Weak boundary components in R^N

Dedicated to Professor M. Ohtsuka for his 60th birthday

Hiromichi YAMAMOTO (Received December 23, 1982)

Introduction

Let D be a bounded plane domain and γ be a component of the boundary of D consisting of a single point. It is called by Sario [7] weak if its image under any conformal mapping of D consists of a single point. Jurchescu [3] gave a characterization of the weakness by means of extremal length.

In the N-dimensional euclidean space R^N ($N \ge 3$), Sario [8] introduced the notion of the capacity c_{γ} of a subboundary γ of a domain in R^N and posed the following question: Is a component γ of a compact set E in R^N a point if and only if $c_{\gamma}=0$ for the domain R^N-E ([8, p. 110])? A boundary component γ is called weak if $c_{\gamma}=0$.

In the present paper we shall be concerned with this question. Let D be a domain in \mathbb{R}^N and E be a compact set such that $\gamma = \partial E$ is a subboundary of D. We shall give an example (Example 1) in which γ is a point but $c_{\gamma} \neq 0$. Moreover, in case γ is an isolated subboundary, we shall show (Theorem 2) that $c_{\gamma} = 0$ if and only if the Newtonian capacity $C_2(E) = 0$. Since there exists a continuum E with $C_2(E) = 0$ (cf. [1]), it follows that even for a continuum E, $\gamma = \partial E$ can be weak.

In §4, we shall give a characterization of the weakness by means of the extremal length of order 2. Let B be a ball in D and $\hat{\Gamma}$ denote the family of curves in the Kerékjártó-Stoïlow compactification each of which connects γ and B. We shall show (Theorem 4) that $c_{\gamma}=0$ if and only if the extremal length $\lambda_2(\hat{\Gamma})=\infty$. In §5, we shall derive the modular criterion of the weakness which is well known for Riemann surfaces (cf. [9]).

§ 1. Preliminaries

Let R^N $(N \ge 3)$ be the N-dimensional euclidean space. We shall denote by $x = (x_1, x_2, ..., x_N)$ a point in R^N , and set $|x| = (x_1^2 + x_2^2 + ... + x_N^2)^{1/2}$. For a set E in R^N , we denote by ∂E and \overline{E} the boundary and the closure of E with respect to the N-dimensional Möbius space $R^N \cup \{\infty\}$, respectively. Let B(r, x) denote the open N-ball of radius r and centered at x. The area of $\partial B(1, x)$ will be written as ω_N . For a function u defined in a domain G, we let ∇u denote the gradient of

u in case it exists. We denote by H(G) the class of all harmonic functions u on G, and by $HD^2(G)$ the class of all u in H(G) such that its Dirichlet integral $\int_G |\nabla u|^2 dx$ is finite.

Let D be a domain in \mathbb{R}^N . Denote by \widehat{D} the Kerékjártó-Stoïlow compactification of D. Let $\widehat{\gamma}$ be a closed subset of the ideal boundary $\widehat{D}-D$ of D and let $\widehat{\beta}=(\widehat{D}-D)-\widehat{\gamma}$. Let $\{D_n\}$ be an exhaustion of D, that is, each D_n is a bounded subdomain of D, each component of $D-D_n$ is noncompact in D, each ∂D_n consists of a finite number of C^1 -surfaces, $\overline{D}_n \subset D_{n+1}$ (n=1,2,...) and $\bigcup_{n=1}^\infty D_n = D$. Let A_n be the union of the components of $\widehat{D}-D_n$ each of which meets $\widehat{\gamma}$, and B_{ni} (i=1,...,i(n)) be the rest of the components of $\widehat{D}-D_n$. Set $\gamma=\bigcap_{n=1}^\infty \overline{U}_n$, where $U_n=A_n\cap D$. We shall call γ a subboundary of D. If $\widehat{\gamma}$ is an ideal boundary component, then γ is a boundary component of D. When there is no ambiguity, we shall identify γ with $\widehat{\gamma}$. A subboundary γ is said to be isolated if there exists an A_n with $A_n\cap\widehat{\beta}=\emptyset$. We set $\gamma_n=\partial D_n\cap\partial A_n$ and $\beta_{ni}=\partial D_n\cap\partial B_{ni}$ (i=1,...,i(n)).

Take a point x^0 in D and a ball $B = B(r, x^0)$ with $\overline{B} \subset D_n$ for all n. Denote by P_n the class of functions p on \overline{D}_n having the following properties:

$$(1.1) \quad p \in H(D_n - \{x^0\}) \cap C^1(\overline{D}_n - \{x^0\});$$

(1.2)
$$p(x) = -|x-x^0|^{2-N}/(\omega_N(N-2)) + h(x)$$
 in B, where $h \in H(B)$ and $h(x^0) = 0$;

(1.3)
$$\int_{\beta_{ni}} \frac{\partial p}{\partial v} dS = 0$$
 for $i = 1, ..., i(n)$ and $\int_{\gamma_n} \frac{\partial p}{\partial v} dS = 1$, where $\frac{\partial}{\partial v}$ is the outer normal derivative on D_n and dS is the surface element.

