτi
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where

(3.2) C(K) = ΣU \K(Ci + 0) - K(Ci-0)\ + WK'h

and {Ci} is the set of discontinuity points of the first kind for K.

LEMMA 3.1. Let ux (resp. u2) be a solution of the problem P(K1,u01)
(resp. P(K2, u02)), where Kγ and K2 satisfy the assumption (A.2) and u01 and
u02 satisfy the assumption (A.I), and for each / = 1 , 2 let us define the functions
Vι and vOi by

and

, t) = \ ut(y, t)dy for xeR1 and te(0, oo)
J-00

= \ uOi(y)dy for xeR1.
J-co

Assume vOί—vO2eL2(Rι). Then we have the following relation: For any
ίe(0, T) with an arbitrarily fixed Γe(0, oo)

- vO2\\2 + £ ||(X1-X2)[tti]( , Φi( , s)\\2e-" ds} ,

whereM = msLx(\\uί\\Qτ9 \\u2\\Qτ)C(K2) + l and C(K2)is the constant determined
by (3.2) with K replaced by K2.

PROOF. The definition of solutions for P(K, u0) and Proposition 2.3 give us
the relations such that K£u^(Ot)xeLp(QT) (l<p<oo), (((i?/),)"1),, (v^ e L2(β τ)
for any T> 0 and

(3.3) (V1— V2\ = [(Uj)7" — (M2)
m]χ — Kl\.UΔ(Vl)x + K-2\.U2\(Ό2)x a e m δoo

For each positive integer N let χN be a smooth function on R1 such that
0 < χ N < l on R1, χN(χ) = l for |x |<N, χN(x) = 0 for | x |>N + l, HXNIIOO^C, where
C is a positive constant independent of N. Multiply (3.3) by (vx— v2)χN and
integrate over Qs (0<s<co). Then the use of an integration by parts in the re-
sulting relation yields that

0

\vx(x9 S) - v2(x, s)\2χN(x)dx
-oo

< \ \v01 (x) - vO2(x)\2dx - 2 \ \ {(Mi)w - (w2)
m} (υ1-υ2)χ'Ήdxdt

J—co JO J— oo

- 2 (S Γ χ«(»i-»2)(^i[«i]«i - K2[_u2]u2)dxdt
JO J — co

= K i - vO2\\2

2 + 1 -II.
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Note that {(u1r-(u2r}(vί-v2), (p 1 -β 2 )(K 1 [u 1 ]« 1 -X 2 [« 2 ]« 2 ) 6 L 1 (β 1 ). We
let N pass to infinity to obtain

JO JN
\ \(ιr (2r\ b, 2\ o
JN£\x\<.N+l

and

// > 2 \S Γ (vί-v2)(Kίlu1luί - K2lu2]u2)dxdt.
JO J-oo

Therefore, for any s e (0, oo) we get

IM ,s)-» 2 ( ,s)||§

JO J-oo

= ll»01 - »02lli + Hi-

The term HI is rewritten as

{vί-υ2)uίK2\uί-u2'\dxdt
O J-oo

JO J-oo

= UIX + III 2 + ///3.

From the fact that w 1 - u 2 = ( u 1 - y 2 ) x and ^(x, t) — v2(x, t)->0 as |x |^oo for any
t e (0, oo) it follows that

III, = \S Γ (v1-v2y(K2[u2])xdxdt
JO J-oo

ll»i( , 0 - v2(., t)\\idt.

Noting that (^ 2 [ W 2])JC = ^ 2 [ ( M 2 ) J a n ^ using (3.1) for K — K2i we obtain

III, < C(K2)\\u2\\Λ £ I M , 0 - ι;2( , t)\\ldt.

Since Wi— u2 = (vί— v2)x, by making use of Holder's inequality and (3.1) in III2

we have

in2 < [s IM , 0 - »2( , OlliΛ +Ί|w1 | |o 0c(x2)ί s n ^ , o - v2( , t)\\2

2dt.
Jo Jo

Next the term III3 is dominated by

2 f ||(X1-X2)[u1]( , 0«i( , Oll2bi( , 0 -
Jo
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Hence we obtain

IM ,s)-t>2(.,s)ll2

(S κ ( , 0 - v2(.,tψ2dt

j ί , ί)«!( , OIWM , 0 - »2( . OII2Λ,

where M = max(| |tt1 | |Q τ, | | U 2 | | Q T ) C ( K 2 ) + 1 Using Lemma 2.4 for the inequality

obtained just above, we get

\\V1(.,S)-Ό2(.9S)\\1

< e2Ms

for any s e (0, Γ), which implies the desired inequality. Thus the proof is com-

pleted.

4. Auxiliary results for approximate solutions of P(K9 u0)

As will be shown in Section 5, a soluton of P(K, u0) will be constructed as a

limit of a sequence of nonnegative classical solutions for the Cauchy problem of

nonlinear (non-degenerate) parabolic equations

(4.1) ut = (m(u + εr-iux)x-(Kίu ]u)x in Qτ

subject to an initial condition

(4.2) u(x, 0) = iιo(x) on R\

where ε is a positive constant, 0< T< 00 and

K(x-y)u(y,t)dy.

Throughout this section we impose the following assumptions on u0 and K:

(A.3) M0 e H^iR1) n L^i?1) for some α e (0, 1] and u0 > 0 on tf1

(A.4) iC satisfies the assumption (A.2) and

4.1. Local existence of nonnegative classical solutions for the problem (4.1),

(4.2)

In this subsection, for this non-degeneracy of parabolicity we are concerned

with nonnegative classical solutions of (4.1), (4.2). We shall show the local
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existence of nonnegative classical solutions in time for the problem (4.1), (4.2)
under the assumptions (A.3) and (A.4). The result is as follows.

THEOREM 4.1. There is a time T(>0) such that the problem (4.1), (4.2)
has a nonnegative classical solution belonging to H2+a>1+a/2(Qτ).

The proof of this theorem will be done by making use of the fixed point
theorem for a contraction mapping. Let / be a function belonging to
Hί+a'a/2(Qτ). Consider the Cauchy problem for the equation

(4.3) u^imiu + eT-^-iKUlu), in Qτ.

We denote the Cauchy problem (4.3), (4.2) by Pε(K, uoj). If there exists a
unique nonnegative classical solution u of Pε(K, w0, /) , then we can consider the
mapping F assigning u to/. A fixed point of F is a nonnegative classical solution
of (4.1), (4.2). In what follows, by using a series of lemmas mentioned below we
shall show that F has a fixed point if Tis sufficiently small.

At first some properties of K[/] which will be used later are shown in Lemma
4.1, where K satisfies the assumtion (A.4) and has discontinuity points {cί9
C2> :> cn} °f t n e first kind. The proof is so easy that it is omitted.

