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Introduction

The homotopy classification of spaces and maps is a subject of classical
studies in algebraic topology. The group £(X) of self equivalences of a space X
and the subgroup &,(X) of self H-equivalences of an H-space X arose from such
classification problem. For a based space X, &(X) is defined to be the set of all
homotopy classes of homotopy equivalences of X to itself with group multipli-
cation induced by the composition of maps; and it has been investigated by several
authors including [2], [10], [19], [20] and [22], where calculating £(X) has
been made with two exact sequences, originally due to Barcus-Barratt [2], given by
either the skeletons or the Postnikov system of X. When X is an H-space, &x(X)
is defined to be the subgroup of £(X) consisting of H-maps, which has been studied
in [13] and [24] for instance. But much less examples of calculation are known;
in fact, when X is a finite 1-connected H-complex (H-space being a CW-complex),
&y(X) has determined only in case that X is of rank<2 with no torsion in
homology.

This paper is divided into two parts. In Part I, we present an exact sequence
for calculating &y(X) of a 1-connected H-complex X in terms of its Postnikov
system. The aim of Part IT is the determination of &y(G,;,) made use of the
exact sequence given in Part I, where G, , (—2=<b<5) are of rank 2 with torsion
in homology given by Mimura-Nishida-Toda [17].

Let X be a l-connected H-complex, and consider the Postnikov system
{X,} of X with obvious map f,: X— X, and usual fiber sequence

(1) Qx,_, 2k, K(n,, n) Aoy X, 2, X,_, K, K(n,, n+1)

(Q is the loop functor)

where 7,(X) is sometimes abbreviated to m, and the Postnikov invariant k”*! to k.
Then, the theorem of J. D. Stasheff [26, Th. 5] states that X, is an H-space in
such a way that all the structure maps f,, k, p, and i, are H-maps; and we have
proved in the previous paper [25, Th. 1.3] that

(2) f, induces a homomorphism f,,: &y(X)—&Ey(X,) which is monomor-
phic if n=dim X and isomorphic if n=2dim X,
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This motivates our study of relation between &y(X,) and &y(X,-,) in order to
give an exact sequence for the calculation of &(X).

For this purpose, we consider more generally the mapping track E, and the
usual fiber sequence

(3) QA 0B L,E fi.ALB of a given H-map f between H-complexes A and B,

where E is an H-space so that p and i are also H-maps (cf. [26, Th. 2]). Denote
the homotopy set by [ , ] and consider the exact sequence and the induced map

[E;, 24190, [E,, QB] 2, [E,, E;] 2% [, 4],
(3)
%
[4, @B] -2, [E,, QB].
Then, by the theorems due to Y. Nomura [19] and J. W. Rutter [22], in case
when

(3") m(A4)=0 unless m<i<n, n(B)=0 unless n<j<m+n, for some integers
n>mz2,

the restriction of the exact sequence in (3') to &(E,) (<[E,, E,]) gives us the
exact sequence

@) [4, QB] P 6(E)2H), £(4)x 8(QB) (8(QB) 2&(B), k=1+iy)

in Theorem 2.5 of groups and homomorphisms, where [ , 2B] is abelian as usual
and ¢ and y are the homomorphisms induced by p and i, respectively. Restricting
(4) to &4(E,) gives rise to an exact sequence for the computation of &4(E,) from
&u(A) and &y(B), which is our main result in Part I and is stated as follows.

THEOREM I-1. Let A and B be H-complexes satisfying (3"). Let f: A>B
be an H-map and consider its mapping track E; which is an H-space so that p
and i in (3) are H-maps. Then there is an exact sequence

&) 0 A(f) - &4(Ef) - G(f)~ 1,
where the abelian group H(f) and the group G(f) are given as follows:
() H()=p*PU)m () N p*(P(f)), P(f)=(xp*) " (6x(Ep) <[4, 2B],

where (Q2f )y, p* are in (3') and xp* is in (4); and P(f) can be taken to be the
subgroup [A, QB]y consisting of all H-maps if the condition (2.8.4) stated below
is satisfied.
(5" G(f) = {(hy, hy) € &4(A) x Ex(B)|fhy = h,f in [A, B] with a

secondary homotopy stated in (2.7.2)}.
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The sequence (1) for a 1-connected H-complex X is considered as (3) for
A=X,_,, B=K(m,, n+1) and f=k with (3”) for m=2, and the above results can
be applied to obtain the following

THEOREM I-2. Let X be a 1-connected H-complex and {X,} in (1) be its
Postnikov system. Then there are exact sequences

(6) 0-H,»&X,)-G,~»1, 0-H,>6x4X,)-G,—1,
where H,, G,, H, and G, are given as follows:
(6) H,=Im p}/Im (Qk), > H,=H(k)=p}(P,)/Im (Qk), N p¥(P,), P,=P(k),

where H"(X,_,; m,)-2% H"(X,; m,) <@ [X, QX,_,] (k=k"*'); and P, can
be taken to be the subgroup PH"(X,_; m,) consisting of all primitive elements if
the condition (3.7.5) stated below is satisfied.

(6") G, = {(hy, hp)e&(X,-) x autm,| htk = hyuk in H"NX,_,; m,)}
5 G, N(&x(X,_,)xautm,) > G, = G(k);

and G,=p(G,)c&(X,-,) and G,=p(G,)=&x(X,_,) by the projection onto the
first factor if p¥ is epimorphic.

In Part II, we consider a 1-connected H-complex of rank 2 with 2-torsion
in homology, i.e.,

@) G, (—2=b<5)given in [17, Th. 5.1] (see §4 for the definition).

The group &(G,,;) is investigated in the previous paper [18] collaborated with
M. Mimura by studying the exact sequences on the skeletons of G,, due to
Barcus-Barratt [2]. By using some results obtained there, we can show that the
groups A, in (6) and G, in (6”) with X =G, , satisfy

® H,=0 and G,=pG)céy(X,-,) for 4<n<14=dimG,,.

Notice that X;=K(Z, 3) and &x(X;3)=Z, in case X=G,,. Then, by the ex-
actness of (6) and (2), we have the following

PROPOSITION 5.6. Let f3: G, ,—K(Z, 3) be the map killing the homotopy
groups except m3, and fs,: 84(G, )~ E(K(Z, 3))=Z, be the induced homomor-
phism in (2). Then, f5, is monomorphic, and hence &y(G, ) is trivial or equal
to Z,.

Furthermore, we notice that

(9) G, is an H-space so that the inclusion S*cG,, is an H-map with
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respect to the usual multiplication on S*; and we can prove the following main
result in Part I1:

THEOREM II. Let G, be the H-space in (9). Then the group &y(G,y) is
trivial, i.e., any homotopy equivalent H-map of G, to itself is homotopic to the
identity map.

In case when a 1-connected H-complex X of rank 2 is 2-torsion free in
homology, Hilton-Roitberg [8] and A. Zabrodsky [31] proved that

(10) X is S3x 83, SUQ3), E, (k=0,1,3,4,5) or S”x 87, up to homotopy
type,
where E, is the principal S3-bundle over S7 with classifying map kw € n,(BS3)=

ne(S3)=Z,, (w: a generator). We notice that the group &y(X) of such an H-
complex X with canonical multiplication is determined as follows:

(11) ([24], [25] and K. Maruyama [11]) &x(SUB3)=Z,, &x(EY=1,
Eu(S*x SY)={a=(a;;)e GL(2, Z)|a;;=(1+(—1)*/deta)/2 modk,} (¢=3,7),

where k3;=24 and k;=240. Furthermore, we remark that &y(E,)=1 is valid
for any multiplication on E, by [24] and Maruyama-Oka [13], but K. Maruyama
[12] has proved recently that there is a multiplication on SU(3) with &,(SU(3))=1.

Part I consists of §§1-3. In §1, we attempt functorial treatments of &(X)
and of &y(X). In §2, we recall the exact sequence (4) together with the results on
Ker (xp*) and Im (¢, ) in Theorem 2.5. We prove Theorem I-1 in Theorem
2.8, and notice any multiplication on E, in Remark 2.9. In §3, we give some
corollaries to Theorems 2.5 and 2.8, and prove Theorem I-2 in Corollary 3.7.
Part II consists of §§4-7. In §4, we recall the definition and the properties of
G, given in [17], and prepare some results on p¥ and PH"(X,,_,; m,) in (6") with
X=G,; In§S, we prove (8) in Lemmas 5.4-5 under Assertion 5.3, and Theorem
IT in Theorem 5.8 by using Proposition 5.6 and the fact that n,(S3)=Z,, is gen-
erated by the obstruction to homotopy commutativity of the usual multiplication
on S3. Finally in §§6-7, we prove Assertion 5.3 by using the exact sequence of
homotopy sets induced by the fibering in (1) with X =G, , and by studying several
related homotopy sets in detail.

The author wishes to express his hearty thanks to Professors Masahiro
Sugawara, Mamoru Mimura and Shichiré Oka for their valuable suggestions and

discussions.
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Part I. Self H-equivalences of the mapping track of an H-map

§1. Preliminaries on self (H-)equivalences

In this paper, all (topological) spaces are l-connected spaces with base
points * and have the homotopy types of CW-complexes, and all (continuous)
maps and homotopies preserve *. For a space or CW-complex X, the lower or
upper indexing X, or X" is used to denote the n-stage of the Postnikov system
{X,} of X or the n-skeleton of X, respectively, unless otherwise stated. For any
spaces X and Y, we denote the set of homotopy classes of maps of X to Y by
[X, Y] as usual, and often use the same symbol to refer to a map and its homotopy
class.

A given map g: X— X' (resp. h: Y- Y’) induces the map
g*: [ X', Y] - [X, Y] with g*f=fg (resp. hy: [X, Y] - [X, Y'] with h, f=hf)

between the homotopy sets by composing g (resp. h). A cofibering (resp. fibering)
induces the Puppe (resp. homotopy) exact sequence and we have the following by
the standard homotopy theory (cf., e.g., [4]), where we say that a map g: X— X'
is n-connected if

gx: m(X) »m(X") is isomorphic for i < n and epimorphic for i = n.

(1.1.1) If g: X—>X' is n-connected, then g*: [ X', Y]-[X, Y] is bijective
when n(Y)=0 for i=n, and is injective when n{Y)=0 for i>n.

(1.1.2) If X is (n—1)-connected and n(Y)=0 for i=n, then [X, Y]=0.

(1.1.3) If h: Y>Y' is n-connected and X is a finite dimensional CW-
complex, then hy: [X, Y]-[X, Y'] is bijective when dim X <n, and surjective
when dim X <n.

Furthermore, we notice the following facts on the connectivity:

(1.1.4) If X and Y are m- and n-connected, respectively, then X X Y is
min {m, n}-connected and the smash product X AY=XxY/XvYis(m+n+1)-
connected.

(1.1.5) g: X->X'is n-connected, if and only if the homotopy fiber (mapping
track) of g is (n—1)-connected, or equivalently, the homotopy cofiber (mapping
cone) of g is n-connected.

(1.1.6) For a CW-complex X and its n-skeleton X", the inclusion j,: X" X
is n-connected.