We know (cf. [8]) that there exists a unique function $p_{n\gamma}$ in P_n having the following properties:

$$(1.4) p_{n\gamma} = k_{n\gamma} on \gamma_n;$$

(1.5)
$$p_{n\gamma} = k_{ni}$$
 on $\beta_{ni} (i = 1,..., i(n)),$

where k_{ny} and k_{ni} are constants. In reference to the pole x^0 , we also use the notation $p_{ny} = p_{ny}(\cdot, x^0)$ and $k_{ny} = k_{ny}(x^0)$.

The following lemmas are known:

LEMMA 1 ([8, the proof of Theorem 25]).

$$\int_{\partial D_n} p_{n\gamma} \frac{\partial p_{n\gamma}}{\partial \nu} dS = k_{n\gamma}$$

and

$$\int_{D_n} |\nabla (p - p_{n\gamma})|^2 dx = \int_{\partial D_n} p \frac{\partial p}{\partial y} dS - \int_{\partial D_n} p_{n\gamma} \frac{\partial p_{n\gamma}}{\partial y} dS$$

for every $p \in P_n$.

LEMMA 2 (cf. [4, p. 20] and [9, Theorem III. 2E]). The sequence $\{p_{n\gamma}\}$ is uniformly bounded on every compact subset of $D - \{x^0\}$.

By Lemma 2 we see that the sequence $\{p_{n\gamma}\}$ contains a subsequence, denoted by $\{p_{n\gamma}\}$ again, converging to a harmonic function p_{γ} , which is called a capacity function of γ , uniformly on every compact subset of $D - \{x^0\}$.

Since $k_{n\gamma}$ increases with n by Lemma 1, the limit $k_{\gamma} = \lim_{n \to \infty} k_{n\gamma}$ exists. The capacity c_{γ} of γ is defined by $c_{\gamma} = k_{\gamma}^{1/(2-N)}$. A subboundary γ is called weak if $c_{\gamma} = 0$, that is, if $k_{\gamma} = \infty$. We note that the capacity c_{γ} does not depend on the choice of exhaustion.

Take any $x^1 \in D$ with $x^0 \neq x^1$. By using Green's formula we have the following symmetry property (cf. [9, Theorem V. 2A])

$$k_{n\nu}(x^1) - p_{n\nu}(x^0, x^1) = k_{n\nu}(x^0) - p_{n\nu}(x^1, x^0).$$

This implies that the weakness of γ does not depend on the choice of the pole x^0 in D.

§ 2. Weak boundary components

Denote by P = P(D) the class of functions p on D having the following properties:

- (2.1) $p \in H(D \{x^0\}) \cap HD^2(D \overline{B});$
- (2.2) $p(x) = -|x-x^0|^{2-N}/(\omega_N(N-2)) + h(x)$ in B, where $h \in H(B)$ and $h(x^0) = 0$;
- (2.3) $\int_{\tau} \frac{\partial p}{\partial v} dS = 0$ for every compact C^1 -surface τ in $D \{x^0\}$ which divides R^N into a bounded domain and an unbounded domain, and which does not separate γ from $\{x^0\}$.

THEOREM 1 (cf. [9, Theorem III. 3B]). γ is weak if and only if $P = \emptyset$.

PROOF. Suppose $P \neq \emptyset$. Since the restriction of $p \in P$ to D_n belongs to P_n , by Lemma 1 we have

$$k_{n\gamma} \leq \int_{\partial D_n} p \frac{\partial p}{\partial \nu} dS.$$

By Green's formula and (2.1) we obtain

$$\left| \int_{\partial D_n} p \frac{\partial p}{\partial v} dS \right| \leq \int_{D_n - B} |\nabla p|^2 dx + \left| \int_{\partial B} p \frac{\partial p}{\partial v} dS \right|$$

$$< \int_{D - B} |\nabla p|^2 dx + \left| \int_{\partial B} p \frac{\partial p}{\partial v} dS \right| < \infty.$$

This implies $k_{y} < \infty$.

Next we suppose $k_{\gamma} < \infty$. We shall show that the capacity function p_{γ} belongs to P. Obviously, $p_{\gamma} \in H(D - \{x^0\})$ and it satisfies (2.2). It is easy to verify that p_{γ} has property (2.3). Therefore it is enough to show that $p_{\gamma} \in HD^2(D - \overline{B})$. Since $\int_{D_{m} - \overline{D}_{m}} |\nabla p_{m\gamma}|^2 dx > 0$ for m > n, Green's formula gives

$$\int_{\partial D_n} p_{m\gamma} \frac{\partial p_{m\gamma}}{\partial \nu} dS \leqq \int_{\partial D_m} p_{m\gamma} \frac{\partial p_{m\gamma}}{\partial \nu} dS.$$

By Lemma 1 we have

$$\lim_{n\to\infty} \int_{\partial D_n} p_{\gamma} \frac{\partial p_{\gamma}}{\partial \nu} dS = \lim_{n\to\infty} \lim_{m\to\infty} \int_{\partial D_n} p_{m\gamma} \frac{\partial p_{m\gamma}}{\partial \nu} dS$$

$$\leq \lim_{m\to\infty} \int_{\partial D_m} p_{m\gamma} \frac{\partial p_{m\gamma}}{\partial \nu} dS$$

$$= \lim_{m\to\infty} k_{m\gamma} = k_{\gamma}.$$

Hence, by using Green's formula we have

$$\int_{D-B} |\nabla p_{\gamma}|^{2} dx = \lim_{n \to \infty} \int_{D_{n}-B} |\nabla p_{\gamma}|^{2} dx$$

$$\leq \lim_{n \to \infty} \int_{\partial D_{n}} p_{\gamma} \frac{\partial p_{\gamma}}{\partial \nu} dS + \left| \int_{\partial B} p_{\gamma} \frac{\partial p_{\gamma}}{\partial \nu} dS \right|$$

$$\leq k_{\gamma} + \left| \int_{\partial B} p_{\gamma} \frac{\partial p_{\gamma}}{\partial \nu} dS \right| < \infty.$$

Therefore $p_y \in HD^2(D-\overline{B})$. The proof is completed.