LEMMA 4.1. Let feHί+">*ί2(Qτ) (0<α<l). Then X[/], (K\JJ)xe
H1+*>*/2(QT) and (K[f'])xxeH">aί'2(Qτ). We also have the following estimates:

( i )

(ϋ)

(in)

(iv)

(v)

where

C(K) = Σ?=i

In what follows we always assume

LEMMA 4.2. The Cauchy problem Pε(K,u0,f) has a unique nonnegative
solution ueH2+a'1+<x/2(QT) having the following property: uxxx and uxt exist in
Qτ and are locally Holder continuous in x and t with exponents α and α/2 in
Qτ, respectively.



176 Toshitaka NAGAI

PROOF. Let a(u) be a smooth function on R1 such that a(u) = m(u + έ)m~1

for u > 0, a(u) > m(ε/2)m~1 on R1 and there are positive constants v and μ satisfying

< a(u) ^ μ(\u\ + έ)m-ί on R1.

Consider the Cauchy problem for the equation

(4.4) ut = (a(u)ux)x - (KlΠu)x in Qτ

subject to the initial condition (4.2). Noting the regularity properties of K\_f~]

in Lemma 4.1, we obtain by Theorem 8.1 in [15; p. 495] that there exists a unique

solution u of (4.4), (4.2) belonging to H2+acΛ+Λ/2(Qτ). By the standard maximum

principle we have

u(x, t) > 0 on Qτ and u(x, t) > 0 on β τ ,

which imply that u is the nonnegative solution of Pε(K, u0, / ) . By the regularity

results of solutions for the parabolic equations (for example, see [7]), the second

assertion can be shown. Thus the proof is completed.

LEMMA 4.3. The solution u of Pε(K, uo,f) has the property that u(x9 t)-+0

and ux(x9 t)-+0 as |x|->oo uniformly in te [0, T] .

PROOF. We note that the assumption (A. 3) on u0 implies

(4.5) uo(x) • 0 and u'0(x) > 0 as |x| > oo

and that u satisfies the equation

<£u = ut- a(x, t)uxx + b(x, t)ux + c(x, t)u = 0

where

a(x, t) = m(u + ε)m~ι > mεm~1,

b(x, t) = - m(m-l)(w + ε)--χ + X[/],

c(x, t) = (KUli)x

The functions a, b and c are bounded and uniformly Holder continuous in Qτ.

Hence, combining a fundamental solution of the operator ££ with (4.5), we obtain

the statements.

LEMMA 4.4. The solution u of Pε(K9 uo,f) satisfies

ΓoO /*oo

\ u(x, t)dx = \ uo(x)dx for every t > 0.
J— OO J — 00

It is easy to prove the lemma, so we omit it. In the sequel, for the sake of sim-

plicity we put
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c = \ uo(x)dx.
J-oo

A priori bounds for the solution u of Pε(K, uo,f) are given in the following

lemmas by using Bernstein's method which was used in [1, 10] to prove the

regularity result of solutions for the porous media equation.

LEMMA 4.5. The solution u of Pε(K, uo,f) satisfies

u2(x, t) < max[l, e2\\u0\\i, MMKlflU*, Qτl = Ll9

where Mί is a constant depending only on m and c.

PROOF. Let us define the function v on Qτ by

φc, t) = [X u(y, t)dy.

Integrating the equation (4.3) with respect to x from — oo to x and using Lemma

4.3 yield that υ satisfies the equation

(4.6) vt = m{υx + έr-Hx - K[f\Όx in Qτ.

Define the function φ(w) by

φ(w) = - 2c + 6ce \ e~ξ9dξ for w > 0,
Jo

in which q is a constant satisfying

Here we note that q>2. Since the range of variation [w l 5 w2] when φ(w) varies

from 0 to c is determined by φ(w1) = 0 and φ(w2) = c, we obtain

<wί<w2< 1/2.

For we[wί, vv2] we have

φf = 6cee~wq > 0, φ" = - βceqw^1e~wq < 0,
(4.7)

φ"jφ' = - qw*-\ (φ'Ίφ')' = - q(q-l)w^~2 < 0.

A function w(x9 t) on Qτ is defined by

(4.8) v(x,t)

Substitution of (4.8) into (4.6) yields that

(4.9) w, = m(φ'wx + εy-^xx + m{φ'wx + εγ-\φ"l<p')(wx)
2 -
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Differentiate (4.9) with respect to x and put p = wx>0. We then have

Pt - mi

= m(m-l)(φ'p + εr-2(φ'px + φ"p2)px + 2m(φ"ΊφΉφ'
(4.10)

+ m(m -1) (φ"lφf) (φ'

Since /? attains the maximum on Qτ by Lemma 4.3, it allows us to consider a point

(x0, t0) where p takes the maximum on Qτ. At first suppose that to = 0. We

then have

0 < K x 5 ί ) < lljpί ^ I L on QT,

and hence

0 < u(x, t) = vx(x, t) < βlliiolloo on β Γ .

Next suppose that 0 < t0 < T. At this point (xOi t0) the function p satisfies

Px = 0> Pxx ̂  0 and pt > 0.

Combining these with (4.10), we obtain

(4.11) - m [ { ( m - l ) ( ^ W } p + (

It follows from (4.7) and the choice of q that

{{m-\){φ"yiφ'}p + (<p"lq>

(4.12) < ^{(w-l)^')2 +

< - 6cwl~2p.

From (4.11) and (4.12) we have

p* < {wf-VίδmcWIKKiyi^lL

It is enough to assume p> 1. The relation φ/(w) = 6cee~w9 yields that

f (6ce+l)p if 1 < m < 2,
(4.14) ( ^ )

I (6c)2-m if m > 2.

(4.13) and (4.14) give

where M is a constant depending only on m and c. As a result this inequality

obtained just above implies
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u2(x,t)<(6ceyM\\(KUΊ)x\\π,Qτ in Qτ.

Thus we have obtained the desired inequality.

LEMMA 4.6. For the solution u of Pε(K, u0,/), put w = (w+ε)m"1. Then
w satisfies the following relations:

( i ) |wx(x, t)\2<L2 on Qτ,

where

L2 = max[l, e2\\wx( ,0)\\l,

and

(ii) For each τ with 0<τ<T there exists a positive constant Cτ depending
only on τ such that for every (x9 t) e QτT = R1 x [τ, Γ]

\wx(x, t)\2 < max[l, ^ e ^ O K K C / ] ) ^ ^ ^ + ||(X[/])^IL,Qτ,T) + C J .

PROOF. The proof is done by using the same method as in the proof of
Lemma 4.5. We take the function φ defined by

φ(z) = - 2L3 + 6L3e

Let us define the function z(x, t) on Qτ by w(x, t) = φ(z(x, t)) and let us put
p(x9 t) = (χ(t)zx(x, i))2, where χ=l in the case of our proving the statement (i),
and χe C0^!?1), 0 < χ < 1, χ(t) = 1 on [τ, oo) and χ(0 = 0 on ( — oo, τ/2] in the case
of our proving the statement (ii). We then consider a point where p attains
its maximum on Qτ. By making use of the same argument as in the proof of
Lemma 4.5, we can establish Lemma 4.6.

