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Introduction

Let D be a bounded plane domain and y be a component of the boundary of
D consisting of a single point. It is called by Sario [7] weak if its image under
any conformal mapping of D consists of a single point. Jurchescu [3] gave a
characterization of the weakness by means of extremal length.

In the N-dimensional euclidean space RN (N =3), Sario [8] introduced the
notion of the capacity c, of a subboundary y of a domain in R¥ and posed the
following question: Isa component y of a compact set E in RY a point if and only
if ¢,=0 for the domain RV—E ([8, p. 110])? A boundary component y is called
weak if ¢, =0.

In the present paper we shall be concerned with this question. Let D be a
domain in RN and E be a compact set such that y=0E is a subboundary of D.
We shall give an example (Example 1) in which y is a point but ¢,#0. Moreover,
in case y is an isolated subboundary, we shall show (Theorem 2) that ¢, =0 if and
only if the Newtonian capacity C,(E)=0. Since there exists a continuum E
with C,(E)=0 (cf. [1]), it follows that even for a continuum E, y=0E can be weak.

In §4, we shall give a characterization of the weakness by means of the
extremal length of order 2. Let B be a ball in D and " denote the family of
curves in the Kerékjarté-Stoilow compactification each of which connects y and B.
We shall show (Theorem 4) that ¢, =0 if and only if the extremal length Ay(F)=c0.
In §5, we shall derive the modular criterion of the weakness which is well known
for Riemann surfaces (cf. [9]).

§1. Preliminaries

Let RN (N =3) be the N-dimensional euclidean space. We shall denote by
x=(xXy, X35..., Xy) @ point in RV, and set |x|=(x}+x3+---+x3)/2. For a set
E in RV, we denote by dE and E the boundary and the closure of E with respect
to the N-dimensional Mobius space RN U {0}, respectively. Let B(r, x) denote
the open N-ball of radius r and centered at x. The area of 0B(1, x) will be written
as wy. For a function u defined in a domain G, we let Fu denote the gradient of
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u in case it exists. We denote by H(G) the class of all harmonic functions u on G,
and by HD?(G) the class of all u in H(G) such that its Dirichlet integral S |Pul2dx
is finite. ¢

Let D be a domain in R¥. Denote by D the Kerékjarté-Stoilow compacti-
fication of D. Let § be a closed subset of the ideal boundary D—D of D and let
B=(D-D)—%. Let {D,} be an exhaustion of D, that is, each D, is a bounded
subdomain of D, each component of D— D, is noncompact in D, each 0D, consists
of a finite number of C!-surfaces, D,=D,,., (n=1,2,...) and \U%,D,=D.
Let A, be the union of the components of D— D, each of which meets 9, and B,;
(i=1,..., i(n)) be the rest of the components of D—D,. Set y=nN%, U, where
U,=A,nD. Weshall call y a subboundary of D. If  is an ideal boundary com-
ponent, then y is a boundary component of D. When there is no ambiguity,
we shall identify y with 9. A subboundary y is said to be isolated if there exists
an A, with 4,n f=8. We set y,=dD, n A4, and B,;=0D, n B, (i=1,..., i(n)).

Take a point x° in D and a ball B=B(r, x°) with Bc D, for all n. Denote
by P, the class of functions p on D, having the following properties:

(1.1) peH(D,—{x°})n C'(D,—{x});
(1.2) p(x) = —|x—x°>"N/(wy(N —2)) + h(x) in B, where h e H(B) and
h(x%) =

(1.3) S 9P 45—0 for i=1,...,i(n) and S 9P 45=1, where -2_ is the
ﬂni a a 5v

outer normal derivative on D, and dS is the surface element.

We know (cf. [8]) that there exists a unique function p,, in P, having the
following properties:

(14) pny = kny on  y,;
(15) pny = kni on ﬂm’ (l = 1’~-~, l(n))9

where k,, and k,; are constants. In reference to the pole x° we also use the
notation p,,=p,,(-, x°) and k,,=k,,(x°).
The following lemmas are known:

Lemma 1 ([8, the proof of Theorem 25]).

