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Let F be a field, R(F) be Kaplansky’s radical of F and K=F(,/a) be a quad-
ratic extension of F. We showed in [4], that if F is a quasi-pythagorean field
and K is a radical extension (i.e. a € R(F)— F?), then K is also quasi-pythagorean
and the ‘H-conjecture’ N~Y(R(F))=F-R(K) is valid, where N: K—F is the norm
map.

In this paper we generalize the above results and show that the H-conjecture
is valid whenever K is a quasi-pythagorean field.

§1. Preliminaries

Throughout the paper, let F be a field of characteristic different from two
and F be the multiplicative group of F. We introduce in this section some
subgroups of F, and study their properties.

First, we put for ae F, I,={x e F; Dg{1, —ad=Dg(1, —xD}.

PropPOSITION 1.1.  I,= N Dg{l, —x), where x runs over Dg{1, —ad. So
1, is a subgroup of F.

Proor. If bel,, then Dz{1, —a)> < Dy{l, —b) and we have x € Dg{1, —b)
for all xe Dg{1l, —a). Then be Dgz{1, —x) for all xe Dg{1, —a). So be n
Dg{(1, —x), where x runs over Dz{1, —a). Now, all the implications can be
reversed and the proposition follows. Q.E.D.

PROPOSITION 1.2. Let K=(\/E) be a quadratic extension of F. Then the
following statements hold:

(1) I,={xeF; F-Dg{l, —x>=K}.

2 I,2R(F), I,2a.

3) I,2R(K)n F.

(4) R(K) = R(F).

PrOOF. Let N: K—F be the norm map. Then N(K)=D;{1, —a) and, by
the norm principle ([3], 2.13), we have N~Y(Dg{1, —x))=F-Dg{l, —x) for
xeF. So, Dg{l, —a)= D1, —x) if and only if K=F-Dg{l, —x). This
shows (1). The assertion (2) is clear and (3) follows from (1). The assertion (4)
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follows from (1) and (2), since F =Dp{1, —x)> S Dg{1, —x) for x € R(F).
Q.E.D.

PROPOSITION 1.3. Let F be a quasi-pythagorean field and x, yeF. If
xe€ D1, y>, then Dp{l, x) D1, y>. Moreover, if F is formally real, then
D1, —a) is a preordering of F for every a& R(F).

ProoF. Dg{1, y> U {0} is closed under addition, since we have D1, y>=
Dg(ry, ryy for r;e R(F)=Dg(2) (i=1,2). From this, the assertions follow
immediately. Q.E.D.

ProposITION 1.4. I, is a subgroup of Dgl, a). Moreover we have I,=
Dg{1, a) if F is a quasi-pythagorean field.

Proor. By Proposition 1.1, we have I,=D;{l1, a), since —ae Dp{l, —a).
Suppose that F is quasi-pythagorean and x € Dz{1, a). Then —aeDg{1, —x)
and we have Dg{l, —a)<SDg{l, —x> by Proposition 1.3. This shows
D1, ay<1,. Q.E.D.

Now for aeF, we put H,={xe F; Di{1, —x>D(1, —ax>=F}. We note
that H,=H _, for ae —R(F). Moreover, if F is formally real and quasi-pythag-
orean, then H_, is the group H(P) for P=Dy(o0) defined in §2 of [5]. In this
case H_, is denoted by H. By Remark 2.3, (1) of [5], we have H=F if and
only if the space X(F) of orderings in F satisfies SAP.

PROPOSITION 1.5. IfK=F(\/a—) is a quadratic extension of F, then we have
H,={xeF; Dy{l, —x)2F}.

PrOOF. Since we have Dg{l, —x>NF=Dg{l, —xdDg{1, —ax) ([1],
Lemma 3.5.), the assertion follows immediately. Q.E.D.

PrROPOSITION 1.6. H,= N,y Dp{1l, —x)D1, —ax). So H,is a subgroup
of F.

Proor. If ae F2, then we have H,=R(F) by the definition of H,. So the
assertion is valid. Suppose ag F2. Then for xeF, x € H, is equivalent to xe
Di{1, —y>nF for all ye F. Hence we have the desired equality which clearly
implies that H, is a subgroup of F. Q.E.D.

PROPOSITION 1.7.  The following statements hold:
(1) H,2R(F), H,>a.
(2) IfK = F(\/a) is a quadratic extension, then we have H, 2 R(K) n F.

Proor. The assertion (1) follows from the definition of H,, and (2) follows
from Proposition 1.5. Q.E.D.
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ProPOsSITION 1.8. If F is a quasi-pythagorean field, then H,=Dg{1, a).

ProOF. For x=—1, Dp{1, —x)Dp{1, —ax)> =D{1, 1>D{1, a) =
Dr(1, a), since Dp{(1, 1>=R(F)=Dy{1, a). From this, the desired inclusion
follows by Proposition 1.6. Q.E.D.

