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Introduction

In this paper we consider linear and nonlinear functional differential equations
with deviating arguments of the forms

(LE) Lx() + 0 )= a()x(gx(t)) = 0,
(NE) Lx(t) + 6 Z3-1 qi() fu(x(gx(1)) = O,

where L, is a disconjugate differential operator defined recursively by

L.d ; x(<i<n), p=1.

(1) Lyx = x, Lix = EW

The following conditions are assumed to hold throughout this paper:

(@ n>20= =+1;
(b) pieC(R4, R,\{0}), S:pi(t)dt = oo (I<i<n-—1), R, =[0, 00);

(C) qn€ C(R+’ R+)’ gn€ C(R+’ R)’ limt—mo gh(t) = © (IShSN) 5
(d) f,eC(R, R) is nondecreasing and xf,(x)>0 for x#0 (1<h<N).

The domain of L,, 2(L,), is defined to be the set of all functions x which have
the continuous ‘“‘quasi-derivatives’ L;x, 0<i<n, on [T,, o0). Our attention is
restricted to those solutions x € 2(L,) of (LE) or (NE) which satisfy

sup {|x(?)|: t>T} >0 forany T>T..

Such a solution is said to be a proper solution. We make the standing hypothesis
that (LE) or (NE) possesses proper solutions. A proper solution of (LE) or (NE)
is called oscillatory if it has arbitrarily large zeros; otherwise it is called non-
oscillatory.

We denote the sets of all proper solutions, all oscillatory solutions and all
nonoscillatory solutions of (LE) or (NE) by &, @ and ", respectively. It is
clear that =0 U #". Because of the conditions (a)-(d) .#" has a decomposition
such that (see [2], [13] or [45]):

N =N UANU U ANy if ¢ =1and niseven,
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N = NoUAQU - U ANy if o =1and nis odd,
N =AU AU - U AN if o= —1and niseven,
N =N UNU - U A, if o= —1and nisodd,

where .4 denotes the subset of 4" consisting of all x satisfying
2) xLx>0(0<i<).and (-1)"'xLx >0(I<i<n) on [T, o).

Equation (LE) or (NE) is said to be oscillatory if all of its proper solutions
are oscillatory. Equation (LE) or (NE) is said to be almost oscillatory if:

(i) for a=1 and n even, every proper solution of (LE) or (NE) is oscillatory;

(ii) for o=1 and n odd, every proper solution x of (LE) or (NE) is either
oscillatory or strongly decreasing in the sense that

3) ILx()) L 0 as ¢t 1 o0, 0<i<n-—1;

(iii) for o= —1 and n even, every proper solution x of (LE) or (NE) is oscil-
latory, strongly decreasing or else strongly increasing in the sense that

O] [Lx(®)] 1 o0 as t1 o, 0<i<n-—1;

(iv) for o= —1 and n odd, every proper solution x of (LE) or (NE) is either
oscillatory or strongly increasing.

The main purpose of this paper is to develop criteria for (LE) or (NE) to be
oscillatory or almost oscillatory. The nonlinear equation (NE) and the linear
equation (LE) are studied in PartI and Part II, respectively. In each part
we obtain conditions which imply that .#;=g by analyzing the three cases: 1<
I<n-—1, 1=0 and I=n, separately, and then combine these conditions to derive
the desired oscillation criteria for the equation under study. It is shown that
there exists a class of genuinely nonlinear equations (NE) for which the oscillation
situation can be completely characterized. No such characterization results are
known for the linear equation (LE).

The oscillatory behavior of functional differential equations with deviating
arguments has been intensively studied in the last two decades. Most of the
literature on this subject has been concerned with equations of the form

) xM() + F(t, x(g1(D)),.-, (gn(1)) = O,

which is a special case of (LE) or (NE) with all p,=1, 1<i<n. For typical
results regarding (5) we refer to [3], [4], [8], [12], [16], [18], [23], [28] and
[36]. There is, however, much current interest in the study of the oscillation
properties of higher-order differential equations of the forms (LE) and (NE)
involving general disconjugate operators L, defined by (1); see, for example, the
papers [1, 2, 5-7, 9-11, 13-15, 17, 19-27, 29-35, 37-47]. In the present paper
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we proceed -further in this direction to establish new oscillation results for equa-
tions (LE) and (NE) with general deviating arguments g,(f) which extend and
unify many of the previous results obtained in the above-mentioned papers.

Part I Nonlinear equations

0. Preliminaries. We begin by listing the notation and formulas which will
be extensively used in the subsequent discussions.
For functions ;€ C(R,, R), i=1, 2,..., we define

Ipn=1,
©.1) , |

It, s; Yiseens V1) =Ss Yo (ry 3 Y15 Yy)dr, i=1,2,...
From the definition of I; it follows that
0.2) It 3 Y gses ) = (=D, 85 Y5 ¥y)
and

t

(03) Ii(t9 s, wl’--', '//t) = Ss ‘/’i(r)Ii—l(t9 r; l»bl,-"a l»bi—l)dr'

Let x be a function which has the continuous “quasi-derivatives’’ L;x (0<i<n)
(see (1)) on R,. Then it is easy to verify that for ¢, se R,

(0.4) Lx(t) = X H;_i(t, 5 Pisv15e--5 PYL;X(5)

t
+ S Lici1(t, 75 Di15ees Do )P(P)Lix(r)dr, 0< i<k <,

which is an extension of the Taylor’s formula with remainder encountered in
calculus. In view of (0.2), (0.4) can be rewritten as

0.5) Lix(t) = Tz (=1)/7H;_ (s, t; Pjseees Py 1)Lyx(s)

+ (=1 StIk—i—l(r’ 15 Pi=t15e-5 Pir DD Lix(r)dr, 0<i<k<n.

For a function g € C(R,, R) we put
(0.6) g4(1) = min {g(), t},
0.7) «[g]={teR,:g9(n>1},

(08) 2[g]={teR,:g9()<1},
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0.9) Hlgl(t, T)
gx(t)
= ST I 1(g(®), 85 Prseees P DDA - 1- 1(t0S; Pn-15-++s Pr+ Vs,
T>0, 1<l<n-1.

We simply write

H[g](®) = Hilg](, 0).

As easily verified, for any fixed T> 0, there exist positive constants ¢, and ¢, such
that

(0.10) c.Hi[g]1(®) < H[g](t, T) < c,H|[g](?)
for all sufficiently large ¢.

1. Basic results. We first consider the differential inequalities

(NI*) oL,x(f) + q(1)f(x(9(1)) < 0
and
(NI-) oLx(t) + q(0f(x(g(1)) = 0,

under the conditions:
() geC(R,,R,), geC(R,,R) and lim,,, g(f) = oo,
(d) fe C(R, R) is nondecreasing and xf(x) > 0 for x # 0.
We introduce the notation:
&+ = {x: x is a positive solution of (NI*) on [T, co) for some T},
4~ = {x: x is a negative solution of (NI~) on [T, o) for some T},
and
Nt = {xeN*: x satisfies (2) for some T,}.
A% has a decomposition such that
NE=HNEUNFU---UNE, if o =1and nis even,
v./V*=./V‘0*U.Af%U---U.A’,$_1 if o =1and nis odd,
NE=HEFUNEFY - UNE if o= —1and nis even,
NE=HEUNFU - UNE if o= —1and nisodd.

We first give conditions implying that 4" =¢ in the case 1<I<n—1.
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THEOREM 1.1. Let 1<I<n—1and (—1)*'lo=-1.
(i) Assume that

(1.1) Sw% < .

Then 4= for (NI*) if

(1.2) (" BLg) avt = o.
(ii) Assume that

(1.3) S—w % < .

Then 47 =g for (NI7) if (1.2) holds.

Proor. (i) Assume that 4} has an element x. Then there exists T;,>0
such that

(1.9 Lx>00<i<]) and (—=1"!L;x >0(I<i<n) on [T,, ).
Choose T; and T, (T, < T; < T)) so large that

(1.5) inf{g(t): t>T,} > T, and inf {g,(t): t>T,} > T;.

We fix T; (= T,) arbitrarily and define

(1.6) T, = max {T3, max {g(¢): T, <t<T3}}.

Assume first that />2. From (0.5) with i, k, t and s replaced by [, n, s and
T,, respectively, we obtain in view of (1.4)

Lix(s) = 2021 (= 1)U ;_(Ty, 55 pjseees Prse)Lx(Ty)
Ta
+ (_l)n—l Ss In—l—l(t’ S5 Pn—1s-++> Pl+1)Lnx(t)dt
Ta
= Ss In—l—l(t’ S5 Pn—15-++> D1+ 1)'(—1)"_anx(t)dt, Tl <s< T4'

Since

(=D"'Lyx() = —oL,x(t) > q(Of (x(9(D)), t =Ty,

we have
Ta
Lix(9) 2 | Tymima(t 83 Pae sy P MAOSGEONAL, Ty <5< T

On the other hand, using (0.4) with i, k, t and s replaced by 1, I, r and T;, re-
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spectively, and (1.4), we get
x'(r) = py(r)Lyx(r)
= pi(MW{Z52A I;—4(r, Ty p2se.. PHLX(TY)

+ ST Ii_5(r, s5 D2seees Pi—1)Pi(S)Lyx(s)ds}

2 5 | 1053 Paves B DBOLKOs, 72 Ty,
Combining these inequalities, dividing the result by f(x(r)) and then integrating
it on [T;, T,], we obtain

T
(1.7)

—

: [x'("N/ f(x(r)1dr

T

v

T4 r T4 .
I X CT ARG TR Y

Tyoi=1(8, 85 Pue15ees Pri )9 LF (X(g()))/ S (x(r))]dtdsdr.

