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Introduction

In this paper we consider linear and nonlinear functional differential equations

with deviating arguments of the forms

(LE) Lnx(t) + σ ΣN

h=i qh(t)x(gh(t)) = 0,

(NE) Lnx(t) + σ Σfi-i qh(ϋfh(x(gh(t))) = 0,

where Ln is a disconjugate differential operator defined recursively by

/i\ r v _ v r v 1 d τ

yi) i^ox — x, i^iX — , ±ji_ί

The following conditions are assumed to hold throughout this paper:

(a) n > 2, σ = ± 1

(b) PieC(R + ,R+\{0})9 \)™pi(t)dt=oo(l<i<n-l), R + = [0, αo);

(c) qheC(R + ,R+)9 gheC(R + fR), l i n w gh(t) = oo

(d) fh e C(R, R) is nondecreasing and xfh(x) > 0 for x Φ 0 (1 < h < N).

The domain of Lw, ^(Lπ), is defined to be the set of all functions x which have

the continuous "quasi-derivatives" Lfx, 0 < ΐ < n , on [Tx, oo). Our attention is

restricted to those solutions x e @(Ln) of (LE) or (NE) which satisfy

sup {\x(t)\: t > T} > 0 for any T > Tx.

Such a solution is said to be a proper solution. We make the standing hypothesis

that (LE) or (NE) possesses proper solutions. A proper solution of (LE) or (NE)

is called oscillatory if it has arbitrarily large zeros otherwise it is called non-

oscillatory.

We denote the sets of all proper solutions, all oscillatory solutions and all

nonoscillatory solutions of (LE) or (NE) by y , Θ and Jί, respectively. It is

clear that £f = Θ U ^ . Because of the conditions (a)-(d) Jί has a decomposition

such that (see [2], [13] or [45]):

. / z z ^ U ^ u U ΛVx if σ = 1 and n is even,
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Jί = ^Γ 0 U^ 2 U ••• U ^ ! if σ = 1 and n is odd,

jr = jro\)jr2\) -- \jjrn if σ = - 1 and « is even,

^ = ^ l U ^ 3 U U ^ n if σ = - 1 and n is odd,

where Jίx denotes the subset of JΓ consisting of all x satisfying

(2) xLtx > 0 ( 0 < ! < / ) and (-ly-'xL,* >0(l<i<n) on [7;, oo).

Equation (LE) or (NE) is said to be oscillatory if all of its proper solutions

are oscillatory. Equation (LE) or (NE) is said to be almost oscillatory if:

( i ) for σ= 1 and n even, every proper solution of (LE) or (NE) is oscillatory;

(ii) for σ = l and n odd, every proper solution x of (LE) or (NE) is either

oscillatory or strongly decreasing in the sense that

(3) \Ltx(t)\ I 0 as t t oo, 0 < i < n - 1;

(iii) for σ= - 1 and n even, every proper solution x of (LE) or (NE) is oscil-

latory, strongly decreasing or else strongly increasing in the sense that

(4) \LiX(t)\ ΐ oo as t t oo, 0 < i < n - 1;

(iv) for σ= -1 and n odd, every proper solution x of (LE) or (NE) is either

oscillatory or strongly increasing.

The main purpose of this paper is to develop criteria for (LE) or (NE) to be

oscillatory or almost oscillatory. The nonlinear equation (NE) and the linear

equation (LE) are studied in Part I and Part II, respectively. In each part

we obtain conditions which imply that JVΊ = 0 by analyzing the three cases: l <

l<n — 1, Z = 0 and l = n, separately, and then combine these conditions to derive

the desired oscillation criteria for the equation under study. It is shown that

there exists a class of genuinely nonlinear equations (NE) for which the oscillation

situation can be completely characterized. No such characterization results are

known for the linear equation (LE).

The oscillatory behavior of functional differential equations with deviating

arguments has been intensively studied in the last two decades. Most of the

literature on this subject has been concerned with equations of the form

(5) χ(-)(0 + F(t, xGhO)),..., (gM)) = 0,

which is a special case of (LE) or (NE) with all pt = ί9 l<i<n. For typical

results regarding (5) we refer to [3], [4], [8], [12], [16], [18], [23], [28] and

[36]. There is, however, much current interest in the study of the oscillation

properties of higher-order differential equations of the forms (LE) and (NE)

involving general disconjugate operators Ln defined by (1); see, for example, the

papers [1, 2, 5-7, 9-11, 13-15, 17, 19-27, 29-35, 37-47]. In the present paper
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we proceed further in this direction to establish new oscillation results for equa-

tions (LE) and (NE) with general deviating arguments gh(f) which extend and

unify many of the previous results obtained in the above-mentioned papers.

Part I Nonlinear equations

0. Preliminaries. We begin by listing the notation and formulas which will

be extensively used in the subsequent discussions.

For functions ψieC(R+, R), i = l, 2,..., we define

ί h = 1,
(0.1) n

[ Ii(t, s; ψi,...9 φi) = \ Ψiήli-iir, s; ψ^l9..., ψjdr, i = 1, 2,....
Js

From the definition of Jf it follows that

(0.2) W, s; φl9...9 ψϊ = (-1YΦ, t; ψi9..., ψj

and

(0.3) lit, s; ψu..., ψd = (Vι(r)/|-i(ί, r; ψu...9 Φt-Jdr.
J

Let x be a function which has the continuous "quasi-derivatives" Ltx (0<i<ή)

(see (1)) on R + . Then it is easy to verify that for t, s e R +

(0.4) LiX(t) = Σ5=ί Ij-i(t, s; Λ + 1 , . . . , Pj)Ljx(s)

+ \ h-t-xit, r; pi+ί,..., Pk-JpkWLkxWdr, 0 < i < k ^ n,
Js

which is an extension of the Taylor's formula with remainder encountered in

calculus. In view of (0.2), (0.4) can be rewritten as

(0.5) Uxit) = ΣkjZ\ ( - ly-^j-iis, t; pj,..., pi+ί)Ljx(s)

*-,-i(r, t; ft-!,..., Pi+i)pk(r)Lkx(r)dr, 0 £ i < k < n.

For a function g e C(R+, R) we put

(0.6)

(0.7)

(0.8)
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(0.9) H,[gl(t,T)

Iι-ι(g(t), s; pu..., Pt-Jpfay^-^s; pM-i,..., Pι+i)ds,

T > 0 , 1 < Z < n - 1.

We simply write

As easily verified, for any fixed T>0, there exist positive constants cx and c2 such

that

(0.10) c ^ ] (0 < Ht[g2 (t, T) <
for all sufficiently large ί.

1. Basic results. We first consider the differential inequalities

(NI+) σLnx(i) + q(t)f(x(g(t))) < 0

and

(NI-) σLnx(t) + q(t)f(x(g(t))) > 0,

under the conditions:

(c') q e C(R + 9 R+), g e C(R + , R) and l i m ^ g(t) = oo,

(df) fe C(R, R) is nondecreasing and xf(x) > 0 for x Φ 0.

We introduce the notation:

JV+ = {x: x is a positive solution of (NI+) on \TX, oo) for some Tx},

JV~ = {x: x is a negative solution of (NI~) on [Tx? oo) for some Tx},

and

^ ± = {χe^Γ 1 : x satisfies (2) for some Tx}.

JV%± has a decomposition such that

Jί± = JTi \SJf%\] " U Jf*-γ if σ = 1 and n is even,

r± u Λ^± u ••• U ^ ί - i if σ = 1 and n is odd,

± u J^J U ••• U JV* if σ = - 1 and n is even,

if σ = - 1 and w is odd.

We first give conditions implying that jVf = 0 in the case 1 < l< n — 1.
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THEOREM 1.1. Let l < / < n - l and (-l)n~ισ= - 1 .

(i) Assume that

(1.2) \ HfoUMϋdt = oo.

(ii) Assume that

(1.3)

~) ι/(1.2) AoWs.

PROOF, (i) Assume that ./Γ/" has an element x. Then there exists T o >0

such that

(1.4) Lμ > 0 (0<ΐ</) and ( - l y - ^ x > 0 (l<i<n) on [To, oo).