OPny _
SaD.. Prr =5y dS=kn,

and

S IV(p-pny)lzdx = S p_aB_dS — S Py apny ds
P op,” 0V o0, "7 Qv

n

for every peP,.
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LemMA 2 (cf. [4, p. 20] and [9, Theorem III. 2E]). The sequence {p,,} is
uniformly bounded on every compact subset of D—{x%}.

By Lemma 2 we see that the sequence {p,,} contains a subsequence, denoted
by {p.,} again, converging to a harmonic function p,, which is called a capacity
function of y, uniformly on every compact subset of D — {x°}.

Since k,, increases with n by Lemma 1, the limit k,=lim,_,, k,, exists.
The capacity c, of y is defined by c¢,=k1/(2=™, - A subboundary y is called weak
if ¢,=0, that is, if k,=00. We note that the capacity c, does not depend on the
choice of exhaustion.

Take any x!eD with x°#x!. By using Green’s formula we have the
following symmetry property (cf. [9, Theorem V. 2A7)

kny(xl) - pnv(xO’ xl) = kny(xo) - pny(xl, xO)‘

This implies that the weakness of y does not depend on the choice of the pole
x%in D.

§2. Weak boundary components

Denote by P=P(D) the class of functions p on D having the following
properties:

(2.1) peH(D—{x°}) n HD*D—B);

2.2) p(x) = —|x—x°2"¥/(wy(N-—2)) + h(x) in B, where h e H(B) and
h(x%) = 0;

2.3) S %”—dS=O for every compact C!-surface 7 in D—{x°} which divides
v

RY into a bounded domain and an unbounded domain, and which does not
separate y from {x°}.

THEOREM 1 (cf. [9, Theorem III. 3B]). 1y is weak if and only if P=g.

Proor. Suppose P#g. Since the restriction of pe P to D, belongs to P,,
by Lemma | we have

op
< i’ i)
Ky = San,.p av as.

By Green’s formula and (2.1) we obtain

I BN WS

. o
2 op
< SD_BIVpl dx + ‘gnp 3 dS|< 0.
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This implies k, < co.

Next we suppose k,<oco. We shall show that the capacity function p,
belongs to P. Obviously, p,e H(D—{x%}) and it satisfies (2.2). It is easy to
verify that p, has property (2.3). Therefore it is enough to show that p,e

HD*(D—B). Since S |V pyl?dx >0 for m>n, Green’s formula gives

m n

ODpmy S op
m < my .
San,.p"'v v s = an,,.p"'" ov as

By Lemma 1 we have

. op, s . OPmy
lim, o Sw"py By ds =lim,_,lim, Sw"pm 3y as

. ap
<1 '”*“’S WL
= aDmp LAY
= limy o Ky = k.

Hence, by using Green’s formula we have

SH P, 2dx = lim, Spn_g \Vp,2dx

: op %
< A ;
Y l1m,,_.°° Saan), o ds + ‘SGBPV’ dv ds

op,
v dS' < 0.

Sk + 'S“Py

Therefore p,€ HD*(D—B). The proof is completed.
COROLLARY 1. Ify contains the point at infinity, then y is not weak.
PrOOF. Let p(x)= —[|x—x°2"N¥/(wy(N—2)). Then peP, so that k,<oo.

ExaMPLE 1. We shall give an example of D which has a boundary component
7 consisting of a single point and satisfying k,<co. We introduce the polar
coordinates (r, 04,...,0y_;) in RY¥, that is, r=|x|, x,=rcosb;,..., Xy, =
rsinf,---sinfy._, cosOy_,, xy=rsinf,--sinfy_,sinOy_,, for x=(xy,..., xy).
Consider sequences {a,}, {b,} and {J,} defined by

a, = (n+ Tha k)Y, b, = (nt Doy k721
and

S ds = n"2,
{x;|x]|=1,058601<én}

Set
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E, = {x; bn =< leéan} - {X; 0= 01 < 511}
and

D =RN - Up,E, - {0}.

Let y={0}. Then y is a boundary component of D. It is easily verified that
|x|2~N has a finite Dirichlet integral on D. Let x°e D. Then the function

(= 1x=xOR7N + x>V — [xO]2"M)/(wn(N —2))

belongs to P, so that by Theorem 1 we have k, < 0.