(1.1.7) If g: X>X' and h: Y-Y' are k- and #-connected, respectively,
then gxh: XxY-X'xY' is min{k, ¢}-connected. If X,X',Y and Y’ are
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m-, m'-, n- and n’-connected, respectively, in addition, then gAnh: X AY—
X'AY’ is max {min {m+£4+1, ' +k+1}, min {m’'+k+1, n+ ¢+ 1}}-connected.

For any space X, we denote the subset of [ X, X] consisting of all classes of
self equivalences of X (homotopy equivalences of X to itself) by

&(X) (<[X, XD,

which forms a group under the composition of maps. To study this group, we
use the induced homomorphisms given in the following

LemMa 1.2. Let f: X—>Y be a map, and consider the induced maps

ix, x145 1x, v1 £ 1y, 1.
(i) Iff* is bijective, then f*~1f, defines the homomorphism
(1.2.1) f,: &(X)~&(Y) determined by (f (W) f=fh in [X, Y]for he &(X).
(i) Iff is bijective, then f3'f* defines the homomorphism
(1.2.2) f': &(Y)—>&(X) determined by f(f'(g))=gf in [X, Y] for g € &(Y).

Proor. If f* is bijective, then for he[X, X], W' =f*"1(f h)e[Y, Y] is
determined uniquely by the condition h’'f=fh in [X, Y]. Thus f*~1f, preserves
the identity map and the composition of maps, and we see (i). Similarly, we can
prove (ii). g.e.d.

For a given space X, we consider the n-stage X, in the Postnikov system
{X,} of X, ie.,

(1.3.1) X, is a space with n(X,)=0 for i>n, and there is an (n+ 1)-connected
map f,: X—-X,,

or,

(1.3.2) up to homotopy type, X, is a space obtained by attaching i-cells
with i=n+2 to X so that X, and the inclusion map f,: X = X, satisfy (1.3.1).

Then, f*: [X,, X,]-[X, X,] is bijective by (1.1.1) and f, induces the homomor-
phism

(1.3.3) Ju: €X)->&(X,) of (1.2.1) for f=f,.

When X is a CW-complex having no (n+1)-cells, we have the following
duality between &(X,) and &£(X™) of the n-skeleton X" of X :

PROPOSITION 1.4. Let X be a CW-complex, and X" be its n-skeleton.
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(@) If X has no (n+1)-cells, then the inclusion j,: X"<X and the
composition f,j,: X"—X, induce the homomorphisms of (1.2.2) in the com-
mutative diagram

e(x) L o(x,)
H =| (i
&(X)—— o(xm)

where f,, is the one in (1.3.3), and (f,j,)' is an isomorphism.
(ii) (cf. [23, Lemma 7.1]) If X is a finite dimensional CW-complex, then
Jw is an isomorphism for n=dim X.

Proor. (i) If X"*'=Xn then the induced maps in the commutative
diagram

[X", X”] (fnjn)* [X", X"] (fnjn)* [Xm Xn]

[ ” s

[x», x] =, [x», x,] <& [x, x,]

are all bijective. In fact, j, is (n+ 1)-connected by (1.1.6) since X"*1=X", and so
is f, by (1.3.1). Thus j,, and f,, are bijective by (1.1.3), and so are j* and f* by
(1.1.1) and (1.3.1).

Therefore, the induced homomorphisms j. and (f,j,)' are defined by the
above lemma, and so is also (f,j,),: #(X")—&(X,) which is the inverse of
(fujn)'- The commutativity of the diagram in (i) is seen by the definitions
(1.2.1-2).

(ii) is an immediate corollary of (i). q.e.d.

We now consider H-spaces. We use the notation ~ for ‘homotopic’ as
usual, and the ones

A X->XxX, ViXvX->X and m: XxY->XxY/XvY=XAY

always to denote the diagonal, folding and collapsing maps, respectively.

A space X is an H-space if there is a map m: X x X— X, called a multipli-
cation, such that m|XvX~V: XvX->X. When a CW-complex X is an H-
space, we call it an H-complex whose multiplication m can be taken (up to
homotopy) to be m| X v X=V. For example, we have the following:

(1.5.1) If n(A)=0 unless n<i<2n for some n21, then A is an H-space
with unique multiplication (up to homotopy).

In fact, A~ A’ (~ means ‘homotopy equivalent’) for some CW-complex A’ and
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there is uniquely an extension m’: A’ x A’— A’ of V by the obstruction theory.
We notice the following (1.5.2-6) where X=(X, m) is a given H-space:

(1.5.2) ([9, Th. 1.1]) [A4, X] for any A forms a loop with sum -H,, and
identity 0==*, where

(1.53) g+ h=mgxha: AL AxA-ER, Xx X ™ X forg, h: A> X;

i.e., for any g, g’, there are uniquely h, h’ so that g+ ,h=g'=h"+,, gand h=0=
hifg=g'

(1.5.4) ([21, Satz 6]) For A> B, assume that B A-4,A|B (i: the inclusion,
q: the collapsing map) is a cofibering, and consider the Puppe exact sequence
[4/B, X1-2,[A, X]4%[B, X].  Then, for any g, g': A»X with g|B~g’|B:
B— X, there is a separation element

d=d(g, g')e[A/B, X] such that g+,q9*d=g' in [A, X], which is unique
if q* is injective.
In fact, taking h € [4, X] in (1.5.2), we see that i*h=0and heIm g*. Especially,

(1.5.5) YvY->YxY2,YAYisa cofibering and n*:[YAY, X]->[Yx Y, X]
is injective; and

(1.5.6) for any multiplications m’ and m” on X, the separation element
d(m’, m"ye[X A X, X] is defined so that m’ ~m" if and only if d(m’, m")=0 or
d(m, m"y=d(m, m") in [X A X, X].

For H-spaces X =(X, my) and Y=(Y, my), a map f: X—-Y is an H-map if
fmy~my(fxf): Xx X—Y; and we denote the subset of [X, Y] consisting of all
classes of H-maps by [X, Y]g (<[X, Y]). Then, since fmy|XvX~fV=
VU Vv)~my(fxf)|XvX: XvX->Yforf: XY,

(1.5.7) we have the map ¢:[X, Y]-[XAX, Y] with [X, Y]g=Ker ¢
given by

d(f)=d(my(fxf), fmy) € [X A X, Y], the separation element in (1.5.4)
(cf. (1.5.5)), for fe[X, Y]

By the results due to I. M. James [9, Cor. 4.4 and §3], we notice the following:

(1.5.8) " Let (X, my) and (Y, my) be H-complexes with mX]XvX=V and
my|YvY=V. Then, for any H-map f: X—Y, we can take a homotopy F:
XxXxI->Yrel X v X of fmy to my(fxf).

For any H-space X =(X, m), we denote the subgroup of £#(X) consisting of
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all classes of self H-equivalences of X (homotopy equivalent H-maps of (X, m)
to itself) by

Eu(X) (=éy(X, m)) = &(X)N[X, X]q (= &(X)).

As a sufficient condition for £5(X)=&(X), we see the following by (1.5.7), (1.1.4)
and (1.1.2):

(1.5.9) ([24, Prop.2.7]) If [X A X, X]=0, e.g., if X is A given in (1.5.1),
then &y(X)=4&(X).

On the induced homomorphisms given in Lemma 1.2, we have the following

LEMMA 1.6. Let X and Y be H-spaces and f: X—Y be an H-map. If
f* (resp. f4) in Lemma 1.2 is bijective and

(fxO* [YxY, Yo [XxX,Y] (resp. fo: [XxX, X]->[XxX, Y]
is injective, then the restriction of the induced homomorphism
fi:6X)—>&(Y)in (1.2.1) (resp. f': &(Y)—> &(X) in (1.2.2))
defines the homomorphism
(1.6.1) f, =fi16u(X): 6u(X) > Eu(Y) (resp. f'=f'|Eu(Y): Eu(Y) > Eu(X)).

ProOOF. Assume that h: (X, my)—(X, my) is an H-map. Then, by the
assumption that f: (X, my)—(Y, my) is an H-map and the definition of h'=f(h)
in (1.2.1), we see easily that h'my(fx f)=my(h' x ") (fxf) in [X x X, Y]. Thus
h'my=my(h'xh') in [Yx Y, Y] since (fxf)* is injective, and h’ is an H-map.
The remaining half can be proved similarly. q.e.d.

When X =(X, m) is an H-space, m: X x X—X can be extended to a multi-
plication m,: X, x X,— X, uniquely (up to homotopy) for X, in (1.3.2) by the
obstruction theory. Thus

(1.7.1) the n-stage X, in the Postnikov system of an H-space X given in
(1.3.1) is an H-space with unique multiplication m, so that f,: X—>X, in (1.3.1)
is an H-map.

Furthermore, (f,xf)*: [X,x X,, X,]-[X x X, X,] is bijective by (1.3.1),
(1.1.4) and (1.1.1). Thus the H-map f, in (1.7.1) induces the homomorphism

(1.7.2) f,: Ex(X)>Ey(X,) of (1.6.1) for f=f,, which is the restriction of f,,
in (1.3.3).
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We have proved in [25, Th. 1.3] the following

(1.7.3) If X is a finite dimensional H-complex, then f,,: &g(X)—&y(X,)
in (1.7.2) is monomorphic for n=dim X, and isomorphic for n=2dim X.

By this result, the group &(X) is determined by &4(X,) for large n, and the
latter will be investigated inductively by using the fibering X,— X, _, with fiber
K(n(X), n).

§ 2. Self (H-)equivalences of the mapping track

The group &(E/) of self equivalences of the mapping track E, of f: A—B is
investigated by Y. Nomura [19] and J. W. Rutter [22]. In this section, we
study the group &,(E;) of self H-equivalences of E, which is an H-space when f
is an H-map as is seen in (2.1.4).

Throughout this section, we assume that

(2.1.1) A=(A, my) and B=(B, m,) are given H-complexes with m,|Av A=
V and m,|BvB=V, and f: A—B is a given H-map with a homotopy F: 4 x
AxI->Brel Av A of fm; to m,(fxf) (cf. (1.5.8)).

Then, by using the path space PB={¢: I-B| ¢(1)=*} and the loop functor Q,
we have

(2.1.2) the mapping track E,={(a, £{)|a€ A, £€PB, f(a)=4¢(0)} (=AxPB)
of f, and

(2.1.3) the fiber sequence QA2L0QB P.E, P, 47 .B (p: the projection, i:
the inclusion); and

(2.1.4) (J. D. Stasheff [26, Th. 2]) E is an H-space so that p and i in (2.1.3)
are H-maps, where the multiplication m on E is defined by using F in (2.1.1)
and my: PBx PB—PB (m,(4, 4")=m,(4 x £")A) as follows:
m((a, ¢), (@', ¢)) = (my(a, a'), £");
¢"(t/2) = F(a, a', 1) (0=t=1), = my(4, £') (1—1) (15122).