Interchanging the order of integration shows that

S’“ dx S“ S ST“ v dedsdr = g: ST‘ gT ¥ dedrds

X1 f()C) TJr Ty Js s

Ta (Ta (Ta Ta (t Ta
=S S S t//drdtds=g S S W drdsdt
Tl Tl Tl s

s s

> ST’ S”'“) S"“’ v drdsdt,

T2 JTy s

where X;=x(T)), i=1, 4, and Yy =y(r, s, t) denotes the integrand in the last
integral of (1.7). Taking account of the inequality

(1.8) FOgON/fx() =1, T, <r < g(),

which is a consequence of the increasing nature of f and x, we obtain

Xa d T3 g=(t)
le f(—;) = ST; q(?) Sn Pi(S) i1 (2, 85 Putseees Pis1)

g(t)
: Ss Pi(NI_5(r, 85 pas..., Pi-y)drdsdt

T3 g#(t)
= ST: ‘I(t)g Ii_i(g(1), 85 P1yeees Pi-1)Pi(5)

T

'In—l‘-l(t, S5 PDn—=1s++» pl+1)d5dt’

where we have used (0.1). Since T3 is fixed arbitrarily, letting T3— o0 in the
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above inequality and using the assumption (1.1), we conclude that

@ g=(1)
ST Q(t)g I_(g(®), S5 Prseees o= )P - 1= 1(t, S; Pu—1seees Prs1)dsdt
2

Ty
®  dx
< le T <

This contradicts the assumption (1.2).
Assume next that I=1. Replacing i, k, t and s by 1, n, s and T;, respectively,
in (0.5), and using (1.4), we obtain

x'(s) = py(s)Lyx(s)

= pi ({521 (=) U;_ (T, 5 pjse.., P2)LiX(T3)

T3
+ (_l)n—l g In—z(t’ S5 DPn—15--+5 pZ)Lnx(t)dt}

s
T3
s

2P| Tamalts 55 Pac e PAOS@ONL, Ty <5< T,

Dividing this by f(x(s)) and integrating on [T, T5] yields
T3
I EOTICONTE

2 (707 PO alts 55 Bumsres PO LI XGONF(x(5)]ditds.

We denote by Y =y(s, ?) the integrand in the last integral. It follows that
X3 dx ST;; ST, ST: Sr ST;. Sg.(z)
—_ > =
le o=\ Cwaras = (0 yasae> "y dsar,
where X;=x (T), i=1, 3. Using the inequality
(1.9) SO/ f(x(s) =1, Ty <s<g(1),

we obtain

X3 dx Ts g*(t) .
le Fox) > an(t) S P1()1,—5(t, 85 Pp-1,---» P2) dsdt,

T,

which gives in the limit as T3 — o
© g=(1) . ©  dx
[ a0 (7 @ Loat 53 pacsepd) dsdr < 7 - < o

This contradicts the assumption (1.2).
(ii) can be proved similarly.
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REMARK 1.1. In Theorem 1.1 the monotonicity of f can be slightly relaxed,
that is, it suffices to assume the existence of a positive number M such that

(1.10) S <f(y) for M<x<y
in (i), and

(1.11) ) <f(y) for x<y<-M
in (ii).

We are next concerned with the case where 4§ =g.

THEOREM 1.2. Let (—1)"o=—1.
(i) Assume that

(1.12) Sw% < .

Then A°§ =9 for (NI*) if

(1.13) [ ooy Tr-1(t 005 Pacsoes PO = c0.
(i) Assume that

(1.14) - S_J‘{% < 0.

Then (1.13) implies that 4" =@ for (NI-).

Proor. We only give a proof of (i), since (ii) can be proved similarly.
Assume that x € #°§. Then there exists T, such that

(1.15) (=1iLx >0(0<i<n) on [T,, ).

We fix T;, T, which satisfy (1.5), and choose Ty (>T,) arbitrarily. Replacing
i, k, t and s by 1, n, s and Ty, respectively, in (0.5), we have with the use of (1.15)
—x'(s) = —p1()Lyx(s)
= pi ({2121 (= DI (T, s; pjseens P2)Lx(Ts)

T3
+(_ l)n Ss In—2(t, Y Prn—15-++ P2)Lnx(t)dt}
T3

= pl(S)S Io_2(t, 85 Pu-15o, PYAOf(X(g(Ddt, Ty < s < Ts.

Dividng the above by f(x(s)) and integrating on [Ty, T;], we obtain-
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(16) | [ e)ds

> (07 PO a-alts 53 Pa v A LS (g0 S (KON s,

from which it follows that

(1.17)
X1 dx T3 ST3 _ ST:; St S
ozl vaas= (20 wasar>( ' yasa,

where X;=x(T}), i=1, 3, and y=y(s, t) denotes the integrand in the repeated
integral of (1.16). Noting that

(1.18) Sx(g@®ON/f(x(s)) > 1 for s>g() and t>T,,
and taking (0.3) into account, we see from (1.17) that

le dx

t
—_—— t S),_»(t, $; Pu—ts-..,P2)dsdt
L Sﬂ[g]nm,n]q( )SM DA sty 3 Pumtreees2)

f Los(t, 903 Paesoress POG(D)L.
ZLg1n[T2, T3]

Letting Ty;— oo and using (1.12), we conclude that

{ Lo 1(t, 903 Pamroerss YA < 5 < oo,
RLGIN[T2, ) o f(x)

which contradicts the condition (1.13). This completes the proof of (i).

ReMARK 1.2. In Theorem 1.2 the monotonicity of f can be slightly relaxed,
that is, it suffices to assume the existence of a positive number m such that

(1.19) f)<f(y) for 0<x<y<m
in (i), and

(1.20) fX)<f(y) for —m<x<y<0
in (ii).

Finally, we discuss when it happens that 4% =g.

THEOREM 1.3. Let o= —1.
(i) Assume that (1.1) holds. Then A"} =g for (NI*) if

(1.21) [ 1s@®, 1 prsees Byl = o0,
«[g]
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(ii) Assume that (1.3) holds. Then (1.21) implies that #°; =@ for (NI7).

Proor. We need only to prove (i). Assume that xe.#";. Then there
exists T, >0 such that

(1.22) Lx>0(0<i<n) on [T, ).

We fix T;, T, which satisfy (1.5), choose T; (> T,) arbitrarily and define T, by (1.6).
Using (1.22) in (0.4) with i, k, t and s replaced by 1, n, s and T, respectively, we
have

x'(s) = p1(s)Lyx(s)
= pi(){XZ=1 ;- 4(s, Ty pase.., )Lx(Ty)

s
[0 sy 1 P pum DL

2 21 | 1o, 1 Pavees - DaOS gD, 5 2 T,

which, after integration, yields
(023 | e el ds

2 [ PAOa-a(s, 1 Pares Pa AW L (a0 (<N ]dtds.
It follows that

oy B G o= 5y =

where X;=x(T}), i=1, 4, and Y =y(s, t) stands for the integrand in the last integral
of (1.23). Since

Jx@ON/f(x(s) =1 for Ty <s<g() and t>T,

g(t)

S v dsdt,
A#[g1N[T4,T3] Jt

we obtain

S : f‘g)

v

g(1)
{ 4@ (" PO Ts(s, 13 Paves Py dsd
#[gIN[Ty, T3] t

I,_(g(t), t; p1,..., Pn-1)q(2)dt,

I

Sd[a]ﬂ[Tn, T3]
which implies that

. ®  dx
Sd[gjn[Tl,oo) In—l(g(t), t’ Piseees pn—l)q(t)dt < le f(X) < 0.
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This contradicts (1.21), and the proof is complete.

ReMARk 1.3. If xe %, then x(o0)=+o00. Therefore, we can relax the
monotonicity condition on f by assuming the existence of a positive number M
such that (1.10) holds in (i) of Theorem 1.3, and (1.11) holds in (ii) of Theorem 1.3.

We now apply the above results to the differential equation (NE). Let
x € #; be a solution of (NE). If x(¢)>0 for sufficiently large ¢ then

filx(gu) >0  (1<h<N)
for all large t. Therefore,
0 = oL,x(1) + =1 4u(D)fu(x(g,4(1)))
> oL,x(1) + () fu(x(gi(9)), 1 <h < N.

This means that if x is an eventually possitive solution of (NE) belonging to .4,
then it belongs to 477 with respect to the differential inequality

oLx(t) + g fi(x(g4(1)) < O

for any h=1,..., N. Likewise, an eventually negative solution x €.4; of (NE)
belongs to #°; with respect to the differential inequality

oLx(t) + @D f(x(9:(1))) = 0
for any h=1,..., N. Hence we obtain the following results for equation (NE).