Choose 7\ and Γ2 (To < Tt < T2) so large that

(1.5) inf{g(t): t>Tx} > To and inf^^ί): t>T2} > Tu

We fix T3 (> T2) arbitrarily and define

(1.6) T4 = max{T3,max{flf(O: T1

Assume first that Z>2. From (0.5) with i, k, t and s replaced by Z, n, s and

T4, respectively, we obtain in view of (1.4)

+ ( - 1 ) " " 1 Γ 4 / „ - , - ! ( * , s; p M _ l 5 . . . , pι+ί)Lnx(t)dt
Js

> Γ4/„_,_!(«, s; ?„_!,..., p ί + 1 ) (-l)"-'Lnx(ί)dί, 7\ < s < Γ4.
Js

Since

(-l)-'LMx(0 = -σLnx(ί) > q(t)f{x(g{t))\ t > Tl9

we have

Ltx(s) > [^I^.^t, s; />„_!,..., Pι+1)q(t)f(x(g(t)))dt, Tt < s < T4.
Js

On the other hand, using (0.4) with i, k, t and s replaced by 1, I, r and Tl9 re-
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spectively, and (1.4), we get

x'(r) = Pl(r)LlX(r)

= Pi(r){ΣιAIj-i(r, T\; pl9...f JX

+ \ 7z_2(r, s; p29..., pι.ί)pι(s)Lιx(s)ds}

> Pi(f) ^ Iι-2(r, s;p29..., pι-ί)pι(s)Lιx(s)ds, r > Tt.

Combining these inequalities, dividing the result by f(x(r)) and then integrating

it on [Tl9 T4], we obtain

(1.7)
J i

rτ4 rr rτ4

> \ \ \ Pl(rMl-2\r> S'> P2>'~> Pl-l)Pl(S)jTί JΓi Js

•/._,_!(», s; pn-u-,Pι+iMt)U(x(9mimr))Vtdsdr.

Interchanging the order of integration shows that

4 /7v CT4 (r rτ4 cτ4 CTA rτ4

J*x > \ ψ dtdsdr = \ ^ dtdrds

rτ4 rτ4 rτ4 rτ4 rt cτ4

= \ \ \ ψ drdtds = \ \ \ ψ drdsdt
JTί Js Js JTi jTίJs
(T3 Γg*(t) Γg(t)

>\ \ \ ψ drdsdt,
JT2 JΓi Js

where Xi = x(Ti), i = l, 4, and φ = \l/(r,s, t) denotes the integrand in the last

integral of (1.7). Taking account of the inequality

(1.8) /(x(iK0))//(*(O) > 1, T^r

which is a consequence of the increasing nature of/ and x, we obtain

rx4 A X rτ3 Cg*(t)
\ -ffc- > \ q(t) Pι{s)In^x(t9 s; Pn-u .., Pι+i)
JXi J\Xj JT2 JTί

(
\

J
PiWI^ir, s; p29..., Pi-

g*(t)
I

•/B-z-i(ί, s; pn-l9...9 pι+ί)dsdt,

where we have used (0.1). Since T3 is fixed arbitrarily, letting T3-*oo in the



Oscillation of functional differential equations 451

above inequality and using the assumption (1.1), we conclude that

\ *?(0 \ Iι-i\9\f)> s> JPIJ ? PI-ι)Pι(s)In-ι-i(β> sl JPΠ-IV J Pι+χ)dsdt

< i dxroo
\
JXί /(*)

This contradicts the assumption (1.2).
Assume next that I = 1. Replacing i, k, t and s by 1, n, s and T3, respectively,

in (0.5), and using (1.4), we obtain

s; Pj,..., p2)Ljx(T3)

/,_2(ί, s; Λ_! , . . . , P2)q(t)f(x(g(t)))dt, T± ζ s < T3.

Dividing this by f(x(s)) and integrating on [Γ1 ? Γ3] yields

We denote by ψ = ψ(s, t) the integrand in the last integral. It follows that

rx3 AX rτ3 rr3 rr3 fί . _ . fr3 Cg*(t)

\ - ^ r - > \ \ φ dtds = \ ψdsdt>\ ψ dsdt,

where Xf = x (7j), i = 1, 3. Using the inequality

(1.9) f(χ(g(t)))lf(χ(s)) > i, r

we obtain

rτ3 (g*(t)
n-2^9 s ; Λ-i» '

which gives in the limit as T3->oo

)τ q ^ ) T l

 Pl^In~2^9 s ; Pn-u-,Pi) dsdt

This contradicts the assumption (1.2).
(ii) can be proved similarly.

oo.
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REMARK 1.1. In Theorem 1.1 the monotonicity of/can be slightly relaxed,

that is, it suffices to assume the existence of a positive number M such that

(1.10) f(x)<f(y) for M<x<y

in (i), and

(1.11) f(x)<f(y) for x<y< -M

in (ii).

We are next concerned with the case where

THEOREM 1.2. Let ( - l)nσ= - 1 .

(i) Assume that

(1.12) [ - J * < oo.

(1.13) j /„_!(*, flf(ί); p,-i,..., PiMOΛ = oo.

(ii) Assume that

( U 4 )

(1.13) implies that jr~ = 0for (NI~).

PROOF. We only give a proof of (i), since (ii) can be proved similarly.

Assume that x e JΓ%. Then there exists To such that

(1.15) ( - l ) ί L i x > 0 ( 0 < ϊ < n ) on [Γo, oo).

We fix Tl9 T2 which satisfy (1.5), and choose T3 (>T 2 ) arbitrarily. Replacing

i, fc, ί and s by 1, π, s and T3, respectively, in (0.5), we have with the use of (1.15)

-x'(s)= -Pl(s)Lix(s)

= Pi(s){Z?=l(-l)Vi(r3, 5; />,,..., p2)Ljx(T3)

+ (-1)" Γ3

t, Tt ζ s ζ T3.

Dividng the above by f(x(s)) and integrating on [7\, Γ3], we obtain
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(1.16) Γ

Γ 3 \T3p1(s)In-2(t, s; p..,,..., p2)q(t)lf(x(g(t)))lf(xmdtds,
JTi Js

from which it follows that

(1.17)

rxi Aγ rτ3 CTz r r 3 rt r rt

- # r > \ \ ψdtds=\ \ φdsdt>\ \ ψdsdt,
JX* J\x) JTX Js JTt JTi JJ?\.giniT2,T3]Jg(t)

where Ji f = x(Tf), Ϊ = 1, 3, and \j/ = φ(s, t) denotes the integrand in the repeated

integral of (1.16). Noting that

(1.18) f(x(g(t)))lf(*(s)) > 1 for 5><K0 and t > Γ2,

and taking (0.3) into account, we see from (1.17) that

\ q(t) Γ Pί(s)In-2(t9 s; pn-u...,p2)dsdt
J^[»]n[T2,Γ3] Jg(t)

pn-u -., Pi)q(t)dt.

Letting Γ 3 ^oo and using (1.12), we conclude that

h-iiu g(t); pn-u-> Pi)q(t)dt < \ -™ < oo,

[0]n[Γ2,<») Jo J(X)

which contradicts the condition (1.13). This completes the proof of (i).

REMARK 1.2. In Theorem 1.2 the monotonicity of/ can be slightly relaxed,

that is, it suffices to assume the existence of a positive number m such that

(1.19) f(x) < f(y) for 0 < x < y < m

in (i), and

(1.20) f(x) < f(y) for - m < x < ) > < 0

in (ii).

Finally, we discuss when it happens that Jf^ = 0.

THEOREM 1.3. Let σ=-1.

(i) Assume that (1.1) holds. Then jr+ = 0for (NI+) if

(1.21) ( In-Mt)> t; />!,..., Pn-Mήdt = oo.



454 Yuichi KITAMURA

(ii) Assume that (1.3) holds. Then (1.21) implies that jr~ = 0for (NI") .

PROOF. We need only to prove (i). Assume that x e / J . Then there

exists T o > 0 such that

(1.22) Ltx > 0 (0 < i < n) on [Γo, oo).

We fix Tl9 T2 which satisfy (1.5), choose T3 (>T2) arbitrarily and define T4 by (1.6).