COROLLARY 1. If γ contains the point at infinity, then γ is not weak.

PROOF. Let
$$p(x) = -|x-x^0|^{2-N}/(\omega_N(N-2))$$
. Then $p \in P$, so that $k_v < \infty$.

EXAMPLE 1. We shall give an example of D which has a boundary component γ consisting of a single point and satisfying $k_{\gamma} < \infty$. We introduce the polar coordinates $(r, \theta_1, ..., \theta_{N-1})$ in R^N , that is, $r = |x|, x_1 = r \cos \theta_1, ..., x_{N-1} = r \sin \theta_1 \cdots \sin \theta_{N-2} \cos \theta_{N-1}, x_N = r \sin \theta_1 \cdots \sin \theta_{N-2} \sin \theta_{N-1}$, for $x = (x_1, ..., x_N)$. Consider sequences $\{a_n\}$, $\{b_n\}$ and $\{\delta_n\}$ defined by

$$a_n = (n + \sum_{k=2}^n k^{-2})^{1/(2-N)}, \quad b_n = (n + \sum_{k=1}^n k^{-2})^{1/(2-N)}$$

and

$$\int_{\{x; |x|=1, 0 \le \theta_1 < \delta_n\}} dS = n^{-2}.$$

Set

$$E_n = \{x; b_n \le |x| \le a_n\} - \{x; 0 \le \theta_1 < \delta_n\}$$

and

$$D = R^N - \bigcup_{n=1}^{\infty} E_n - \{0\}.$$

Let $\gamma = \{0\}$. Then γ is a boundary component of D. It is easily verified that $|x|^{2-N}$ has a finite Dirichlet integral on D. Let $x^0 \in D$. Then the function

$$(-|x-x^0|^{2-N}+|x|^{2-N}-|x^0|^{2-N})/(\omega_N(N-2))$$

belongs to P, so that by Theorem 1 we have $k_y < \infty$.

§3. An isolated subboundary and Newtonian capacity

Let E be a compact set in R^N . The Newtonian capacity of E is defined as

$$C_2(E) = \inf \int |\nabla f|^2 dx,$$

where the infimum is taken over all functions $f \in C^{\infty}$ that have compact support and are identically equal to 1 on E. Let G be a bounded domain containing E. We say that E is removable for HD^2 if every function in $HD^2(G-E)$ can be extended to a function in $HD^2(G)$. It is well known that E is removable for HD^2 if and only if $C_2(E) = 0$ (see, e.g., [1, §VII, Theorem 1]).

THEOREM 2 (cf. [9, Theorem X. 3A]). Let E be a compact set such that $R^N - E$ is a domain. Let D be a subdomain of $R^N - E$ and $\gamma = \partial E$ be an isolated subboundary of D. Then $C_2(E) = 0$ if and only if γ is weak.

PROOF. Suppose $C_2(E) = 0$. By assumption we can take a bounded domain G such that $G \supset E$, $D \supset G - E$ and ∂G separates γ from $\beta \cup \{x^0\}$, where $\beta = \partial D - \gamma$. We may assume that $G \supset \gamma_n$ for all n. Since every u in $HD^2(G - E)$ can be extended to a function \tilde{u} in $HD^2(G)$, we have

$$\int_{\gamma_n} \frac{\partial u}{\partial \nu} dS = \int_{\gamma_n} \frac{\partial \tilde{u}}{\partial \nu} dS = 0$$

for all n. This implies $P(D) = \emptyset$, so that γ is weak by Theorem 1.

Conversely we suppose $C_2(E) > 0$. Let μ be the equilibrium mass-distribution on E and consider the potential

$$U_2^{\mu}(x) = \int_E \frac{d\mu(y)}{|x-y|^{N-2}}.$$

It is known that $U_2^{\mu} \in HD^2(\mathbb{R}^N - E)$ and

$$\int_{T} \frac{\partial U_{2}^{\mu}}{\partial v} dS \neq 0$$

for every compact C^1 -surface τ in $R^N - E$ which separates the point at infinity from E. Therefore we can take a non-zero constant ℓ satisfying

$$\ell \int_{\gamma_n} \frac{\partial U_2^{\mu}}{\partial \gamma} dS = 1$$

for all n. Let $x^0 \in D$. Then the function

$$-|x-x^0|^{2-N}/(\omega_N(N-2)) + \ell(U_2^{\mu}(x) - U_2^{\mu}(x^0))$$

belongs to P(D). From Theorem 1 it follows that γ is not weak. Thus our theorem is proved.