§3. An isolated subboundary and Newtonian capacity

Let E be a compact set in RY. The Newtonian capacity of E is defined as
C(E) = inf& \Pf2dx,

where the infimum is taken over all functions fe C* that have compact support
and are identically equal to 1 on E. Let G be a bounded domain containing E.
We say that E is removable for HD? if every function in HD*G—E) can be
extended to a function in HD?(G). It is well known that E is removable for HD?
if and only if C,(E)=0 (see, e.g., [1, §VII, Theorem 1]).

THEOREM 2 (cf. [9, Theorem X. 3A]). Let E be a compact set such that
RN¥—E is a domain. Let D be a subdomain of R¥N—E and y=0E be an isolated
subboundary of D. Then C5(E)=0 if and only if y is weak.

PrOOF. Suppose C,(E)=0. By assumption we can take a bounded domain
G such that Go E, Do G—E and 0G separates y from S U {x°}, where $=0D—1.
We may assume that Go 1y, for all n.  Since every u in HD?(G — E) can be extended
to a function & in HD?*(G), we have
Ou S di
S ¥n OV a ¥n OV d 0
for all n. This implies P(D)=g, so that y is weak by Theorem 1.

Conversely we suppose C,(E)>0. Let u be the equilibrium mass-distribution
on E and consider the potential

1) = §, 2

1t is known that U4 e HD*(R¥ —E) and

S OU% 4s 0
T 8v
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for every compact C!-surface t in R¥—E which separates the point at infinity
from E. Therefore we can take a non-zero constant ¢ satisfying

ous
S =
¢ S)‘n 5v d

for all n. Let x°e D. Then the function
= [x=x2"N/(wy(N = 2)) + £(U5(x) — UL(x?))

belongs to P(D). From Theorem 1 it follows that y is not weak. Thus our
theorem is proved.

COROLLARY 2. Let E be a compact set such that RN—E is a domain.
Suppose OE=1y is a subboundary of a domain D. If y is weak, then C,(E)=0.

PrOOF. Let G=RN—E. If C,(E)>0, then P(G)#¢ by Theorems 1 and 2.
Since the restriction of p € P(G) to D belongs to P(D), we have P(D)#@. It follows
that y is not weak from Theorem 1.

ReMARK 1. If N=3, then there exists a continuum E with C,(E)=0 (see,
e.g., [1, §1V, Theorem 1]). Hence there exists a continuum E in R¥ (N2=3)
such that y=0E is weak for the domain R¥Y —E. Thus Example 1 and Theorem 2
give a negative answer to the problem 11 in [8].

REMARK 2. By the inversion with respect to B(1, 0), a line segment E=
{x=(x4,0,...,0); 0=x; =<1} is mapped to E,={x=(x,,0,...,0); 1<x;,<o0} U
{o0}. Since C,(E)=0, y=0E is weak for the domain R¥—E. But y;=0E,
is not weak for the domain RN — E, by Corollary 1. Thus we see that the weakness
in RY (N =3) is not invariant under quasiconformal mappings.

§4. Extremal length criterion

Let D be a domain in RY. By a locally rectifiable chain in D we mean a
countable formal sum ¢=73 ¢;, where each ¢; is a locally rectifiable curve in D.
If f is a non-negative Borel measurable function defined in D and ¢=3 ¢; is a
locally rectifiable chain in D, then we set S fds—zg fds, where ds is the
line element. Let I' be a family of locally rectifiable chains in D. A non- negative
Borel measurable function f defined in D is called admissible in association with
r ifS fds=1 forevery ce I'.  The module M,(I') of I is defined by inffS S2dx,

where the infimum is taken over all admissible functions f in association with
I', and the extremal length A,(I') of I is defined by 1/M,(I'). In case I" is a
family of curves in D such that the restriction c|, is a locally rectifiable chain
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in D for each cel’, we denote by 4,(I") the extremal length of {c|p; cel}.
Hereafter, by a curve we shall mean a locally rectifiable curve. The following
properties are well known (see, e.g., [2, Chapter I]):

(4.1) If every ¢, €I’y contains a ¢, € I',, then A,(I"y) = A,(I",).
@42y If I =« \u,l,, then M(IEY, My T,).

(4.3) Let {G,} be mutually disjoint open sets and I', be a family of curves in
G,. If I' is a family of curves such that each ceI' contains at least one c,el’,
for every n, then A,(I =3, A,(T,).