THEOREM 1.4. Let 1<I<n—1 and (—1)*"'6=—1. Suppose that there
exist integers o, a_€{l,..., N} such that

(1.24) giw% <
and
(1.25; 1) [ Blg2 1 0ae.(dt = o0,

Then A=¢ for (NE).

THEOREM 1.5. Let (—1)"6=—1. Suppose that there exist integers B,
B_€{l,..., N} such that

d
(1.26) Sio?j‘g <o

and
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(1.27) [ Tua(t, 8005 Pac oo PO = 0.
Zlgp+] .

Then #4=¢ for (NE).

THEOREM 1.6. Let o= —1. Suppose that there exist integers y,, y_€
{1,..., N} such that

to  dx
1.28 S dx_
(1.28) Tl <
and
(129) S In—l(t’ gv:(t); Pis---» pn—l)q‘lx(t)dt = 00.
H[gy4]

Then A,=g for (NE).
These theorems seem to be new even when specialized to the equation
(1.30) x(1) + aq(t)f(x(g(1)) = O,

for which conditions (c’) and (d’) are satisfied. So, we state them below as
corollaries, by noting that in this case

In—l(ta S5 P1seees pn—l) = In—l(t, S5 Pn—15+++» pl) = (t_s)n—l/(n_l)!
and
H[g](t) = g (g (O/[(n—D)(I-Di(n—1-1)!], 1<I<n-1.

COROLLARY 1.1. Let 1<I<n—1 and (—1)"'o¢=—1. Then A;=¢ for
(1.30) if

Si“’ dx

S(x)

COROLLARY 1.2. Let (—1)"6=—1. Then #,=¢ for (1.30) if

<o and Swt""‘lg"l(t)g*(t)q(t)dt= .

S dx < o and gg[ ](t—g(t))"‘lq(t)dt = 00.

+o f(x)
COROLLARY 1.3. Let 6=—1. Then 4,=¢ for (1.30) if
£ dx — 1\yn—1 —
S <@ and Sm] (9()—1)"1q(t)dt = oo.

2. Variants of the basic results. The purpose of this section is to obtain
variants of the results of the preceding section under stronger nonlinearity con-



Oscillation of functional differential equations 457

dition on (NE) and (NI¥). The conditions we assume for (NE) and (NI¥) are
as follows:

(e inf {fi(x)/fi(H): E#£0} >0 forany x>0 and h=1,.,N;
() inf{fEx)/f(£):{#0} >0  forany x>0.
Let us first examine (NI*). For this purpose we need the function defined by
sgn x-inf {f(S|x[)/f(£): E&x>0}  if x #0,
@1 olf](x) = £ oo
Because of (d') and (¢’), w[ f] has the following properties:
2.2) o[ f] is nondecreasing on R and xo[ f](x)>0 for x#0;
(2.3) If ElxDI = 1f (O loLf I(X)| for £x>0.
THeEOREM 2.1. Let 1<I<n—1and (—1)*lo=~1.

(i) Assume that

dx
(24) X_H) m < .

Then 4°f =g for (NI*) if

@) [ s sLg10Hn = oo.
(ii) Assume that

d
@9 ).ty <=

Then 47 =g for (NI7) if

@7 ["a 17~ HiLg101dr = co.

ProOF. Suppose that xe #"f. Then (1.4) holds for some T,>0. We
fix T, and T, satisfying (1.5) and choose T, (> T,) arbitrarily. We first claim that

(2.8) Lix(s) 2 In-y-1(t, 8 Pu-tsees Pia D 1 Lu—1¥(@), Ty <s <t

When I=n—1, this is obvious because L;x is decreasing. When /< n~2, replacing
i, k, t and 5 in (0.5) by I, n—1, s and ¢, respectively, and using (1.4) and the de-
creasing nature of |L,_;x|, we obtain
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Lix(s) = 2823 (= 1)U _(t, 85 pjs-..s Pra)Ljx(0)

t
s

+ (_1)"_1—1S In-l—Z(r’ 83 Pn—2se-+» pl+1)pn-1(r)Ln—1x(r)dr

t
S (Y S P NG| G

s

t
= Ss P 1Ny 5(7, S5 Pu—2s--05 Prs1)Ar - | Ly (x(2)]
=1, 1(t, $; Puet1see0s Pra DLy x(@®], Ty <s <t

On the other hand, from (0.4) with i, k, t and s replaced by 0, /, g(¢) and
T,, respectively, we get

x(g(t)) = 5;}) Ij(g(t)’ le pls'-', pj)ij(Tl)

9(1)
+ 01710, 53 Prves P DPOLix(5)ds

> (" 1@ 3 prvees - DPAOL(SHs, 12 T
Combining this with (2.8), we obtain
x(g(1)
= S:(') I,-1(g(®), 85 P1s-eos Pi— )P u—y—1(ts S5 Pu15--+5 Pr4 )45 - |Lyy— 1 (D))
> cH[g](O)|Ly-1x()], t>T,

for some constant ¢>0. Substitute u(t) for c|L,_;x(¢)]. Using (2.3), we see
that

Fx(g(®) > f(H,[gu(n)) > f(H g1l f1(u(), t=>T,.
Therefore
—u'(f) = (= 1)"leL,x(t) = —acL,x(f) > cq(t) f(x(g(£)))
> cq()f(H[g)D)olf1u(@®), t= T.

Dividing the both sides by cw[ f](u(?)) and integrating the result on [T, T3],
we find

T, (T W) =1 (7r__du
Sr, q()f(H[gl())dt < c ‘Snmd’ =¢ S,,, ol /1)’

where U;=u(T}), i=2, 3. Letting T3— oo and using the assumption (2.4), we
conclude that
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(7 aormaoar < e (A <o,
T2 o [fI(u)

which contradicts (2.5). This completes the proof of (i).
The proof of (ii) is similar.

THEOREM 2.2. Let (—1)"o=—1.
(i) Assume that (2.4) holds. Then the condition (1.13) or

@9 [ 100, FOFUums(t, 9; P PO = 0

implies that /=@ for (NI*).
(ii) Assume that (2.6) holds. Then the condition (1.13) or

210) [ oy TOU=Tum (8 90); P PN = o0
implies that # g=¢ for (NI™).
Proor. (i) We first assume the condition (1.13). Sine, by (2.3) with é=1,
J&x) =2 fDolfix) for x>0,

it follows that

for m>0.

S"‘ dx < 1 S'" dx
o f(x) = f(1) Jo w[f1(x)

Thus (2.4) yields (1.12) and hence 4+ =¢ by (i) of Theorem 1.2.
We next assume the condition (2.9). Suppose that A#°$§#@. Then (1.15)
holds for some T, >0. Fix T, so large that

T, > T, and inf{g(t):t > T} > T,.

Consider (0.5) with i, k, ¢t and s replaced by 0, n—1, g(¢) and ¢, respectively. In
view of (1.15) and the fact that |L,_,x| is decreasing, we have

x(g(®) = T3 (=L, g(2); pjs..., PLLx(D)
+ (=1t g; o Tn= 207> 903 Prm2sevts POPa ()L XY

= S;m I, 5(r; 9(1); Pu-2--+5 P1)Pu—1(DI Ly 1 X(r)ldr

> S;m L_3(Py g(8); Duczseeer P)Pu—1(r)dr - |L,_ x(D)|

= In—l(ta g(t); Pn—15-++» pl)an—lx(t)l’ te .@[g] n [Tl’ OO).
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Set u(t)=|L,-x(¢)]. Since by (2.3)
Jx(g(®)) = f(L-1(t, 9(O); Pa- 15--» P)OLLI(w(D))
for te 2[g] n [Ty, o), we obtain
—u'(t) = (=1)"L,x(2) = —oL,x(1)
= q(Of(Ln-1(t, 9(1); Pu-15---» POLFIW(D), te2[g] n [Ty, ).
Choose T, (>T,) arbitrarily. Dividing both sides by w[ f](u(f)) and integrating

the result on 2[g] n[T;, T,], we see that

Sﬁ,mnmm q(t) fL-1(2, g(2)5 Pu—1s---» P1))dt
T w® g (M __du
= ST: IO Suz o[ f1(w)

where U;=u(T)), i=1, 2. Letting T,— o0, we conclude that

Ui du
DfL,-1(t, g(©); Ppe15-+-» dtgg — e < 00,
[ scosncrn oy SO CnmsCts 905 Py P < [ B s
which contradicts (2.9)
(ii) can be shown similarly.