LEMMA 4.7. The solution u of P£Ky w0,/) satisfies

\ux(x9 ί)l < L4 on Qτ,

where

if m>2,

PROOF. Since ux = (u + β)2~mwx/(m — 1), Lemma 4.6 implies

\ux\ < (w + ε)2"m(L2)
1/2/(m —1) < L4.

In order to obtain the Holder continuity of u and w = (« + ε)m~1 with respect
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to t we use the following result due to Gilding [8],

LEMMA 4.8. Let z e C2>\(a, b) x (τ, T)) n C([α, b] x [τ, T]) be a solution of

the equation

z, = Λ(x9 t)zxx + B(x, t)zx + α(x, t) in (α, b) x (τ, T),

where — oo<α<fo<oo, 0 < τ < T < o o αnd A, B αnί/ # are continuous functions

on [a, b~\ x [τ, T] satisfying

0 < ,40, 0 < μ, \B(x, 01 < μ and \g(x, t)\ < μ on [a, *] x [τ, T]

/or some positive constant μ. If z is Holder continuous with respect to x in

[a, b~\ x [τ, T] wΐί/z an exponent ae(0, 1] ana1 a Holder constant Nί9 then for

anyO<d<(b-a)/2 it holds that for τ<s<t<s + δ<T and a + d<x<b-d

\z(x, s) - z(x, 01 < N2\s - t\«l\

where

δ = d2/(4μ(l + d)) and iV2 = 2[JV1{2μ(l + d)!/2}a + μ^ 1"^ 2] .

By virtue of Lemma 4.8 we have the following lemma.

LEMMA 4.9. For the solution u of Pε(K, uo,f), put w = (w + ε) m " 1 . Then w

and u satisfy the following relations, respectively:

(i) For x, yeR1 and t,se [0, T]

|w(χ, 0 - My, 5)| < L5(\x -y\ + \t- s\^2)9

where

L5 = ί6μ(ί+μ)

and

μ = max [mL3, m(L2)^l(m -1) + | |K[/] |U Q τ > (m-l)L 3 | | (K[/]) x |L, Q τ ]

(ii) For x, yeR1 and t,se[0, T ]

\u(x, t) - u(y, s)\ < L6(\x -y\ + \t-

where

and

μ = max [mL3, m(L2y<* + | | ί : | y ] | | 0 0 > e τ ,

PROOF. We shall prove only the statement (i) because the proof of the
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statement (ii) is done by the same way as in the statement (i). It follows from

the equation (4.3) that w satisfies the equation

wt - mwwxx - {mwj(m-

= (l-m)(KUMu + sr~2u in Qτ.

Let x 0 be an arbitrarily fixed point in R1 and let us apply Lemma 4.8 as [α, fe] =

[ x o - 2 , x o + 2] and [τ, T] = [0, T]. We take μ, α, Nu d and δ in Lemma 4.8

as follows:

μ = max [mL3, m(L2y/2l(m-l)+\\Klfl\L,QT9 (m-l)L3KKtΠ)x\UQτ],

α = 1, d = l,δ = l/(βμ)9 N, = (L3)^\

where L 2 and L 3 are the same constants as in Lemma 4.6. Then, in the case

where 0 < s < ί < s + <5<Twe can apply Lemma 4.8 to get

|w(x, 0 - w(x, s)| < ΛΓ2|ί - si1/2,

where

N2 =

In the case where |ί —s|>(5 we get

, t) - w(x, 5)1 < 2\\w\\^

Hence, taking account of Lemma 4.6, from the inequalities obtained above we

have the desired inequality.

By making use of Lemma 4.1 into Lemmas 4.5-4.7 and 4.9, we obtain that a

priori estimates of the solution u for Pε(K, uo,f) and w = (w-hε)m""1 are given in

terms of m, u0 and/.

PROPOSITION 4.1. The following relations hold for the solution u of

( i ) N L , f l τ < max[l, e\\uo\\^ M ^ ^ H / I L ^ ] = Ll9

where Mί and C(K) are the same constants as in Lemmas 4.1 and 4.5, respec-

tively,

(ϋ) l |wJU,Q τ < max[l, e\\wx( 9 0)11., 4βL 3C(X)(| |/ | |O O j Q τ + H / J L ^ ) ]

where L3 = ( L 1 + l ) m " 1 ;

(iii) I I M ^ I L ^ < L4
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where

_ _ ί {(L^2 + \y-™{L2yιη{m-\) if i < m < 2 ,

1 ε2-m(L2y^l(m-l) if m > 2 ;

(iv) [w]1 / 2,Q τ < L5,

L5 = L 3

= max[mL 3 , m(

(V) M i / 2 ( Q τ < L6,

L 6 = L 1 +8(1+L 4

μ = max [mL3, m(L2y<> + HXIUII/IL.^, 1^(1011/||αo i β τ] .

In the sequel we shall give the estimates of u and w = (M + ε)m~1, in which u

is the solution of Pε(K, u0, / ) .

PROPOSITION 4.2. u and w satisfy the following relations:

(i) M

WO(Λ;) = W(X, 0) on Λ1 and M1=Mί(ε, \uo\2, \wo\2, | / l i , 0 , Q τ , T) increases

in all variables but ε:

(ii) \u]2+ΛtQτ

where M2=M2(ε, [uo]2+a, [/]i+ a,QT, T) increases in all variables but ε,

PROOF. Let us prove the statement (i). We shall prove only the statement

for u because the proof of the estimate for w is done by the same method as in the

proof for u. Since u satisfies

ut - mwuxx = {mwx - K\_fΊ)ux - (KlfJ)xu in QΊ,

the function v = u — u0 satisfies
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vt - mwvxx = (mwx - K[fJ)ux - (K\_f~\)xu + mwu'ή = g in Qτ,

v(x, 0) = 0 on RK

Hence, applying Proposition 2.5, we get

(4.15) M i + « . Q τ

where M = M(ε, [w]α / 2,Q τ, T) increases in all variables but ε. Therefore, com-

bining (4.15) with Lemma 4.1 and Proposition 4.1, we obtain the first part of

the statement (i).

Next let us prove the statement (ii). The regularity results for parabolic

equations (see, for example [15]) give

(4.16) M2+«,Qτ ^ C [ u o ] 2 + α,

where C = C(ε, [ w ] 1 + α j Q τ , [ £ [ / ] ] i + α > Q τ , Γ) increases in all variables but ε.

Hence, with the aid of Lemma 4.1 and the statement (i) in this proposition the

statement (ii) follows from (4.16). Thus the proof is completed.

PROPOSITION 4.3. For a given / i 6 H 1 + e ' a / 2 ( Q r ) (i = l, 2) let ut (ί = l, 2)

be a solution of Pε(K, uo,fi) and let us put Wj^Uf + ε)111"1. Then we have

[II! - W2]l+«,QT ^ M 3 ^ ( 1 " a ) / 2 H/l -/2lL.Qτma*[Ml.0,Qτ> \U2\l,O.Qτl>

where M3=M3(e9 [MO]2+«,QT' lfHι+<χ,QT> ^) increases in all variables but ε.

