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Let F be a field, R(F) be Kaplansky's radical of F and K = F(ja) be a quad-
ratic extension of F. We showed in [4], that if F is a quasi-pythagorean field
and K is a radical extension (i.e. a eK(F)-F2), then K is also quasi-pythagorean
and the 'H-conjecture' N-1(R(F)) = F-R(K) is valid, where N: K-+F is the norm
map.

In this paper we generalize the above results and show that the //-conjecture
is valid whenever K is a quasi-pythagorean field.

§ 1. Preliminaries

Throughout the paper, let F be a field of characteristic different from two
and F be the multiplicative group of F. We introduce in this section some
subgroups of F, and study their properties.

First, we put for αeF, Jfl = {xeF; £>F<1, -α>c£)F<l, -x>}.

PROPOSITION 1.1. /Λ= Π/)F<1, — x>, where x runs over DF<1, — ay. So
Ia is a subgroup of F.

PROOF. If b e 7β, then £F<1, - α> £DF<1, - by and we have x e DF<1, - by
for all xeDF<l, -α>. Then beDF<l, -x> for all xeDF<l, -ay. So be n
DF<1, — x>, where x runs over DF<1, — α>. Now, all the implications can be
reversed and the proposition follows. Q. E. D.

PROPOSITION 1.2. Lei X = (λ/α) be α quadratic extension of F. Then ί/ie
following statements hold:

(1) /.-{xe/MM^α -*> = £}.

(2) /β3X(F), /β9«.
(3) Jβ 2 Λ(K) n F.
(4) R(K)^R(F).

PROOF. Let N: J£-»F be the norm map. Then JV(X) = DF<1, -α> and, by
the norm principle ([3], 2.13), we have N-1(DF<1, -x» = F.DK<l, -x> for
xeί. So, DF<1, -Λ>sDF<l, -x> if and only if £ = F-DK<1, ~x>. This
shows (1). The assertion (2) is clear and (3) follows from (1). The assertion (4)
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folio ws from (1) and (2), since F = DF<1, -jc>c/)x<l, -x> for xeR(F).
Q.E.D.

PROPOSITION 1.3. Le£ F be a quasί-pythagorean field and x,yef. If

xeDF<l, y>, then DF(1, x><ΞDF<l, >>>. Moreover, if F is formally real, then
DF<1, — ay is a preorderίng of F for every a$ΞR(F).

PROOF. DF<1, j> U {0} is closed under addition, since we have DF<1, j> =

£>F<>I, r2j;>
 for ri£R(F) = DF(2) (i = l, 2). From this, the assertions follow

immediately. Q. E. D.

PROPOSITION 1.4. Ia is a subgroup of DF<1, α>. Moreover we have Ia =

DF<1, α) if F is a quasί-pythagorean field.

PROOF. By Proposition 1.1, we have Ia^DF(l, α>, since — αeDF<l, — α>.
Suppose that F is quasi-pythagorean and xeDF<l, α>. Then — αeD F <l, — x>
and we have DF<1, — α>£DF<l, — x> by Proposition 1.3. This shows

>S/β. Q.E.D.

Now for αeF, we put Ha = {xeF; DF<1, -x>DF<l, -^x> = F}. We note
that Ha = H_ί for a e —R(F). Moreover, if F is formally real and quasi-pythag-
orean, then H,ί is the group H(P) for P = DF(oo) defined in §2 of [5]. In this
case H.ί is denoted by H. By Remark 2.3, (1) of [5], we have H = F if and
only if the space X(F) of orderings in F satisfies SAP.

PROPOSITION 1.5. If K = F(^Jά) is a quadratic extension of F, then we have

PROOF. Since we have DX<1, -x> n F = DF<1, -x>DF<l, -αx> ([1],
Lemma 3.5.), the assertion follows immediately. Q. E. D.

PROPOSITION 1.6. Ha= n^e/-DF<l, — x>DF<l, — αx>. So Ha is a subgroup

o f f .

PROOF. If aef2, then we have Ha = R(F) by the definition of Ha. So the

assertion is valid. Suppose a<£F2. Then for xeF, xeHa is equivalent to xe

^κO» — yy Π F for all y ef. Hence we have the desired equality which clearly
implies that Ha is a subgroup of F. Q. E. D.

PROPOSITION 1.7. The following statements hold:
(1) Ha^R(F\_Ha3a.

(2) IfK = F(^/a) is a quadratic extension, then we have Ha ^. R(K) fl F.

PROOF. The assertion (1) follows from the definition of Ha, and (2) follows
from Proposition 1.5. Q.E.D.
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PROPOSITION 1.8. If F is a quasi-pythagorean field, then Ha^DF(l, α>.