COROLLARY 2. Let E be a compact set such that $R^N - E$ is a domain. Suppose $\partial E = \gamma$ is a subboundary of a domain D. If γ is weak, then $C_2(E) = 0$.

PROOF. Let $G = R^N - E$. If $C_2(E) > 0$, then $P(G) \neq \emptyset$ by Theorems 1 and 2. Since the restriction of $p \in P(G)$ to D belongs to P(D), we have $P(D) \neq \emptyset$. It follows that γ is not weak from Theorem 1.

REMARK 1. If $N \ge 3$, then there exists a continuum E with $C_2(E) = 0$ (see, e.g., [1, §IV, Theorem 1]). Hence there exists a continuum E in R^N ($N \ge 3$) such that $\gamma = \partial E$ is weak for the domain $R^N - E$. Thus Example 1 and Theorem 2 give a negative answer to the problem 11 in [8].

REMARK 2. By the inversion with respect to B(1, 0), a line segment $E = \{x = (x_1, 0, ..., 0); 0 \le x_1 \le 1\}$ is mapped to $E_0 = \{x = (x_1, 0, ..., 0); 1 \le x_1 < \infty\} \cup \{\infty\}$. Since $C_2(E) = 0$, $\gamma = \partial E$ is weak for the domain $R^N - E$. But $\gamma_0 = \partial E_0$ is not weak for the domain $R^N - E_0$ by Corollary 1. Thus we see that the weakness in R^N $(N \ge 3)$ is not invariant under quasiconformal mappings.

§ 4. Extremal length criterion

Let D be a domain in R^N . By a locally rectifiable chain in D we mean a countable formal sum $c = \sum c_i$, where each c_i is a locally rectifiable curve in D. If f is a non-negative Borel measurable function defined in D and $c = \sum c_i$ is a locally rectifiable chain in D, then we set $\int_c f ds = \sum \int_{c_i} f ds$, where ds is the line element. Let Γ be a family of locally rectifiable chains in D. A non-negative Borel measurable function f defined in D is called admissible in association with Γ if $\int_c f ds \ge 1$ for every $c \in \Gamma$. The module $M_2(\Gamma)$ of Γ is defined by $\inf_f \int_D f^2 dx$, where the infimum is taken over all admissible functions f in association with Γ , and the extremal length $\lambda_2(\Gamma)$ of Γ is defined by $1/M_2(\Gamma)$. In case $\widehat{\Gamma}$ is a family of curves in \widehat{D} such that the restriction $c|_D$ is a locally rectifiable chain

in D for each $c \in \widehat{\Gamma}$, we denote by $\lambda_2(\widehat{\Gamma})$ the extremal length of $\{c|_D; c \in \widehat{\Gamma}\}$. Hereafter, by a curve we shall mean a locally rectifiable curve. The following properties are well known (see, e.g., [2, Chapter I]):

- (4.1) If every $c_1 \in \Gamma_1$ contains a $c_2 \in \Gamma_2$, then $\lambda_2(\Gamma_1) \ge \lambda_2(\Gamma_2)$.
- (4.2) If $\Gamma \subset \bigcup_n \Gamma_n$, then $M_2(\Gamma) \leq \sum_n M_2(\Gamma_n)$.
- (4.3) Let $\{G_n\}$ be mutually disjoint open sets and Γ_n be a family of curves in G_n . If Γ is a family of curves such that each $c \in \Gamma$ contains at least one $c_n \in \Gamma_n$ for every n, then $\lambda_2(\Gamma) \ge \sum_n \lambda_2(\Gamma_n)$.

Let α_0 , α_1 be subboundaries of D with $\alpha_0 \cap \alpha_1 = \emptyset$. Denote by $\Gamma(\alpha_0, \alpha_1; D)$ (resp. $\widehat{\Gamma}(\alpha_0, \alpha_1; D)$) the family of curves in D (resp. \widehat{D}) each of which connects α_0 and α_1 . (A subboundary of D will be identified with the corresponding closed subsets of $\widehat{D} - D$.) Suppose that α_0 is an isolated subboundary consisting of a finite number of compact C^1 -surfaces. Let $\{D_n\}$ be an approximation of D towards $\partial D - \alpha_0$, that is, each D_n is a bounded subdomain of D, each ∂D_n consists of α_0 and a finite number of compact C^1 -surfaces, $\overline{D}_n \subset D_{n+1} \cup \alpha_0$ ($n=1,2,\ldots$) and $\bigcup_{n=1}^{\infty} D_n = D$. Let A_{1n} be the union of the components of $\widehat{D} - D_n$ each of which meets α_1 . Set $\alpha_{1n} = \partial D_n \cap \partial A_{1n}$. The following lemma follows in the same manner as in [10, Lemma 4].

LEMMA 3.
$$\lim_{n\to\infty} \lambda_2(\hat{\Gamma}(\alpha_0, \alpha_{1n}; D_n)) = \lambda_2(\hat{\Gamma}(\alpha_0, \alpha_1; D))$$
.