Hereafter, we are concerned with this H-space E,=(E,, m), (cf. also Remark
2.9). Then,

(2.1.5) the loop action p: E;x QB—E, is an H-map, and p=m(1xi) in
[E,xQB, E/], where

w(a, 6), &) = (a, (¢, £), we, £)(t[2)=4(1) (0st=1),= £'(t—1)(15t=2);
because the loop action u: PBx QB— PB is homotopic to m, | PB x 2B as usual.
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In [19] and [22], the group &(E/) is studied by considering the map
(2.2.1) «:[E; QB]— [E[, E;] defined by x(¢) = p(1xa)A for ae[E,, QB],
where 1 denotes the identity map and u is the loop action in (2.1.5). Then, we have

(2.2.2) wk(a+p) = k(P)x(x) for ae[E;, 2B] and Pelm(p*:[A, QB]
—[E,, QB)),

(+ is 4, 1in (1.5.2) of the loop multiplication x on 2B), by the following equalities
in the homotopy sets:

ka+B)=uIx W xaxp)(1x A)A
= pu(ux (I xaxf)(AXDA = px(@®)x A,
k(Pa=u(l x pAG=p@x pa)A, p'pa = f'pu(l xa)A = p'p
(@=xk(2), B'e[A4, QB])).

Now, we notice that [ , QB] is the abelian group as usual by + =4 ,=+,,
in our case, and consider

(2.2.3) [X, QB]- % [X A X, QB]-=.[X x X, QB] in (1.5.7) and (1.5.5) for any
H-space X =(X, m), where n* is monomorphic and ¢ is the homomorphism
with Ker ¢ =[X, 2B],; given by

am = my(axa) + n*p(a) for ael[X, QB] (cf. (1.5.4)),
or n*¢ = m* — p¥ — p% (p;: the i-th projection).

LemMA 2.3. (i) «x:[E; QB]-[E;, E;]in(2.2.1)is given by iy: [E,, QB]
—[E,, E] as follows:

(2.3.1) k(W)=1+isx for ae[E,, QB], where+is+,, on [, E;] given in (1.5.2).

(ii) Ifael[E;, QBly, then x(a)e [E;, E;]y.

(iii) In the sequence [E;, QA]-2L%[E,, QB1-*,[E, AE,, QBJi[E A E,,
Ef],
(2.3.2) assume that a subset Q <[E [, QB] satisfies $(Q) n Ker i, <Im (¢(Qf)y).

Then, for any aeQ with x(a)e[Ey, E ]y, there is o' € [E;, QBly such that
k(o) =k(a).

ProoF. (i) We have x(a)=pu(l xe) A =m(l X ia) A =1+ i by (2.2.1) and
the equality in (2.1.5).

(i) Noticing that u is an H-map by (2.1.5), we have similarly the following
in [E;xE,, E]:
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(2.3.3) k(@m=pu(lx)Am = m(lxic) (mxm)A = m + iom,
m(k(e) x k(@) = m(ux W1 xax1xa)(AXA)

=umxmy))(Ix1xaxa)A =m + imy(axa).

Therefore, if « is an H-map, then these are equal to each other and x(e) is an
H-map.

(iii) Let o€ Q and assume that k(«) is an H-map. Then iam=im,(a x &) in
[E;x E;, E;] by (2.3.3) and (1.5.2). Thus n*i,$(0)=i,n*¢(a)=0 and ixP()=0
by (2.2.3). Therefore,

d(@)=((2f )4p) for some Be[E,; QA], by the assumption (2.3.2).

Putoa’=a—(2f)s«f. Then ¢(«')=0,and o’ e[E, QB], by (2.2.3). Further x(¢)=
1+iu(0" +(Qf)B) =14 (i’ +ie(Qf)B)=xr(a") by (i), since i is an H-map by
(2.1.4) and i(Qf) ~ *. g.e.d.

In the rest of this section, we assume that the homotopy groups of 4 and B
in (2.1.1) satisfy

(2.4.1) m(A)=0 unless m<i<n, n(B)=0 unless n< j<m+n, for some integers
n>mz=2.

We consider the cofiber sequence in the upper line of the homotopy com-
mutative diagram

QB i, E, g C, _k, sop/Ci=E;U;CQB:the mapping cone of i,
(2.4.2) ” H lq le SQB=C;/E,: the suspension of QB,

QB E, 2, 4 S, B j: the inclusion, k : the collapsing map /,
where the lower line is the fiber sequence (2.1.3), g is the map with g(CQB) ==

and gj=p, and e is the evaluation map. Then, under the assumption (2.4.1),
we notice the following:

(2.43) p,j, q and e in (2.4.2) are n-, n-, (m+n)- and (2n+ 1)-connected,
respectively.

This is seen for p clearly, for g since py: Hy(E/, QB)—H(A) is isomorphic if
i<m+n and epimorphic if i=m+ n, hence for j, and for e since the fiber of e is
the join 2B*QB being 2n-connected ([3, Prop. 3.2] and [14, Lemma 2.3]).

Now, consider the following commutative diagram of the induced maps:
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Q2
(4, 2412, 14,081 & [C, 0B]  [4, 4]

glﬂ* ll’* . J*. Elp* :

0 - El
(2.4.4) (E,, @41 Y%, (£, 0] — [E B 25 (£, 4]
*

e

*=0 .
[B, B1 == [SQB, B]=[QB, @B]-*, [0B, E,],

where the middle horizontal sequence (resp. 2%, _i*,) is the homotopy (resp.
Puppe) exact sequence of the fiber sequence (2.1.3) (resp. cofibering in (2.4.2)).
Then under (2.4.1), we see that

(2.4.5) the maps indicated by = are all bijective, and the vertical sequence
is exact.

In fact, the two p*’s, g* and e* are bijective by (2.4.1), (2.4.3) and (1‘.1.1),' and so
the latter half holds. The lower i, is bijective, since it is in the homotopy exact
sequence with [2B, QA]=0=[QB, A] by (1.1.2).

Therefore, Lemma 1.2 shows that the restrictions of p*““p* ‘and Q-ligl*
induce the homomorphisms

¢=p,: &(E;)—&(A) determined by ¢(h)p=ph in [E,, A], and
(2.4.6) ‘
Y=Q7'i': &(E;)—&(B) determined by iQ(Y(h))=hi in [2B, E ],

respectively. Furthermore, by Y. Nomura [19, Th. 2.1, 2.9] and J. W. Rutter
[22, Th. 3.1], we have the following

THEOREM 2.5. Assume that H-complexes A and B satisfy (2.4.1). Then
the group &(E,) of the mapping track E, in (2.1.3) of an H-map f: A>B is
in the short exact sequence

(2.5.1) 0 — H(f) - 8(E)) 129, G(f) — 1,

where

252 H(f)=1m (p*: [4, QB] - [Ej, QB])/Im ((Qf)«: [Ej, QA] - [E, QB]),

G(f)={(hy, hy)| hy € E(A), h,€ &(B), fhy=h, f in [4, B]} (= &(A4) x &(B)),

K is the homomorphism induced by x in (2.2.1) and (¢, ) is the one given by
¢ and Y in (2.4.6).

This theorem can be seen by using the commutative diagram (2.4.4) with
(2.4.5) as follows. Restricting x in (2.2.1), we have the homomorphism x: Im p*
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—&(E;) by (2.2.2), and x~!(1)=Ker i, =Im (&f),cIm p* by (2.3.1) and the
horizontal exact sequence; thus it induces the monomorphism x in (2.5.1). (2.3.1),
the two exact sequences and the definition (2.4.6) imply that Imk=1+i, Im p*=
1+ (Ker p,) n (Ker i*)= (¢, Y)~1(1), since p is an H-map by (2.1.4). Im(p, )=
G(f) is seen by (2.4.6) and the following (2.5.3) and (2.5.5):

(2.5.3) For (hy, hy) e G(f), there is he &(E;) such that ph=h;p: E;—~A
and hi'—:i(ghz) in [QB, Ef]'

In fact, a homotopy H: A x I- B of fh, to h,f gives us such a map

(2.54) h: E,—~E, defined by h(a, £)=(h,(a), 4.); £.(t/2)=H(a, f) 0St<1),
=h,d(t—1) (1<t<2).

(2.5.5) For he &(E,), hy=p(h)e &(A) and h,=y(h)e &B) satisfy fh,=
h,f in [A, B]. '

In fact, by the cofiber sequence in (2.4.2) and as a dual to (2.5.3), a homotopy
H: QBx I-E, of hi to i(h,) defines
El: Ci (=Ef U,‘CQB)—* C,'

by hy|E; =h, hy(4,12) = HEY, 1) (0=t=1), = (ho4, t—1) (151£2),
so that hy j=jh: E,—~C; and kh,=(SQh,)k in [C;, S@B]. Thus, because (2.4.2)
is homotopy commutative and j*: [C;, A]-[E,, A] and g*:[4, B]-[C, B]
are injective by (2.4.3), (2.4.1) and (1.1.1), we have

qh,j=qjh=ph=h;p (since h;=¢(h))=h,gj in [E,, A] and so gh,;=hyq

in [C;, A];

fh,q=fqh,=ekh,=e(SQh,)k=h,ek=h,fq in [C;, B], and so fh,=h,f
in [A4, B].
We now study the subgroup &4(E,) of &(E,) for the H-space E,=(E,, m)
in (2.1.4).

LEMMA 2.6. Assume that Q=Im (p*: [A4, QB]-[E,, QBY) satisfies (2.3.2).
Then

k" (Eu(E () =p*(P)[(Im (Qf)x) N p*(P), P=[A, QBly, for x in (2.5.1).

PrOOF. If a € p*(P), then a € [E,, 2B]y since p is an H-map by (2.1.4), and
so x(x)e[Ey, E;]y by Lemma 2.3 (ii). Conversely, assume that aeQ satisfies
k(a@)e[E;, Efly. Then
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(2.6.1) k(x)=x(«') for some o' €[E; QBly by Lemma 2.3 (iii).

This implies that o' — « € Ker iy, by Lemma 2.3 (i), and Ker i, =Im (2f),=<Q. Thus
(2.6.2) o' €[E;, QBly N Q and o' = p*B for some Be[A, QB].

On the other hand, by (2.4.3), (1.1.7), (2.4.1) and (1.1.1), we see that

(2.6.3) pAp:E;AE;—»AAA is(m+n)-connected, and (pAp)*:[A AA, QB]
~[E,AE, QB].

Consider the homomorphism ¢: [X, QB]->[X A X, QB] in (2.2.3) for X=A4
and E,;. Then, (pAp)*¢p=¢p* by the definition of ¢, since p isan H-map by
(2.1.4). Thus (2.6.1-3) and [X, @B]y=Ker ¢ in (2.2.3) show that (p A p)*¢(f)=
¢(a)=0, ¢(B)=0, fe[A, QB]y=P and k() =x(p*p) € k(p* P). g.e.d.

LEMMA 2.7. (i) By restricting (@, ¥) in (2.5.1), we have the homomor-
phisms

(2.7.1) ¢: 6y(Ep) —> E(A), Y Eu(Ej) —>E(B)=2Ex(B),
(@, ¥): E4(E)) > G(f)=G(f) N (8x(A) x &4(B)).
(i) Im(@, ) is the subgroup of G(f) consisting of all (hy, h,) e &(A) x
&(B) satisfying the following property:

(2.7.2) There are homotopies H: AxI1—B of fhy to h,f (i.e., (hy, h,) € G(f))
and

Hi:AxAxI—>ArelAv A of hym, to my(h, x h,) (i.e., h; € &4(A)),
H,: BxBxI — Brel Bv B of h,m, to my(h, x h,) (i.e., h, € &,(B)),

and in addition, there is a secondary homotopy D: Ax AxI*->B (I*=Ix1)
such that D(a, a', s, t/2) ((s, t/2) € I?) is

fH(a, a', 5)(1=0),
H(m,(a, '), t)(s=0,0<t<1), hyF(a,a', t—1)(s=0, 121<2),
Hy(f(a), f(a'), 5)(t=2),
F(hy(a), hy(a’), t)(s=1, 0<t<1), my(H(a, t—1), H@@', t=1))(s=1, 1<t<2),
where F: Ax AxI-Brel Av A is a homotopy of fm, to m,(fxf) given in (2.1.1).