THEOREM 2.3. Let o= —1.
(i) Assume that

b du
2.11 S _du__ _ o,
.11) oL/ T@ =%
Then the condition (1.21) or
@12 [ 40IUosilg®. 1 Prvecs pom Vit = o0
implies that 4} =¢ for (NL,).
(i) Assume that
- du
2.13 S _du o,
213 o1 <%
Then the condition (1.21) or
@14 [ AU~ L1 1@, £ P Dy Dl = o0

implies that /"7 =@ for (NI™).
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Proor. (i) Since (2.11) implies (1.1), the condition (1.21) ensures that
Nt =g by (i) of Theorem 1.3. So, it remains to show that 47} =g if (2.12) is
satisfied. Suppose to the contrary that 4"} s#d. Let xe ;. Then, (1.22)
holds for some T,. Replacing i, k, t and s in (0.4) by 0, n—1, g(¢) and ¢, re-
spectively, we get

x(g() = Z5=81(9(1), t; pys-.., PHL;x()

9(t)
7 1@, 75 B Ba P L x()r

9(1)
= St In—2(g(t)’ r; Pise-es pn—2)pn—1(r)Ln—1x(r)dr

for te #[g]n[T,, o), which, in view of the increasing nature of L,_;x and
(0.3), implies

x(g(®) = 1,-1(9(1), t; P1s.ves Pa-)Lu—1x(D), teL[g] n [To, o0).
Set u(f)=L,_,;x(t). Then, u(t) satisfies
u'(t) = Lx(t) = —oL,x(t) > q(1)f (x(g(1)))
2 q(O)f In-1(9(1), t; Pys.-os P )OLfT (D)
for te #/[g]n[Ty, ). Dividing the above by w[f](u(t)) and integrating on
#[g]n [Ty, T;], we obtain

{ 4) fUnr(§(0), 15 Puvees Paes))dt
«#[g1N[To, T1]

Te w'(t) _ (U du
<i. IO R I ¥ OR

where U;=u(T)), i=0, 1. Letting T;— o0, we find

£

. du
Sd[a]n[To,GO) q(t)f(ln—l(g(t)’ t’ P1sees pn—l))dt < SUo (D[f] (u) < oo.

This contradicts (2.12). This finishes the proof of (i).
A parallel argument holds in order to prove statement (ii).

Applying Theorem 2.1-2.3 to the equation (NE), we obtain the following
results.

THEOREM 2.4. Let 1<i<n—1 and (—1)*"'o=—1. Suppose that there
exist o, a_€{l,..., N} such that

dx
@19 ) e alruTe <
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Then A,=¢ for (NE) if

2163 1) (7 4e.01 2+ HilgesJ)ldt = co.

THEOREM 2.5. Let (—1)"0=—1. Suppose that there exists f., B_€
{1,..., N} such that

| dx
@.17) giom < .

Then #4=¢ for (NE) if (1.27) holds or

@18 (Ol it 9505 Bamsoes PN = 0.
Flgpsl

THEOREM 2.6. Let o=—1. Suppose that there exist y., y_e{l,..., N}
such that '

(2.19) giw dx

ol frd@ =%

Then A4,=¢ for (NE) if (1.29) holds or

(220) S.d[g ]q?t(t)IfYt(iIn—l(gh(t)’ t; Pi1seees pn—l))ldt = 0.

These theorems applied to the special equation (1.30) yields the following
corollaries.

COROLLARY 2.1. Let 1<I<n—1 and (—1)""‘'c¢=—1. Then A,=¢ for
(1.30) if

dx
S:I:O ol f1(x) <®
and
(" a1 1 10gaalde = oo.
COROLLARY 2.2. Let (—1)"g=—1. Then #,=g for (1.30) if
dx
Sio o1 ~ %

and either

[, G—g@y—qdr=co or |  q@lf(£t—g()yDldt = co.
gl - ’ Zlg]
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COROLLARY 2.3. Leto=—1. Then #,=4¢ for (1.30) if

B3 dx
S olA® ~ %

and either
[, @O-0"a@dt = or | q@f(EO-1Didt = oo.

REMARK 2.1. Corollary 2.2 is an extension of Theorem 4 of Kusano and
Onose [23].

ExaMPLE 2.1. Define the function f by

(B/2)?|x|* sgn x (Ix| = e#/%),
f(x) ={ Ix|*|log|x||#sgnx  (0<|x|<e7?/%),

0 (x=0),

where « and B are positive constants. This function satisfies (d') and (e’), and
we obtain

Ix|*{B/(B+alog|xD}¥sgnx  (Ix|>1),

olf]1(x) = {
|x|* sgn x (IxI<1).
Consider the equation (1.30) with this f under the assumptions
(=)o=—-1, a<l, t—eflesgl®) <t

By Corollary 2.2, 4, =g for this equation if either
[ t—gyraar = oo
or
[ =gy o1 1og (- g0)Pq(t)dt = co.
On the other hand, the condition

IfGO 2 1S forall x,y

is not satisfied, since

FERILfX)f()] = |(log x)~! +(log y)~!|f — 0 as x, y — 0+,

and hence Theorem 4 in [23] can not be applied to this equation.
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3. Oscillation. We want to develop criteria for\equation (NE) to be oscil-
latory or almost oscillatory. To do this we need conditions which ensure the
existence of a nonoscillatory solution x(¢) of (NE) such that

3.) x(t) =c+ o(1) as t - oo for some ¢ # 0

or

(3.2) x(t)=1,-4( 0; pys...s Pu—1)[c+0(1)] as t » oo for some ¢ # 0.
THEOREM 3.1. Suppose that the conditions (a)~(d) hold.

(i) A necessary and sufficient condition for (NE) to have a solution x(f)
satisfying (3.1) is that

(33 [ S 16 03 P s P (D0 < o0

(ii)) A necessary and sufficient condition for (NE) to have a solution x(t)
satisfying (3.2) is that

(34 (" Mt DU T 100, 03 Py P DN < o0
for some ¢’ such that cc'>0.

For the proof of this theorem see Kitamura and Kusano [11] and Fink and
Kusano [5].

We first discuss the almost oscillatory behavior of (NE). For convenience,
we employ the notation:

J(ta S) = sgn (t—S)' lIn—l(ts S3 P1s-++» Pn—l)l’ J(t) = J(t, O)a
K(t’ S) = sgn (t—'S)‘ IIn-l(t’ S35 Pn—15e+2» pl)ls K(t) = K(t’ 0)
THEOREM 3.2. Suppose that (a){(d) hold. A sufficient condition for

(NE) to be almost oscillatory is that:

(i) when o=1 and n is even, there exist a,, a_ € {l,..., N} such that (1.24)
and (1.25; 1) (I=1, 3,..., n—1) hold;

(ii) when o=1 and n is odd, there exist o, a_ € {l,..., N} such that (1.24)
and (1.25; 1) (1=2, 4,..., n—1) hold, and

(33) [ =i K@au0dt = eo;

(iii) when o= —1 and n is even, there exist a,, o_€e{l,..., N} such that
(1.24), (1.25; 1) (I=2, 4,..., n—2) and (3.5) hold, and

(3.6) [" S a1 I@oDldi = 0 forall ¢ #0;
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(iv) when 6= —1 and n is odd, there exist a,, a_€{l,..., N} such that
(1.24), (1.25; ) (I=1, 3,..., n—2) and (3.6) hold.

Proor. (i) By Theorem 1.4 we have /=4 U A5U - U A, =6, that
is, ¥=0.

(ii) Theorem 1.4 implies that =0 U 4. Let x be a positive solution of
(NE) belonging to #,. Then (1.15) holds for some T;>0. Thus x is decreasing
on [T,, oo0) and x(t) has a nonnegative limit as t—o0. This limit must be 0 by (i)
of Theorem 3.1. It can now be shown easily that x(f) satisfies (3). A similar
argument applies to a negative solution of (NE) belonging to 4%,

(iii) From Theorem 1.4 it follows that =0UA# U A,. Let xeu,
be a positive solution of (NE). Then (1.22) holds for some T,>0, so that x is
increasing on [T, o) and tends to a finite or infinite limit as t—»oco0. By (ii) of
Theorem 3.1 this limit must be infinite under the condition (3.6), and clearly,
x(t) satisfies (4). Similarly, a negative solution x € .#;, is also strongly increasing.

(iv) We have £=0U«, by Theorem 1.4. Exactly as above, we can
show that a solution belonging to .#; is strongly increasing. This completes
the proof.

Using Theorem 2.4 instead of Theorem 1.4, we can easily obtain the following
result.

THEOREM 3.3. Suppose that (a)—(e) hold. A sufficient condition for (NE)
to be almost oscillatory is that:

(i) when o=1 and n is even, there exist a,, o_ € {1,..., N} such that (2.15)
and (2.16; 1) (I=1, 3,..., n—1) hold,

(ii) when o=1 and n is odd, there exist a,, a_€{l,..., N} such that (2.15)
(2.16; 1) (1=2, 4,..., n—1) and (3.5) hold;

(iii) when 6= —1 and n is even, there exist a,, a_€{l,..., N} such that
(2.15), (2.16; ) (1=2, 4,..., n—2), (3.5) and (3.6) hold;

(iv) when o= —1 and n is odd, there exist a,, a_€{l,..., N} such that
(2.15), (2.16; ) (I=1, 3,..., n—2) and (3.6) hold.

We are able to obtain necessary and sufficient conditions for a certain class
of equations of the form (NE) to be almost oscillatory, as the following theorem
shows.