PROOF. Let us put v = uί — u2- The function υ satisfies

vt - a(x, t)vxx - b(x, t)vx - c(x, i)v = g in β Γ ,

where

a = mίϋ + ε)"1-1 > me"" 1, b = 2m(m-1)(ΰ + ε) m " 2 - K\_fx\

c = m ( m - l ) ( ϋ + ε ) 2 - - 2 ^ + m ( m - l ) ( m - 2 ) ( ΰ + ε)-- 3(p) 2 - (K[fJ)x9

9 =

and (ϋ, p, 5) is a point between (w1? ( u j , , ( M J . ^ ) and (w2, (112),, (w2)χχ) Making

use of Proposition 2.5, we have

(4.17) [u± - u 2 ] 1 + β f Q τ < MT^-^WgW^^,

where M = M(ε, [α] α , Q τ , ||6||oofQT> IklloG.Q? T) increases in all variables but ε.

Taking Lemma 4.1 and Proposition 4.2 into account, by (4.17) we obtain the

desired estimate. Thus we have proved the proposition.

Now we are in a position to prove Theorem 4.1 under the assumptions (A.3)

and (A.4) by using a series of lemmas and propositions obtained above.
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PROOF OF THEOREM 4.1: For a given feHί+a>a/2(Qτ), let M be a unique

nonnegative solution of P£K, u0, f) satisfying the property in Lemma 4.2.

Define the mapping F from H1+a>«!2(QT) into itself by

t) = u(x9t) on Qτ.

We choose a constant A satisfying

and fix it. Define the set Xτ by

Xτ = {feH1+<-«*(Qτ); [ / ] 1 + α , Q τ < A}.

Then, by virtue of Propositions 4.2 and 4.3 we can take a sufficiently small positive

time Γso that

F(XT) c Xτ

and that there exists a constant k e (0, 1) satisfying

LFfi - Ffili +a,Qτ ̂  kUi - fill +a,Qτ

 f o r e v e r y /i» Λ e ^ τ .

Hence the application of the fixed point theorem yields that there exists a function

ueXτ satisfying

u = Fu,

which means that u is a nonnegative solution of the problem (4.1), (4.2). Thus

the proof of Theorem 4.1 is completed.

4.2. Global existence of nonnegative solutions for the problem (4.1), (4.2)

In the previous subsection we have shown the local existence of nonnegative

classical solutions in time for the problem (4.1), (4.2). However, it is expected

that the existence of nonnegative solutions for (4.1), (4.2) is global in time. The

result about this is stated as follows.

THEOREM 4.2. Under the assumptions (A.3) and (A.4) there exists a unique

nonnegative function u on R1 x [0, oo) which belongs to H2+a>1+<*/2(Qτ) for any

T>0 and is a solution of the problem (4.1), (4.2) satisfying

(4.18) N L < max[l, eKIL, M ^ K ) ] ,

where Mt is a constant depending only on m and | |M O | | I and C(K) is the same

constant as in Lemma 4.1.

The uniqueness of solutions for the problem (4.1), (4.2) is an immediate con-



Nonlinear degenerate diffusion equations 185

sequence of Proposition 4.3 in the previous subsection, since a solution u of (4.1),

(4.2) is taken for a solution of Pε(K, u 0, u). In order to obtain the global ex-

istence of solutions in time it sufϊicies to show a priori estimates of solutions for

the problem (4.1), (4.2), since we have obtained the local existence of solutions for

(4.1), (4.2) in the previous subsection. Hence, in what follows we shall give a

priori estimates of solutions for the problem (4.1), (4.2).

Throughout this subsection let u be a nonnegative solution of the problem

(4.1), (4.2) belonging to H2 + α> 1 + α/2(ζ) τ) and let us put w = (M + ε)fM-1 and wo =

w( , 0). We note that u is considered as a solution of the problem Pε(K, w0, w).

LEMMA 4.10. u satisfies

where Lt is the same constant as the one appearing in the right hand side of

(4.18).

PROOF. Since u is considered as a solution of Pε(K, u0, u), it follows from

Lemma 4.5 that

| | u H i > β τ < max [1, e*\\uo\\l, M , | | ( * [ « ] ) J L , ^ ] .

Combining this inequality with Lemma 4.1, we can assume

which yields the desired inequality. Thus the proof is completed.

REMARK. The constant Lt does not depend on T.

LEMMA 4.11. The function w satisfies the following relations:

(i) \M\o0,Qτ<m^xlhe\\w'0\\^\2e2L3C(K)M2-] = L29 where

I)"1"1 and

"7(m-l) // 1 < m < 2,

x +ε2"w/(m-l) if m > 2;

(ii) For each τ > 0 there exists a constant Cτ depending only on τ such that

for every (x, i) e R1 x [τ, Γ]

\wx(x, 01 < max [1, 12e2L3C(K)M2 + C t ] .

PROOF. We shall prove only the statement (ii) because the statement (i)

is verified by the same method as in the statement (ii). Let (x0, t0) e R1 x [τ, T]

be a point where \wx\ takes the maximum on QT. Using Lemmas 4.6 and 4.1,
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we can assume

(4.19) 1 < \wx(x0, *o)l2 < 12e* L3(C{K)lt + C{K)\\ux\\«ΛxtT) + Cτ,

where QxT = R1 x(τ, T). Let us consider a point (xί9 tt)eQTiT where |wj takes
the maximum on Qτ>τ. At this point we have

(4.20) |ιι,| = (W + ε)2--|wx|/(m-l) < (tt + β)2--|Wjί(x0, to)\l(m-i).

Substituting (4.20) into (4.19), we obtain

K ( * o , to)\ < Πe*UC(K){Lγ + (μ(xl9 tt) + ε)2--/(m-l)} + Ct,

which implies the desired inequality. Thus the proof is completed.

The following lemma is an immediate consequence of Lemma 4.11.

LEMMA 4.12. I K L , ^ < L4,

where
1/2 + l}2-m(L2yt™l(m-l) if 1 < m < 2,

1 ε2-m(L2y>2l(m - 1) if m> 2.

By making use of Lemmas 4.10-4.12 obtained above and the same cal-
culation as in the proofs of Propositions 4.1 and 4.2, we obtain a priori estimates
of u and w = (w + ε)m~1 which imply that the existence of nonngegative solutions
for (4.1), (4.2) is global in time.

PROPOSITION 4.4. The functions u and w satisfy the following relations:

( i ) Mi,QT<L5,

where L5=L3 + 16μ(l +μ) and

μ = max [mL3, m{L2yi2j{m-ϊ) + U i q A , (m"ΐ)L1L2C(K)'];

(ii) \u]UQτ < L6,

where L6 = Lγ + 8(1 + L4) (1 +μ) and

μ = max [mlz, m

(in) M i n e r ^ [Mo]i+α +

and

M 1=M 1(ε, |wo|2, |wo|2, L6, T) increases in all variables but ε;
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(iv) [ w ] 2 + α j Q τ < M2[u0]2+a,

where M2 — M2{&, Luo]i+^ T) increases in all variables but ε.