PROPOSITION 1.9. If K=F(\/Z) is a quadratic extension of F, then we have
R(K)nF=I,nH,.

Proor. By (1) of Proposition 1.2 and Proposition 1.5, we have I, n H, <
R(K)n F. The other inclusion follows from (3) of Proposition 1.2 and (2) of
Proposition 1.7. Q.E.D.

For a quadratic extension K=F(\/53 of F, we defined the set R(K)={xeK;
F-Dg{1, —x>=K} and the subgroup I (F)= N .. Dg<1, —x) of K in §2 of [4]
and showed R(K)= R(K) n I(F).

We note that R(K)nF=I, and I(F)nF=H, Proposition 1.9 follows
again from these relations.

Now the following result is essentially contained in the proof of Theorem 2.13
of [4]. But we state and prove it for completeness.

PrROPOSITION 1.10. The notation being as above, if F is a quasi-pythagorean
field, then we have Dg(2) < R(K) and therefore R(K)=I(F).

PrOOF. Let x be an element of Dy(2). For any ye K—(F U xF), we can
write x=(b;+c¢,y)2+(by+c,»)? (b, ;e F). Then x=(b?+bd)+(c2+cd)y*+
2(bycy+bycy)y. By Lemma 2.11 of [4], we have f(y?)=Im(y-y2)/Im(y)=
N(y)Im(y)/[Im(y)=—N(y) (see §2 of [4] for notation involved), and this implies
that there exists a € F such that y>= — N(y)+ay, and hence there exists 8 € F such
that x=(b}+4b3)+(ci+c3)(—N(y)+py. Namely f(x)=(b3+b3)+(c2+c3)(—N
(») e D1, —N(y)». Since F is quasi-pythagorean, we have Dy{1, — N(p)) =
Dg{1, —N(y)) and x € R(K) by Lemma 2.12 of [4]. Hence we have Dy(2)<R
(K). Then R(K)=D(2)n R(K)=Dg(2) N R(K) N I(F)=Dx(2) 0 I(F)=I(F).

Q.E.D.

§2. The main theorem

In this section we show the theorem stated in the beginning of the paper,
and deduce several consequences from it.

THEOREM 2.1.  For a quadratic extension K =F(\/a) of F, K is quasi-pythag-
orean if and only if F is quasi-pythagorean and H,=Dg{1, a). Furthermore,
if these conditions are satisfied, then we have N-(R(F))=F-R(K), N being the
norm map, and I,=H,=Di{1, a)=R(K)n F.
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Proor. Suppose that K is quasi-pythagorean. Then we have Dg{l, a)=
Dy(2)=R(K). It follows that Dp{1, a)<=F nDg{l, ay=F n R(K). By Propo-
sition 1.9, we have FnR(K)=I,nH, Hence Dy{1,ad<I,nH,<I, But
I, =DK1, a) by Proposition 1.4. Therefore we have Dy{1, a)=I,<H, and
FnR(K)=Dg{1, ay. By Proposition 1.8 we see that H,=D{1, ad. On the
other hand, we have, by Lemma in §2 of [2], D1, a) n D1, —ad>=Dp{1, ad n
Dp{1, a?)=Dg(2) since D(2)<=Dg(2) N F=Dg{1, ad. So in particular Dy(2)<
D1, —ad.

Let N: K—F be the norm map. The image of N is Dy{l, —a). Since
N(R(K))SR(F) always holds, we have N(F-R(K))SR(F) and therefore
N-YR(F))2F-R(K)=F-Di(2). However, by the norm principle (2.13 of [3]),
F-Dg(2)=N-"'(Dp(2)). So we have N-Y(R(F))2N-1(Dy2)), which implies
R(F)=Dg(2) and N~!}(R(F))=F-R(K).

Conversely, suppose that F is quasi-pythagorean and H,=Dg1, a). We
shall prove that K is quasi-pythagorean. By Proposition 1.10, we have only to
show that Dg(2)=Dg{1, —x) for all xeF. So let y be any element of Dy(2).
Since Dp(2)=R(F)=Dg{1, —x), we have, by the norm principle (2.13 of [3]),
F-Dg(2)=F-Dg(1, —x) for all xeF. So there exists feF such that fye
Dy{1, —x>. Then feDy{l, 1>Dx{1, —x) N F<Dx{1l, —x) N F, and we can
write f=(b;+c13/a)?+(by+c3/a)* —x(b3+c3/a)? —x(by+c4n/a)? (b, c;€F).
Then we have f=b?+b3+a(c?+c3)—x(b3+b%)—ax(c3+c2). Now for a
moment, we assume, in the last equality, each of the four sums of two squares is
not zero. Then as these sums are in Dp(2)=R(F), we have f=b%+ac?—
x(b'2+ac'?) for some b, ¢, b’, ¢’ e F. Since b*+ac?, b'2+ac'? € Dg(1, ad U {0},
and Dg(1, a)=R(K) n F, we have fe Dg(1, —x)>. If some of the four sums are
equal to zero, we see readily fe Dg(1, —x). So we have ye Dg(1, —x) for all
xeF.