Let G be a bounded domain such that ∂G consists of a finite number of compact C^1 -surfaces α_0 , α_1 and β_j (j=1,...,k). We know (cf. [6]) that there exists the principal function h with respect to α_0 , α_1 and G, which is characterized by the following properties:

- (1) $h \in H(G) \cap C^1(\overline{G});$
- (2) h = 0 on α_0 and h = 1 on α_1 ;
- (3) h = const. on each β_j and $\int_{\beta_j}^{\infty} \frac{\partial h}{\partial v} dS = 0$ for j = 1,..., k.

The following property is known ([10, Theorems 5 and 12]):

$$(4.4) M_2(\widehat{\Gamma}(\alpha_0, \alpha_1; G)) = \int_G |\nabla h|^2 dx.$$

Let γ be a subboundary of D and $\{D_n\}$ be an exhaustion of D. Consider the capacity function $p_{n\gamma}$ of γ_n with pole at $x^0 \in D$. Let $B_r = B(r, x^0)$ with $\overline{B}_r \subset D_n$ for all n. Set $a_{n,r}^0 = \max_{x \in \partial B_r} p_{n\gamma}(x)$ and $a_{n,r}^1 = \min_{x \in \partial B_r} p_{n\gamma}(x)$.

LEMMA 4. There exists an $r_0 > 0$ such that, for every r with $0 < r < r_0$, the following inequalities hold:

$$k_{n\gamma} - a_{n,r}^0 \le \lambda_2(\widehat{\Gamma}(\partial B_r, \gamma_n; D_n - \overline{B}_r)) \le k_{n\gamma} - a_{n,r}^1$$

PROOF. Let $E_{n,r}^i = \{x; p_{n\gamma}(x) \le a_{n,r}^i\}$ (i=0, 1). Then, there exists an $r_0 > 0$ such that $D_n - E_{n,r}^i$ (i=0, 1) is a domain for every r with $0 < r < r_0$. Since $(p_{n\gamma} - a_{n,r}^i)/(k_{n\gamma} - a_{n,r}^i)$ is the principal function with respect to $\partial E_{n,r}^i$, γ_n and $D_n - E_{n,r}^i$, by Green's formula and (4.4) we have

$$\lambda_2(\hat{\Gamma}(\partial E_{n,r}^i, \gamma_n; D_n - E_{n,r}^i)) = k_{n\nu} - a_{n,r}^i \qquad (i = 0, 1).$$

Since

$$\lambda_2(\widehat{\Gamma}(\partial E_{n,r}^0,\,\gamma_n;\,D_n-E_{n,r}^0))\leqq\lambda_2(\widehat{\Gamma}(\partial B_r,\,\gamma_n;\,D_n-\overline{B}_r))\leqq\lambda_2(\widehat{\Gamma}(\partial E_{n,r}^1,\,\gamma_n;\,D_n-E_{n,r}^1))$$

by (4.1), we obtain the required inequalities.

THEOREM 3 (cf. [9, Theorem IV. 3G]). Let γ be a subboundary of D with $k_{\gamma} < \infty$ and let $B_r = B(r, x^0)$ with $\overline{B}_r \subset D$. Then

$$k_{\nu} = \lim_{r \to 0} \left\{ \lambda_{2}(\widehat{\Gamma}(\partial B_{r}, \gamma; D - \overline{B}_{r})) - r^{2-N}/(\omega_{N}(N-2)) \right\}.$$

PROOF. By Lemmas 3 and 4, we obtain

$$k_{\gamma} - \lim_{n \to \infty} a_{n,r}^0 \leq \lambda_2(\hat{\Gamma}(\partial B_r, \gamma; D - \overline{B}_r)) \leq k_{\gamma} - \lim_{n \to \infty} a_{n,r}^1$$

The capacity function p_{γ} has the property

$$p_{\nu}(x) = -|x-x^0|^{2-N}/(\omega_N(N-2)) + h(x)$$
 in B_{ν} ,

where $h \in H(B_r)$ and $h(x^0) = 0$. Since $\{p_{n\gamma}\}$ converges to p_{γ} uniformly on ∂B_r , we have

$$\lim_{n\to\infty} a_{n,r}^0 = -r^{2-N}/(\omega_N(N-2)) + \max_{x\in\partial B_r} h(x)$$

and

$$\lim_{n\to\infty} a^1_{n,r} = -r^{2-N}/(\omega_N(N-2)) + \min_{x\in\partial B_r} h(x).$$

Therefore we see that

$$k_{\gamma} - \max_{x \in \partial B_r} h(x) \leq \lambda_2(\widehat{\Gamma}(\partial B_r, \gamma; D - \overline{B}_r)) - r^{2-N}/(\omega_N(N-2))$$

$$\leq k_{\gamma} - \min_{x \in \partial B_r} h(x).$$

Since $h(x^0) = 0$, letting $r \to 0$ we obtain the theorem.

THEOREM 4. Let γ be a subboundary of D. Let G be a subdomain of D such that $\partial G \cap D$ is a compact C^1 -surface, $D - \overline{G}$ is a domain and $\partial(D - \overline{G})$ contains γ . Then γ is weak if and only if $\lambda_2(\widehat{\Gamma}(\partial G, \gamma; D - \overline{G})) = \infty$.

PROOF. From Lemmas 2, 3 and 4 it follows that $k_{\gamma} = \infty$ if and only if $\lambda_2(\hat{\Gamma}(\partial B, \gamma; D - \overline{B})) = \infty$ for some, as well as for any, $x \in D$ and for sufficiently small r > 0, where B = B(r, x).