Let o, o; be subboundaries of D with oy Ny =@. Denote by I'(ag, a;; D)
(resp. [(«g, a,; D)) the family of curves in D (resp. D) each of which connects
oo and a,. (A subboundary of D will be identified with the corresponding
closed subsets of D—D.) Suppose that a, is an isolated subboundary consisting
of a finite number of compact C!'-surfaces. Let {D,} be an approximation of
D towards 0D —ay, that is, each D, is a bounded subdomain of D, each dD, con-
sists of &, and a finite number of compact C!-surfaces, D,=D,,, Ua, (n=
1,2,..) and \U®, D,=D. Let A,, be the union of the components of D—D,
each of which meets o,. Set a,,=0D,Nn 04,,. The following lemma follows in
the same manner as in [10, Lemma 4].

LEMMA 3. limn—*oo }'Z(ia(aO’ Xyns Dn)) = AZ(F(a09 a5 D))'

Let G be a bounded domain such that 0G consists of a finite number of com-
pact C!'-surfaces ay, a; and B; (j=1,..., k). We know (cf. [6]) that there exists
the principal function h with respect to &g, «; and G, which is characterized by
the following properties:

(1) heH(G) n C{G);

(2) h=0onayand h =1 onay;

(3) h = const. on each f; and S g—i’dS =0forj=1,.,k.
8

The following property is known ([10,jTheorems S and 12]):
4.4) My(F (a0, @5 G)) = g |7 h|2dx.
G

Let y be a subboundary of D and {D,} be an exhaustion of D. Consider the
capacity function p,, of y, with pole at x°e D. Let B,=B(r, x°) with B,=D,
for all n. Set al,=max, 5, p,(x) and al ,=min,,p, pp,(X).

LEMMA 4. There exists an ro>0 such that, for every r with 0<r<r,, the
following inequalities hold:

kn'y - ag,r é j'2(1’:“(aBr’ Vns Dn—Er)) § knv - a,

n,r*
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ProOF. Let E!,={x; p,(x)<ai,} (i=0, 1). Then, there exists an r,>0
such that D,—E}, (i=0, 1) is a domain for every r with O0<r<r,. Since
(Pny—ai,»)/(k,,—al ) is the principal function with respect to JE} ,, 7, and D,—
E: ., by Green’s formula and (4.4) we have

Ay(F(E} ,, vs Dy~EL ) = kyy — @i, (i=0,1).
Since
Ax(F(OEY,,, vas Du—E3.,)) < Ax(F(0B,, ,; Dy~ B,)) < A(F(OE} ,, va3 Du—E3,)))
by (4.1), we obtain the required inequalities.

THEOREM 3 (cf. [9, Theorem IV. 3G]). Let y be a subboundary of D with
k,<co and let B,=B(r, x°) with B,cD. Then

ky = lirnr—>0 {AZ(f(aBn Y5 D—Er)) - rz_N/(wN(N—z))} .
Proor. By Lemmas 3 and 4, we obtain

k, — lim,., a3, < A,(['(0B,, y; D—B,)) < k, — lim,_, , a} ,.

The capacity function p, has the property
py(x) = —|x—=xP*"N(wn(N—-2)) + h(x) in B,

where he H(B,) and h(x°)=0. Since {p,,} converges to p, uniformly on 0B,,
we have
]imn—»oo ag,r = —rz—N/(wN(N_z)) + maxxEﬁB,- h(x)
and
limn-too arll,r = = r2—N/(wN(N_2)) + minxeaB, h(X) .
Therefore we see that
k, — max,cop, h(x) £ A,(F(@B,, v; D—B,)) — r*~N/(wy(N —2))

< k, — miny,p, h(x).
Since h(x%) =0, letting r—0 we obtain the theorem.

THEOREM 4. Let y be a subboundary of D. Let G be a subdomain of D such
that 0Gn D is a compact C'-surface, D—G is a domain and d(D—G) contains
y. Then y is weak if and only if A,(I'(0G, y; D—G))= 0.