PROOF. For x = - l , £F<1, -x>£F<l, -flx> = DF<l, 1>£F<1, α> =
DF<1, 0>, since DF<1, l> = JR(F)c£)F<l, β). From this, the desired inclusion

follows by Proposition 1.6. Q. E. D.

PROPOSITION 1.9. If K = F(^Ja) is a quadratic extension of F, then we have

PROOF. By (1) of Proposition 1.2 and Proposition 1.5, we have IaΓ\Ha^
R(K) Π F. The other inclusion follows from (3) of Proposition 1.2 and (2) of
Proposition 1.7. Q.E.D.

For a quadratic extension K = F(x/α) of F, we defined the set R(K) = {x e K\

F-Z)X<1, -χ> = K} and the subgroup /K(F)= n*6FZ)κ<l, -x> of K in §2 of [4]
and showed R(K) = R(K) n Iκ(f).

We note that R(K)nF = Ia and /K(F) n F = #α. Proposition 1.9 follows
again from these relations.

Now the following result is essentially contained in the proof of Theorem 2.13
of [4]. But we state and prove it for completeness.

PROPOSITION 1.10. The notation being as above, if F is a quasi-pythagorean
field, then we have DK(2)^R(K) and therefore R(K) = IK(F).

PROOF. Let x be an element of Dκ(2). For any yeK-(FuxF), we can
write x = (bΐ + cίy)2 + (b2 + c2y)2 (bt, qeF). Then x = (bl + bl) + (c\ + cl}y2 +
2(bίc1 + b2c2)y. By Lemma 2.11 of [4], we have fy(y2) = Im(y.y2)/Im(y) =
N(y)Im(y)/Im(y) — — N(y) (see §2 of [4] for notation involved), and this implies
that there exists α e F such that y2 = -N(y) + uy, and hence there exists β e F such

that x = (bl + 6§) + (cf + c|X - N(y)) + βy. Namely fy(x) = (b2 + b%) + (c2 + c&( - N

O))eDF<l, -N(y)^>. Since F is quasi-pythagorean, we have DF<1, -ΛΓ(»> =
DF<1, -N(y)y anάxeR(K) by Lemma 2.12 of [4]. Hence we have Dx(2)c]?
(K). Then R(K) = DK(2) n R(K) = DK(2) n K(K) n IK(F) = DK(2) Π IK(F)=IK(F).

Q.E.D.

§ 2. The main theorem

In this section we show the theorem stated in the beginning of the paper,
and deduce several consequences from it.

THEOREM 2.1. For a quadratic extension K = F(λ/ά) o/F, K is quasi-pythag-
orean if and only i f F is quasi-pythagorean and Hα = DF<l, α>. Furthermore,
if these conditions are satisfied, then we have N~1(R(FJ) = F'R(K), N being the
norm map, and 7α = #α = DF<l, ay = R(K){}F.
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PROOF. Suppose that K is quasi-pythagorean. Then we have DX<1, α> =

DK(2) = R(K). It follows that DF<1, α> <=F n DX<1, tf > = F Π £(K). By Propo-
sition 1.9, we have F n R(K) = Ia n #β. Hence DF<1, α> ̂ /α n Ha^Ia. But

> by Proposition 1.4. Therefore we have DF<1, a> = /ec7ffl> and

DF(l9 ay. By Proposition 1.8 we see that Hα = Z)F<l, α>. On the
other hand, we have, by Lemma in §2 of [2], DF<1, α> n #X1, — α> = DF<l, α> n
DF<1, a2y = DF(2) since £F(2)c£)χ(2) nF=£F<l, α>. So in particular DF(2)^

DF<!, -α>.
Let JV: K-*F be the norm map. The image of N is DF<1, — α>. Since

N(R(K))^R(F) always holds, we have N(F-R(K))^R(F) and therefore
N-1(R(F))^F.R(K)=F-DK(2). However, by the norm principle (2.13 of [3]),
F'DK(2) = N-l(DF(2)). So we have ^^(F^^N-^D^)), which implies
R(F) = DF(2) and N~l(R(FJ) = F-jR(K).

Conversely, suppose that F is quasi-pythagorean and /fα = DF<l, α>. We
shall prove that K is quasi-pythagorean. By Proposition 1.10, we have only to
show that D*(2) £/>£<!, -x> for all xef. So let γ be any element of Dκ(2).
Since DF(2) = JR(F)c£)F<i5 ~x>? we have, by the norm principle (2.13 of [3]),

f-DK(2)^F'DK(l, -x> for all xef. So there exists fef such that /ye

DX<1, -x>. Then /e/)x<l, 1>/)X<1, -x> n f^DK^l9 -x»ΠF, and we can

write /=(fc14-c1V^)2 + (b2 + c2Vά)2-x(b3 + C3V^)2-x(fo4 + c4Vα)2 (bi9 c feF).
Then we have /=6? + &i + fl(c? + ci)-x(6i + &J)-flx(c| + c2). Now for a
moment, we assume, in the last equality, each of the four sums of two squares is
not zero. Then as these sums are in DF(2) = R(F), we have f=b2 + ac2 —
x(b'2 + ac'2) for some fc, c, &', c'eF. Since b2 + ac2, b'2 + ac'2 e DF<1, Λ> U {0},
and DF<1, a^ = R(K) n F, we have/eDx<l, — x>. If some of the four sums are
equal to zero, we see readily /eDK<l, —x>. So we have yeDK<l, — x> for all

xef.
Considering Proposition 1.4, Proposition 1.8 and Proposition 1.9, we see

easily that the last statement holds. Q. E. D.