Considering Proposition 1.4, Proposition 1.8 and Proposition 1.9, we see
easily that the last statement holds. Q.E.D.

REMARK 2.2. In the notation of Theorem 2.1, the assertion that F is quasi-
pythagorean if K is so, has already been proved in Proposition 4.10 of [3], in a
more general form.

In all the rest of the paper, let K denote a quadratic extension F(\/a) of F.
The following proposition is a strengthenning of Theorem 2.13 of [4].

COROLLARY 2.3. Suppose K is a radical extension of F. Then, K is quasi-
pythagorean if and only if F is so.

ProoF. Suppose F is quasi-pythagorean, then R(F)=Dg(2)=Dg1, a)
since we have a € R(F). On the other hand, recalling the definitions of I, and
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H,, we see easily that I,=R(F)=H,. So the assertion follows from Theorem 2.1.
Q.E.D.

COROLLARY 2.4. The following statements are equivalent:

(1) K is a quasi-pythagorean field which is not formally real.
(2) R(K)=F.

(3) F is a quasi-pythagorean field, a € —R(F), and H=F.

PrROOF. (1)=>(2): This is clear since R(K)=K in this case.

(2)=(3): Since we have R(K)n F=I,n H,, (2) implies that I,=H,=F. 1In
particular Dp{1, —ad = Dg{1, —x) for all xe F. It follows that —a e R(F) and
Di(2)=Dg{1, —a)=R(F). So F is quasi-pythagorean. Since H=H, for ae
—R(F), we have H=F.

(3)=(1): We have Dy{l,ad=F and H,=H=F. So (1) follows from
Theorem 2.1. Q.E.D.

Using the above corollary and the theorem of Tsen-Lang, we can prove
the following result (see Theorem 17.9 and Corollary 17.8 of [6]): Let k be a
real closed field and Lis a formally real field over k with tr. deg,L=1. Then L
is a quasi-pythagorean field which is a SAP field. In particular the rational
function field R(X) in one variable X over the real number field R is a quasi-
pythagorean SAP field.

If F is a quasi-pythagorean field which is not formally real, then K is also
such a field by Corollary 2.4 and (4) of Proposition 1.2.

In the following, we consider the case in which F is formally real.

COROLLARY 2.5. Let F be a formally real, quasi-pythagorean field and
aeH. Weassume +a< R(F) and denote the preorderings Dg{1, a), Dg1, —a)
by T, T' respectively. Then K is quasi-pythagorean if and only if the pre-
ordering T' is SAP.

PROOF. Since a is an element of H, we have TT'=F. So any beF can
be written as b=xy where xeT, ye T’. Then D;{1, —b>=D;{1, —x) and
D<1, b)=Dr<1,x)>. But by Lemma 2.6 below, Dg{l, —x)Dg{1, x)>=
D1, —=x)D.{1, x) forany xe T. Hence T=H,i.e. Dp{l, —x)D{l, —ax)=
F for all xe T if and only if D;.<1, —bYD;.{1, bY>=F for all be F. The last
condition is equivalent to T’ being SAP, by Remark 2.3, (1) of [5]. Q.E.D.

In the following lemma and its proof, we use freely the notation of [5], §1,
X(P) being an abbreviation for X(F/P).

LEMMA 2.6. Let F be a formally real, quasi-pythagorean field. We assume
+a&R(F) and denote the preorderings Dg{l, a), Dg{1, —a)> by T, T’
respectively. Then for x € T, the following statements hold:
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(1) D1, x> =Dr<1, x> N T.
(2) D1, —x) = D;.{1, —x).
(3) If we further assume a € H, then we have

D1, x)Dp<1, —x)> = Dyp.L1, x)D L1, —x).

PrOOF. We first note that, for any preordering P of F, and for any zeF,
we have Dp(1, z)=(H(2))t, Dp<1, z)=(H(z) n X(P))*. Now for x e T, we have
H(x)2X(T), H(—x)= X(T").

(1) D, xp = (H(x))* = (X(T) U (H(x) n X(T")*

=(X(T)* n (Hx)NnX(T)* =T n D1, x>.
(2) DKl =x) = (H(=x))* = (H(=x) n X(T")* = Dy<1, —x).
(3) Wehave T'-Di{1, x> = T'-(Tn Dr<1, x))

=(T'-T) n Dy<1, x> (since T'=Dr<1, x))

= D;<1, x) (since T-T'=F).