Using (1.22) in (0.4) with i, fc, t and s replaced by 1, n, s and Tl9 respectively, we

have

Uy-i(s, 7\; p2,..., Pj)Ljx(Tx)

+ \' In-2(s9 t; p2,..., p^JLXήdt}

> Pl(s) [* /,_2(s, ί; p2,..., pn-1)q(t)f(x(g(t)))dt, s > Tu

which, after integration, yields

(1.23)

It follows that

-Mr>\ φdtds=\ ψdsdt>.\ φdsdt,

where Xt = x(7^ ), z = 1,4, and ^ = ψ(s9 i) stands for the integrand in the last integral

of (1.23). Since

f(x(g(t)))lf(x(s)) > 1 for T^sKgit) and t > Tx,

we obtain

j ί ) Λ W U ^ ί; Λ,.. , Pn-l)dsdt

Jt

= \ In-X(g(t), t;pu..., p n ^
J^lglWTuTsiwhich implies that

) , t\ p i f . . . , pn-i)q(t)dt < Γ - ^ - < oo.
)χx J(X)
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This contradicts (1.21), and the proof is complete.

REMARK 1.3. If x e ^ J , then x(oo)=±oo. Therefore, we can relax the
monotonicity condition on / by assuming the existence of a positive number M
such that (1.10) holds in (i) of Theorem 1.3, and (1.11) holds in (ii) of Theorem 1.3.

We now apply the above results to the differential equation (NE). Let
x e j\Γχ be a solution of (NE). If x(t)>0 for sufficiently large t then

for all large t. Therefore,

0 = σLnx(t) + ΣST-i qh(t)fh(x(gh(t)))

> σLnx(t) + qh(t)fh(x(gh(t))l 1 < h < N.

This means that if x is an eventually possitive solution of (NE) belonging to Jίh

then it belongs to Jί^ with respect to the differential inequality

σLnx(t) + qh(t)fh(x(9h(t))) < 0

for any h = l,...,N. Likewise, an eventually negative solution x e / j of (NE)
belongs to JίJ with respect to the differential inequality

σLnx(t) + qh(t)fM9k(t))) > 0

for any h = l,..., N. Hence we obtain the following results for equation (NE).

THEOREM 1.4. Let ί<l<n-l and ( - l ) Λ ~ z σ = - 1 . Suppose that there
exist integers α+, α_ e {1,..., N} such that

f±α> J

< ' 2 4 ) \ S
and

(1.25;/)

Then ΛΊ = 0 for (NE).

THEOREM 1.5. Lei ( - l ) " σ = - l . Suppose that there exist integers β+,
jβ_e{l,...,iV} such that

(1.26) ί πbτ < 0 °
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(1.27) [ In.t(t9 gβ±(t); pH-l9...9 Pi)qβ±(t)dt = oo.

Then Λ*o = 0 for (NE).

THEOREM 1.6. Let σ= — 1. Suppose that there exist integers y+,
{1,..., N} such that

dxΓ±o° ή(1 28) 5 ύ (*)
< 00

(1.29) ( IH^(t9 gy±(ty, pu..., pH-i)qyJt)dt = oo.

Tften ^rπ = 0/or (NE).

These theorems seem to be new even when specialized to the equation

(1.30) χ(»>(0 + σq(t)f(x(g(t))) = 0,

for which conditions (c') and (d') are satisfied. So, we state them below as
corollaries, by noting that in this case

In-i(t, s; pu...9 A _ J = In.t(t, s; pn-l9..., Pί) = (t-s)n-η{n-\)\

and

> ί"-1-1^1-1^)^*^)/:^ - 1X/- l)!(n - 1 -1)!], 1 < / < n - 1.

COROLLARY 1.1. Let l < Z < n - l and ( - I ) π - 7 σ = - l . Then jrt = 0 for
(1.30) i/

COROLLARY 1.2. Let (-1)V= - 1 . Then jVQ = 0for (1.30) if

\ ~wίγ<CΌ and \ (t-g{t)y-'q{i)dt = cv.
)±O J(X) J&lgΛ

COROLLARY 1.3. Let σ= - 1 . Then jrn = 0for (1.30) if

°-W7Γ< C X ) and \ (9(t)-t)n-χq(t)dt =oo.
Jyχ) J

2. Variants of the basic results. The purpose of this section is to obtain
variants of the results of the preceding section under stronger nonlinearity con-
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dition on (NE) and (NI*). The conditions we assume for (NE) and (NI*) are
as follows:

(e) inf {fh(ξx)/Mξ): ξφO} > 0 for any x>0 and h = ί,...,N;

(e') inί{f(ξx)lf(ξ):ξΦ0}>0 for any x > 0.

Let us first examine (NI*). For this purpose we need the function defined by

ί sgnx inf{f(ξ\x\)IM):ξx>0} if x φ 0,
(2.1). [/]()

1 0 if x = 0.

Because of (d') and (e'), ω[/] has the following properties:

(2.2) ω[/] is nondecreasing on R and xω[/](x)>0 for

(2.3) |/({|x|)| > |/(ί)| |ω[/](x)| for ξx>0.

THEOREM 2.1. Let 1^/^n-l αnrf (- l ) "- 'σ=-l .

(i) Assume ίftαί

(2.4) ( τ

d* , < oo.
J+o ω[/](x)

(2.5) I q(tmH,[gM)dt = co.

(ii) Assume that

(2.6) f , ^ 5 . Λ < oo.

Then jrγ = 0for (NI~) if

(2.7)

PROOF. Suppose that xeJ^f. Then (1.4) holds for some To>0. We
fix 7\ and T2 satisfying (1.5) and choose T3 (> T2) arbitrarily. We first claim that

(2.8) Lμis) > /„-,-!(/, s; A-!,..., pί+ί)\Ln.ίx(t)\9 T± < s < t.

When / = n - 1 , this is obvious because Lpc is decreasing. When I < n - 2, replacing
ί, A:, ί and s in (0.5) by ί, n - 1 , s and ί, respectively, and using (1.4) and the de-
creasing nature of IL^!*!, we obtain
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L,x(s) = Σjtf(-ly-'Ij-fc, s; pj,..., pι+ J

+ ( -I ) "- ' " 1 ('J,,_,_2(r, s; pn-2,...,
Js

> \ In-ι-2(r, s; pn_2,..., pι+1)pn_i{r)\Ln_1x{r)\dr

> \ Pn-i(r)In-ι-2(r, s; pn-2,...,pι+ί)dr \Ln-.ίx(t)\
Js

= In-i-ίit, s; pn-u...,pι+ί)\Ln_1x(t)\, T^sKt.

On the other hand, from (0.4) with i, k, t and 5 replaced by 0, /, g(f) and
Tί9 respectively, we get

T i ; pl9...9

I ) , s; pl9...9 pι.ί)pι(s)Lιx(s)ds

\ Iι-i(9(t)> s; pl9...9 pι.ί)pι(s)Lιx(s)ds, t > T2.

Combining this with (2.8), we obtain

\ Iι-i(g(t), s; pu...,pι-ί)pι(s)In-ι_ί(t, s; pH-l9...9 pi+1)ds- {L^^

,-ix(0l, t>T2

for some constant c>0. Substitute u(t) for cIL^^ίOI. Using (2.3), we see
that

f(x(g(t))) > f(Hlg-](t)u{t)) > /(H,[g](0)ω[/] (ιι(0), ί > T2.

Therefore

-ιι'(0 = (-iy-ιcLnx(t) = -σcLnx{t) > cq(t)f(x(g(t)))

Dividing the both sides by cω[/](w(0) and integrating the result on [Γ2, Γ3],
we find

)τ2

 ι ~~ )τ "'

where i/^wiTf), i = 2, 3. Letting T3->oo and using the assumption (2.4), we
conclude that
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Γ°° (u* du
\ q(t)f(Hι[<g'](t))dt < c"1 \ — " " x < oo,
Jτ2 Jo ωL/J(w)

which contradicts (2.5). This completes the proof of (i).

The proof of (ii) is similar.

THEOREM 2.2. Let ( - l)nσ= - 1 .

( i ) Assume that (2.4) holds. Then the condition (1.13) or

(2.9) ( qiOfiln-iit, g(t); pH-i9..., Pl))dt = oo

implies that J^£ = 0for (NI+).

(ii) Assume that (2.6) holds. Then the condition (1.13) or

(2.10) j q(t)\f(~In-i(t, git); pn-u..., Pl))\dt = oo

implies that ^V"^ = 0 for (NI~).

PROOF, (i) We first assume the condition (1.13). Sine, by (2.3) with ξ = 1,

/(x)>/(l)ω[/](x) for x > 0,

it follows that

(m dx ^ 1 Γm dx1 Γ
I) JoJo f(x) ~ /(I) Jo ω[/](*) m>0.