Suppose $\lambda_2(\widehat{\Gamma}(\partial G, \gamma; D - \overline{G})) = \infty$. Take a ball B = B(r, x) with $\overline{B} \subset G$. By (4.1) we conclude that $\lambda_2(\widehat{\Gamma}(\partial B, \gamma; D - \overline{B})) = \infty$, so that $k_y = \infty$.

Conversely suppose $k_{\gamma} = \infty$. We can take a finite number of balls $B^i = B(r, x^i)$ (i = 1, ..., j) in D with the following properties:

- (1) $x^i \in \partial G \cap D \ (i=1,...,j)$ and $U = \bigcup_{i=1}^j B^i$ contains $\partial G \cap D$;
- (2) $\partial D \cap \overline{B}^i = \emptyset$ (i=1,...,j) and $\Omega = D \overline{G} \overline{U}$ is a subdomain of $D \overline{G}$;
- (3) $\lambda_2(\widehat{\Gamma}(\partial B^i, \gamma; D \overline{B}^i)) = \infty \ (i = 1, ..., j).$

Since

$$\hat{\Gamma}(\partial\Omega \cap \partial U, \gamma; \Omega) \subset \bigcup_{i=1}^{j} \hat{\Gamma}(\partial B^{i}, \gamma; D - \overline{B}^{i}),$$

by (4.1) and (4.2) we have

$$\begin{split} M_2(\widehat{\Gamma}(\partial G,\gamma;\,D-\overline{G})) & \leq M_2(\widehat{\Gamma}(\partial\Omega\,\cap\,\partial U,\gamma;\,\Omega)) \\ & \leq \sum_{i=1}^j M_2(\widehat{\Gamma}(\partial B^i,\gamma;\,D-\overline{B}^i)) = 0. \end{split}$$

Thus we see that $\lambda_2(\widehat{\Gamma}(\partial G, \gamma; D - \overline{G})) = \infty$. The proof is completed.

COROLLARY 3. Let γ , γ_0 be subboundaries of D such that $\gamma \supset \gamma_0$. If γ is weak, then so is γ_0 .

§ 5. Modular criterion

Let γ be a subboundary of D and $\{D_n\}$ be an exhaustion of D. We note that A_n consists of a finite number of mutually disjoint components $A_n^1, \ldots, A_n^{k(n)}$ of $\widehat{D} - D_n$ each of which meets γ . Set $\Omega_n = (D_{n+1} - \overline{D_n}) \cap A_n$. Then Ω_n consists of a finite number of mutually disjoint domains $\Omega_n^1, \ldots, \Omega_n^{k(n)}$. Set $\alpha_n^i = \partial \Omega_n^i \cap \gamma_n$, $\beta_n^i = \partial \Omega_n^i \cap \gamma_{n+1}$ $(i=1,\ldots,k(n))$, and define the values $\widehat{\mu}_{n\gamma}$ by

$$\log \hat{\mu}_{n\gamma} = \{ \sum_{i=1}^{k(n)} M_2(\hat{\Gamma}(\alpha_n^i, \beta_n^i; \Omega_n^i)) \}^{-1}.$$

THEOREM 5 (cf. [9, Theorem XI. 1A]). A subboundary γ of D is weak if and only if there exists an exhaustion $\{D_n\}$ of D for which $\prod_{n=1}^{\infty} \hat{\mu}_{n\gamma} = \infty$.

PROOF. Suppose such an exhaustion $\{D_n\}$ exists. We may assume that $\overline{B}_r \subset D_1$. Set $\widehat{\Gamma}_n = \bigcup_{i=1}^{k(n)} \widehat{\Gamma}(\alpha_n^i, \beta_n^i; \Omega_n^i)$. Since $\Omega_n^1, \ldots, \Omega_n^{k(n)}$ are mutually disjoint, we see easily that $M_2(\widehat{\Gamma}_n) = \sum_{i=1}^{k(n)} M_2(\widehat{\Gamma}(\alpha_n^i, \beta_n^i; \Omega_n^i))$. By (4.1) and (4.3) we have

$$\lambda_2(\widehat{\Gamma}(\partial B_r, \gamma_n; D_n - \overline{B}_r)) \ge \sum_{m=1}^{n-1} \lambda_2(\widehat{\Gamma}_m) = \log \left(\prod_{m=1}^{n-1} \widehat{\mu}_{m\gamma} \right).$$

By assumption and Lemma 3, letting $n \to \infty$ we see that $\lambda_2(\hat{\Gamma}(\partial B_r, \gamma; D - \overline{B}_r)) = \infty$. From Theorem 4 it follows that γ is weak.