Therefore we have Dp{l, x) D1, — x> = D1, x> Dr.{1, — x) = D.{1, x>
DT’<1’ ‘_x.> Q. E. D.

As an application of Corollary 2.5, we have the following result.

COROLLARY 2.7. Let F be a formally real field. Then F is quasi-pythag-
orean and SAP if and only if every quadratic extension K of F is quasi-
pythagorean. Moreover, when these conditions are satisfied, K is also SAP
if it is formally real.

Proor. The first assertion is obvious. To show the second assertion, let
F be a formally real, quasi-pythagorean and SAP field. Then, by Corollary 2.4,
F(\/ —1) is a quasi-pythagorean field which is not formally real. So, for any
formally real quadratic extension K of F, K(\/—_l) is quasi-pythagorean by
Corollary 2.3. Theorefore K is SAP by Corollary 2.4. Q.E.D.

LeEMMA 2.8. Let F be a formally real, quasi-pythagorean field. We assume
+a& R(F) and denote the preorderings Dg(l, a), D1, —a) by T, T' re-
spectively. Then we have H(T')n T=H,,.

ProorF. For any xeT, D1, —x)=Dp<{1l, —x> and DgKIl, —ax)=
D1, —ax) by Lemma 2.6, (2). So we have H(T') n T=H, by Proposition 1.8
Q.E.D.

In the proof of the following lemma, we use the translation group gr (X(P))
of the space X(P) defined in [7]. Namely gr (X(P))={x € x(F/P); aX(P)=X(P)},
where y(F/P)=Hom (F/P, { +1}) is the character group of F/P. For a preorder-
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ing P of finite index, X(P) is connected if and only if |X(P)|=1 or, |X(P)|=3
and gr (X(P))#1.

LEMMA 2.9. Let F be a formally real,quasi-pythagorean field and assume
that X(F) be finite and connected. Then we have H,=R(F) U aR(F).

Proor. If aeR(F), we have H,=R(F) and the assertion holds. If
—aeR(F), we have H,=H. Hence dim H,/R(F)=1 by Theorem 2.5 of [5].
So the assertion holds by Proposition 1.7 and Proposition 1.8. Since the case
|X(F)|=1 is included in the above ones, we suppose that +ae R(F), |X(F)|=3
and gr(X(F))#1. Let a be an element of gr (X(F)) such that a#1. We con-
sider two cases.

Case 1: afa)=1. We have aX(T")=X(T’). First we assume |X(T")|=3.
Then X(T') is connected. By Theorem 2.5 of [5], dim H(T')/T'=1. So we
have H(T)=T'UaT’. Thus we have H,=R(F)U aR(F) by Lemma 2.8, by
noting TN T'=R(F). Next we assume |X(T')|<2. Since aX(T')=X(T"), we
see that X(T’) consists of even number of orderings and so |X(T')|=2. If we
write X(T")={0,, 0,}, we see that a=0,0,. Since aX(T)=X(T), we take a set
{T1s.-.» Ty 2Ty} as a basis of X(T) and it is easy to see that {z,..., 1,, a7y, 0} is
a basis of X(F). This implies that dim X(T)=dim X(F)—1, and so dim
T/R(F)=1. From this the assertion follows by Proposition 1.7 and Proposition
1.8.

Case 2: a(a)=—1. We have aX(T')= X(T) and aX(T)= X(T’). Hence
aX(T)=X(T'). If we take a basis {o,,..., 0,} of X(T), then {o,,..., 6,, 00} is
a basis of X(F). Thus dim X(T)=dim X(F)—1, and so dim T/R(F)=1. The
assertion follows similarly to case 1. Q.E.D.

COROLLARY 2.10. Let F be a formally real, quasi-pythagorean field. If a
is R(F)-rigid, then K is quasi-pythagorean. Conversely if X(F) is finite and
connected, and if K is quasi-pythagorean, then a is R(F)-rigid.

Proor. If a is R(F)-rigid, we have Dg{l, a)=R(F)U aR(F). So we see
easily that D1, a)=H,, which implies that K is quasi-pythagorean by Theorem
2.1.

Conversely assume that K is quasi-pythagorean. In case a € R(F), the as-
sertion is trivial. If —a e R(F), then H,=Dy{l, ad=F by Theorem 2.1; also
H,=H and, since X(F) is finite and connected, we have dim H,/R(F)=1 by
Theorem 2.5 of [5]. This implies that a is R(F)-rigid. Hence we may suppose
+a& R(F). Then we have Dg(l, a)=H,=R(F)U aR(F) by Theorem 2.1 and
Lemma 2.9. So a is R(F)-rigid. Q.E.D,
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