Proor. (i) By (2.4.3), (24.1), (1.1.1) and (1.1.7), (px p)*: [Ax A4, A]—
[E,x E;, A] is bijective. Thus the H-map p induces ¢=p,: &y(E;)—Ex(A) in
Lemma 1.6, which is ¢ | §y(E[). &y(B)=¢&(B) is seen by (2.4.1) and (1.5.9).
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(ii) We can prove (ii) by the same proof as that of C.-K. Cheng [6, Th. 2.2]
(where B is assumed to be K(n, n+1)) as follows. Consider he &£(E;) given by
(2.5.4) for (hy, h,) e G and a homotopy H. Then, by the definition of m in (2.1.4),

(2.7.3) we have Do(~hm), D,(~m(hxh)): E;xE,—E, such that pD,=
hym(p x p), pDy=m (h,px h,p) and
p'D((a, ¢), (a’, ¢))(t/3)(p': E; > PB is the projection)
= D(a, a', s, t/2) in (*) (sel, 05t<2),
= hym,(4(t—2), ¢'(t—2)) (s=0, 251=3),
= my(h,4(t—2), h,£'(t—2)) (s=1, 251=3).
Thus, if (hy, h,) satisfies (2.7.2), then D and H; give us a homotopy of D, to D,
immediately, and h € &4(E/).

Conversely, assume that he &y(E,;). To show the existence of H; and D,
we deform D; in (2.7.3) to

(274) D(~D,): E;xE;~E, (se) so that Dy=Dj on E;vE,, by setting
pD,=pD, and

pPD(,)({/4) =pDy(,)3) for 0=t <4,
where ¢t = min{¢, 2} (s=1, 05t £3), = max {0, ¢ — 1} (otherwise).
On the other hand, since p is n-connected by (2.4.3), we see that

(2.7.5) p:E;—>A has a cross section t: A"—E, (pt=j: A"cA) on the
n-skeleton A" of A.

Then, since D is homotopic to D} by the assumption, we see the following by
[9, Cor. 4.4 and §3]:

(2.7.6) There is a homotopy D': A"x A*xI—E, rel A"v A" of Dyt x 1)
to D'y(t x 7).

Now, for any homotopy H,: Bx Bx I-Brel Bv B of h,m, to my(h, x hy), p'D’-
(a, a’, s)(t'/4) for 3=t'<4 is equal to H,(p't(a)(t' —3), p't(a’)(t'—3), s) if ' =4
orsel or (a, a’)e A" v A" by (2.7.3-4). Therefore, by the homotopy extension
property, we can deform the map A"x A" xI>—B given by p'D’: A"x A"x I—
PB to

(2.7.7) D': A"x A"xI?*-B such that D'(a, a’, s, t'/3) is stationary on s if
(a, a’)e A" v A" and is equal to
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fpD'(a, @', 5)(t' =0), Hy(f(a), f(a'), 5)(t' =3), D(a, a’, s, t/2)
in (%) (sel, 0<t'<3 and ¢ is the one in (2.7.4)).
Furthermore, by the obstruction theory and (2.4.1), we can extend

(278) pD': A"xA"xI—A to a homotopy H,: AXxAxI—»A relAvA of
hym; to m(h; x hy), and then D’ in (2.7.7) to D': Ax A xI?>-B so that D'(a, a’,
s, t'[3) is stationary on s if (a, a’)€ Av A and is equal to

D(a, a', s, t2) in (*) if (s, t'/3)eI?, where t = min {t’, 2} (s=1 or t'=3),
= max {0, t'—1}(s=0 or ¢'=0).
Thus D’ can be deformed to D in (2.7.2), and (h,, h,) satisfies (2.7.2). qg.e.d.

By Theorem 2.5 together with Lemmas 2.6-7, we see immediately the fol-
lowing theorem, which is Theorem I-1 in the introduction.

THEOREM 2.8. Assume that H-complexes A and B satisfy (2.4.1) and
consider the mapping track E; in (2.1.3) of an H-map f: A—>B, which is an
H-space by (2.1.4).

(i) Then the group 64(E) of all self H-equivalences of E, is in the exact
sequence

(2.8.1) 0 — A(f) <5 8(Ep) 9, 5(f) — 1

obtained by restricting the one in (2.5.1), where I-I(f)=x‘1(¢£’H(Ef)) for k in
(2.5.1) and

(2.8.2) G(f)={(hy, h,) € &4(A) x Ey(B) | (hy, hy) satisfies (2.7.2)}

<= G(f) N (€u(A) % Ex(B)).

(i) Furthermore, consider the diagram
[4, @B]
(2.8.3) lp*
[E;, Q412D+, (£ QB] %, [E,AE; QB %, [E,AE,, E,],

where ¢ is the homomorphism defined by (2.2.3), and assume that
(2.8.4) Im (¢p*) NKer i, = Im(¢p(2f),).
Then the group H(f) in (2.8.1) is given by

(2.8.5) A(f) = p*([4, 2B1x)/(Im (2f),) N p*([4, 2B]y).
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Throughout this section, we have been concerned with the H-space (E,, m)
given in (2.1.4). We conclude this section with the following remark on any
multiplication on E;.

REMARK 2.9 (cf. [26, Th. 4], [5, Cor. 1.9]). Let A and B be CW-complexes
with (2.4.1) and f: A—B be a map, and assume that the mapping track E, of f
is an H-space with a multiplication m’. Then A is an H-space with a multi-
plication m, so that p: E;—A and f: A—B are H-maps, where B is an H-space
with unique multiplication m, by (2.4.1) and (1.5.1). Furthermore, there is a
homotopy F rel Av A of fm, to m,(fxf) so that m’ is homotopic to m given in
(2.1.4) by using F.

PrROOF. Since (px p)*: [Ax A, A]=[E,xE;, A]and (pv p)*: [AV A, A]=
[E; VE,, A]by(2.4.3),(2.4.1)and (1.1.1), we have m;: A x A— A with m,(p x p)=
pm’in [E;xE;, AlJand m;|Av A=V. Consider

(29.1) [A, B]-% [AA A, B] ‘2222, [E, AE,, B], where (p A p)* is injective by
(2.6.3), (2.4.1) and (1.1.1),

and ¢ is the map in (1.5.7) for (4, m,) and (B, m,). Then we see ¢(f)=0 and
fe[A, Bly, because

(P A D*O(f)=d(my(f % [), fmy)(p A p)=d(my(fp x fp), fpm’)=0
by (1.5.2-7), my(p x p)~ pm’ and fp~+*.

To show the second half, consider the H-space (E, m) given in (2.1.4) by using
a homotopy F: AXAxI->B relAvA of fm, to my(fxf). Furthermore,
consider the sequence

[And, QB @AY [E, AE, QB] M, [E,AE,, E;] 2% [E,AE,, A],
where (p A p)* is bijective by (2.6.3) and -i*, P+, jsexact. Then, since pm=
my(p x p)~ pm’,

(2.9.2) the separation element d(m, m)e[E, NE,, E,] in (1.5.6) is
(p A p)*iyow for some we[AA A, QB].

By using this w, define the second homotopy F: Ax AxI—-Brel Av A of fm, to
my(fx f) by
F(a, a', t) = my(F(a, a', t), (wn(a, a’))(?)
(m: AxA—> AA A is the collapsing map).

Then, by the definition of the multiplication in (2.1.4) and u~m(1 x i) in (2.1.5),
we see that
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(2.9.3) the multiplication m on E, given in (2.1.4) by F is equal to m+ ,iw
s
(pAp)m in [E;xE;, E[].

Thus, m'=m+ ,n*d(m, m")=m+,7*(p A p)*iyo=m in [E;xE,, E,] by (1.5.4)
and (2.9.2-3). q.e.d.

§3. Some corollaries to Theorems 2.5 and 2.8

In this section, we give some corollaries to Theorems 2.5 and 2.8 under the
situations given in §2 with suitable additional assumptions.

In the first place, we study the groups G(f) in (2.5.2) and G(f) in (2.8.2).
Corresponding to these groups, the projection p: &(A)x &(B)—&(A) defines
the epimorphisms

(3.1 p: G(f) = p(G(NN(=€(A), p:G(f)— p(G(f)) (<= Ex(A)).
COROLLARY 3.2. In Theorem 2.5 (resp. 2.8), assume in addition that
(3.2.1) the induced map f*: [B, B]~[A, B] is injective on &(B) (resp. &x(B)).

Then p: G(f)~p(G(f)) (resp. §: G(f)~>p(G(f)) in (3.1) is an isomorphism.

Proor. If f* is injective on &(B), then the second factor h,e &(B) of
(hy, hy) € G(f) is determined by h; e€(A) and the condition fh,=h,f in [A4, B].
Thus p in (3.1) is isomorphic. The rest can be proved samely. q.e.d.

Let A; (i=1, 2) and f': A];— A’ be given, and consider the case when

(3.3.1) A=A,, B=A4,, A;=QA4; with the loop multiplication m;, f=Qf":
A=QA|—>B=QA), and

(3.3.2) the multiplication m on E, given in (2.1.4) is defined by using the
stationary homotopy F: Ax AxI—B of fm;=m,(fxf) (where the equality
holds by definition).

COROLLARY 3.4. In case (3.3.1-2), assume in addition to Theorem 2.8 that

(34.1) ¢éy(4)<Im (Q: [A4}, A]]-[A4;, A]), eg., 3m=2n—1 in (2.4.1), and
(3.4.2) Q:[A4Y, A3]1-[A4,, A,]1=[A, B] is injective.

Then G(f)=G(f)={(hy, h;) € 8a(4) x &x(B) | fhy=h, f in [4, B]} in (2.8.2).

PrROOF. If h;e £4(A;), then h;=Qh; for some h;e &(A;) by (3.4.1) and we
have the stationary homotopy H;: A;x A;x I>A; of hym;=myh;x h)) (i=1, 2).
Assume that fh, =h,fin [4, B]. Then f'h|=h5f" in [4}, A5] by (3.4.2); and a
homotopy H': A} xI—A), of f'h to hyf" defines a homotopy H: AxI—-B of
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fhyto h, foy H(a, t)(u)=H'(a(u), t) for a e A=QA, which satisfies H(m(a, a’), t)

=m,(H(a, t), H(a’, t)) by definition. Thus, a secondary homotopy D: 4 x A x
I2-B in (2.7.2) can be defined immediately, and (h,, h,) € G(f). We see that
(3.4.1) holds if 3m=n—1, because

(3.4.4) ([28, Lemma 7.4]) Im(Q: [X, Y]-[QX, QY])=[QX, QY] if X is
n-connected and n(Y)=0 for i>3n+1. g.e.d.