Conversely suppose that γ is weak. Let $\{D_n\}$ be any exhaustion of D. Set $\tilde{\gamma}_n^i = A_n^i \cap \gamma$ (i=1,...,k(n)). We note that each $\tilde{\gamma}_n^i$ is a subboundary of D, $\gamma =$

$$\lim\nolimits_{m\to\infty}\lambda_2(\widehat{\varGamma}(\widetilde{\alpha}_n^i,\,\widetilde{\alpha}_{n,\,m}^i;\,\widetilde{\varOmega}_{n,\,m}^i))=\lambda_2(\widehat{\varGamma}(\widetilde{\alpha}_n^i,\,\widetilde{\gamma}_n^i;\,\widetilde{\varOmega}_n^i))=\infty.$$

Hence, for n=1 we can take m(1) with m(1)>1 such that $\lambda_2(\widehat{\Gamma}(\tilde{\alpha}_1^i, \tilde{\alpha}_{1,m(1)}^i; \widetilde{\Omega}_{1,m(1)}^i)) \geq k(1)$ for all $i=1,\ldots,k(1)$. Next, for n=m(1), take m(2) with m(2)>m(1) such that $\lambda_2(\widehat{\Gamma}(\tilde{\alpha}_{m(1)}^i, \tilde{\alpha}_{m(1),m(2)}^i; \widetilde{\Omega}_{m(1),m(2)}^i)) \geq k(m(1))$ for all $i=1,\ldots,k(m(1))$. We continue this process and obtain a subsequence $\{D_{m(j)}\}_{j=1}^{\infty}$ of $\{D_n\}_{n=1}^{\infty}$. Since $\log \widehat{\mu}_{m(j)\gamma} \geq 1$ $(j=1,2,\ldots)$, we obtain an exhaustion $\{D_{m(j)}\}$ with $\prod_{j=1}^{\infty} \widehat{\mu}_{m(j)\gamma} = \infty$. The proof is completed.

The modulus μ_{nv} of Ω_n is defined by

$$\log \mu_{n\gamma} = \{ \sum_{i=1}^{k(n)} M_2(\Gamma(\alpha_n^i, \partial \Omega_n^i - \alpha_n^i; \Omega_n^i)) \}^{-1}$$

(cf. [5]). Since $\log \mu_{n\gamma} \leq \log \hat{\mu}_{n\gamma}$ by (4.1), we have

COROLLARY 4 ([5, Theorem 1]). If there exists an exhaustion $\{D_n\}$ of D for which $\prod_{n=1}^{\infty} \mu_{n\gamma} = \infty$, then γ is weak.

A bounded domain R is called a ring domain if its complement consists of two components.

THEOREM 6 (cf. [9, Theorem XI. 1C]). Let γ be a subboundary of D consisting of a single compact continuum. In order that γ be weak, it is necessary and sufficient that, for any positive number ℓ , there exist a finite number of ring domains R_1, R_2, \ldots, R_m in $D - \overline{B}_r$ satisfying the following conditions:

- (1) $R_1, ..., R_m$ are mutually disjoint;
- (2) Each R_i separates γ from B_r (i=1, 2, ..., m) and separates R_{i-1} from R_{i+1} (i=2, 3, ..., m-1);
- (3) $\sum_{i=1}^{m} \lambda_2(\Gamma_i) \ge \ell$, where Γ_i is the family of all curves in R_i each of which connects two boundary components of R_i .

PROOF. Suppose such a finite number of ring domains R_1 , R_2 ,..., R_m exist. By (4.3) we have

$$\lambda_2(\widehat{\Gamma}(\partial B_r, \gamma; D - \overline{B}_r)) \ge \sum_{i=1}^m \lambda_2(\Gamma_i) \ge \ell.$$

This implies $\lambda_2(\hat{\Gamma}(\partial B_r, \gamma; D - \overline{B}_r)) = \infty$, so that γ is weak by Theorem 4.

Next suppose that γ is weak. By Theorem 5 we see that there exists an exhaustion $\{D_n\}$ of D with $\prod_{n=1}^{\infty} \hat{\mu}_{n\gamma} = \infty$. Since γ is a single compact continuum, we see that $\Omega_n = (D_{n+1} - \overline{D}_n) \cap A_n$ is a domain. For given $\ell > 0$, take an n_0 such

that $\sum_{n=1}^{n_0} \log \hat{\mu}_{ny} \ge \ell + 1$. Set $G = (A_1 - \gamma_1) \cap D_{n_0 + 1}$. By (4.1) and (4.3) we have

$$\lambda_2(\widehat{\Gamma}(\gamma_1, \gamma_{n_0+1}; G)) \ge \sum_{n=1}^{n_0} \log \widehat{\mu}_{n\gamma} \ge \ell + 1.$$

We note that ∂G consists of a finite number of C^1 -surfaces $\gamma_1, \gamma_{n_0+1}, \beta_1, \ldots, \beta_{i_0}$ each of which is a component of ∂G . Let \tilde{u} be the principal function with respect to γ_{n_0+1}, γ_1 and G, which is characterized by the following properties:

- (1) $\tilde{u} \in H(G) \cap C^1(\overline{G})$;
- (2) $\tilde{u} = 0$ on γ_{n_0+1} and $\tilde{u} = 1$ on γ_1 ;
- (3) $\tilde{u} = \tilde{c}_i$ on β_i and $\int_{\beta_i} \frac{\partial \tilde{u}}{\partial v} dS = 0$ $(i = 1, ..., i_0)$, where each \tilde{c}_i is a constant with $0 < \tilde{c}_i < 1$.