5. Existence of solutions for the problem P(K9 u0)

In this section it is shown that under the assumptions (A.I) and (A.2) a

solution of P(K, u0) is constructed as a limit function of a sequence of solutions

for the Cauchy problem studied in Section 4. The result is as follows.

THEOREM 5.1. Under the assumptions (A.I) and (A.2) on u0 and K there

exists a solution u of P(K, u0) which is bounded on Rxx(09 oo) and satisfies

(5.1) ess. sup 0 < t < 0 0 (t A 1) (°° \um)x{x, tψdx < oo
J-00

and

(5.2) sup 0<s<ΰ0 [S+ί (°° (tΛl)\(u>»Ux, tψdxdt < co,
Js J-oo

where ί Λ l = m i n ( ί , 1). Also (5.1) and (5.2) hold without * Λ 1 if {{uo)
m)'eL2,

The proof of Theorem 5.1 will be done by using a series of lemmas mentioned

below.

For sufficiently small ε > 0 take a sequence of functions {wOε} such that:

( i ) uOεeB3 and 0 < uOε(x) < 2 | | tt o |L on R1

(ϋ) H"oJi = IKIIi;

(iii) uOε > u0 strongly in Lp(Rι) (1 < p < oo) as ε >0;

rx roo

(iv) lim,,^.^ \ uOε(y)dy = 0 and l i m ^ ^ \ uOε(y)dy = 0 uniformly in ε;
J-oo Jx

(v) ||((uOε + ε)m)Ίl2 ^ 2IK(«o)m)Ίl2 if

For K let us define the function Kε on R1 by

K(x) if |x| < 1/ε,
K£x) = ,

0 if |x| > 1/ε.

It follows from the assumption (A.2) on K that Kε satisfies the assumption (A.4)

mentioned in Section 4. For each ε > 0 we consider the equation

(5.3) ut = (m(u+εr-iux)x - {Kε[u]u)x in R' x (0, oo)

subject to the initial condition
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(5.4) u(x, 0) = MO(JC) on RK

By virtue of Theorem 4.2 there exists a nonnegative function uε on R1 x [0, oo)

which belongs to H2+a>1+"/2(Qτ) for any Γ > 0 , where β τ = /?1 x(0, T), and is a

solution of the problem (5.3), (5.4). In the sequel we shall construct a solution of

P(K, u0) as a limit function of the sequence {wj. For this purpose we have to

give a priori estimates of uε.

LEMMA 5.1. uF satisfies

Γco Γoo

\ uε(x, t)dx = \ M0(x)ί/x /or any t > 0.
J-00 J-00

PROOF. Since uε is taken for a solution of Pε(Kε9 uOε, wε), this lemma is an

immediate consequence of Lemma 4.4.

LEMMA 5.2. uE satisfies

(5.5) 0 < ιιβ(x, 0 < max [1, β||uo||co. MiC(X)] = Cx on i?1 x [0, oo).

Here M x is a positive constant depending only on m and \\uo\\x and C(K) is

determined by

(5.6) C(K) = Σ?=i |K(C! + O) - K(cx-0)\

where {ct} is the set of all discontinuity points of the first kind for K.

PROOF. By Theorem 4.2 we have

| | W ε | | o o < m a x [ l , e | | W o | | o o , M 1 C ( X ε ) ] ,

where Mt is a positive constant depending only on m and ||wOεlli We note that

llwoεlliHIwolli and

C(K)ε < Σ\Ct\<i,*\K(cι + 0) - K(ct-0)\ + IIK'lli + 2 U X L < 2C(K).

Hence we obtain the desired inequality.

LEMMA 5.3. There is a constant C2 depending only on m, ||wo||i, ll

and K such that uε satisfies

(5.7) sup 0 < s < 0 0 ί5+1 Γ ((uε + εr)x(uε)xdxdt < C2

Js J-oo
and

(5.8) sup o<s<oo ( S + 1 Γ \((uε + sr)x\
2dxdt < C2.

Js J-oo

PROOF. Let xx and x2 be arbitrary points in Rι satisfying xx <x2. Multiply
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(5.3) by uε and integrate the resulting relation on the interval [x l 5 x 2 ] x [0, s].

Then an integration by parts yields that

Γ
Jxi

=

(uε)
2(x9

Jxi

s + ϊ)dx +

x, s)dx -

fin +ε) m )IV ε / )

J s

1/2
Js

X2

X=Xi
dt.

We note that l inv+i^ wε(x, t) = \imx^±00 («ε)x(x, t) = 0 uniformly in te [5, s + 1]

by Lemma 4.3 and that Lemmas 4.1 and 5.2 give

U ^C(X)CfII110IU,

where C(K) is the constant determined by (5.6). Hence, letting x1-> — 00 and

x2-> + 00 in the relation obtained above, we have

Γ (uε)
2(x, s

J-00

(uε)
2(x, s)dx + {C(X)Cf/2}||uolli-

which implies (5.7).

Next, using (Mε)x = m(uβ + ε)1-m((uε + ε)m)JC in (5.7), we obtain (5.8). Thus

the proof is completed.

LEMMA 5.4. There is a constant C 3 depending only on m, | |u o | | i ,

and K such that

(5.9)

and

(5.10) sup 0 < s < 0 0 (S + 1 Γ (ί Λ l ) | ( ( u . + β n i 2 d x Λ < C 3 .
Js J-00

If((uo)
m)'eL2

9 then (5.9) αnJ (5.10) /10/d without t/\ 1 αnί/ C 3 depends on m,

PROOF. Let us put *; = (w+ε)m. Multiply (5.3) by υt and integrate with re-

spect to x on an interval [x l 5 x 2 ] . Using an integration by parts, we have



190 Toshitaka NAGAI

(5.11)

\*\ue\vtdx + ψ(dldt) \X2\v
Jxi Jxi

- \ (Kε[uJ)xuεvtdx - \ KεluJ (uε)xvtdx.
-Xi JXI JXl

The second term in the right hand side of (5.11) is bounded by

(5.12) (l/ίφlKlC.DiJkL Γ (uε)
2dx + δ/2 [*2 (vt)

2dx
J-00 JXί

for any δ>0. For the third term in the right hand side of (5.11) using (uε)xvt =

(uε)tvx and (5.3) and then integrating by parts, we obtain

Jxi

= - (ll2)KεluJ(vxy
 X2 + 1/2 [X2(KεluJ)x(vxydx

x=xι Jxi

(5.13) + Γ 2 (Kεluεmuε)vxdx + [X2 KεluJ (KεluJ)xuεvxdx

(uχvxdx.