THEOREM 3.4. Suppose that (a)(d) hold. Suppose moreover that

1t dx
3.7 S <@, 1<h<N

and

(3.8) liminf,. , H[g,J()/K(®) >0, 1<h<N
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for any 1 such that
1<lgn—-1, (D)o =—1.

Then a necessary and sufficient condition for (NE) to be almost oscillatory is
that:

(i) when a=1, the condition (3.5) holds;

(ii) when o= —1, the conditions (3.5) and (3.6) hold.

Proor. (i) Leto=1and nbeeven. From (3.5), thereexistsa ke {l1,..., N}
such that

Sw K()q()dt = .

Put o, =a_=k. Then (3.7) implies (1.24). Since, from (3.8),
Hl[gat](t) = CK(t)’ l= 1’ 35"" n—1

for some positive constant ¢ and all large ¢, we have
(7 Hge 1000t 2 ¢ 7 KDayt = oo

for suﬁiciently large T. Thus (1.25; 1) (I=1, 3,...,n—1) hold. Hence, by (i)
of Theorem 3.2, (NE) is almost oscillatory.

Conversely, if (3.5) is not satisfied, then, by Theorem 3.1, equation (NE)
has a solution x(¢#) which converges to some non-zero constant as t— o0, so that
(NE) is not almost oscillatory. Therefore the condition (3.5) is necessary for
(NE) to be almost oscillatory.

The case when o=1 and n is odd can be treated similarly.

(ii) Let 6=—1 and n be even. Since (3.8) implies (1.25; 1) (I=2, 4,...,
n—2) as in (i), from (iii) of Theorem 3.2 it follows that (3.5) and (3.6) are sufficient
for (NE) to be almost oscillatory.

If (3.5) is not satisfied, then, by (i) of Theorem 3.1, (NE) has a nonoscillatory
solution which is not strongly decreasing. Similarly, if (3.6) is not satisfied,
then (NE) has a nonoscillatory solution which is not strongly increasing. This
shows that (3.5) and (3.6) are necessary conditions for (NE) to be almost oscil-
latory.

The proof for the case when 6= —1 and n is odd is analogous.

A variant of Theorem 3.4 is obtained if the condition (e) is added.

THEOREM 3.5. Suppose that (a)(e) hold. Suppose moreover that

dx
(3.9 S xo O[f](x)

<o, 1<ALKN
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and
(3.10) liminf,, , H[g,1(®/J(g,)) >0, 1<h<N
for any 1 such that

1<li<n-1, (-D)"le=—1.

Then a necessary and sufficient condition for (NE) to be almost oscillatory is
that:

(i) when (—1)"a=1, the condition (3.6) holds;
(i) when (—1)"6= —1, the conditions (3.5) and (3.6) holds.

Proor. (i) Let 0=1 and n be even. From (3.10),
H[g](t) > cJgu(®), 1<h<n I=13..,n-1

for some positive constant ¢ and all large ¢, and from (3.6) there exist «,, a_ €
{1,..., N} such that

[ 40t eI @)l = o.

Thus

[ 4ol E L3V 2 | 00O foul £ I gDt = 0

for =1, 3,...,n—1and any T>0. From (i) of Theorem 3.3 it follows that (NE)
is almost oscillatory.

The necessity of the condition (3.6) is shown as in the proof of (i) of Theo-
rem 3.4. The case when 6= —1 and n is odd can be discussed similarly.

(ii) The proof is quite similar to the above, and so the details will be omitted.

We are next concerned with the situation in which (NE) is oscillatory. Since
the oscillatory nature is equivalent to the almost oscillatory nature when o=1
and n is even, we omit this case and discuss the remaining cases.

THEOREM 3.6. Suppose that (a)(d) hold. A sufficient condition for (NE)
to be oscillatory is that:

(i) when o=1 and n is odd, there exist a,, a_ € {1,..., N} satisfying (1.24)
and (1.25; 1) (I1=2,4,...,n—1), and B,, B_€e{l,..., N} satisfying (1.26) and
(1.27);

(ii) when o= —1 and n is even, there exist a,, a_€{l,..., N} satisfying
(1.24) and (1.25;1) (1=2,4,....,n-2), B,, Pp-€{l,..., N} satisfying (1.26)
and (1.27), and y,, y_ € {1,..., N} satisfying (1.28) and (1.29);
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(iii) when o= —1 and n is odd, there exist o , a_€{l,..., N} satisfying
(1.24) and (1.25;1) (I=1,3,...,n=2), and y,, y_€e{l,..., N} satisfying (1.28)
and (1.29)

This theorem is an immediate consequence of Theorems 1.4-1.6. The theo-
rem below follows readily from Theorems 2.4-2.6.

THEOREM 3.7. Suppose that (a)-(e) hold. A sufficient condition for (NE)
to be oscillatory is that:

(i) when o=1and n is odd, there exist ., a_€{l,..., N} satisfying (2.15)
and (2.16;1) (1=2,4,...,n—1), and B,, B_€{l,..., N} satisfying (2.17) and
either (1.27) or (2.18);

(ii) when 6= —1 and n is even, there exist a,, a_€{l,..., N} satisfying
(2.15) and (2.16;1) (I=2, 4,..., n-2), B, B_€{l,..., N} satisfying (2.17) and
either (1.27) or (2.18), and vy, y_€{l,..., N} satisfying (2.19) and either (1.29)
or (2.20);

(iii) when o=—1 and n is odd, there exist a,, a_€{l,..., N} satisfying
(2.15) and (2.16; ) (I=1, 3,...,n-2), and y,, y_€{l,..., N} satisfying (2.19)
and either (1.29) or (2.20)

We show that there is a class of equations (NE) for which necessary and
sufficient conditions for oscillation can be obtaind.

THEOREM 3.8. Suppose that (a)~(d) hold. Letc=1 and n be odd. Suppose
moreover that (3.8) holds and

o dx
G.11) SiofT(W«’o’ 1<h<N
and
(3.12) liminf,_  K(t, g,())/K(f) >0, 1< h<N.

Then (3.5) is a necessary and sufficient condition for (NE) to be oscillatory.

ProoF. The necessity of (3.5) follows from (i) of Theorem 3.1, so we prove
the sufficiency. Note that (3.11) implies (1.24) and (1.26) for any a, and B..
Using (3.8) and (3.5), we see that

Hjlg, () > c,;K@®), 1=2,4,..,.n—1, 1<h<N
for some positive constant ¢, and all large ¢, and
(" kgt = o

for some ke{l,..,N}. Put a,=a_=k. Then (1.25;1) (I=2,4,...,n-1)
are satisfied. On the other hand, using (3.12), we obtain
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K(t, gi()) = c.K(1)
for some positive constant ¢, and all large t. This means that 2[g,]1>[T, )

for sufficiently large T>0, and hence

[, K o = e, | ka0t = o,
Zlg, ] T

9y

Thus (1.27) is satisfied if we take §, =f_=k. Therefore, by (i) of Theorem 3.6,
we conclude that equation (NE) is oscillatory.

THEOREM 3.9. Suppose that (a)-(d) hold. Let 6=—1 and n be odd.
Suppose moreover that (3.7) and (3.8) hold, and

(3.13) liminf,, , J(g,(?), )/K(t) >0, 1< h<N.
Then (3.5) is a necessary and sufficient condition for (NE) to be oscillatory.

ProOF. We only prove the sufficiency of (3.5). Since (3.9) implies (1.24)
and (1.28) for any a, and y., it suffices to show that there exist a, satisfying
(1.25; ) (I=1,3,...,n—2), and y. satisfying (1.29). The former is an easy
consequence of the same argument as in the previous proof. To prove the
latter notice that (3.5) and (3.13) imply that

J(g (), ) > cK(1) for all large t,

and

[” kauyde = oo

for some ¢>0 and ke {l,..., N}. It follows that o/[g,]>[T, o) for sufficiently
large T>0, and

[ I nawar = | Koo = .
o#[g,] T

9y

Thus (1.29) is satisfied with y, =y_=k, and the conclusion follows from (iii) of
Theorem 3.6.

THEOREM 3.10. Assume that (a)—(e) hold. Let c=1 and n be odd. Assume
moreover that (3.9) and (3.10) hold, and

(3.19) liminf,, , K(t, g,(1))/ J(g,(¥)) >0, 1<h<N
Then (3.6) is a necessary and sufficient condition for (NE) to be oscillatory.

ProOF. The necessity of (3.6) is obvious from (ii) of Theorem 3.1. To
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prove its sufficiency we note that (3.9) implies (2.15) and (2.17) for any «, and
B+. From (3.10) and (3.6) we see that

Hi[gs](®) 2 ¢;J(g(®), 1=2,4,...,n—1, 1<h<N

for some positive constant ¢, and all large ¢, and

[ 41 fea e, J@aOMIdr = o0

for some a,, a_€e{l,..., N}. Thus the conditions (2.16; 1) (I=2, 4,...,n—1)
are satisfied. On the other hand, using (3.14) and (3.6), we obtain

K(t, gu(®) = c,J(g4(1)), 1<h<N

for some positive constant ¢, and all large ¢, and

[" a0 fat e J@n DIt = o0

for some B, B_€{l,..., N}. Hence Z[gs.]1>[T, o) for sufficiently large T>0,
and we find that

[ a0l (EKG gro)ldr
Rlepz]

> [ 4.0 a2 2 Jgr. )Nt = co.
Thus (2.18) holds. Therefore, (NE) is oscillatory by (i) of Theorem 3.7.