Set $\ell_0 = \lambda_2(\hat{\Gamma}(\gamma_1, \gamma_{n_0+1}; G))$ and $u(x) = \ell_0 \tilde{u}(x)$. Let $c_1 < c_2 < \dots < c_{j_0}$ be all the different values of $\ell_0 \tilde{c}_1, \dots, \ell_0 \tilde{c}_{i_0}$. Take an $\varepsilon > 0$ such that

- (1) $c_{j-1} + \varepsilon < c_j \varepsilon$ $(j = 1, ..., j_0 + 1)$, where $c_0 = 0$ and $c_{j_0 + 1} = \ell_0$,
- (2) $\sum_{i=1}^{j_0+1} (c_i c_{i-1} 2\varepsilon) \ge \ell_0 1$,
- (3) u has no critical points on level surfaces $\{x; u(x) = c_{j-1} + \varepsilon\}$ and $\{x; u(x) = c_j \varepsilon\}$ $(j = 1, ..., j_0 + 1)$.

Set $R_j = \{x; c_{j-1} + \varepsilon < u(x) < c_j - \varepsilon\}$ $(j=1,...,j_0+1)$. Since u has no critical points on the level surface $\alpha = \{x; u(x) = c_{j-1} + \varepsilon\}$, it consists of a finite number of mutually disjoint analytic surfaces. We see easily that each component of α divides R^N into a bounded domain containing γ_{n_0+1} and an unbounded domain containing γ_1 . Since u = const. on β_i and $\int_{\beta_i} \frac{\partial u}{\partial \nu} dS = 0$, by using Green's formula we see that α consists of a single analytic surface such that $R^N - \alpha$ consists of a bounded domain Ω_0 containing γ_{n_0+1} and an unbounded domain containing γ_1 . By similar arguments we see that the level surface $\alpha' = \{x; u(x) = c_j - \varepsilon\}$ is a single analytic surface such that $R^N - \alpha'$ consists of a bounded domain Ω'_0 containing γ_{n_0+1} and an unbounded domain containing γ_1 . Since $c_{j-1} + \varepsilon < u(x) < c_j - \varepsilon$ for any $x \in \Omega'_0 - \overline{\Omega}_0$, we conclude that R_j is a ring domain. It is clear that the sequence $\{R_j\}_{j=1}^{j_0+1}$ satisfies the conditions (1) and (2) in theorem.

Since $u_0 = (u - c_{j-1} - \varepsilon)/(c_j - c_{j-1} - 2\varepsilon)$ is harmonic on R_j , $u_0 = 0$ on α and $u_0 = 1$ on α' , we have

$$M_2(\Gamma_j) = \int_{R_j} |\nabla u_0|^2 dx = \int_{\alpha'} \frac{\partial u_0}{\partial \nu} dS = (c_j - c_{j-1} - 2\varepsilon)^{-1} \int_{\alpha'} \frac{\partial u}{\partial \nu} dS$$

(see, e.g., [10, Theorem 4] and [11, Theorem 3.8]). On the other hand, by (4.4) we have

$$\ell_0^{-1} = \int_G |\nabla \tilde{u}|^2 dx.$$

By using Green's formula we see that

$$\int_{S'} \frac{\partial u}{\partial v} dS = 1.$$

Therefore we have $M_2(\Gamma_j) = (c_j - c_{j-1} - 2\varepsilon)^{-1}$. From this we derive that

$$\sum_{i=1}^{j_0+1} \lambda_2(\Gamma_i) = \sum_{i=1}^{j_0+1} (c_i - c_{i-1} - 2\varepsilon) \ge \ell_0 - 1 \ge \ell,$$

so that we obtain the required results.

EXAMPLE 2. Set $R_n = \{x; (2n+1)^{1/(2-N)} < |x| < (2n)^{1/(2-N)} \}$ (n=1, 2,...). Let D be a domain such that $D \supset R_n$ for all n and $\gamma = \{0\}$ is a boundary component of D. It is well known that $\lambda_2(\Gamma_n) = (\omega_N(N-2))^{-1}$. By Theorem 6, γ is weak.

References

- [1] Carleson, L., Selected problems on exceptional sets, D. Van Nostrand, Princeton, 1967.
- [2] Fuglede, B., Extremal length and functional completion, Acta Math., 98 (1957), 171-219.
- [3] Jurchescu, M., Modulus of a boundary component, Pacific J. Math., 8 (1958), 791-809.
- [4] Ow, W., Capacity functions in Riemannian spaces, Doctoral dissertation, Univ. of Calif., Los Angeles, Calif., 1966. 63 pp.
- [5] Ow, W., Criteria for zero capacity of ideal boundary components of Riemannian spaces, Pacific J. Math., 23 (1967), 591-595.
- [6] Rodin, B. and L. Sario, Principal functions, D. Van Nostrand, Princeton, 1968.
- [7] Sario, L., Strong and weak boundary components, J. Analyse Math., 5 (1956/57), 389-398.
- [8] Sario, L., Classification of locally euclidean spaces, Nagoya Math. J., 25 (1965), 87-111.
- [9] Sario, L. and K. Oikawa, Capacity functions, Springer, Berlin-Heidelberg-New York, 1969.
- [10] Yamamoto, H., On a p-capacity of a condenser and KD^p-null sets, Hiroshima Math. J., 8 (1978), 123-150.
- [11] Ziemer, W. P., Extremal length and p-capacity, Michigan Math. J., 16 (1969), 43-51.

Department of Mathematics, Faculty of Science, Kochi University