Proor. From Lemmas 2, 3 and 4 it follows that k,=co if and only if
A(F(8B, y; D—B))= oo for some, as well as for any, xe D and for sufficiently
small r>0, where B= B(r, x).
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Suppose 1,(F(8G, y; D—G))=o0. Take a ball B=B(r, x) with BcG. By
(4.1) we conclude that A,(F(B, y; D— B))= o0, so that k,=oco.

Conversely suppose k,=c0. We can take a finite number of balls B!=
B(r, x¥) (i=1,..., j) in D with the following properties:

() x*edGnD(i=1,...,j)and U = \Ui_, Bi contains G n D;

(2) oDnBi=¢g (i=1,...,j) and Q=D—-G-U is a subdomain of D—G;

(3) A(F(éBi,y; D—Bi))=c0 (i=1,...,)).
Since

[@Q n dU, y; Q) < \Ui, (8B, y; D—BY),

by (4.1) and (4.2) we have

M,(F(3G, y; D—G)) £ M,(['(Q n U, y; Q))
< 2{=1 M;,_(f(@Bi, 7; D—B") = 0.
Thus we see that 1,(F(0G, y; D—G))=c0. The proof is completed.

COROLLARY 3. Let 7y, yo, be subboundaries of D such that yovy,. If y is
weak, then so is y,.

§5. Modular criterion

Let y be a subboundary of D and {D,} be an exhaustion of D. We note that
A, consists of a finite number of mutually disjoint components Al,..., Ak
of D—D, each of which meets y. Set Q,=(D,.;—D,)N A4, Then Q, consists
of a finite number of mutually disjoint domains Ql,..., Q™ Set al=0Q% n
Vo BE=0Q% N 9,44 (i=1,..., k(n)), and define the values f2,, by

log A,y = {ZHD My(F (i, Bh; 20))} 1.

. THEOREM 5 (cf. [9, Theorem XI. 1A7]). A subboundary y of D is weak if
and only if there exists an exhaustion {D,} of D for which [T, fi,,= 0.

PrOOF. Suppose such an exhaustion {D,} exists. We may assume that
B,cD,. Set [,=U*" P(ai, Bi; Qi). Since QI,..., QK™ are mutually
disjoint, we see easily that M,(I",)= >k M,(F(ai, Bi; Q1)). By (4.1) and (4.3)
we have

A2(F(@B,, y4; D,—B,)) 2 izl 4(F'y) = log (T} Amy)-

By assumption and Lemma 3, letting n— 0o we see that A,(I'(8B,, y; D—B,))= 0.
From Theorem 4 it follows that y is weak.

Conversely suppose that y is weak. Let {D,} be any exhaustion of D. Set
Ji=Ainy (i=1,..., k(n)). We note that each 7} is a subboundary of D, y=
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Uk 51 and §inji=¢ for i#j. Set Qi=(4i—y,)nD, &i=08.ny, Since
5i is weak by Corollary 3, we have A,(I'(@:, 7i; Gi))=co by Theorem 4. Set
@i .=8inD,, o?:',,m=§§;',,,,, Ny for m>n. Then {Q} }%_+1 is an approxi-
mation of the domain Qf towards 0Q% —&:. By Lemma 3 we see that

1-irnm—wo lZ(f(&:n &Ex,m; g:t,m)) = lZ(F(&:v :};:n g:n)) = 0.

Hence, for n=1 we can take m(1) with m(1)>1 such that A,(F(&, & )
féi,,,,(l)))gk(l) for all i=1,..., k(1). Next, for n=m(1), take m(2) with m(2)>
m(1) such that A,(F(&, 1y Ecrymezys Phnctymay) 2 k(m(1)) for all i=1,..., k(m(1)).
We continue this process and obtain a subsequence {D,;}7; of {D,}i,.
Since log fly(jy, 21 (j=1, 2,...), we obtain an exhaustion {Dm(j)} with JT%,
Am(jyy=00. The proof is completed.

The modulus y,, of Q, is defined by
10g fay = { T My (I (2, 0Q%—al; Q1))
(cf. [5]). Since log u,,<log 4,, by (4.1), we have

COROLLARY 4 ([5, Theorem 1]). If there exists an exhaustion {D,} of
D for which 131 n,= 00, then v is weak.

A bounded domain R is called a ring domain if its complement consists of
two components.