Thus (2.4) yields (1.12) and hence jr+ = 0by (i) of Theorem 1.2.

We next assume the condition (2.9). Suppose that ^"^Φ0. Then (1.15)

holds for some To > 0. Fix Tx so large that

Tx > To a n d i n f {g(t): t > T 1 } > To.

Consider (0.5) with ι, k, t and s replaced by 0, n — 1 , g(t) and ί, respectively. In

view of (1.15) and the fact that |X^/l_1x| is decreasing, we have

+ (-1)""1 Γ /n_2(r, g(t); pn_2,...,
Jg(t)

\ In-2(r, g(t); pn-2,»., Pi)Pn-i(r)\

Jg(t)

In-2(r,
g(t)

In-2(r9 g(t); jpΛ-2,...,

n [ T 1 ? oo).
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Set u(t) = IL^xCOI Since by (2.3)

Kχ(g(t))) >f(h-i(t, g(t); Pn.u..., P J M / ] (u(0)

for tem{β\[\ [Tl9 oo), we obtain

-u'(t) = (-lYLnx(t)= -σLnx(f)

In-i(t, g(t); />„_!,..., Pi))ω\Jl(u(t))9 te®\_g\ n [Tu oo).

Choose T2 (> Tx) arbitrarily. Dividing both sides by ω[/](w(ί)) and integrating
the result on &\_g\ Π [Γ l9 Γ2], we see that

^ u\t)
r2 [

where U^uiTi), i = l, 2. Letting Γ2^oo, we conclude that

^ f < oo,

which contradicts (2.9)
(ii) can be shown similarly.

THEOREM 2.3. Let σ= - 1 .

(i) Assume that

(2.11) Γ πΐπ/ x < °°

ίΛe condition (1.21) or

(2.12) ί q(t)f(In-Mt), t; p l 9 . . . 9 pn^))dt = oo

implies that jr+ = 0for (NI+).
(ii) Assume that

TΛen ί/ze condition (1.21) or

(2.14) ί 9(OI/(-/

implies that jr- = 0for (NI~).
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PROOF, (i) Since (2.11) implies (1.1), the condition (1.21) ensures that

jr+=0 by (i) of Theorem 1.3. So, it remains to show that Λ ^ = 0 if (2.12) is

satisfied. Suppose to the contrary that JίXΦQ. Let x e / J . Then, (1.22)

holds for some To. Replacing i, fc, t and s in (0.4) by 0, n —1, g(t) and f, re-

spectively, we get

§ W O , t; pu...9 Pj)Ljx(t)

I

> r> Pw~> Pn-2)Pn-ί(r)Ln.ίx(r)dr

for tes/[g~\ Π [To, oo), which, in view of the increasing nature of Lπ_xx and

(0.3), implies

x(g(t)) > In-Mϋ, t; pl9.-..9 Λ-OJ^-iXίOf tes/ig~] n [Γo, oo).

Set u(ί) = Ln_ xx(0. Then, M(0 satisfies

u\i) = LXO = -σLnx(0 > q(t)f(x(g(t)))

n-Mt), t; Pi, ..,Pn-i))ωin(u(t))

for t e cβ/[#] Π [To, oo). Dividing the above by ω[/](w(ί)) and integrating on

[To, TJ, we obtain

where i/^wiT;), z = 0, 1. Letting Tx->αo, we find

[/](ιι)
< 00.

This contradicts (2.12). This finishes the proof of (i).

A parallel argument holds in order to prove statement (ii).

Applying Theorem 2.1-2.3 to the equation (NE), we obtain the following

results.

THEOREM 2.4. Let l < ί < n - l and ( - l ) π ~ / σ = - l . Suppose that there

exist α + , α_ e {1,..., N} such that

( 2 1 5 )



462 Yuichi KITAMURA

Then ΛΊ = 0 for (NE) if

(2.16; I) $%«±(OI/«±(±#*[0«J(O)I^ = oo.

THEOREM 2.5. Let ( — l ) w σ = — 1 . Suppose that there exists β+9 j8_ e

{1,..., JV} such that

(2.17) [ _ / * λ < oo.

Γo = 0/(?r (NE) i/(1.27) /10W5 or

(2.18) ( qβ±(t)\fβ±(±In-i(t, gβ±(t); pH-l9...9 = oo.

THEOREM2.6. Lβί σ = — 1 . Suppose that there exist γ+9 y_ e{l,..., JV}

(2.19) \ ,. "\, , < oo.

Then Λ~n=0 for (NE) if (1.29) holds or

(2.20) [ «,±(0l/y*(±/«-i(fl'7*(0, <; Pi P.-iWt = «>•

These theorems applied to the special equation (1.30) yields the following

corollaries.

COROLLARY 2.1. Let l<l<n-l and (-l)"-ισ=-l. Then J^Ί = 0 for

(1.30)//

d x <oo
' ±0

and

= oo.

COROLLARY 2.2. Lei ( - l ) " σ = - 1 . Then Λ~o = 0for (1.30) i/

J < 0°±o

either

\ (t-g{t)y-iq{t)dt = oo or ( β(01/C±<* —
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COROLLARY 2.3. Let σ = - 1 . Then jrn = 0for (1.30) if

and either

dx
[/](*)

= ao or

REMARK 2.1. Corollary 2.2 is an extension of Theorem 4 of Kusano and
Onose [23].

EXAMPLE 2.1. Define the function / by

/(*) = |xMlog|x||'sgnx (0<\x\<e~V*),

0 (x=θ),

where α and β are positive constants. This function satisfies (d;) and (e')5 and
we obtain

ί \xΠβl(β+xlog\x\)ysgnx (

I M'sgnx (W<1).

Consider the equation (1.30) with this/under the assumptions

(-l)nσ = - 1 , α < 1, t - e-fif" < g(t) < t.

By Corollary 2.2, ^Vo = 0 for this equation if either

or

\™ ( ( ) ) ( ^ l ( ( ) ) \ β ( ) d = oo.

On the other hand, the condition

\f(xy)\ > l/W/ωi for all x, y

is not satisfied, since

f(χy)IU(χ)f(y)l = Kiogx^+αog j/)-ψ — > o as x, y

and hence Theorem 4 in [23] can not be applied to this equation.
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3. Oscillation. We want to develop criteria for equation (NE) to be oscil-

latory or almost oscillatory. To do this we need conditions which ensure the

existence of a nonoscillatory solution x(t) of (NE) such that

(3.1) x(t) = c + o(l) as t -> oo for some c Φ 0

or

(3.2) x(t) = IΛ_x(t9 0; Pί,..., A-OCc + ofl)] as t -> oo for some c # 0.

THEOREM 3.1. Suppose that the conditions (a)-(d)

(i) A necessary and sufficient condition for (NE) to have a solution x(t)

satisfying (3.1) is that

(3.3) J Σ £ = i W , 0; p ^ , . . . , PίKt)qh(t)dt < oo.

(ii) 4̂ necessary and sufficient condition for (NE) to ftαt e α solution x(t)

satisfying (3.2) is ί/iαί

(3.4) J Σff-i «*(0 IMCI.-Mt), 0; Λ A

for some c' such that ccf>0.

For the proof of this theorem see Kitamura and Kusano [11] and Fink and

Kusano [5].

We first discuss the almost oscillatory behavior of (NE). For convenience,

we employ the notation:

J(t, s) = sgn(f-s). !/„_!(*, s; pu-,Pn-ι)l J(t) = J(t, 0),

K{t, s) = sgn(f-s). 1/,-Λί, s; pn-l9-,Pi)\> K(t) = K(t9 0).

THEOREM 3.2. Suppose that (a)-(d) hold. A sufficient condition for

(NE) to be almost oscillatory is that:

(i) when σ = l and n is even, there exist α+, α_ e {1,..., iV} sucft that (1.24)

(1.25; /)(/ = l, 3,..., n - 1 ) hold;

(ii) vv/ien σ = l and n is odd, there exist a+, a_ e{l,..., JV} such that (1.24)

(1.25; /) (1 = 2, 4,..., n - 1 ) ΛoW, and

(3.5)

(iii) wΛen σ = —1 and n is efcn, there exist «+, a_ e{l,..., N) such that

(1.24), (1.25; 0 (1=2, 4,..., n - 2 ) and (3.5) hold, and

(3.6) 5"ΣSf-iίΛOI/*(cJ(ftίO))|Λ=oo for all c Φ 0;
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(iv) when σ= — 1 and n is odd, there exist α+, α_ e{l,..., N} such that

(1.24), (1.25; /) (1=1, 3,..., n-2) and (3.6) hold.