REMARK 2.2. In the notation of Theorem 2.1, the assertion that F is quasi-
pythagorean if K is so, has already been proved in Proposition 4.10 of [3], in a
more general form.

In all the rest of the paper, let K denote a quadratic extension F(^a) of F.
The following proposition is a strengthenning of Theorem 2.13 of [4].

COROLLARY 2.3. Suppose K is a radical extension of F. Then, K is quasi-
Pythagorean if and only if F is so.

PROOF. Suppose F is quasi-pythagorean, then
since we have a e R(F). On the other hand, recalling the definitions of Ia and
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Ha9 we see easily that Ia = R(F) = Ha. So the assertion follows from Theorem 2.1.

Q.E.D.

COROLLARY 2.4. The following statements are equivalent:

(1) K is a quasi-Pythagorean field which is not formally real.
(2) R(K)^F.
(3) F is a quasί-pythagorean field, a e — R(F), and H = F.

PROOF. (1)=>(2): This is clear since R(K) = K in this case.
(2) =>(3): Since we have R(K) n F = Ia n #α, (2) implies that Ia = Ha = F. In

particular DF<1, -0>£/)F<l, -x) for all xeF. It follows that -aeR(F) and
DF(2) = DF<1, —ay = R(F). So F is quasi-pythagorean. Since H — Ha for αe

-£(F), wehave# = F.
(3)=>(1): We have DF<1, <z> = F and Ha = H = F. So (1) follows from

Theorem 2.1. Q.E.D.

Using the above corollary and the theorem of Tsen-Lang, we can prove
the following result (see Theorem 17.9 and Corollary 17.8 of [6]): Let k be a
real closed field and Lis a formally real field over k with tr. degkL = l. Then L
is a quasi-pythagorean field which is a SAP field. In particular the rational
function field R(X) in one variable X over the real number field R is a quasi-
pythagorean SAP field.

If F is a quasi-pythagorean field which is not formally real, then K is also
such a field by Corollary 2.4 and (4) of Proposition 1.2.

In the following, we consider the case in which F is formally real.

COROLLARY 2.5. Let F be a formally real, quasi-pythagorean field and
aeH. We assume ±a£R(F) and denote the preorderings DF<1, α), DF<1, —α>
by T, 7" respectively. Then K is quasi-pythagorean if and only if the pre-
ordering T is SAP.

PROOF. Since a is an element of H, we have TT' = F. So any foeF can
be written as b = xy where xeT, yeT'. Then DΓ,<1, -b> = DT,<l, -x> and
Dr<l, fe> = DT/<l, x>. But by Lemma 2.6 below, DF<1, -x>DF<l, x> =
Dr<l, -x>Dr<l, x> for any x e T. Hence T=Ha i.e. DF<1, -x>DF<l, -αx> =

F for all xeTiΐ and only if DΓ,<1, -i?>£Γ,<l, fc> = F for all foeF. The last
condition is equivalent to T being SAP, by Remark 2.3, (1) of [5], Q. E. D.

In the following lemma and its proof, we use freely the notation of [5], §1,
X(P) being an abbreviation for X(F/P).

LEMMA 2.6. Let F be a formally real, quasi-pythagorean field. We assume
±a£R(F) and denote the preorderings DF<1, α>, DF<1, -α> by T, T'

respectively. Then for xeT9 the following statements hold:
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(1) DF<1, x> = DΓ.<1, x> n Γ.
(2) DF<1, -x> = DT.<1, -x>.
(3) If we further assume aεH, then we have

PROOF. We first note that, for any preordering P of F, and for any z e F,

we have JDF<1, z> = (//(z))1, DP<1, z> = (#(z) n -XXP))1. Now for x e T, we have

(1) DF<I, χ> = (#(χ))^ = (X(T) u (#(χ) n
= (X(T)Y n (#(χ) n x(r))1 = T n /v<ι, χ> .

(2) DF<1, -x> = (//(-x))1 = (//(-x) n X(T')Y = DT,<1, -x> .

(3) We have r-/>χi, x> = r.(Tn/) r<l, x»
= (r- T) n Dr<l, x> (since rsDr<l, x»
= />r<l, x> (since T-T' = F ) .