THEOREM 3.11. Assume that (a)—(e) hold. Let oc=—1 and n be odd.
Assume moreover that (3.10) holds, and

(.15) Si:E%<°°’ 1<h<N
and
(3.16) lim inf,, , J(g,(0), )/ J(g,() >0, 1< h < N.

Then (3.6) is a necessary and sufficient condition for (NE) to be oscillatory.

Proor. We only prove the sufficiency of (3.6). Since (3.15) implies (2.15)
and (2.19) for any a, and y., we show that there exist a, satisfying (2.16; I)
(I=1,3,...,n—2) and y. satisfying (2.20). The former can be shown exactly
as above. The latter is derived from (3.16) and (3.6). Indeed, there exist a
positive constant ¢ and y,, y_ € {1,..., N} such that

J(gn(1), 1) 2 cJ(g®), 1<h<N
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for all large ¢, and
[ Ol @)l = o,
J[G'yt]

Then «/[g,.]1>[T, o) for sufficiently large T>0, and hence we find that

(L. 0O, Dl

= (7 4,01z )ld = oo.

Thus (2.20) holds. Applying (iii) of Theorem 3.7, we see that (NE) is oscillatory.

We now list, as corollaries, the results in this section applied to the particular
equation (1.30).

COROLLARY 3.1. Let 60=1 and n be even.
(i) Assume that (a), (b), (c') and (d’) hold. Suppose that

i <

0.

Then the condition

(" g1 aar = oo

is sufficient for (1.30) to be oscillatory.
If in addition

liminf,, . g(¢)/t > O,

then the condition
S‘” 1= 1g(f)dt = oo

is necessary and sufficient for (1.30) to be oscillatory.
(ii) Assume that (a), (b), (¢), (d') and (¢') hold. Suppose that

+o dx
Siow[f](x) < ®-

Then the condition

(" aw1rCarioar = o
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-is sufficient for (1.30) to be oscillatory.
If in addition

lim sup,., o, g(¥)/t < o0,

then the condition
S a1 f(xg™ 1(E)dt = o0

is necessary and sufficient for (1.30) to be oscillatory.

COROLLARY 3.2. Let o=1 and n be odd.
(i) Assume that (a), (b), (c’) and (d’) hold. Suppose that

too d
S —f(;c) < .

Then the condition
[ ox@aar = oo

is sufficient for (1.30) to be almost oscillatory.
If in addition

liminf,_, , g(8)/t > 0,

then the condition
g =1g(f)dt = oo

is necessary and sufficient for (1.30) to be almost oscillatory.
(ii) Assume that (a), (b), (c'), (d’) and (¢') hold. Suppose that

) aTr <
Then the conditions
gm " 1g(H)dt = ©
and
(" a1z o0ar20)lar =

are sufficient for (1.30) to be almost oscillatory.
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If in addition
lim sup, ., , g(¥)/t < o0,

then the conditions
[ tq@yde = oo
and
(" a1z gm 1031t = oo

are necessary and sufficient for (1.30) to be almost oscillatory.
(iii) Assume that (a), (b), (c") and (d") hold. Suppose that

S*—"" dx

iowf(x) < o0.

Then the conditions

[ atwgr2va(ar = o

and
S (t—g(0)*1q(H)dt = oo
Zlg]

are sufficient for (1.30) to be oscillatory.
If in addition

0 < liminf,, , g(8)/t-< limsup,. , g/t < 1,

then the condition
Sw t"~1g(t)dt = o

is necessary and sufficient for (1.30) to be oscillatory.
(iv) Assume that (a), (b), (¢'), (d’) and (¢’) hold. Suppose that

e dx
Sio ol f1x) = ®

Then the conditions

(" a7 e@ar20)ldr = o

and
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[, (t—g0yta@dt=co or | a@)If(£(—g@)yHidt = o
[g] Zl4]

are sufficient for (1.30) to be oscillatory.
If in addition

lim sup,_, , g(?)/t > 1,

then the condition

(" a017(zg 191t =

is necessary and sufficient for (1.30) to be oscillatory.

COROLLARY 3.3. Let 6= —1 and n be even.
(i) In addition to (a), (b), (c’) and (d’) suppose that

to dx
S S <.

Then (1.30) is almost oscillatory if

[ t9320atdr = o
and
Sw aD|f g™ @)dt = 0 forany c 0.
Suppose moreover that

lim inf,_, , g(£)/t > O.

Then (1.30) is almost oscillatory if and only if

Sw =1g(f)dt = oo

and
[“awisea1oar =0 forany co0.
(ii) In addition to (a), (b), (¢'), (d') and (¢’) suppose that

dx
oo olf1G) =%
Then (1.30) is almost oscillatory if
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Sw t"1g(H)dt = oo
and
[ a1 agx)lde = co.
Suppose moreover that
lim sup,_, ,, g(¢)/t < oo0.
Then (1.30) is almost oscillatory if and only if
Sw t=1g(f)dt = oo
and
["aw1rcEaopiar = o,

(iii) In addition to (a), (b), (¢), and (d’) suppose that

t° dx
gio__f(x) < .

Then (1.30) is oscillatory if

{ " tor2wair = 0 for n>2,

[ gyt = oo
Zlg]
and

[ @O-0tq@at = eo.

(iv) In addition to (a), (b), (¢), (d’) and (e’) suppose that

£ dx
J.o aT I <
Then (1.30) is oscillatory if

(" a7t ta0g oMt = 0 for n>2,

[, =gy a@dt=w or | a@lf(£(—g@®yDidi = o0
[g] Zlg]
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and
[, @@-0a0dt =0 or | a0l 1Hidt = oo.

COROLLARY 3.4. Let 0=—1 and n be odd.
(i) In addition to (a), (b), (¢') and (d') suppose that

e

0.
Then (1.30) is almost oscillatory if

(" 193 20aar = oo

and
[“aw1scaropar =0 forany c#o0.

Suppose moreover that

liminf,, , g(2)/t > 0.

Then (1.30) is almost oscillatory if and only if
Sw " 1g(t)dt = o
and
["aw1rca1)dt =0 forany co0.
(ii) In addition to (a), (b), (c'), (d’) and (e’) suppose that
{ LA <
Then (1.30) is almost oscillatory if
(" aw1rcEar mar = .

Suppose moreover that

lim sup,., , g(#)/t < co.

Then (1.30) is almost oscillatory if and only if

(" aw1rcEam1oiar = .
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(iii) In addition to (a), (b), (c') and (d’) suppose that

o g
S —_f(fc) < oo.

Then (1.30) is oscillatory if

[ 1932 0aar = oo
and
[ (@0-vrq@ar = e,
#[g]
Suppose morevoer that

liminf,, , g(®)/t > 1.
Then (1.30) is oscillatory if and only if

gw =1g(i)dt = oo.

(iv) In addition to (a), (b), (¢'), (d") and (¢’) suppose that

o dx
Sio WG ~*

Then (1.30) is oscillatory if
(" a7 1g3200dt = 0
and
[ @-0t@dt=c0 or | a@If(£EO-1ldt = co.
#[9] 4]
Suppose moreover that

1 < liminf,, _ g()/t < lim sup,.,, g(¢)/t < oo.

Then (1.30) is oscillatory if and only if

(" aoisxamepiar = .

Corollaries 3.1-3.4 are improvements over Corollaries 1-4 of Ivanov, Kita-
mura, Kusano and Shevelo [8].

ExampLE 3.1. Consider the third order equation



478 Yuichi KITAMURA

(3.17) (2t 2x"Y) + aq(t)|x(t9)]” - sgn x(¢*) = 0,
where
c=4+1, y,7>0, a,b> —1.
(i) Let o=1and y, 1<1. In this case we obtain

H,[g](1) = J(g(1) = t@*>*2)[(b+1)(a+b+2)]

and
K(t, g(t)) = t**2*2{1/[(a+1)(a+b+2)] + o(1)} as t—> co.

Therefore, from Theorem 3.10 it follows that (3.17) is oscillatory if and only if
[ warrmrgar = oo.

(ii) Leto=—1and y,7>1. We then have

H,[g1(1) = K(1) = t****2[[(a+1)(a+b+2)]

and
J(g(d), t) = te+b+ {1 /[(b+1)(a+b+2)] + o(1)} as t— o0.

Therefore, from Theorem 3.9 it follows that (3.17) is oscillatory if and only if
Sw tatb+2g(1)dt = oo.

ExaMpLE 3.2. Consider the fourth order equation
(3.18) (x"(®))" = 72 f(x(t+sin 1)),
where the function fe C(R, R) satisfies

dx

xf(x)>0 (x#0) and Sw%)_«;o.