PROOF, (i) By Theorem 1.4 we have jr=jrί \j jr3 \j ... u jrn_ί = 0, that

is, Sf = Θ.

(ii) Theorem 1.4 implies that y = Θ U J^Q. Let x be a positive solution of

(NE) belonging to J^o. Then (1.15) holds for some T o>0. Thus x is decreasing

on [Γo, oo) and x(ί) has a nonnegative limit as ί->oo. This limit must be 0 by (i)

of Theorem 3.1. It can now be shown easily that x(i) satisfies (3). A similar

argument applies to a negative solution of (NE) belonging to JΓQ.

(iii) From Theorem 1.4 it follows that y = Θ [J jro\j jrn. Let xejrn

be a positive solution of (NE). Then (1.22) holds for some T o>0, so that x is

increasing on [Γo, oo) and tends to a finite or infinite limit as t-+oo. By (ii) of

Theorem 3.1 this limit must be infinite under the condition (3.6), and clearly,

x(i) satisfies (4). Similarly, a negative solution x e J^n is also strongly increasing.

(iv) We have ^ = Θ\JJr

n by Theorem 1.4. Exactly as above, we can

show that a solution belonging to Jfn is strongly increasing. This completes

the proof.

Using Theorem 2.4 instead of Theorem 1.4, we can easily obtain the following

result.

THEOREM 3.3. Suppose that (a)-(e) hold. A sufficient condition for (NE)

to be almost oscillatory is that:

( i ) when σ = l and n is even, there exist α+, α_ e{l,..., N} such that (2.15)

and (2.16; /) (/ = 1, 3,..., n-1 ) hold;

(ii) when σ=l and n is odd, there exist α + , α_ e{l,..., N} such that (2.15)

(2.16; /) (1 = 2, 4,..., n-1) and (3.5) hold;

(iii) when σ=—l and n is even, there exist α + , α_ e {1,..., N} such that

(2.15), (2.16; /) (1 = 2, 4,..., n-2), (3.5) and (3.6) hold;

(iv) when σ=—l and n is odd, there exist oc+, α_ e{l,..., N} such that

(2.15), (2.16; /) (/ = 1, 3,..., n - 2 ) and (3.6) hold.

We are able to obtain necessary and sufficient conditions for a certain class

of equations of the form (NE) to be almost oscillatory, as the following theorem

shows.

THEOREM 3.4. Suppose that (a)-(d) hold. Suppose moreover that

(3.7)

and

(3.8) liminf^0OH ί[S(A](ί)/i<:(ί)>0,



466 Yuichi KΓΓAMURA

for any I such that

1 < /< n - 1, (-l)«-'σ= -1.

Then a necessary and sufficient condition for (NE) to be almost oscillatory is

that:

(i) when σ = l , the condition (3.5) holds;

(ii) when σ= — 1, the conditions (3.5) and (3.6) hold.

PROOF, (i) Let σ = 1 and n be even. From (3.5), there exists a k e {1,..., N}

such that

Put α+ = α _ = fc. Then (3.7) implies (1.24). Since, from (3.8),

for some positive constant c and all large t, we have

Hlg^ (t)qa±(i)dt > c ^ K(t)qk(t)dt = oo

for sufficiently large T. Thus (1.25; /) (1=1, 3 , . . . ,n- l ) hold. Hence, by (i)

of Theorem 3.2, (NE) is almost oscillatory.

Conversely, if (3.5) is not satisfied, then, by Theorem 3.1, equation (NE)

has a solution x(i) which converges to some non-zero constant as ί->oo, so that

(NE) is not almost oscillatory. Therefore the condition (3.5) is necessary for

(NE) to be almost oscillatory.

The case when σ = 1 and n is odd can be treated similarly.

(ii) Let σ = - l and n be even. Since (3.8) implies (1.25; /) (1 = 2,4,...,

n — 2) as in (i), from (iii) of Theorem 3.2 it follows that (3.5) and (3.6) are sufficient

for (NE) to be almost oscillatory.

If (3.5) is not satisfied, then, by (i) of Theorem 3.1, (NE) has a nonoscillatory

solution which is not strongly decreasing. Similarly, if (3.6) is not satisfied,

then (NE) has a nonoscillatory solution which is not strongly increasing. This

shows that (3.5) and (3.6) are necessary conditions for (NE) to be almost oscil-

latory.

The proof for the case when σ = — 1 and n is odd is analogous.

A variant of Theorem 3.4 is obtained if the condition (e) is added.

THEOREM 3.5. Suppose that (a)-(e) hold. Suppose moreover that

( 3 9 )
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and

(3.10) lim inf,^ H£gh] (i)IJ(gh(t)) > 0, 1 < h < N

for any I such that

1 < l< n - 1, (-l)"-'σ= -1.

Then a necessary and sufficient condition for (NE) to be almost oscillatory is

that:

(i) when (— l ) w σ=l, the condition (3.6) holds;

(ii) wften (— i)nσ= — 1, ί/ie conditions (3.5) and (3.6) ftoZds.

PROOF, (i) Let σ = l and n be even. From (3.10),

\<h<n, I = 1, 3,..., n - 1

for some positive constant c and all large t, and from (3.6) there exist α+, α_ 6

{!,..., N} such that

Thus

= oo

for / = 1, 3,..., n - 1 and any T> 0. From (i) of Theorem 3.3 it follows that (NE)

is almost oscillatory.

The necessity of the condition (3.6) is shown as in the proof of (i) of Theo-

rem 3.4. The case when σ = — 1 and n is odd can be discussed similarly.

(ii) The proof is quite similar to the above, and so the details will be omitted.

We are next concerned with the situation in which (NE) is oscillatory. Since

the oscillatory nature is equivalent to the almost oscillatory nature when σ = l

and n is even, we omit this case and discuss the remaining cases.

THEOREM 3.6. Suppose that (a)-(d) hold. A sufficient condition for (NE)

to be oscillatory is that:

(i) when σ = l and n is odd, there exist α+, α_ e {1,..., N} satisfying (1.24)

and (1.25;/) (1 = 2, 4,..., n-1), and β+, β_e{l,...,N} satisfying (1.26) and

(1.27);

(ii) when σ=— 1 and n is even, there exist α+, α_e{l , . . . ,N} satisfying

(1.24) and (1.25;/) (1 = 2,4,..., n-2), β+, β_e{l,...,N} satisfying (1.26)

and (1.27), and y+, y_ e {1,..., N} satisfying (1.28) and (1.29);
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(iii) when σ= — 1 and n is odd, there exist α + , α _ e { l , . . . , N} satisfying

(1.24) and (1.25; 0 (1 = 1, 3,. . . ,n-2), and y+, y_ e{l,..., iV} satisfying (1.28)

and (129)

This theorem is an immediate consequence of Theorems 1.4—1.6. The theo-

rem below follows readily from Theorems 2.4-2.6.

THEOREM 3.7. Suppose that (a)-(e) hold. A sufficient condition for (NE)

to be oscillatory is that:

( i ) when σ = l and n is odd, there exist a+, α_ e{l,..., N} satisfying (2.15)

and (2.16;/) (1 = 2, 4,..., n - 1 ) , and j3+, 0_ e{l,..., ΛΓ} satisfying (2.17) and

ei/fter (1.27) or (2.18);

( i i ) vv/iβn σ = — 1 and n is even, there exist a + , a _ e { l , . . . , N } satisfying

(2.15) and (2.16; /) (/ = 2, 4,..., w-2), /?+, /?-.e{l N} satisfying (2.17) and

riίfter (1.27) or (2.18), and y + , y_ ε{l,..., N) satisfying (2.19) and either (1.29)

or (2.20);

(iii) w/zen σ = — 1 and n ΪS odd, ί/iere ^xίsί a + , a_e{l, . . . ,N} satisfying

(2.15) and (2.16; /) (1 = 1, 3,. . . ,n-2), and y+, y _ e { l JV} satisfying (2.19)

and either (1.29) or (2.20)

We show that there is a class of equations (NE) for which necessary and

sufficient conditions for oscillation can be obtaind.