The first term in the left side of (5.11) is estimated as follows:

(X2 CX2
\ (uε\vtdx = (1/m) \ (uε-\-εy~m(vtydx
Jxi Jxί

rx\vtydχ.

(5.14)

Choosing δ = (C1 + l)1~m/m and using the fact that

ll^εCwJIL < II^ILIIwolli and \\(KB[uJ)x\\ < C(K)Cl9

by (5.11)-(5.14) we obtain

(5.15)

(uε)xvxdx\ = F(xu x2, t),
-oo )

where C is a constant depending only on m, ||wo|li> ||M0IIOO» ^ a n d Cu but not ε.

In the case of 5 e [0, 1], we integrate (5.15) multiplied by t on [0, 5] and use

an integration by parts to get
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(5.16)

< Γ Γ (vx)
2dxdt + Γ F(xίt x2, t)dt.

JOJ-oo JO

We note that vx{x, ί)-+0 as |x|->oo uniformly in / e [0, T] for any Γ > 0 by Lemma

4.3. Letting xt-+ — oo and X2-* + °° m (516) and using Lemma 5.3, we obtain

(5.17) {' ( t(vt)
2dxdt + s Γ (ι>x)

2(x, s)dx <C2 + C(ί + C2),
JO J-oo J-oo

which implies (5.9) and (5.10) for se [0 , 1]. Next we assume ((wo)m)'eL 2.

Integrating (5.15) on the interval [0, 1] and using \\(vx)
2(',0)\\2<2\\((u0)

m)'\\2,

we obtain

Γ Γ (vtydxdt
JO J-oo

Let us consider the case when s e (1, oo). By virtue of (5.15) we have

(dldt)\(t-s + \) [X2(vxydx\< [X\υxYdx + (t-s+ί)F(Xl, x2, t) for ί > s,
(. Jx\ ) Jxi

from which, integrating with respect to t on (s — 1, 5), we get

(vx)
2dxdt

s-1 J-00 Js-1

Hence, letting Xi-^ — 00 and x2~* + °°> w e have

Γ fe)2(^5 s)dx < C(2C2 +1) for s e (1, 00).
J-00

Next, in order to get (5.10) we integrate (5.15) on (s, s + 1) and let x ^ — 00 and

x2-» + 00. Taking account of (5.9) with s = 1, we can conclude that (5.10) holds.

LEMMA 5.5. For each τ>0 there is a constant C 4, depending only on m,

llMolli> llMolloo cind K but not on ε, such that for any (x f, ί f ) e R1 x [τ, 00) (i = l , 2)

(5.18) \(uE + ε)m(xu tt) - (uε + ε)m(x2, t2)\

and

(5.19) |ιιβ(x l f tx) - W ε(x2, ί 2)| < {C 4 /(TΛ l)1/2}(|χ1 -
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PROOF. We shall prove only (5.18) because (5.19) is an immediate con-

sequence of (5.18). For the sake of simplicity let us p u t / = ( u ε + ε)m.

For any xί9 x2 e R1 and t>τ we have

\f(xu t) - / ( x 2 , 01 < |χi - xiV12 {CX2~' "̂  " P / 2

For any x e R1, tu t2 e [τ, oo) with tt < t2 and λ>0, we have

η, h)\dηdξ + [ \t2 \ft(ξ, σ)\dσdζ
Jx J

1/2
\fx(η,

fa - hi1'2),

from which, taking λ = \t1 — ί2 |
1 / 2/2, we obtain

|/(x, ίx) -/(x, t2)\ < {4/(TΛ 1)1/2^1/21^ _ ,2|i/4

Thus we have established (5.18).

LEMMA 5.6. For an)' Γ > 0 we ftare

limx^ _ x \X uε(ξ, t)dξ = lim^ + a3Γ uε(ξ, t)dξ = 0

uniformly with respect to te[0, T] and εe(0, 1).

PROOF. For any δ > 0 there exists a positive constant M independetn of ε

such that for any xe R1

0<{X uOε(ξ)dξ < δ + Me* and 0 < [°° uOε(ξ)dξ < δ + Me'*.
J-oo Jx

Define the function v on i?1 x [0, oo) by

uε(ξ,t)dξ,

which satisfies the equation

vt = mfa + βy-1!?^ - X.[κjt;x in Λ1 x (0, oo).
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We consider the function w on R1 x [0, oo) defined by

w(x, t) = δ + Mex+yf - φc, 0,

where γ is determined by

(5.20) y>m(C 1 + l)-" 1 + I I ^ U M i -

We then see that

Sew = wt - mίiiβ + e) 1 ""^,, + Kε[Mε]wx > 0 in R1 x (0, oo),

w(x, 0) > 0 on R\

|w(x, 01 < Cτexp(CΓ |x|2) on Qτ for any T> 0,

where C τ is a positive constant depending on T. Hence, by using the com-
parison theorem we have

w(x, 0 > 0 on R1 x [0, oo),

which implies that

0 < [X uε(ξ, t)dξ < δ + Mex+y< < 2δ
J-00

for sufficiently large — x. Therefore we get

uε(ξ,t)dξ = O

uniformly with respect to t e [0, T] and εe(0, 1).
Next, using the function won R1 x [0, oo) defined by

w(x, t) = δ + Me~x+y< - (Iliiolli - φc, 0),

where v is the function defined above and γ is the same constant as in (5.20),
analogously we obtain

which implies that

Γii/f, t)dξ =

uniformly with respect to t e [0, Γ] and ε e (0, 1). Thus the proof is completed.

We are ready to prove Theorem 5.1 by means of the lemmas established above.
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PROOF OF THEOREM 5.1: We use Lemmas 5.3 and 5.4 and \((uε + ε)m)J

> |((uε)
m)J to obtain

Γs+l C°°

(5.21) s u p 0 < s < 0 0 \((uεr)x\
2dxdt z C2

Js J-oo
and

(5.22) sup 0 < s < 0 0 (5Λ 1) Γ |((u ε )
m )*N* < C 3 .

J-00

Analogously we obtain

Γt+ί foo

(5.23) s u p 0 < ( < 0 0 ( sΛl) | ( (M ε m 2

ί iχ ί /5<C3.
Jί J-oo

Also (5.22) and (5.23) hold without s A 1 if ((uo)m)' e L2. Making use of Lemmas

5.2 and 5.5 and Ascoli-Arzela's theorem shows that from {uE} we can select a

subsequence which converges to a limit function u uniformly on every compact

set in R1 x (0, oo). We reindex this subsequence if necessary and also denote

it by {uε}. By (5.21)-(5.23) we can assume that for each T > 0

(0Om)* • (wm)* weakly in L2(0, T: L\R1))

and weak star in Lfoc((0, oo):

and

((tθ m ), >("m), weakly in L?oc((0, oo):

as ε tends to zero. Hence, we see that u has the following properties:

( i ) u e CiR1 x (0, oo)) and 0 < u < Cγ on R1 x (0, oo)

foo f oo

(ii) \ M(X, ί)dx = \ MQW^X for every ί > 0;
J— OO J — 00

(iii) s u p 0 < s < 0 0 ( S + 1 ί ° 0 \(um)x\
2dxdt < C2;

Js J-oo

(iv) ess. s u p 0 < s < 0 0 (s A 1) \ Ku" 1 ), ! 2 ^ < C 3

J-oo

and

o<ί<QO Γ
+ 1 Γ (5A ̂ Ktt-λPdxΛ < C3.