THEOREM 6 (cf. [9, Theorem XI. 1C]). Let y be a subboundary of D con-
sisting of a single compact continuum. In order that y be weak, it is necessary
and sufficient that, for any positive number £, there exist a finite number of ring
domains Ry, R,,..., R,, in D— B, satisfying the following conditions:

(1) R,,..., R, are mutually disjoint;

(2) Each R; separates y. from B, (i=1, 2,..., m) and separates R;_, from
R;.,(i=2,3,...,m—1);

() XmiA(I')=¥4, where I'; is the family of all curves in R; each of
which connects two boundary components of R;.

PROOF. Suppose such a finite number of ring domains R,, R,,..., R,, exist.
By (4.3) we have

A(F(0B,, y; D—B)) 2 X1, () 2 4.

This implies A,(F(8B,, y; D—B,))= o, so that y is weak by Theorem 4.

Next suppose that y is weak. By Theorem 5 we see that there exists an ex-
haustion {D,} of D with [T;, fi,,=oc0. Since y is a single compact continuum,
we see that Q,=(D,.+;—D,) N 4, is a domain. For given ¢>0, take an n, such
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that 3 ne, log fi,,=2¢+1. Set G=(4,—7y,)ND,,+;- By (4.1) and (4.3) we have
iz(f('}’l, yno+1; G)) g Z;:gl lOg /jny g E + 1

We note that 0G consists of a finite number of C!-surfaces yq, V415> Bis-:5 Big
each of which is a component of dG. Let @ be the principal function with respect
to 7,,+1, ¥1 and G, which is characterized by the following properties:

(1) deH(G)nCYG);

(2) 4=0o0ny,+; and @=1 on y;

(3) #@=¢; on andS aa—':dS=0 (i=1,..., iy), where each ¢; is a constant
with 0<¢;<1. 8

Set £o=2,(F'(y1, Yno+15 G)) and u(x)=4oi(x). Let c¢;<c,<---<c; be all
the different values of £,¢;,..., £4¢;,. Take an >0 such that

(D) cj_y+e<c;—e(j=1,...,jo+1), where co=0and c; ,, =4,

2 Zf'_fll (cj—cj—1—28) 2 £o—1,

(3) u has no critical points on level surfaces {x; u(x)=c;_,+e¢} and {x;
u(x)=c;—e}(j=1,..., jo+1).

Set R;={x; ¢;_;+e<u(x)<c;—e} (j=1,...,jo+1). Since u-has no critical
points on the level surface a={x; u(x)=c;_, +¢}, it consists of a finite number
of mutually disjoint analytic surfaces. We see easily that each component of «
divides R¥ into a bounded domain containing y,,+; and an unbounded domain
containing y,. Since u=const. on f; and %ds=0, by -using Green’s

. . b .
formula we see that a consists of a single analytic surface such that RN —a consists

of a bounded domain , containing y,,.; and an unbounded domain containing
y;. By similar arguments we see that the level surface o'={x; u(x)=c;—¢}
is a single analytic surface such that RN —a’ consists of a bounded domain Qj
containing y,,+; and an unbounded domain containing y;. Since ¢;_;+e<
u(x)<c;—e for any x € Qy— Q,, we conclude that R; is a ring domain. It is clear
that the sequence {R;}i2! satisfies the conditions (1) and (2) in theorem.

Since uo=(u—c;_,—¢)/(c;—c;-;—2¢) is harmonic on R;, u4=0 on o and
uo=1on o', we have

ou _ ou

o avo dS:(Cj—Cj._]_za) lga'ﬁds

(see, e.g., [10, Theorem 4] and [11, Theorem 3.8]). On the other hand, by (4.4)
we have

My(I)) = gkj Puoiax =

051 = S \7al2dsx.
G
By using Green’s formula we see that

ou _
LW“’S— 1.
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Therefore we have M,(I';)=(c;—c;_,—2¢)"!. From this we derive that
It ATy = Tt (ej—cj-1—20) 2 6o — 1 2 ¢,
so that we obtain the required results.

ExampLE 2. Set R,={x; 2n+ 1)V M <|x|<(2n)V/? M} (n=1, 2,...). Let
D be a domain such that D> R, for all n and y={0} is a boundary component of
D. Tt is well known that A,(I,)=(wy(N—2))"t. By Theorem 6, y is weak.
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