THEOREM 3.8. Suppose that (a)-(d) hold. Let σ=ί and n be odd. Suppose

moreover that (3.8) holds and

(3.11)

and

(3.12) lim inf,^ K(t, gh(t))/K(t) > 0, 1 < h < N.

Then (3.5) is a necessary and sufficient condition for (NE) to be oscillatory.

PROOF. The necessity of (3.5) follows from (i) of Theorem 3.1, so we prove

the sufficiency. Note that (3.11) implies (1.24) and (1.26) for any α ± and β±.

Using (3.8) and (3.5), we see that

ClK(t)9 / = 2 , 4 , . . . , n - l , 1 < h < N

for some positive constant ct and all large t, and

K(t)qk(t)dt = co

for some ke{l,...,N}. Put α + = α _ = fc. Then (1.25;/) (1 = 2,4,..., n - 1 )

are satisfied. On the other hand, using (3.12), we obtain
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K{u gk(t)) > c2κ(t)

for some positive constant c2 and all large t. This means that ^[^ f e]=>[T, oo)

for sufficiently large T>0, and hence

K(t, gk(t))qk(t)dt > c2 Γ K(t)qk(t)dt = oo.

Thus (1.27) is satisfied if we take β+ = j8_ = k. Therefore, by (i) of Theorem 3.6,

we conclude that equation (NE) is oscillatory.

THEOREM 3.9. Suppose that (a)-(d) hold. Let σ=-l and n be odd.

Suppose moreover that (3.7) and (3.8) hold, and

(3.13) l i m i n g J(gh(t% t)/K(t) > 0, 1 < h < N.

Then (3.5) is a necessary and sufficient condition for (NE) to be oscillatory.

PROOF. We only prove the sufficiency of (3.5). Since (3.9) implies (1.24)

and (1.28) for any α ± and y±9 it suffices to show that there exist α ± satisfying

(1.25; 0 (/ = 1, 3,. . . ,n-2), and γ± satisfying (1.29). The former is an easy

consequence of the same argument as in the previous proof. To prove the

latter notice that (3.5) and (3.13) imply that

J(gk(t), t) > cK(t) for all large ί,

and

J00 K(t)qk(t)dt = oo

for some c > 0 and ke {1,..., N}. It follows that c^[^Λ]=>[T, oo) for sufficiently

large T>0, and

ί J(g&), t)qk(t)dt > c Γ K(t)qk(t)dt = oo.

Thus (1.29) is satisfied with y + =y_=fc, and the conclusion follows from (iii) of

Theorem 3.6.

THEOREM 3.10. Assume that (a)~(e) hold. Let σ = ί and n be odd. Assume
moreover that (3.9) and (3.10) hold, and

(3.14) lim inf,^ K(t, gh(t))lJ(gh(t)) > 0, 1 < h < N

Then (3.6) is a necessary and sufficient condition for (NE) to be oscillatory.

PROOF. The necessity of (3.6) is obvious from (ii) of Theorem 3.1. To
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prove its sufficiency we note that (3.9) implies (2.15) and (2.17) for any α ± and

β±. From (3.10) and (3.6) we see that

/ = 2 , 4 , . . . , n - l , l<h<N

for some positive constant ct and all large t, and

± c i J(g*±(t)))\dt = oo

for some α + , α_ 6 {1,..., JV}. Thus the conditions (2.16; I) (1 = 2, 4,..., n -

are satisfied. On the other hand, using (3.14) and (3.6), we obtain

K ( t , g h ( t ) ) > c 2 J ( g h ( t ) ) > l < h < N

for some positive constant c2 and all large ί, and

qβM\fβ±(±c2J(gβM))\dt = oo

for some β+, β- e {1,..., JV}. Hence @[gβ±]^>[T, oo) for sufficiently large T>0,

and we find that

, gβ±(t)Wt

> \\β±(t)\fβ±(±c2J(9βM))\dt = oo.

Thus (2.18) holds. Therefore, (NE) is oscillatory by (i) of Theorem 3.7.

THEOREM 3.11. Assume that (a)-(e) hold. Let σ = — 1 and n be odd.

Assume moreover that (3.10) holds, and

( 3 1 5 )

and

(3.16) lim inf,^ J(gh(t), t)l J(gh(t)) > 0, 1 < h < N.

Then (3.6) is a necessary and sufficient condition for (NE) to be oscillatory.

PROOF. We only prove the sufficiency of (3.6). Since (3.15) implies (2.15)

and (2.19) for any α ± and y±, we show that there exist α ± satisfying (2.16; /)

(1 = 1, 3,..., n - 2 ) and γ± satisfying (2.20). The former can be shown exactly

as above. The latter is derived from (3.16) and (3.6). Indeed, there exist a

positive constant c and y+,y_e{l,..., N} such that

, l<h<N
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for all large ί, and

f qy±(t)\fy±(±cJ(gy±(t)Wt=K.

Then st [gy±] => [Γ, oo) for sufficiently large T>0, and hence we find that

ί qyM\fy±(±J(9y±(t),t))\dt

> \\yλt)\fyl±cJ(gyJj)Wt = oo.

Thus (2.20) holds. Applying (iii) of Theorem 3.7, we see that (NE) is oscillatory.

We now list, as corollaries, the results in this section applied to the particular

equation (1.30).

COROLLARY 3.1. Let σ = l and n be even.

(i) Assume that (a), (b), (c') and (d') hold. Suppose that

< 00.
J fix)

Then the condition

) 9%-\t)q{i)dt = oo

is sufficient for (1.30) to be oscillatory.

If in addition

then the condition

\ tn~1q(t)dt = oo

is necessary and sufficient for (1.30) to be oscillatory.

(ii) Assume that (a), (b), (c'), (d') and (e') hold. Suppose that

Γ-dx -•-
)±oco

Then the condition

I" q(t)\f(±gi~Kt))\dt = ao
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IS sufficient for (1.30) to be oscillatory.
If in addition

< oo,

then the condition

is necessary and sufficient for (1.30) to be oscillatory.

COROLLARY 3.2. Let σ = l and n be odd.

( i ) Assume that (a), (b), (c') and (d') hold. Suppose that

±0° d x <oo.

Then the condition

9VKt)q(t)dt = oo

is sufficient for (1.30) to be almost oscillatory.
If in addition

then the condition

= oo

is necessary and sufficient for (1.30) to be almost oscillatory.
(ii) Assume that (a), (b), (c'), (d') and (e') hold. Suppose that

d x <oo.
)±o ω [/](*)

Then the conditions

= 00
J

and

\*\(t)\K±9(i)g%-2{t))\dt = oo

are sufficient for (1.30) to be almost oscillatory.
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If in addition

lim sup ί_0 0 g(t)/t < oo,

then the conditions

\ tn~ιq{t)dt = oo

and

are necessary and sufficient for (1.30) to be almost oscillatory.
(iii) Assume that (a), (b), (c') and (cΓ) hold. Suppose that

)±of(x)

Then the conditions

oo.

g(t)9l'2(t)q(t)dt = oo
j

and

\^ (t-giήy-'qiήdt = oo

are sufficient for (1.30) to be oscillatory.
If in addition

0 < liminf^^ g(t)/t < limsup^^ g(t)jt < 1,

then the condition

(CO

\ tn~ίq(t)dt = oo

is necessary and sufficient for (1.30) to be oscillatory.
(iv) Assume that (a), (b), (c'), (d') and (e') hold. Suppose that

dx -oo.
±0

Then the conditions

and



474 Yuichi KITAMURA

f (t-g(t))n-ιq(t)dt=π or [ q(t)\f(±(t-g(t)y-i)\dt =00

are sufficient for (1.30) to be oscillatory.
If in addition

> 1,

then the condition

is necessary and sufficient for (1.30) to be oscillatory.

COROLLARY 3.3. Let σ= - 1 and n be even.
( i ) In addition to (a), (b), (c') and (d') suppose that

r±co

Then (1.30) is almost oscillatory if

4^<oo.

tgi~2(.t)q(t)dt = oo
j

and

\ q(t)\f(cgn~1(f))\dt = °o for any c Φ 0.

Suppose moreover that

liminft^a,g(t)lt>0.