In the rest of this section, we consider the Postnikov system of an H-space.
On the Eilenberg-MacLane space, the following are well known:

(3.5.1) An Eilenberg-MacLane space K(m, i) (i=2) is an H-space with
unique multiplication which is the loop multiplication on QK(r, i+1)=K(=, i),
and

&(K(m, i)) = &y(K(m, i)) = aut = (cf. [10], (1.5.1) and (1.5.9)).
3.5.2) [X, K(m, i)] = H(X; n), and
[X, K(n, i)]y = PH{X; n) when X is an H-space (cf. [27]),
where PHY(X ; 7) is the subgroup of Hi(X; w) consisting of all primitive elements.
Now let X =(X, m) be a given 1-connected H-space, and
(36.1) {X,f:X->X,P;:X,> X, , k"' e H" (X, _;m)}  (m,=m,(X))
be the Postnikov system of X, that is (cf. [26, Th. 5] and Remark 2.9),

(3.6.2) X,=(X,, m,) is an H-space with n(X,)=0 for i>n (X,=x*, X,=
K(m,, 2)) and f,, is an (n+ 1)-connected H-map in (1.3.1) or (1.3.2) with (1.7.1),

(3.6.3) k**le PH""Y(X,_,; n,)=[X,-1, K(xt,, n+1)]y is the Postnikov invariant
of X, p, is an H-map with p,f,=f,-, in [X, X,_,], and we have a fiber sequence

(3.6.4) QX,_, 2K K(n,, n) =, X, P2y X,_, K71, K, n+1)

which is homotopy equivalent to the one in (2.1.3) for f=k**!, and so is the H-
space X, to the H-space E in (2.1.4) for the H-map f=k"*1.
Then, we have the homomorphisms

(3.6.5  @,=fu: (X)>&(X,) and $,=0,|6u(X): Eu(X) — Eu(X,)

of (1.3.3) and (1.7.2), respectively. Furthermore, for n=3, A=X,_, and B=
K(m,, n+1) satisfy the assumption (2.4.1) with m=2, and we have the homomor-
phisms

(366) (pn = pnl: é'(Xn) - éa(Xn—l) and ¢n = (pnigH(Xn): gH(Xn)_) é”I:l()(n—l)
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of (2.4.6) and (2.7.1), respectively; and by definition, there hold the equalities
(3'67) 0nPp =P,y and @nan = 51;-—1 (Since pnfn an—l)'

By applying Theorems 2.5 and 2.8 to the fiber sequence (3.6.4), we have the
following corollary, which is Theorem I-2 in the introduction.

COROLLARY 3.7. Let X be a l-connected H-complex. Then the groups

&(X,) and &y(X,) of the n-stage X, in the Postnikov system (3.6.1) of X have the
following properties: '

(i) ¢(Xy)=6u(X;)=autn, (m,=m(X)).
(ii) Let n=3, and consider the induced homomorphisms
(370 H'X,-13 m,) 255 HY(X,; 1) =[X,, K(r,, )] 2D, (X, 0X,_,]

for p, and k"*! in (3.6.4). Then we have the exact sequences

0— H, £, &(X,) Y=¥ G, 1
(3.7.2) u o u o U
0—>ﬁn—x—> (fH(Xn)w—”—w—')»Gn—> 1
of (2.5.1) and (2.8.1) for the fiber sequence (3.6.4), where
(3.7.3) H,=H(k"*')=Im p*/Im (Qk"*"),,  G,=G(k"*")c&(X,_,)x aut m,,
A=Ak =x"'Eu(X,),  G,=8(k") <G, (6u(X,-y) xautm,).

(iii) Furthermore, in addition to (3.7.1), consider the sequence
(374) H"(X,;n,) 25 H'(X, A X, 1) =[X, A X, K(x,, 1)] £, [X, A X, X,],
where ¢ is defined by (2.2.3) with X=X, and i, is in (3.6.4), and assume that
3.7.5) Im (¢p¥) nKer i,y = Im (P(Rk™H1),).
Then the group H, in (3.7.2) is given by
(3.7.6) A, = p¥P,/(Im (Qk"*1),) N p}P, (P, = PHY(X,,; m,)).
(iv) If p¥ in (3.7.1) is epimorphic, then the epimorphisms
(3.7.7) p: Gy = p(G)(cE(X,-1), P Gy p(G,)(=Eu(X,-1),
deﬁned by the projection p: &(X,_,) x aut n,—»&(X,_,), are isomorphic.

ProOF. (i) is in (3.5.1), and (ii) and (iii) are the consequences of Theorems
2.5 and 2.8.
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(iv) There holds the exact sequence H"(X,_;; m,) 2*» HYX,; &) —>H"*!
(my n+1; m,) k20 gr+3(X, s m,) of the fiber sequence (3.6.4). Therefore
(k"*1)* is monomorphic since p¥ is epimorphic. Thus we have (iv) by Corollary
3.2 q.e.d.

In the above corollary, the upper exact sequence of (3.7.2) has been obtained
by J. W. Rutter [22, Cor. 3.2]. By D. W. Kahn [10], the homomorphisms
@, in (3.6.5) and ¢, in (3.6.6) have been considered and the group p(G,) has been
investigated in [10, Lemma 2.1].

ExaMPLE 3.8. Consider the case that the homotopy groups of an H-complex
X are trivial except for n,=n,(X) and n,=n,(X) (n>m=2). If the Postnikov
invariant k is in the image of the cohomology suspension Q: H***(x,,, m+1; n,)
- H"t (., m; m,) and this Q is monomorphic, then we have the exact sequence

0-H-éy(X)»G-1,

where H=f*PH"(n,, m; n,) (f,=p,: X=X,—»X,_,=K(n,, m)) and G is the
subgroup G(k) of aut m,, x aut n, given in (2.5.2) for k: K(n,,, m)—K(n,, n+1).

ProOF. In the exact sequence [X A X, QX,_,]- 20+, [X A X, K(r,, n)] -i*»
[XAX, X](X=X,), the first term is H* (X A X; =,,)=0. Thus Keri, =0 and
(3.7.5) is satisfied. Further, [X, QX,_;]=H"YX; n,)=0. Therefore we
have the desired exact sequence by Corollaries 3.7 and 3.4. q.e.d.

The following lemma on (Qk"*1), in (3.7.1) will be used in the later sections.

LEMMA 3.9. Let X* be the ¢-skeleton of a CW-complex X, and assume that
Xrn=Xr"tyge" for some g:S" ‘=Xl If (Sg)*: [SX"!, X]-n(X) is
trivial, then so is (Qk"*),: [X,, QX,_,]1-[X,, K(«,, n)] in (3.7.1). Further-
more, the converse is also true when X" 1=Xn""2,

Proor. We consider the commutative diagram

[x,, @x,1 L5 rxn ax,1 25 pxe-t, @x,1=[5x, X,1 55 7(x,)
(39.1) j(ap,)* jmp,)* :[ » —]f,*
(fain)* J* n—1 -1 (S)*
[X,, QX,-1] - [X", QX, 4] - (X", QX,(] [SX" !, X]— 7, (X),

where j,: X"cX and j: X*"'<X". Because j,, j, f, and p, are n-, (n—1)-,
(n+ 1)- and n-connected, respectively, by (1.1.6) and (3.6.2-3), we see the following
by (1.1.1), (1.1.3) and (3.6.2):

(3.9.2) In (3.9.1), the maps indicated by = are all isomorphic; and
(3.9.3) the right (Qp,)s is epimorphic, and is isomorphic if X"~ 1=X""2,
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Furthermore, the upper -, $9)% s exact by the Puppe sequence of the cofibering
Sn-1_6, Xn-1 4, Xn and

(3.9.4) the lower (Sg)* is trivial if and only if the upper j* is epimorphic.

Since the left (2p,), and (Qk"*1), in the lemma form the exact sequence of the
fiber sequence (3.6.4), these imply the lemma. q.e.d.

Part II. Application to H-complexes of rank 2 with 2-torsion

§4. The Postnikov system of the H-space G, ,

We now recall the 1-connected H-complex G, , of rank 2 with 2-torsion in
homology.
Let G, be the compact exceptional Lie group of rank 2, and

(4.1.1) V5 ,=S0(7)/[SO(5)=M°®y e'' (M®=S°U,e® is the mapping cone of 2¢;)
be the Stiefel manifold. Then we have the principal bundle

(4.1.2) S3-i,G,-2,V,, with classifying map f: V, , — BS3,

which has the following properties by [17, Lemmas 4.3, 4.2]:

(4.1.3) G,=(G,)° Uyettu e, (G,)° (the 9-skeleton of G,)=p 1(MS),
w€en,o((Gy)°)=Z,,¢ is a generator, and the homomorphism n,o(S3)(=2Z,5)—
710((G,)®) induced by the inclusion S3<=(G,)° maps a generator aem o(S?)
to 8w.

Now, for each integer b, consider ba € 7o(S*)=m,,(BS3) and the composition
(4.14) f,=V(fvba)yp: V,, 2.V, ,vs1t Svba, pgs\ pss V, pss,

where ¢ is the map collapsing the equator S1°x {1/2} in V; ,=MSy CS'®. Then
we have

(4.1.5) the principal bundle S3-,G,,— V,, with classifying map f, in
4.1.9

(e.g., G;,0~G,), and Mimura-Nishida-Toda [17, §§5-6] proved the following

(4.1.6) G, is a 1-connected H-complex of type(3,11) so that the inclusion
S3< G, is an H-map with respect to the usual multiplication on S3.

In fact, consider the collection P, of all primes #3, 5. Then, there are a
P,-equivalence h,: G,—G,, and a {3, 5}-equivalence h,: E,—G,, such that
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hji~i (i: the inclusion), where E, is the S3-bundle over S'! induced by a {3, 5}-
equivalence S''—V,, from (4.1.5). There are also p-equivalences h;: E,—G,
or hy: S3x S1'—E, for p=3, 5 such that h;i~i. These h; induce a multipli-
cation on G,, so that i is an H-map by [16], since i: S3>G, and iy): S3,)—
83 x Sthy, for odd prime p, are H-maps with respect to the usual multiplication
on S3.

Furthermore, they proved the following

(4.1.7) ([17, Th. 5.1]) Let X be a 1-connected H-complex of rank 2 such
that H(X; Z) has a 2-torsion. Then X is homotopy equivalent to G,, for
some b; and there are just 8 homotopy types of such H-complexes: G,, for
—25bsS.

By the results obtained in [17], G, , satisfies the following properties:
(4.2.1) HX(Gyp; Z,)=Z,[x3]/(x$)® A(x5), Sq*x3 = x5, Sq*x5=0 (deg x;=1),
H*(G, 5 Z,)=A(y3, y11) for each odd prime p (deg y;=i).
(4.2.2) G, has a cell structure given by
Gy~ X=S3UeSUeluetue’Uellye* (—2=b=5).

(4.2.3) For the n-skeleton X" of this H-complex X, X°~(G,)° in (4.1.3)
and
X5 = S3Up,e® (n,em,,(S") = Z, is a generator, n = 3),
X6/S3 = M6, X°/X6 =M®° (M"t1=8"y,e**!,2 = 2¢,emn,(S"),
X=X Uyme'"  ((b)=(1+8b)w e m;o(X®)=110((G2)°)=Z20)-
(4.2.4) ([18, Lemma 3.3]) m,=n,(X)=mn,(G,;) (n=14) is 0 except for
TC3=Z, 71.'6=Z3, le (b—_— —2), 7[13=Zs (b= "“2,1,4),
Z6 (b= -2,1,4)3

ng=Z,, n9=Zs, Tio=\Z2Z3 (b=14), T14=Z165D
Z, (b=-1,0,2,3,5).