Jί J-oo

If ((wo)
m)' e ^2> the relations mentioned just above hold without s A 1.

The fact that limε_>0 K ε [ « ε ] = K [ u ] uniformly on every compact set in Rι x

(0, oo) is shown as follows. Let us take τ and T with 0 < τ < Γand fix them. It

follows from Lemma 5.6 that for an arbitrarily small positive number δ there is
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a positive number N such that for any t e [τ, T]

0 < [ uε(ξ, t)dξ <δ/2 for 0 < ε < 1
)\x\>N'1*1

and

0 <Ξ \ u(ξ, t)dξ < <5/2.
)\x\>N

We choose a positive number ε0 so that if 0<ε<ε o then

|uβ(x, 0 - u(x, 01 < δ/(2N||X|L) for every |χ| < N and ίe[τ, T] .

Then, for t e [τ, T] we have

\K Γu Λ(x t\ KΓu~\(x t)\

Kε(x-y)uε(y, t)dy

\Ke(x-y)\ \ut(y, t) - u{y, f)\dy

5 + 5 + Γ IX/x-y) - K(x-y)\u(y, t)dy.
J —N

For an arbitrary positive number M let |x |<M. If we choose ε so that ε<l/
(M + N), then we see that Kε(x-y) = K(x-y) for |x |<M and \y\<N. Conse-
quently, for |x| <M and t e [τ, T] we obtain

| K . M ( * , 0 - « M ( χ , 01 < (WKWn + iyδ

whenever 0<ε<min [ε0, 1/(M+ N)]. Thus we have proved our assertion.
The property u e C((0, oo): L^R1)) follows from u e C(Rι x (0, oo)) and

Γoo fee

\ M(X, t)dx = \ M(X, s)ί/x for any s, ίe(0, oo).

It is easy to prove the integral identity (iv) for w, so we omit the proof.
Finally we note that the original sequence {uε} conveges to u by using the

uniqueness of solutions for P(K, u0).

6. Some properties of solutions for the problem P(K9 u0)

In the case of the porous media equation, that is, the equation (1.1) with
K = 0, one of the most important properties of solutions is that the solution u
has a finite speed of propagation which means that for each ί>0 the support of
w( , 0 in R1 is compact in R1 if the initial datum has compact support in R1.
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It is natural for us to expect that solutions of our problem also have such an

interesting property.

THEOREM 6.1. Let u be a solution of P(K, u0), where the assumptions (A.I)

and (A.2) are imposed on u0 and K, respectively. If the support ofu0 is compact

in R1, then for each t>0 the support ofu(>, t) in R1 is also compact.

PROOF. Define the functions v on R1 x (0, oo) and v0 on R1 by

v(x9 t) = \ u(y, t)dy and vo(x) = \ uo(y)dy,
J-oo J-oo

respectively. The function v holds the properties (i)-(v) in Proposition 2.3. Let

ω be a solution of the problem

(6.1)

' ((ω')my + (2ω-c)ω' = 0 on R1,

ω( — oo) = 0, ω(+oo) = c,

, ω'(x) > 0 on R\

where c= \\uo\\ t . As was shown in [18], there exists a solution ω of (6.1) satisfying

ω(x) = 0 on (— oo, α], 0<ω(x)<c on (α, β) and ω(x) = c on [β, oo) for some

constants α and β. We note that for an arbitrarily fixed point xoe R1 the func-

tion ω(x + x0) is also a solution of (6.1) because of the translation in variance of

(6.1) with respect to x.

Since the support of u0 is compact in R1, we can take a solution ω of (6.1)

so that vo(x)<ω(x) on J?1, and define the function ω by

ω(x, ί) = ω(x + λt) on R1 x [0, oo),

where λ is determined by

(6.2) A = C + | | K [ M ] | | C O .

The function ω satisfies

(6.3) ωt = ((ωx)
m)x + (2ω-c + λ)ωx in R1 x (0, oo)

and

ω(x, 0) > vo(x) on R1.

In what follows it will be shown that

(6.4) v(x, t) < ω(x, t) on Rι x [0, oo).

At first we note that from Proposition 2.3 it follows that ((i^)"1)*, vteL2(Qτ)

for any T > 0, where Qτ = Rι x (0, T), and
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(6.5) υt = ((vx)
m)x - K[U]ΌX a.e. in R1 x (0, oo).

Subtracting (6.3) from (6.5) and using (6.2) for the resulting relation yield the
following relation

(6.6) (v-ω)t < l(vx)
m - (ωx)

mL - K\u](v-ω)x a.e. in R1 x (0, oo).

Let h(s) be a nonnegative bounded function on R1 such that h is continuously
differentiate, h'>0 on R\ h(s) = O on ( - oo, 0] and h(s)>0 on (0, oo). Multiply
(6.6) by h(v(x, t) — ω(x, t))χN(x) and integrate on Rlx(09 s) for every s>0.
Here for each N=l, 2,..., χNe C00, 0 < χ N < l , χN(x) = l on [-JV, N], χN(x) = 0
on Rι\[-N-1, iV + 1] and H^JvlL^M, where M is a constant independent of N.
Integrating the resulting relation by parts and using

Γ {fe)m - (ωx)
m}(υx-δ5x)hf(v-ω)χNdxdt > 0,

J-oo

we get

Γ 0 0 _

\ H(v(x, s) - ω(x, s))χN(x)dx
J-00

(6.7) < Γ H(vo(x) - ω(x))χN(x)dx - {* ί {{υxY - (ωxr}h(v-ω)χ'Ndxdt
Jo JO J-oo

[ [ ] ( ^ - ω)χΉdxdt
O J-oo

for every s > 0, where

(W/i(σ)ί/σ for weR1.

It follows from vo<ω on I?1 that H(v0 — ω) = 0 on i?1. Since (i;Jm — (ωx)
m,

XMίϋ-ω^eLKi? 1 ) Π L^R1), letting iV-̂ oo in (6.7) we obtain

(6.8) Γ H(t;(x, s)-ω(x, s))Jx< - ί S Γ K[u](v-ω)xh{υ-ω)dxdt
J-oo Jo J-oo

for any s > 0. The right hand side of (6.8) is rewritten as

[S Γ (K[_u-])xH(v-ω)dxdt9
JO J-oo

which is bounded by

Γ Γ H(v-ω)dxdt.
JO J-oo

As a result of the estimates we conclude that
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H{v{x, s) - ω(x, s))dx < \\{Kίu])x\\x [' Γ H{v-ω)dxdt
o JO J-oo

for any 5 > 0, which yields that

H(v(x, s) - ω(x, 5)) = 0 for x e R1 and s > 0.