Then (1.30) is almost oscillatory if and only if

/•oo

\ tn~1q{t)dt = oo

and

\ %(t)\f(cgn~1(t))\dt = oo for any c φ 0.

(ii) In addition to (a), (b), (c'), (d') and (e') suppose that

[ / * , , < 00.

Tnen (1.30) is almost oscillatory if
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= 00

J

and

Suppose moreover that

limsup^^ g(t)jt < oo.

Then (1.30) is almost oscillatory if and only if

roo

\ tn~xq(t)dt = oo

and

(iii) In addition to (a), (b), (c')5 and (cΓ) suppose that

dxf±Q

±of(x)

Then (1.30) is oscillatory if

< oo.

tg(t)g%~3(t)q(t)dt = oo /or n > 2,

= 00

and

(iv) In addition to (a), (b), (c')> (cΓ) and (e') suppose that

d x <oo.

TΛen (1.30) is oscillatory if

= » /or n>2,

( {t-g(t)y-iq(t)dt = oo or ( = oo
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and

\ (9(t)-t)»-iq(t)dt = oo or \ q(t)\f(±(g(t)-ty-i)\dt = co

COROLLARY 3.4. Let σ= — 1 and n be odd.

( i) In addition to (a), (b), (c') and (cΓ) suppose that

(1.30) Ϊ*5 almost oscillatory if

tgΓ2(t)q(t)dt = oo

= oo /or αn>; c Φ 0.

Suppose moreover that

\iminft_O0g(t)lt>0.

Then (1.30) is almost oscillatory if and only if

tn~ιq{t)dt = oo

Φ) \f(cgn-\t))\dt = oo for any c φ 0.

(ii) /n addition to (a), (b), (c'), (d') and (e') suppose that

< Q 0

±o

(1.30) is almost oscillatory if

Suppose moreover that

limsup^^ g{t)jt < oo.

Then (1.30) is almost oscillatory if and only if

q(t)\f{±g*-Kt))\dt = oo.
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(iii) In addition to (a), (b), (c') and (d') suppose that

Then (1.30) is oscillatory if

5°° tgΓ2(t)q(t)dt = oo

= 00.
Ίg} ~

Suppose morevoer that

λim'mί^^g{t)jt > 1.

Then (1.30) is oscillatory if and only if

= oo.

(iv) /n addition to (a), (b), (c')5 (d') and (e') suppose that

C±o° dx

\ — " * < oo.
J±o ω[/](x)

(1.30) is oscillatory if

\™ q(t)\f(±tg%-2(t))\dt = π

and

-•••k (ff(0-0"-M0Λ= «> or J «(0 l/(±(β(0-0 n " 1 ) |Λ= oo.

Suppose moreover that

1 < lim inf^^ #(ί)/ί < lim sup^^ g{t)jt < oo.

T/iβn (1.30) is oscillatory if and only if

Corollaries 3.1-3.4 are improvements over Corollaries 1-4 of Ivanov, Kita-
mura, Kusano and Shevelo [8].

EXAMPLE 3.1. Consider the third order equation
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(3.17) (r*(r«x')')' + σqϋMtψ. sgn x(r) = 0,

where

σ = ± 1, y, τ > 0, a, b > - 1.

(i) Let σ= 1 and y, τ< 1. In this case we obtain

H2[g-](t) = J(g(t)) = t(°+b+2*/L(b + l)(a + b + 2)-]

and

* ( ' , 0(0) = ίΛ+fc+2{l/[(α + l)(« + b + 2)] + o(l)} as t > oo.

Therefore, from Theorem 3.10 it follows that (3.17) is oscillatory if and only if

f °° t<a+b+2*yq(t)dt = oo.

(ii) Let σ= — 1 and γ, τ> 1. We then have

H.LgUt) = K(t) = ί +»+ί/[

and

JtoOλ 0 = ί(β+b+2)t{l/[(& + l)(tf+ fc + 2)] + o(l)} as ί > oo.

Therefore, from Theorem 3.9 it follows that (3.17) is oscillatory if and only if

ta+b+2q(t)dt = oo.

EXAMPLE 3.2. Consider the fourth order equation

(3.18) ( r VXO)" = r 2 /(x(ί + sin 0),

where the function fe C(R, R) satisfies

x/(x)>0 (x^O) and

Since we can take

σ = - 1, Pi(t) = p3(t) = 1, p2(t) = t, g(t) = t + sin t and q(t) = r 2 ,

we obtain

t3(t + 2 sin 0/12, 2mπ < t < (2m + l)π,

(ί + sin 03(ί - sin 0/12, (2m + l)π < ί < 2(m + l)π

for m = l, 2,..., which shows that H2\_g~](f)~t*l\2 (ί->oo) and
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The conditions (1.27) and (1.29) also hold for this equation, since

h(9(t),t;pup29p3)q(t)dt
Ί

= (1/12) Σm=i ί ( 2 m + 1 > π (2ί + sin i) sin3 t Γ2dt
J2mn

Π2m+l)π

J2mπ

and

t, g(t); p3, p2, Pi)q(t)dt

= (1/12) Σm=i \ (2ί + sin ί)|sin3 t\Γ2dt
J(2m+l)π

Γ2(m+l)π

> (1/6) Σm=l \ *"* l s ί n 3 ί|Λ = 00.
J(2m+l)π

Thus all the assumptions of (ii) of Theorem 3.6 are satisfied and hence equation

(3.18) is oscillatory.

Part II Linear equations

4. Basic results. We now turn our attention to the linear equation (LE).

First, we wish to establish conditions guaranteeing the nonexistence of solutions

of (LE) belonging to Jίt (1=0, 1,..., n). To do this, we start with the linear

inequalities of the form

(LI+) σLnx(t) + q(ήx(g(t)) <: 0

and

(LI") σLnx(t) + q(t)x(g(t)) > 0,

for which the condition (c') is satisfied.

We introduce the notation:

τ[0] (0 = max {min {s, g(s)}: 0 < s < t},

Pίgl (0 = min {max {s, g(s)}: s > t}.

Note that the following inequalities hold:

(4.1) g(s) < τ[g~\(t) for
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and

(4.2) g(s)>pίgl(t) for K 5

As in Part I we discuss the nonexistence of Jίf for (LI1) by distinguishing the
three cases: \<\<n — 1, 1 = 0 and l = n.

THEOREM 4.1. Let l<l<n-l and (-l)n'ισ=—l. Assume that there
exists a nondecreasing function ψeC(R + 9 R+) which satisfies

(4.3) Γ-7TT < 0 0

Then the condition

(4.4) J°° IWMi), 0; pl9...9 pdn-Ήfo ](t)q(t)dt = oo

implies that jrf = 0for (LI*).

PROOF. We need only to consider (LI+). Suppose that (LI+) has a solution
xeJT+. Then there exists T o >0 such that (1.4) holds. From (0.4) with z, k
and s replaced by 0, / and To, respectively, and in view of the increasing nature of
LjX, we see that

t, To; Pl9...9 Pj)Ljx(T0)

+ \ It _ x(ί, 5 pt,..., pι _ 1)pι(s)Lιx(s)ds

JTo

< Σlj=olj(t, To; pl9...9 Pj)LjX(T0), t > To.

Hence there is a positive constant c such that

cx(t) < It{t, 0; pl9...9 P ι ) , t > To.

Put Q(t) = lΦ(cx(g(t)))']-1q(t) and f(x) = xφ(cx). Then x(t) is a solution of the
differential inequality

Q(t)f(χ(g(t))) < 0

which belongs to J^f. On the other hand, since

dx00
 C/Λ: Γ00

M / ( X ) JM"
< oo

JM J\X) JM XψKCX)

and



Oscillation of functional differential equations 481

LΦ(h(g(tl 0; P l f . . . , pm-'Hig-] ( 0 6 ( 0 * = oo,

it follows from (i) of Theorem 1.1 that J^"j;=0. This is a contradiction.

THEOREM 4.2. Let ( - l)nσ= - 1 . Assume that

(4.5) l i m s u p ^ \

(s); ft,..

/or some i = 0, 1,..., n - 1 . Then Λ ^ = 0 / o r (LI1).