T =Z@Z,, Zs (b=3),

In the rest of this paper, we study the group &u(X)=86y(G,,) of self H-
equivalences of the H-complex X ~G, , in (4.2.2), by applying Corollary 3.7 and
by using some results obtained in the previous paper [18], where the group
&(X)=¢£(G,) of self equivalences is determined up to extension (we notice that
S. Oka [20, Th. 9.4] has determined it in case b# —2).

In this section, we prepare some results on the cohomology of the Postnikov
system
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(4‘31) {Xm fn: X_')Xm Pn: Xn_)Xn—D k"+1€PH"+1(X,,_I; TC,,)}

_ » ) (TC” = n(X) = hn(Gz,b))
of the H-complex X ~G, , in (4.2.2), (cf. (3.6.1)).
In the first place, we have the following lemma on the induced homomorphism

(43.2) p¥. H(X,_,; m,)— H*X,; =,) of p, in (4.3.1).

LemMa 4.4. (1) H"(X,; m,)=0if4=<n=<13 and n+#8, 9 and 11.
(ii) If n=8,9 and 14, then p¥ is isomorphic and

H"(X,; m,) = H(X,; Z,) = Z, (n=8,9), H™X4; m14) = Tys.
(iii) Ifn=11, then H'Y (X |,; n))=71,=Z®Z,,
HY (X o; 1) X HY(X 95 Z,) =Z, by ¢, where t: Z, <« Z® Z, = 744,
and p¥,: Z,»Z®Z, is equal to the inclusion c¢.

Proor. Since p,f,=f,-; in [X, X, ], we have

* *
@4.1)  fr, =frpr HY(X, ;5 n) 25 HY(X,; m) L5 H(X; ),

where f¥* is isomorphic because f, is (n+ 1)-connected.

(i) follows immediately from the cell structure of X in (4.2.2), ns=0 and
ng=2Z, in (4.2.4) and H%(X; Z;)=0 in (4.2.1).

(i) We notice that X™ is 2-connected by (4.2.2) and (X", X™) is m-connected
for m<n. Therefore by the Blakers-Massey theorem, (X", Xm) = (X" X™)
if i<m+2, and it holds the exact sequence

44.2) n(X™) > (X") - (X" X™) > 7 ((X™) > -« for i<m+ 2.
Since X°/X6=M?°==S8 U,e° by (4.2.3), we have the exact sequence

(4.4.3) 7y(X°) - ng(X) (=15) » 1g(M?) (=Z,) > 17(X6) > 1(X%) (=),

where n,=0, ng=2Z, by (4.2.4), and n(X®)=Z, by [18, Lemma 3.7]. Therefore,
(4.4.4) jeu: mg(X)—>ng(X) (=2,) is epimorphic, where jg: X6 X.

This and the definition (1.3.2) of X, imply that (X,)°=X?° U e where &} is attached
to X6. Thus

(4.4.5) fox: Ho(X) = Hy(X,), where Hu( )= Hu( ;Z).
Furthermore f,_4: H,_(X)=H,_,(X,-,), and

(4.4.6) Ho(X)=0, Hy(X)=Z,, Hy(X)=0=Hgy(Xg) (by (4.2.2-3) and (1.3.2)).



100 Norichika SAWASHITA

Therefore, for n=8 and 9, we see that f*_, in (4.4.1) is isomorphic and (ii) holds
since ng=Z, and ny=2Zg.

Since X=Xy e!4 by (4.2.2), we have the exact sequence m ,(X'!)—
714(X)—>7,4(S*) (=Z) by (4.4.2), which implies that

(4.4.7) ji1x: T a(X1)> 1, X) (=7, in (4.2.5) is epimorphic (since 7y,
is finite).

Therefore, we have samely f;34: H,4(X)(=Z)x~H,,(X,3) and (ii) for n=14.
(iii) Consider the exact sequence

(4.5.1) 7,(X%) L2 7y (X) (=71y,) 25 7y (X)XO) (21, (S1)=2Z) -2 m,0(XO)

of (4.4.2), where jo: X°c X. Then (4.1.3) and X!!'=X°U,pe!! in (4.2.3) show
that

(4.5.2) 7w o(X%)=2Z,,0 and Im 0 are generated by w and (1+8b)w,
respectively.

Therefore,
(4.5.3) Imp, =Kerd = myZ, where m, = 120/(|1+8b|, 120), and
(4.54) Imjo, =Kerp, =2, cZ®Z, = 1y, (cf. (4.2.4)).

Thus, by (4.2.2) and the definition (1.3.2) of X, we have X12=X9y e!! and

(4.5.5) (Xjo)2=X°Uelluel2yel?2 with Odel2=mye'!, 0ei?=0 in the
chain complex.

Therefore fyo4: Hy{(X)=Z—-H,(X,0)=Z,, is epimorphic, and we see (iii) by
(4.4.1) and by noticing that m, in (4.5.3) is a non-zero even integer. q.e.d.

On the subgroup PH"(X,; m) consisting of primitive elements, we have the
following

LEMMA 4.6. PH"(X,; 1,)=0 if n=8, 9, 14, and PH'Y(X,,; Z,)=0.

Proor. By Lemma 4.4 (ii) and (4.2.1), H*(X,,; n,)=HX; Z,)=Z,(n=8,9)
and H'Y(X,,; Z,)=H'\(X; Z,)=Z, are generated by x;x5, x3 and x3xs, re-
spectively. We see easily that these elements are not primitive by definition,
and the lemma holds for n=8, 9 and 11.

To show the lemma for n=14, it is sufficient to prove that

(4.6.1) PH™(X,4;Z) =2 PH'YX;Z)=0 for q=2,3,7and8,
by (4.2.4) for n;,. When g is a prime, (4.2.1) shows that H%(X; Z)=Z, is
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generated by x3xs if g=2 and by y,y,, if ¢#2, which are not primitive. Thus
(4.6.1) holds for g=2, 3 and 7.

H'"(X; Z)=Z is generated by z;z,; where z;e H(X; Z)=Z (i=3,11) is a
generator by (4.2.1). Therefore, by considering the reduction mod 8, we see that
HY(X; Zg)=Zg is generated by uju,, where u;e H(X; Zg)=Zg (i=3,11) is a
generator. Suppose that u=~/uju,, is primitive. Then its reduction mod 2 is
also primitive and hence is 0 by (4.6.1) for g=2. Thus £=2¢’'. Furthermore,
we see that 2H (X ; Zg)=0 if 4<i<10 by (4.2.2-3). Hence, for the i-th pro-
jections p;: X x X—-X (i=1, 2),

pYu+ piu=m*u)=m*(¢'u3)m*(2uy,)=6'(ptus + p3us) 2ptus . +2p3u;,)

=pfu+piu+4(ptus- pjuy+pius-piuy,) in H¥H(X xX; Zg),

which shows £=0 mod 8. Thus (4.6.1) holds for g=38. q.e.d.

§5. The triviality of self H-equivalences of G, ,

We now study the group &u(X)=4&(G,,) of self H-equivalences of the
H-complex X ~G,, in (4.2.2). The notations given in §4 are used continuously.

By the cell structure of X in (4.2.2), Proposition 1.4 and (1.7.3) show the
following

Lemma 5.1. (i) f,j,: X"<X—X, induces the isomorphism
(fudn)': €(X,) = &EX")  for n=3,6,9,11, 12and 14.

(i) The induced homomorphism &,=f,,: Eu(X) (=64(Gyp)) > Eu(X,) in
(3.6.5) is monomorphic if n=14 and isomorphic if n=>28.

We investigate the group &yx(X,) by using Corollary 3.7. Consider the
exact sequence

(5.2.1) 0-H,- &y(X,)> G,—»1(n23) in (3.7.2) for X~G,,,
and the diagram
(X, QX,] H'(X,-y5m) H'WX,AX,; Z) [X,AX,, X,]

(522 |@kn I Jestn=11) =

[X, K(ny W] = H'(X,; 1) £ HM( X0 A X3 1) = [ X, A X,y Ky, 1)]
of (3.7.1), (3.7.4) and ¢, for n=11, where ¢: Z,cZ®Z,=mn,, (cf. (4.2.4)). Then
we have the following assertion, which will be proved in §§6-7:

ASSERTION 5.3. In (5.2.2), i,x (n=8,9, 14) and i, ¢, are monomorphic.

By this assertion, we see the following
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LEMMA 5.4. Let 4<n=<14. Then Im(¢p})nKeri=0 in (5.2.2) and
A,=0in(5.2.1). o
ProoOF. Lemma 4.4 (i), (iii) and the above assertion imply the first equality
which assures. the assumption (3.7.5). Thus H, is the quotient group of p*-
(PH"(X,_,; m,)) by Corollary 3.7 (i), and we see that H,=0 by Lemmas 4.4
(i), (iii) and 4.6. g.e.d.

Furthermore, by using some results obtained in [18], we can prove the
following

LemMa 5.5. j:G,-p(G)(céu(X,-)) in (3.7.7) is isomorphic for
4<n<14.

PrOOF. When 4<n=<14 and n#11, the lemma is seen immediately from
Corollary 3.7 (iv) and Lemma 4.4 (i)-(ii). To show the lemma for n=11, consider
the commutative diagram

Hu_ £ 5(X11)M)—4 Gy £, p(Gi1) =&(X10) ﬂ* & (X,)

(5.5.1) jz. ‘ J ~
£(X1) — I £(x),

where the two vertical isomorphisms are the ones in Lemma 5.1 (i), the homomor-
phism j' induced from j: X°< X! is defined by Proposition 1.4 (i) and (4.2.2), the
upper homomorphisms are the ones in (3.7.2) and (3.7.7), and the commutativity
is seen by the definition (1.2.1-2) and p, f,=f,-; in [X, X,_] (cf. (3.6.3)). Then,

(5.5.2) Kerj' = Z, (by [18, Proof of Lemma 4.2]).

Furthermore, H,,=Im p¥,/Im (Qk!?), (see (3.7.3)) is Z, because Im p}f, =Z,
by Lemma 4.4 (iii) and Im (Qk'?),=0 by X!''=X°U,pe'! in (4.2.3), Lemma
3.9 and [18, Lemma 3.11]. Thus

(5.5.3) Gy1=26(X,y)/Imk, ImxxH,,=Z, (by the exactness of (3.7.2)).

These imply that the epimorphism.p: G,;—p(G,,) in the commutative diagram
(5.5.1) is isomorphic, and so is its restriction j: G,;—p(G,,). g.e.d.

By the above two lemmas, we have the following

PROPOSITION 5.6. -For X ~G,, (with any multiplication), ®;3=f3,: Eg(X)—
¢u(X3) in (3.6.5) is monomorphic, where X3=K(ns, 3), n3=2Z and &y(X3)=
6w(K(Z, 3))=Z,. Thus the group &4(G, ;) is trivial or Z,.