Since we can take
=—-1LpO=psO=1Lp(O)=tg{t)=1t+sint and q) =172,
we obtain
3(t+2sin1)/12, 2mr < t < 2m+r,
H,[g](1) = _ )
(t+sin)3(t—sin)/12, Cm+Dr <t < 2(m+ D=

for m=1, 2,..., which shows that H,[g](¢) ~t*/12 (t— o) and
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[ HaLg1a@at = oo.

The conditions (1.27) and (1.29) also hold for this equation, since

[ 19, 1 pis p2y PO
«[g]

(2m+1)xn . .
=1/12) X2, S (2t +sin t) sin3 ¢ - t2dt
2mn

m+1)

n
t~1sin3tdt=00

2 (1/6) £5-i |

mn

and

[ Lt 605 ps, 22y PG
#0491
2(m+1)n . .
= (1/12) T2, S (2t +sin f)|sin® f|-2dt
(2m+1)n
2(m+1)w .
> (1/6) z;-,;;,g =1 |sin® t]dt = oo.
@Cm+1)n
Thus all the assumptions of (ii) of Theorem 3.6 are satisfied and hence equation

(3.18) is oscillatory.

Part II Linear equations

4. Basic results. We now turn our attention to the linear equation (LE).
First, we wish to establish conditions guaranteeing the nonexistence of solutions
of (LE) belonging to 4} (I=0, 1,...,n). To do this, we start with the linear
inequalities of the form

(LI*) oL,x(t) + q()x(g()) < 0
and
(L) oL,x(t) + q()x(g(9) = 0,

for which the condition (c’) is satisfied.
We introduce the notation:

t[g](Y) = max {min {s, g(s)}: 0 < s < 1},
plg1(¢) = min {max {s, g(s)}: s > t}.
Note that the following inequalities hold:

“.1) g(s) < tlgl(® for [g](®) <s<t
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and
4.2) g(s) > plgl(t)  for t<s<plg](H).

As in Part T we discuss the nonexistence of 47 for (LI*) by distinguishing the
three cases: 1<I<n—1,1=0and [=n.

THEOREM 4.1. Let 1<I<n—1 and (—1)"'6=—1. Assume that there
exists a nondecreasing function Y € C(R,, R,) which satisfies

(4.3) g}% < .

Then the condition

¢4 (" waa®, 03 pyvees I HLIG1 a1 = o0
implies that & £=¢ for (LI%).

Proor. We need only to consider (LI*). Suppose that (LI*) has a solution
xeAF. Then there exists T,>0 such that (1.4) holds. From (0.4) with i, k
and s replaced by 0, I and Ty, respectively, and in view of the increasing nature of
L,x, we see that

x(6) = b Ii(t, To; pys-.., pPLx(To)
0 st 53 prses P DPUOLAEHS
< Yoo Ift, To; pys-.., pPLX(Tp), t > To.
Hence there is a positive constant ¢ such that
ex(t) < I(t, 05 py,yeey 1), t 2> T

Put Q()=[¥(cx(g())]1 1q(?) and f(x)=xy(cx). Then x(¢) is a solution of the
differential inequality

oLx(t) + Q) f(x(9(1)) < 0

which belongs to #°f. On the other hand, since

S‘” dx S‘” dx o

= M xy(cx) =

M f(x)

and

[ mLa10oar
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= | twtextem1- Hilg Qs

> [ g, 0; o, P HIG1(0Q0E = oo,

it follows from (i) of Theorem 1.1 that #f =¢. This is a contradiction.

THEOREM 4.2. Let (—1)"0=—1. Assume that

4.5) lim sup, ., S:mm Lomimi(s, TLg1(D); Pa-1seees Pis 1)
I(x[g1(®), 9(9); Pis--.» P)g(s)ds > 1
for some i=0, 1,...,n—1. Then #'E=¢ for (LI%).
PROOF. We assume that (LI*) has a solution xe.#°§. Then there exists

T,>0 such that (1.15) holds. Choose T; (> T,) so that inf{g(¢): t>T,}>Tp.
We now claim that the inequality

(4.6) ﬂimm Iooi1(5, 1091(D); Pu-1eees Pin)
I(t[g1(®), 9(5); Pis---» P1)A(8)ds < 1

holds for t>T, and any i=0, 1,..., n—1.
If t[g](H)=t, (4.6) is trivial, so we assume that ¢t (>T)) satisfies t[g](¥)<t.
We first show that

4.7 x(9(s)) = I(x[g1(®), 9(5); Pi---» POILix(z[g1 (D))

for t{g](t)<s<t and any i=0, 1,..., n—1. If i=0, this follows from (4.1) and
the fact that x is decreasing. Let i>1. Then, replacing i, k, ¢t and s in (0.5) by
0, i, g(s) and t[g](?), respectively, we obtain

x(g(s) = Xj=b (= 1Y1,(zLg1 (D), 9(5); pj»---» PL;X(z[g1 (1)
+ 0 L 993 e POROILXOYY,

g(s

which, in view of the decreasing nature of |L;x|, readily implies (4.7). Next,
replacing k, t and s in (0.5) by n, t[g](f) and t, respectively, we have

ILx(Lg] (D) = (—1)'Lix(z[g1 ()
= 252 (=111, 191 (1); pjs---s Piv )L jx(1)

t
LEGE W SO 7 [T SIS A Y0 7S

whence it follows that
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ILx(L] )] = ILix()]

[ o mica(5s TLO10 Pam s Prs DAOX(@s.
Combining this with (4.7) yields
ILx(Lg) )] 2 Lx(o)

L CTAIOTA S SRER 7 [T S

-I(z[g1(®), 9(s); ps»---» P1)q(s)ds,

t
tlg
which implies

IR ATECE, /3 [OFF MY AN 7C A IONZOT S AV O
< 1 = LxOl/ILeeLg ()] < 1.

This prove (4.6), a contradiction to the hypothesis (4.5), so that 4§ =g.
A similar argument holds if we assume that (LI~) has a solution x € A475.

ReEMARK 4.1. It is possible to relax (4.5) in Theorem 4.2 as follows:
There exists a sequence {t,,} such that ¢,,— 00 as m— o0 and

S::;](t )In—i—l(s’ T[g] (tm); pn—i"-" pi+ I)I;(T[g] (tm)’ g(s), pia---, P1)‘1(s)ds 2 1

for some i=0, 1,..., n—1.

- THEOREM 4.3. Let 6=—1. Assume that

. rlgl(t)
@8 timsup "7 166, pLa10; o P

Ty 1(pLg1 (1), S5 Pis15--+5 Pu-1)q(s)ds > 1
for some i=0, 1,...,n—1. Then #'f=g for (LI%).

Proor. Suppose that (LI*) has a solution x belonging to .#°;. Then there
exists T >0 such that (1.22) holds. We will show that the inequality

rlal(t)
4.9) S

t I(g(s), plg1(®); p1,..., D))

Tni—1(PLg1(1)s S5 Pu—1sevvs Piv1)(s)ds < 1

holds for t>T, and any i=0, 1,...,n—1. We then have 4"t=g, since (4.9)
contradicts (4.8).
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If p[g](H)=t, (4.9) is trivial, and so we suppose that t (> T,) satisfies p[g](¢) >
t. We first show the fact that

(4.10) x(g(s)) = Ig(s), pL[g1(®); py>---» PILX(p[g] (D)

for t<s<pl[g](t) and any i=0, 1,...,n—1. If i=0, (4.10) follows from (4.2)
and the increasing nature of x. Leti>1. From (0.4) with i, k, t and s replaced
by 0, i, g(s) and p[g](?), respectively,

x(g(s)) = X526 1(g(s), pL91(®); p1s---» P)L;x(p[g]1(1))

g(s)
+ S I;_(g9(s), 5 P1seens Pi-0)P(r)Lix(r)dr.
plgl(2)

Using (4.2) and noting that L;x is increasing, we easily get (4.10) from the above
equation. Next, from (0.4) with k, ¢ and s replaced by n, p[g] (¢) and ¢, respectively,

Lix(p[g1() = 2= 1;_(p[g1(t), t; Pis 15---» PLX(1)

[91()
[ e PLO1O, 55 Brvsons Pa DL,

in particular

Lax(pla ) = Lx(®) + | 1, (oLa1 @), 55 Prvavens Pa-AGX(@(ds.

t
Combining this with (4.10), we obtain

Lix(p[g](1) = Lix(2)
plal(t)

+ Latolgd @) " 1g(s), pLa1 05 Prses 2

t
'In—i—l(p[g] (t)a S5 Pi+1s+0> Pn—l)Q(s)dS,
which implies

wal(l) I(g(s), pLg1(®); P1s---> P)u—i=1(PLg](®), S; Pit15---> Pn-1)4(s)ds

<1 - Lx()/Lix(p[g]1 () < 1.

This is the désired contradiction (4.9).
That (4.8) ensures 4", =g for (LI7) can be proved analogously.