Therefore we have DF<1, x>DF<l, - x> = DF<1, x>Dr<l, - x> = Dr<l, x>

Λ r<l, -x.> Q.E.D.

As an application of Corollary 2.5, we have the following result.

COROLLARY 2.7. Let F be a formally real field. Then F is quasi-pythag-

orean and SAP if and only if every quadratic extension K of F is quasi-

Pythagorean. Moreover, when these conditions are satisfied, K is also SAP

if it is formally real.

PROOF. The first assertion is obvious. To show the second assertion, let

F be a formally real, quasi-pythagorean and SAP field. Then, by Corollary 2.4,

F(^/ — 1) is a quasi-pythagorean field which is not formally real. So, for any

formally real quadratic extension K of F,K(^/ — l) is quasi-pythagorean by

Corollary 2.3. Theorefore K is SAP by Corollary 2.4. Q. E. D.

LEMMA 2.8. Let F be a formally real, quasi-pythagorean field. We assume

±a&R(F) and denote the preorderings DF<1, α>, DF<1, -α> by T, T re-

spectively. Then we have H(T) n T=Ha.

PROOF. For any xe Γ, DF<1, -x> = Dr<l, -x> and DF<1, -αx> =

Dr<l, -αx> by Lemma 2.6, (2). So we have H(T') n T=Ha by Proposition 1.8
Q.E.D.

In the proof of the following lemma, we use the translation group gr (X(PJ)
of the space X(P) defined in [7] . Namely gr (X(PJ) = {α e χ(F/P) ; αX(P) = X(P)}9

where χ(F/P) = Horn (F/P, { ± 1}) is the character group of F/P. For a preorder-
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ing P of finite index, X(P) is connected if and only if \X(P)\ = 1 or,

LEMMA 2.9. Let F be a formally real,quasi-pythagorean field and assume
that X(F) be finite and connected. Then we have Ha = R(F) U aR(F).

PROOF. If aeR(F), we have Ha = R(F) and the assertion holds. If
-αejR(F), we have Ha = H. Hence dim HJR(F) = 1 by Theorem 2.5 of [5].
So the assertion holds by Proposition 1.7 and Proposition 1.8. Since the case
\X(F)\ = ί is included in the above ones, we suppose that ±a&R(F), \X(F)\^3

and gr(X(F))τ*l. Let α be an element of gr(X(F)) such that α^l. We con-
sider two cases.

Case 1 : α(α) = 1 . We have αX(T') = X(T). First we assume |X(T')| ̂  3.
Then X(T) is connected. By Theorem 2.5 of [5], -dim H(T')/Γ' = 1. So we
have H(T')=T'VaΓ. Thus we have Ha = R(F) U aR(F) by Lemma 2.8, by

noting TnT' = R(F). Next we assume \X(T')\^2. Since <*X(Tf) = X(T'), we
see that X(T') consists of even number of orderings and so \X(T')\=2. If we
write X(T') = {σi9 σ2}, we see that a = σίσ2. Since <xX(T) = X(T), we take a set
{τ l5..., τrt, ατj} as a basis of X(T) and it is easy to see that {τt,..., τn, ατ1? σj is
a basis of X(F). This implies that dim X(T) = dim X(F)-19 and so dim
T/R(F)=1. From this the assertion follows by Proposition 1.7 and Proposition

1.8.
Case 2: α(α)=-l. We have aX(Γ)^X(T) and uX(T)<=X(T'). Hence

uX(T) = X(T'\ If we take a basis {σlv.., σπ} of X(T), then {σ1?..., σrt, ασj is
a basis of X(F). Thus dim*(T) = dimX(F)-l, and so dimΓ/Λ(F) = l. The
assertion follows similarly to case 1. Q. E. D.

COROLLARY 2.10. Let F be a formally real, quasi-pythagorean field. If a
is R(F)-rigid, then K is quasi-pythagorean. Conversely if X(F) is finite and
connected, and if K is quasi-pythagorean, then a is R(F)-rigid.

PROOF. If a is #CF)-rigid, we have £>F<1, α> = #(F) U aR(F). So we see
easily that Z)F<1, ay = Ha, which implies that K is quasi-pythagorean by Theorem

2.1.
Conversely assume that K is quasi-pythagorean. In case a e R(F), the as-

sertion is trivial. If -αe#(F), then #α = DF<l, α> = F by Theorem 2.1; also
Ha = H and, since X(F) is finite and connected, we have dim HJR(F) = 1 by
Theorem 2.5 of [5]. This implies that a is .R(F)-rigid. Hence we may suppose
±at£R(F). Then we have DF<1, ay = Ha = R(F)V aR(F)by Theorem 2.1 and
Lemma 2.9. So a is jR(F)-rigid. Q. E. D.
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