Now, to prove Theorem II in the introduction, we notice the following
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LemMA 5.7.  The inclusion j;: S X(~G, ;) induces the epimorphism
Jax: m(8°)(=215) = 16(X) (=Z5) (cf. (4.2.4)).

Proor. Consider the exact sequence mg(S3)—ong(X°) (=mngX)=4L3)—
n6(M?®) of (4.4.2) for (X7, X*)=(X¢, S3) with X6/S3=M®=S5U,eb (cf. (4.2.3)).
Then ng(M%)=Z, and we see the lemma. g.e.d.

Consider the usual multiplication m: S3x S3— 83, m(x, y)=xy (the product
of unit quaternions x and y). Then, we have the following

THEOREM 5.8. The group &y(G, ) is trivial for the H-space G, (—2<b<5)
such that the inclusion j3: S3<c G, 4 is an H-map with respect to the usual multi-
plication m on S3 (cf. (4.1.6)).

Proor. Contrary to the theorem, suppose that &z(X)#1 for X=~G,,,
where

(5.8.1) the inclusion j;: (S3, m)—(X, m) is an H-map, i.e., jyiii ~m(j3 X j3):
S3xS3-X.

Then, by Proposition 5.6 and the definition ot @3=f3,, we see that

(5.8.2) there 1s neeyx) with @3 )= —1 in &UX3)=2Z,, i.e., hy=—1:
2 X)—-n3(X) (=2).

Lonsiaer tne homeomorphism o: S3—-83, o(x)=x"! (the inverse or a unit
quaternion x). Then o,=—1: 15(S3)—>n4(S3?), and by (5.8.1-2), we see the
following :

(5.8.3) h: X— X satisfies hm—>m(hx h): X x X—X and hjyo~j;: S3?->X.
(5.8.4) The maps m, mT: S3x S3->83 (T(x, y)=(y, x)) satisfies m=mT
on S*v S3 and

Jjam = m(hj;0 X hj30) = him(j30 X jiv) = nyzrmo ~v)
= jsom(ox o) = j;mT in [S3xS3, X],

i.e., the separation element d=d(r?, ﬁT)ens(S3) sdtisﬁes vj3d=0 in (X))
(cf. (1.5.4)). Co ' ' S

On ' the other hand, since # is the usual multiplication on S3,
(5.8.5) ([9, p- 176]) 74(S?)=Z,, is generated by d=d(m, m1) 1n (3.5.4).
Thus, j;d=0 in (5.8.4) contradicts Lemma >./; ana we see the theorem.  y.c.q.

By this theorem, Lneorem 11 in the introguction 1s proved exceptIor the
proof of Assertion 5.3. ' :
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§6. Proof of Assertion 5.3 for n=8, 9 and 11

To prove Assertion 5.3, consider the exact sequence

(6.1) [Y, 2x,] €2x, 1y, 0x, 1@, 1Y, K(x,, n)]
(=H"(Y; ) L=, [Y, X,] 2%, [V, X,_,]
of the fiber sequence (3.6.4) for X~G,,. Then
LEMMA 6.2. If n=38,9, then [X, A X,, 2X,_,]1=0 and Assertion 5.3 holds.

Proor. Since f,: X—X, is (n+1)-connected, (1.1.6-7) and (4.2.2) imply
that

(6.2.1) hAah: X"AX">X,A X, is (m+3)-connected, where h=f,j,.: X"
X-X,(m<n+1).

Therefore, by (1.1.1) and 7(QX,_)=m;, (X, -)=0 (i=n—1), we see that
(6.2.2) (hah*: [X,AX,, QX,_ ] = [Xr4AX"4 QX,_ ]
(h =fnjn—4: Xrtc X Xn)

When n=38, X*=S3 by (4.2.2) and 74(2X,;)=n,(X)=0 by (4.2.4). Thus
[XsA Xg, QX,]=0.

When n=9, X5=S3ye’5 by (4.2.2) and X5AX5/S3AS? is 7-connected.
Therefore, in the Puppe exact sequence

[X5AX5S3AS3, QXg]—[X5AXS, QXg] - [SPAS3, QXg] (=n,(X)=0),

the first term is 0 by (1.1.2). Thus [ X% A X5, 2X4]=0, and we see the lemma by
(6.2.2) and (6.1). g.e.d.

We now study the case n=11. Consider the cofiber sequence
(6.3.1) S3.1,X6 P,M6_ 9,84 S8i,SX6__,... of X6/S3=M6=S5U,e® in (4.2.3).
Then, because X°=S3u,,e’ by (4.2.3), we see that

(6.3.2) g: MS5—S*in (6.3.1) is an extension extn, of 1,=_3Sn; € n5(S*).

The cofiber sequence obtained from (6.3.1) by smashing Y induces the Puppe
exact sequence

(6.3.3) [YAS3, W] 82D 1y A xs, w400
[YAMS, w] 428" [y As4, Ww]e-..
The following (6.3.4) is proved in [18, Lemmas 3.2-3 and 3.5]:
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(6.3.4) ng(X)=2Z, is generated by pg (=<{n2>), pshs € ne(X)=Zg¢ is of order
2, and

[M!°, X]=2Z, is generated by an extension ext (pgng) of pghs-

LEMMA 6.4. (i) (S*g)*: ng(X)—[M'°, X] is isomorphic (M"*+6=S"M?¢).
(ii) [M', W] and [MS A MS, W] are trivial for W=X,4, X, and QX ,,.
(iii) [S*A X, W] are trivial for W=X, (n=10) and QX ,,.

Proor. (i) (6.3.2) shows that (S*g)*ps=ext(pgng). Thus (6.3.4) implies
@®.

(ii) For W=X, and QX ,,, (ii) follows from (1.1.2) and (1.3.1), since M!!
and M® A M® are 9-connected. (ii) for W= X, is seen by the exact sequence

H'(Y; my0) = [Y, X10] = [Y, Xo](=0) in (6.1) for Y= M'!, M® A MS,
where the first term is 0 since M"=S""1 U,e" and n,0=2Z3, Zs, Z,5 or 0 by (4.2.4).

(iii) The exact sequence (6.3.3) for Y=_S* implies (iii) by (i) and (ii), because
n(X)=0 by (4.2.4), f.x: [V, X]=[Y, X,] if dim Y<n by (1.1.3) and (1.3.2), and
LY, QW]=[SY, W]. q.e.d.

Denoting simply by (Y)*2=Y A Y, we consider the commutative diagrams
(6.5.1)

XM, @Xn] o [(xo)n2, @X,,] 2200 "’“’ [Men x5, QX1 L2025 us, 0x, ]

lp» ll’t lP* lp;x
(X2, QX0] —o (X002, X,6] LA (mo x5, 2,01 S22, (o, 02X,
lk, [k. lk,’.

HU((Xy)M; 101) oo B2, 7,0) LAV g a xs; ),

(6.5.2)

(1A p) @nn*

*
H'' (MO A X6 ) ——— H"'((M®)"?; 1) — H''(M''; 7yy) ‘____q. HW(S'Y; myy)
epi

l"u* Eliu* =1i..* 2‘[1'“*
6 A Y6 (1A p)* VA2 LAY gy
[MSA XS, X,,] < [(M9*, X, ] — [MY, Xn]"—‘“u(xu)
](1 ng I(S’g)*

(1A Sj)*
—_—

[M®ASXS, X,,] [M10, X,,1(=Z;) <5 ng(X1,) 711(= Z® Z,, see (4.2.4)),

where h=hAh, h=f,,j¢: X6 X—-X,,, p'=Qpy,, k'=Qk!? and

(6.5.3) the vertical sequences in (6.5.1) continued to i;;4 in (6.5.2) are the
ones in (6.1),
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(6.5.4) j, p, g are the maps in (6.3.1) and (1A Sj)*, (1Ag)*, (1A p)* in (6.5.2)
form the exact sequence (6.3.3),

(6.5.5) S»_i, M+l (=8"y,e"tl) 4, S7+1 is the cofibering, and

(6.5.6) [M!°, X, ,J=[M!° X]=2Z, is generated by ext (pgng) and i* ext (pghs)
= pghg (cf. (6.3.4)).

LEMMA 6.6. (i) In(6.5.1-2), the homomorphisms indicated by epi or = are
epimorphic or isomorphic, respectively, and so are the ones on the cohomology
for any coefficients instead of 7, ;.

(ii) [MY, X,1=Z,®Z, and q*: n,,(X{,)—[M', X,,] is epimorphic.

(iii) (A D*(1 A g)*ext(pgng)=(S>g)*(pgng) is not contained in q*(Z,)
(e[M', X1 D).

ProOF. (i) is proved for h* by (6.2.2) and X7 = X5 in (4.2.2), for g* by the
Puppe exact sequence

(6.6.1)  my (W) 22, (W) L5, [M+, W] - (W) X2, (W)

(of the cofibering in (6.5.5)) with n=10 and W=K(xn, 11), and for the others
by the exact sequences (6.3.3), (6.1) and Lemma 6.4 (ii)-(iii).

‘(ii) is proved by the exact sequence (6.6.1) for n=10, W=X,, and by
(1.3.1) and (4.2.4).

(ili) Consider the commutative diagram (jo: X°c X, p: X—>X/X® is the
collapsing map)

(6.6.2)

(X9 L5 2, (X) (2r,(X)=Z02Z,) 25 1, (X/X%) (2n,,(S) = 2)

lll* lq* lq*

[M", x9] Lo, M, XJ(=[M', X,.];zzezz) Lo, MY, X)X (2 [MM, $M1]=2Z,)

-

710(X%) (= Z,, generated by w, see (4.2.3) and (4.1.3)),

where the left and upper sequences are the onesin (6.6.1) and (4.5.1), respectively,
and the lower one is also exact by [7, Lemma 3.1] and (1.1.3). Then, by the
exact sequence (6.6.1), we see that

(6.6.3) i* induces [M!!, X°]/q*n;(X®) = i*[M!!, X%]1=Z, (<=Z,;0),
and [M!1, S11]=2Z,.
The latter and (4.5.3) (where m,, is even) show that p,g*=q*p,=0. Thus,

(6.6.4) the lower p, is trivial by (ii) and joy: [M1, X°]->[M!, X]=
Z,®Z, is epimorphic.
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Therefore, there is age[M'!, X% with jo.00&q*(Z,), which satisfies
Ao q*my1(X®) since joumy(X°)=Z, by (4.5.4). Thus,

(6.6.5) if ae[M!, X°] satisfies i*a=60wem,o(X%), then a=a,+q*p
Jor some Ben;(X®°) by (6.6.3), and hence jqosuE q*(Z,).

Now, by (6.3.2), we have the commutative diagram
To(X?) = mo(X?) 22 7y(X) S mg(X) (= Z5) L% mg(X?)
(6.6.6) [ 20 7o -
T10(X%) L [M11, X7 Lo, (M1, X] L 7, (X).

Consider the elements
(6.6.7) pgemng(X?) with joups=ps€ng(X) in (6.3.4), and pgng € mo(X?).
Then, by the commutativity of (6.6.6), a=(S3g)*(pgns) € [M1!, X°] satisfies

(6.6.8) josax=(S9)*(pgns)e[M'', XJ(=[M', X{,]), i*a=pghgno€m;o(X®).
Therefore, (iii).can be proved by (6.6.5).and by showing the equality

(6.6.9) pgit = 60w in m o(X?) for the generator fj = ngNo€m,o(S®) = Z,.