Hence we have obtained the desired inequality (6.4).

Next we choose a solution ω of (4.1) such that ω(x)<vo(x) on R1. Define

the function ω by

ω(x, t) = ω(x — λt).

Here λ is the constant determined by (6.2). By using the same calculation as in

the proof of (6.4), we obtain

(6.9) ω(x, t) < v(x, t) on R1 x [0, 00).

Taking account of the property of ω and the definition of v, by (6.4) and (6.9) we

obtain that for each ί > 0 the support of w( , t) on R1 is compact. Thus the

proof is completed.

REMARK. In the case when K(x) = kt on (— 00, 0] and K(x) — — k2 on (0, 00)

for some positive constants kί and fc2, it has been shown in [18] that a stronger

result than Theorem 6.1 holds: There are constants α and β, depending on the

amount of the support of M0, such that

u(x9 0 = 0 outside of α < x - kt < β,

where

k = {(k, - k2)j2) \ uo(x)dx.
j-00

As concerns the regularity of solutions, in the case of the porous media

equation more precise estimates for the smoothness of the solution u have been

obtained by Aronson [1] and Gilding [8]. The former has shown that u is Holder

continuous with respect to x with exponent α = min[ l , l/(m —1)]. It is shown

from the exact solution obtained by [4] and [21] that this exponent α is the best

possible. The latter has shown that u is Holder continuous with respect to t

with exponent α/2. In the case of our problem P(K, u0), we have not obtained the

same results as that mentioned just above when m > 2.

THEOREM 6.2. Let u be the solution of P(K, w0), where it is assumed that

u0 and K satisfy the assumptions (A.I) and (A.2), respectively. Then u holds the

following properties:
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( i ) u is a classical solution of the equation (1.1) in a neighbourhood of

a point in R1 x(0, oo) where u is positive;

(ii) If l<m<2, then for each τe(0, oo) there exists a positive constant

Cτ depending only on τ, m, ||wolli and ||w0||oo s u c n that for x.yeR1 and τ<
S, ί<00

\u»-i(x9 t) - u^(y, 5)| < Cτ(\x - y\ + \s - t\^)

(iii) The derivative (um)x exists and is continuous on R1 x (0, oo) if 1 <

m < 2, and moreover ux exists and is continuous on R1 x (0, oo) if 1 < m <2.

PROOF. At first we shall prove (i). Let {uε} be the sequence of approximate

solutions of P(K, u0) constructed in the previous section. We define the function

».(*> 0 = Γ uB(y9 t)dy for (x, t)e R1 x [0, oo).
J-00

vε satisfies the euqation

(vε\ = mίii. + β ) * - 1 ^ . ) , , - ^ ε[w ε]fe)x in 6oo = R1 x (0, oo).

[ι;ε]1>Qoβ is estimated independently of ε by using Lemma 4.8, and it follows from

Lemma 5.5 that for each τ > 0

[tfj»/2,fl,,. < Ct and [(wβ + β)»- 1] ( l 2 m ) ) Q r > T O < C τ ϊ

where C t is a constant depending on τ but not on ε, and Qτao = Rί x [τ, oo).

We note that

* . I X H * , 0 = K(llε)vε(x-lle) - X(-l/β)t; t(x + l/β)

-ί/ε

where {cj is the set of discontinuity points of the first kind for K, from which it

follows that

LKJίuJluQ. < C and [(X e[Mj)J 1 / 2 i Q T f e e < C t,

where CT is a constant not depending on ε and C t depends on τ but not on ε.

Hence, by the method similar to that used in the proof of the statement (ii) of

Theorem 3 in [10] we can establish the statement (i).

It follows from Lemma 4.11 that if 1 < m < 2 then for each τ > 0 there is a con-

stant C t, depending on τ but not on ε, such that

i(x, 0 - (μ, + εr-*(y9 s)\ < Cτ(\x - y\ + \t -
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for x, y e R1 and τ < s , t < oo. Letting ε-»0, we obtain the statement (ii).

The statement (iii) is obtained by using the same method as in the proof of

the statement (iii) of Theorem 3 in [10]. Thus the proof is completed.

REMARK. In the case when K(x) = k1 on ( - oo, 0] and K(x) = -k2 on (0, oo)

for some positive constants kx and k2, the statement (ii) and the first part of state-

ment (iii) in Theorem 6.2 are valid without the condition on m [17].

Finally we state the dependency of solutions for P(K, u0) on K.

THEOREM 6.3. Let u0 satisfy the assumption (A.I) and let K and {Kη} be

a function and a sequence of functions satisfying the assumption (A.2), re-

spectively. Assume that

(i) there is a positive constant L such that WKW^KL, WKJ^^L, C(K)<L

and C(Kη)<L, where C(K) and C(Kη) are the constants defined by (3.2);

(ii) l im^o Kη(x) = K(x) a.e. in RK

Then, for the solution u of P(K, u0) and the sequence of solutions uη of P(Kη, u0)

we have

lim^o uη(x, t) = u(x91) uniformly on every compact set in R1 x (0, oo).

PROOF. Using Lemma 5.2, by the condition (i) we obtain that sup {| |uj|p; η}

is finite for every p e [1, oo]. We then use Lemma 3.1 to obtain

(6.10) K ( , ί) - v(•, t)\\2 < eM> £ \\(K-Kη)[u]( , s)u(•, s)\\2e-"*ds

for every ί >0, where v and vη are the functions on R1 x (0, oo) defined by

v(x, t) = \X u(y, t)dy and vη(x, t) = (* uη(y, t)dy
J—oo J— oo

respectively, and

M = Lmax [sup {||κ J«, ιy}, ||M|| „ ] .

Since u e L\Rι x (0, T)) n L0^/?1 x (0, oo)) for any T > 0 , by using the conditions

(i) and (ii), Lebesgue's convergence theorem guarantees that

(K-Kη)[w] ^Oasf | > 0 a.e. in Rι

for each t e (0, T). We note that

Hence, from (6.10) it follows that for every T > 0

lim^o s u p 0 < f < Γ | |^( , 0 - v( ,
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Noting that vη(x, t) — v(x, t)-+0 as |x|->oo, we obtain

(vη(x, 0 - υ(x, ί))2 = 2 [X (vη(y, t) - υ(y, t))(uη(y, t) - u(y, t))dy
J - 0 0

< 2||!?,(., 0 - !< , 0 l l 2 S U p o < f < r K ( v 0 " M( , 0ll2»

which yields that

(*, 0-K*, 01=0

for every T > 0 . Since {uη} is bounded and equi-continuous on JR1 x [τ, T] for

any 0 < τ < T< oo, by using Ascoli-Arzela's theorem and uη = (vη)x, we have

lim^^ouη(x, t) = u(x, t) uniformly on every compact set in R1 x (0, oo).

Thus we have established the proof of Theorem 6.3.
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