REMARK 4.2. It is possible to relax (4.8) in Theorem 4.3 as follows:
There exists a sequence {t,} such that t,,— o0 as m— oo and

[ 149(5), PLOT 03 Prvees PIT=i- (PLG (0 53 Bit v PS5 =1

tm
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for some i=0, 1,..., n—1.

We now consider the equation (LE). Let x be a solution of (LE) belonging
to A7 Then it is a solution of

oLx(1) + ¢(Ox(gx(1) <0, 1<h<N,
belonging to A7} if x is positive, and it is a solution of
oL,x(1) + q(Ox(gu()) 20, 1<h<N

belonging to 477 if x is negative. Therefore, from Theorems 4.1-4.3, we obtain
the following theorems on the absence of .4, (I=0, 1,..., n) for (LE).

THEOREM 4.4. Let 1<Ii<n—1 and (—D)"'!'e=—1. If there exist a,,
o_€e{l,.., N} and ye C(R,, R,) such that

@.11) Swﬂ‘i’(ﬁg <

and

@120 (TG0, 03 prvers P HG2,] (040,(0)dE = 0,
then A,=¢ for (LE).

THEOREM 4.5. Let (—1)"c=—1. If there exist B, B_€{l,..., N} such
that

. t
@1 tmsupen (T 0005 Bacsoens Piv)

tlgp+1(1)

I(t[gp.1(1), gp(5); Pis---» P1)gp.(s)ds > 1
for some i=0, 1,..., n—1, then #y=¢ for (LE).

THEOREM 4.6. Let 6=—1. If there existy,,y_e€{l,..., N} such that

[gv:1(?)
(4.14) lim sup,.o Sﬂ ot
t

1495.(5), PLg.1(D; p1s--.» P)
Tyi—1(p[g7.1(D); S5 Pis 15005 P 1)dy.(s)ds > 1
for some i=0, 1,..., n—1, then #,=¢ for (LE).
Applying these theorems to the particular equation

(4.15) xM(1) + aq()x(g9(1)) = 0,

we obtain following corollaries.
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COROLLARY 4.1. Let 1<I<n—1and (—-1)"lo=—-1. If

4.16) [ mm1g-c 10 aar =
for some £>0, then #;=¢ for (4.15).

PrOOF. Put Y(x)=x#!. Then (4.11) is satisfied and it is not difficult to
verify that (4.16) guarantees that (4.12;1) holds for (4.15). The conclusion

follows from Theorem 4.4.

COROLLARY 4.2. Let(—1)"c=—1. If

(4.17) limsup,.. S::,,](,) {s—(rn[fg(_t)l})"'“' 1{r[g](t) 96N f(syds > 1

for some i=0, 1,..., n—1, then #y=¢ for (4.15).
Proor. This follows from Theorem 4.5, since

I—i-s(s, T[g1(D); Pu=15--05 Piv 1) = {s—7[g] (@O} /(n—i—-1)!
and
I(z[g1(®), 9(s); Po>---» p1) = {tlg1(®) — g(}'/i!,
so that (4.17) guarantees that (4.13) holds for (4.15).

COROLLARY 4.3. Leto=-—1. If

(4.18) lim sup,-.o S”[”(') {g(s) = p[g](t)} {/’[%ll(_t)l-_‘i})';"~ g(s)ds > 1

Jor some i=0, 1,..., n—1, then #,,=¢ for (4.15).

Proor. Note that under the hypothesis (4.14) is satisfied for (4.15), since
I(g(s), pLg1(®); p1s---» P) = {g(s) — pLg1(D}}/i!

and
I i-1(p[g1 (D), $; Pis 15--5 Pa-1) = {p[g] (D)= s} (n—i-1)L.
Then apply Theorem 4.6.

ReMARrk 4.3. If g is nondecreasing and g(f) < t, then t[g] (f)=g(f) and hence
(4.17) is equivalent to

im0 i
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for some i=0, 1,..., n—1. On the other hand, if g is nondecreasing and g(f) >1,
then p[g](t)=g(?) and (4.18) is equivalent to

limsupt-v gg(t) {g(S) g(t)} {g((rzt)_lf};): : (S)dS>1

for some i=0, 1,..., n—1. Therefore Corollaries 4.2 and 4.3 extend the results
of Koplatadze and Chanturiya [12].

5. Oscillation. In this section we present conditions under which equation
(LE) is oscillaroty or almost oscillatory.

THEOREM 5.1. Equation (LE) is almost oscillatory if:

(i) for o=1 and n even, there exist o, o_€{l,..., N} and y e C(R,, R )
which satisfy (4.11) and (4.12; 1) (I=1, 3,...,n—1);

(ii) for o=1 and n odd, there exist a,, a_€{l,..., N} and y e C(R;, R )
which satisfy (4.11) and (4.12; 1) (I1=2, 4,..., n—1), and the condition (3.5) holds;

(iii) for o= —1 and n even, there existo,, a_€{l,..., N} andy e C(R,,R,)
which satisfy (4.11) and (4.12; 1) (1=2, 4,..., n—2), and the condition (3.5) and

(5. ISR CROYROTE

hold;

(iv) foro=—1and nodd, there existo,,o_€{l,...., N} andy e C(R,,R,)
which satisfy (4.11) and (4.12;1) (I=1, 3,...,n—2), and the condition (5.1)
holds.

Proor. Theorem 4.4 shows that (LE) has no solutions belonging to 4]
(I=1, 2,...,n—1). Thus it suffices to show that |x(f)| {0 as t1 oo if xet,
and |L,_,;x(¢)] 1 o0 as t 1 o if xe ;. But these facts can be proved in the same
manner as in the proof of Theorem 3.2.

THEOREM 5.2. Equation (LE) is oscillatory if:

(i) for a=1 and n odd, there exist a,,a_€{l,..., N}, y e C(R,, R,) and
B+, B-€{l,..., N} which satisfy (4.11), (4.12;]) (I1=2,4,...,n—1) and (4.13),
respectively;

(ii) for o= —1 and n even, there exist a,,a_€e{l,..., N}, y e C(R,, R,),
Bi, B_€{l,....,N}, and y,,y_€e{l,..., N} which satisfy (4.11), (4.12; 1) (I=
2,4,...,n=2), (4.13) and (4.14), respectively,

(iii) for o= —1 and n odd, there exist a,,a_€{l,..., N}, yeC(R;, R,)
and y., y_€{l,..., N} which satisfy (4.11), (4.12; l) (I=1, 3,..., n—2) and (4.14),
respectively.

This theorem is an easy consequence of Theorems 4.4-4.5.
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The above results specialized to the equation (4.15) are stated below.
COROLLARY 5.1. Let 0=1 and n be even. If
Sw g 1(Hg~s(t)q(t)dt = o for some &> 0,
then (4.15) is oscillatory.
COROLLARY 5.2. Let6=1 and n be odd. If
Sw gy gt ()q()dt = o0 for some e>0
and
Sw " 1g(t)dt =
then (4.15) is almost oscillatory. If in addition

{s—1[g] ()} i1 {T[g](t) g}’ g(s)ds > 1

(n—i—1)!

t
lim sup;.e S
t[g1(1)

for some i=0, 1,..., n—1, then (4.15) is oscillatory.

COROLLARY 5.3. Let 0=—1 and n be even. If
Sw tgi=3(t)g " 4(t)q(t)dt = o for some ¢ >0,
(" e1qar = 0
and
[ g 10aar =

then (4.15) is almost oscillatory. If in addition

{s—tlgl (1)}~ i1 {r[g](t) 9O} f(syds > 1

t
lim sup,., g
Piowo ) i~ (n—i=1)1

for some i=0, 1,...,n—1, and

lim sup, . S:’“’]"’ {g(s) — p[y] ®)}’ {p[?;—ll(—tz—i})"' - q(s)ds > 1

for some j=0, 1,..., n—1, then (4.15) is oscillatory.
COROLLARY 5.4. Let 6=—1 and n be odd. If
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gw tgn2()g~(t)q()dt = o for some &> 0

and
[" gm0t = o

then (4.15) is almost oscillatory. If in addition

lim sup;-.« Sp[gm) lo(s)= p[g] ()} {p [“(],:,. (_t_z:sl})"' - 1¢](S)ds >1

for some j=0, 1,..., n—1, then (4.15) is oscillatory.
ExaMPLE 5.1. Consider the third order equation
5.2) (" 1x"()) + 4t7*x(t/2) = 0
Since
o=1,p,(0)=1,p,(H) =1t,q(t) =4+ and g(t) =1/2,
we obtain
tLg1(®) = 1/2

and we can easily calculate that

S:[a](:) I,(z[g1(®), 9(5); P2, P1)q(s)ds

= [1/6 + log 2]/12 = 0.071651 < 1,

S:mml 16, tLg1(®); p)I1(z[g1(2), g(s); p1)q(s)ds
= [19/6 — 41og 2]/4 = 0.098519 < 1
and
[ I, ©Lg10; p2s PGS
t[g1(t)
= [161og2 — 29/3]/12 = 0.118641 < 1.

This shows that (4.13) of Theorem 4.5 is not satisfied for the equation (5.2).
Indeed this equation has a solution x(f)=¢"! which belongs to .4%,.
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