To show (6.6.9), we notice the following results due to [17, Lemmas 4.1-2
and their proofs]:

(6.6.10) There are a CW-complex K=M?®y CM*'° and a map f: K—-X°
(~(G,)%) such that fy: n(K)->n(X®) is an isomorphism mod2 for 4<n<12
and, in the commutative diagram '

T10(M2)(= Zg) 251, (K) (= Zg) L5 1,6(X9) (= Z120)
(6.6.11) ]ﬁ* %* [ﬁ*
To(M?)(= Z3) 2 19(K) (= Z2) L5 mo(X°)(274(X) = Z2)

(i: M®<K), the upper homomorphisms are monomorphic and the lower ones
are isomorphic.

(6.6.10) implies immediately (6.6.9), because 7#* for M? in (6.6.11) is known
to be monomorphic (cf. Araki-Toda [1, (4.2)]). q.e.d.

By the above lemma, we can prove Assertion 5.3 for n=11.
LEMMA 6.7. Let¢:Z,cZ®Z,=n,;. Then Ime¢, nKeri;;,=0 for
(6.7.1) HWX AX (5 Zy) -2 HW(X A X5 yy) LEX [XiiAXyp, Xq4]
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in (5.2.2), and Assertion 5.3 holds for n=11.

ProOOF. Consider the diagram (6.5.2). Then, Lemma 6.6 (iii) and (6.5.6)
imply that

(6.7.2) (1Ag)* is injective, (1A Sj)*=0 and Ker(the lower (1A p)*)=
Im(1Ag)*=2Z, by (6.5.4),

(6.7.3) the lower (inl)* maps G=Im(1Ag)* monomorphically and
(iA1)*G n q*(Z,)=0, and hence

(6.74) so does F=(iA1)*(i15) 1=(i119) iAD)* and F(G)NnIm(¢y:
HU(M'; Z,)—»HUY(MMY; 7,,)) =0,

by Lemma 6.6 (i) and the naturality of ¢,. Consider also the diagram (6.5.1).
Then, the upper (1 A j)* (=(1 A Sj)*) is trivial by (6.7.2), and so are the left three
py’s by Lemma 6.6 (i). Thus, (6.5.3) shows that kj’s are all monomorphic and

(6.7.5) the composition F' =i ,4((p A D*(1 A p)*)"1h*: HIY((X)*?; 1)~
[(M®)A2, X,] in (6.5.1-2) maps Keri, 4 in (6.7.1) isomorphically onto G=
Im (1 Ag)* in (6.7.2-4); and hence

(6.7.6) the composition F"=FF =({iA1)*(pAD*(1 A p)*)~th* :H1L((X,; )"?;
ny ) HUY(MY ;) in (6.5.1-2) maps Ker iy, in (6.7.1) monomorphically and
F"(Ker iy4) N Im (¢, in (6.7.4))=0.

Therefore, considering F” in (6.7.6) for the coefficient Z, instead of n,, by the
latter half of Lemma 6.6 (i), we see the lemma by the last equality in (6.7.6) and the
naturality of ¢,: H*( ; Z,)->H*( ; nqy). q.e.d.

§7. Proof of Assertion 5.3 for n=14

In the first place, we notice the following

LEMMA 7.1. S4*X°~S4X6v M'3 on the suspension of X°=X6Uebye®
in (4.2.3).

Proor. Since X°=~(G,)° by (4.2.3), it is sufficient to prove the lemma for
X = G2.

Let X=G,. Then, we have the fiberings (cf. [30, p. 714])
(1.1.1) S* — SUB)(=S3UeS U e¥) s §5, SU(3) — X(=G,) s S6.
Consider
(7.1.2) the 8-skeleton X8=SU(3) U e, the cofibering SU(3)—X?® £, X8/SU(3)
(=S°) and jz: X8« X.
Then, since @(SU(3))=%, we have a map &: S%(=X8/SU(3))>S® such that



Self H-equivalences of H-spaces 109

ep="7jg in [ X8, S¢]. Thus, by noticing that p,: ng(X8, SU(3))xn4(S°), we have
the commutative diagram of the exact sequences of the homotopy groups induced
by p and 7 including &, : 7¢(S%)— n(S°), which shows that ¢, is isomorphic and
s0 e= +¢4. Therefore,

(7.1.3)  pf=0 in ng(S®), where f: S8— X8 is the attaching map in X°=
X8 Ufe9,

because (+ ¢¢)pf=¢epf=Tjgf in ng(S°) and jgf=0 in ng(X). On the other hand,
we have

(7.1.4) S*X8~S4X6v S'2 where X6=X5Ueb=S3Ue’Ueb, and S*X°=
S4X8 Us4f813,

because S*SU(3)~S*X5 v S12 by [15, Lemma 2.1]. Thus, by the exact sequences
induced by the cofiberings S7—S*X¢_ 2 M1 (5=S*p) in (6.3.1) and S°-i,
M10_4,810 in (6.5.3), and by using n,,(S7)=0=mnr,,(S7) in [29, Prop. 5.8-9],
we see that

(7.1.5) jy: m,2(S*X6) > 1, ,(S*X8) (j is the inclusion) is monomorphic,

P M1 o(S*XO)=m (M) (=Z,®Z, generated by  Bi=ixve, B2=
(coext 7,011, cf. [1, (4.2)]), and

1(S*X)=Z,DZ,®DZ generated by a,, a, and o (o;=jpz'(B) (i=1, 2),
Zz=m 5(S1?)),

where vo€,5(S°)=Z,, and q,f,=n10M11€71,(S°)=Z, are the elements of
order 8 and 2, respectively.

Therefore, the attaching map S*fe n,,(S*X?8) in (7.1.4) is represented by
(7.1.6) S*f=a,u,+a,a,+anx forsome a;=0,1 and some integer a;

and we see that a=2 because S*X°/S*X6=M13=S12,e!3 by (4.2.3), a,=0 by

(7.1.3) because (S*p)j=4qp, and a, =0 because Sq*x;=0 in H*(X; Z,) by (4.2.1)

and vy € 7, ,(S?) is detected by Sq*. Thus, we have S*f=2a and the lemma.
q.e.d.

In addition to the cofiber sequence (6.3.1), consider the ones
(1.2.1) xs 3, xo 7 po(=x°)x6) £, sx6, x° I, x11 P, gu1(= x11) x9),
due to (4.2.3). Then these induce the Puppe exact sequences
(1.22)  [YAXS, W] 1yaxo, w] AP [y A Mo, W]

(IAg)* [Y/\SXG, W]‘_,
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(71.2.3)  [YA X%, W] rya xn, w22 [yast w
—[YASX?, W]e---.
LemMa 7.3. (1) (IAp)*: [YAM® X, ]-[YAX® X,,] is monomorphic
for Y=S*Y', X¢ and X°. .
(i) (AAp"*:[XmASUY X, ]-[X"A XY, X,,] is monomorphic for any
m=3.

ProoOF. (i) By Lemma 7.1, (i) holds for Y=S4Y'. Consider the commuta-
tive diagram

[MeASXS, X,,] LAY, [xeasKxe, X,,] YA [S3A85X6, X,,](=0)

l(l/\g’)" J'(ll\g')*

[MSAM®, X, ] @AY, [xea Mo, X, ] CUADY [xoa Mo, X,,] 22D 19 A MO, X,,](=0)
I(l/\p')* 1(1 APy l(lAp')*

[MSA X X,,] [Xen X2 X)) — [X°AX° Xl

where the upper sequence is the one in (6.3.3), the others are in (7.2.2), and (=0)’s
are seen by Lemma 6.4 (iii) and (1.1.2). Then the left (1 A g’)* is trivial by (i) for
Y=M6%=S54*M?2, and hence so is the middle (1A g")*. Thus the middle (1A p")*
is monomorphic, and hence so is the right (1 A p')*.

(ii)) To prove (ii), we notice that

(7.3.2) [M13, X,1=0 for any n, and [S*X°, X,,]1=0.

In fact, [M13, X,]=01is seen by the exact sequence (6.6.1) for M'3 and n,,(X,)=0,
n,3(X,)=0 or Z; in (4.2.4). Hence [S*X?, X,,]=0 is seen by Lemma 6.4 (iii)
and the exact sequence (7.2.2) for Y=S* and W=X,,.

By the latter half of (7.3.2) and the exact sequence (7.2.3) for Y=S3=X3=X*,
(ii) holds for m=3 and 4. Therefore we see (ii) for m =4, because the inclusion
X4AS1tcXmA S is 15-connected and induces the isomorphism [X™A St1,
X =[X4A S, X,,] by (1.1.1). g.e.d.

We now consider the exact sequence (6.1) for n=14.

LEMMA 7.4. (1) i145: H™X"AX"; 1)~ [X"AX", X,4] is monomor-
phic for (m, n)=(6, 9), (9, 9), (9, 11) and (11, 11).

(1) ipaq: HA4(X 14N X14; T14)~[X 14 A X4, X14] is monomorphic, and
Assertion 5.3 holds for n=14.

ProOOF. (i) To prove (i), we notice that

(74.1) [MmAM®, QX;]=0=[X"AM® QX,,] for m=6 and 9. .
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In fact, the first equality is seen by (1.1.2). Therefore the second one is shown by
(7.3.2) and by the exact sequences (6.3.3) and (7.2.2) for Y=M?® and W=0QX ;.
We now consider the commutative diagrams

HI4 (XM A X6 1,,) « HIH(X™A X5 1) <LAPD pris(xma Mo9: 7,,)
(1.4.2) lz‘“* li“* monoli“* (m=6 and 9)
Yk
[XmA XS, X1] « [X"AX, Xy4] <2 (XA M2, X4
mono
of the exact sequences in (7.2.2), and

HIS (X" A X my) « HSX"A X1 y)  HIS(XASY; 1y,

(7.4.3) jl* Ji”* monoli“* (m=9 and 11)
[XmA X%, Xia] « [X"A X, X,] M‘ [XmASY X 4]
mono

of the exact sequences in (7.2.3). In these diagrams, the homomorphisms indi-
cated by mono are monomorphic by Lemma 7.3 and by the exact sequence (6.1),
(7.4.1) and [X™A S'1, QX,;]=0. Therefore, in each diagram, if the left i 4,
is monomorphic, then so is the middle one. Thus, noticing that H'4(X® A X6; r)
=0, we see (i) successively for (m, n)=(6, 9), (9, 9), (9, 11) and (11, 11).

(i) Consider h=f,,j,,: X'=X—X,, and the commutative diagram

H¥ (XM A XY my,) *(—h—/\—h)—*HM(XM/\ Xi4; m1a)
(744) ‘[iu* liu*
[X'A X, Xi4] Lrb [Xian X4, X4l

Then the upper (h A h)* is isomorphic by (1.1.1), because h A h is 16-connected by
(6.2.1) and X11=X13in (4.2.2). Thus we see (ii) by (i) for m=n=11. q.e.d.

Thus, Assertion 5.3 is proved in Lemmas 6.2, 6.7 and 7.4 (ii); and the proof
of Theorem II in the introduction is completed by the note given in the end of §5.
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