PROOF. We assume that (LI+) has a solution xsJίJ. Then there exists
T o>0 such that (1.15) holds. Choose T± (>T0) so that inf{ f̂(O: ί>T 1 }>T 0 .
We now claim that the inequality

(4.6) \

holds for ί>7\ and any z' = 0, 1,..., n — 1.
If τ[0](O = *, (4.6) is trivial, so we assume that t (>7\) satisfies

We first show that

(4.7) x{g{s)) > Iίτ\sβ(t)> Φ)l Pi,. .> JPi)l^(τ[^](0)l

for τ[^f](O<s<ί and any i = 0, 1,..., π — l. If i = 0, this follows from (4.1) and
the fact that x is decreasing. Let i> 1. Then, replacing i, k9 t and s in (0.5) by
0, i, g(s) and τ[#] (0, respectively, we obtain

which, in view of the decreasing nature of \Ltx\, readily implies (4.7). Next,
replacing fc, t and s in (0.5) by n, τ\_g~\(i) and ί, respectively, we have

+ (-l)n Γ

whence it follows that
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Combining this with (4.7) yields

τ[flr] (0)1

• J M # ] (0,

which implies

This prove (4.6), a contradiction to the hypothesis (4.5), so that Λ ^ = 0.
A similar argument holds if we assume that (LI~) has a solution x e Jί^.

REMARK 4.1. It is possible to relax (4.5) in Theorem 4.2 as follows:
There exists a sequence {tm} such that ίm-»oo as m->oo and

, g(s); pi9...9 pί)q(s)ds

for some Ϊ = 0 , 1,..., n — 1.

THEOREM 4.3. Let σ= - 1 . Assume that

(pίθl(t)
(4.8) l i m s u p ^ \

Jt

/or some i = 0, 1,..., π - 1 . T/iβn

PROOF. Suppose that (LI+) has a solution x belonging to Λ^. Then there
exists To>0 such that (1.22) holds. We will show that the inequality

(4.9) \

•In-i-ι(pl9l(t), s; />„_!,..., pi+ί)q(s)ds < 1

holds for t^T0 and any ΐ = 0, l , . . . ,n- l . We then have Λ ^ = 0, since (4.9)
contradicts (4.8).
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If pig"] (0 = t, (4.9) is trivial, and so we suppose that t ( > To) satisfies p[#] (0 >

ί. We first show the fact that

(4.10) x(g(s)) > Ug(s), pfo](t); pl9..., pdhx(p[gl(0)

for t<s<plg~](t) and any i = 0, l , . . . , n - l . If i = 0, (4.10) follows from (4.2)

and the increasing nature of x. Let i > 1. From (0.4) with i, fc, ί and 5 replaced

by 0, Ϊ, g(s) and p[#] (ί), respectively,

* * J-i(0<»> »•; Pi^ . Pi-ι)Pi(r)LiX(r)dr.

Using (4.2) and noting that Ltx is increasing, we easily get (4.10) from the above

equation. Next, from (0.4) with fc, t and s replaced by n, ρ\_g~\ (t) and t, respectively,

in particular

fp
ίi*(pI>](0) ^ LA*) + J

Combining this with (4.10), we obtain

which implies

This is the desired contradiction (4.9).

That (4.8) ensures J^~ = 0 for (LI") can be proved analogously.

REMARK 4.2. It is possible to relax (4.8) in Theorem 4.3 as follows:

There exists a sequence {tm} such that ίm->oo as m-*oo and

9 tm h(Φ) lKO; pl9...9 pdln-t-i(β[0l(tj> s; pi+l9...9 pn-i)q(s)ds>l
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for some ΐ = 0, 1,..., n — 1.

We now consider the equation (LE). Let x be a solution of (LE) belonging

to Jίv Then it is a solution of

σLnx(t) + qh(t)x(gh(ή) < 0, 1 < h < N,

belonging to JΓ^ if x is positive, and it is a solution of

σLnx(t) + qh(t)x(gh(t)) > 0, 1 < h < N

belonging to Jί~[ if x is negative. Therefore, from Theorems 4.1-4.3, we obtain

the following theorems on the absence of rfx (1=0, 1,..., n) for (LE).

THEOREM 4.4. Let l<l<n-l and (-l)n~ισ=-l. If there exist α + ,

α_e{l,...,iV} and ψeC(R + ,R+) such that

(4.11) Γ—rr-r) Γr r r<° °
J J *Ψ(x)

and

(4.12; /) J00 liKIfaJLt), 0; Pl,..., pJ)T1Hi[gΛ±](t)q.±(t)dt = oo,

then jrl = 0 for (LE).

THEOREM 4.5. Let ( - l ) " σ = - l . // there exist β+, j?_ e{l,..., N} such

that

(4.13) l i m s u p ^ \ h-i-i(s, τ[^±](ί); pn-ι, -> Pi+ι)

for some i = 0, 1,..., n —1, ί/iβn ^ro = 0/or (LE).

THEOREM 4.6. Lei σ= —1. If there exist y+, y_ e{l,..., N} such that

(4.14) lim sup^oo ^ Ii(gy±(s), ρίgγ±'](t); pl9..., p()

Ίn-i-xiplgyJit), s; Pi+w >Pn-i)<ly±(s)ds> 1

for some ΐ = 0, 1,..., n — 1, ί/iβn c^n = 0/or (LE).

Applying these theorems to the particular equation

(4.15) χ(-)(0 + σq(t)x(g(t)) = 0,

we obtain following corollaries.
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COROLLARY 4.1. Let l < Z < n - l and (-l)n~ισ=-I. If

(4.16) J°° t»-ι-igι-£-\t)9*(t)q(t)dt = oo

for some ε>0, then ̂  = 0 for (4.15).

PROOF. Put ιj/(x) = xε/ι. Then (4.11) is satisfied and it is not difficult to

verify that (4.16) guarantees that (4.12; I) holds for (4.15). The conclusion

follows from Theorem 4.4.

COROLLARY 4.2. Lei ( - l ) " σ = - 1 . 1/

(4.17) limsup^Γ ^ / M f , " " {*to3(')-g(*)}' φ ) d s > ,

for some i = 0, 1,..., n - 1 , then J^o = 0for (4.15).

PROOF. This follows from Theorem 4.5, since

and

/|(τ[0](O, ^ ) ; Λ,.. , Pi) =

so that (4.17) guarantees that (4.13) holds for (4.15).

COROLLARY 4.3. Let σ- - 1 . / /

(4.18) limsup ^ f q { s ) d s > ,
il (n — i — l) I

for some ΐ = 0, 1,..., n — 1 , ί/zen J^n = 0for (4.15).

PROOF. Note that under the hypothesis (4.14) is satisfied for (4.15), since

its®, pίal (0; JPI P, ) = iβίs) - p\a\ (0}'/«

and

Then apply Theorem 4.6.

REMARK 4.3. If # is nondecreasing and g(ί) ^ t, then τQ/] (0=^(0 and hence

(4.17) is equivalent to

lim sup^oo \ 1 / , - l l n , ^ l j , t

g l j ) q(s)ds > 1
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for some i = 0, 1,..., n — 1. On the other hand, if g is nondecreasing and g(t)>t,

then p[α] (t) = g(t) and (4.18) is equivalent to

for some i = 0, 1,..., n — 1. Therefore Corollaries 4.2 and 4.3 extend the results

of Koplatadze and Chanturiya [12].

5. Oscillation. In this section we present conditions under which equation

(LE) is oscillaroty or almost oscillatory.

THEOREM 5.1. Equation (LE) is almost oscillatory if:

( i ) for σ = l and n even, there exist α + , α_ e{ l , . . . , N} and ψeC(R + , R+)

which satisfy (4.11) and (4.12; /) (1 = 1, 3,..., n - 1 ) ;

(i i ) for σ=l and n odd, there exist α + , α_ e{ l , . . . , N} and ψeC(R + , R+)

which satisfy (4.11) and (4.12; /) (1 = 2, 4,..., n-1), and the condition (3.5) holds;

(iii) forσ= —1 and n even, there exist oc+, α_ e{ l , . . . , JV} andψeC(R+, R+)

which satisfy (4.11) and (4.12; /) (/ = 2, 4,..., n - 2 ) , and the condition (3.5) and

(5.1)

(iv) for σ= —1 and n odd, there exist a + , a_ e{l,..., JV} andφ eC(R+, R+)

which satisfy (4.11) and (4.12;/) (/=1, 3,..., n - 2 ) , and the condition (5.1)

no/ds.

PROOF. Theorem 4.4 shows that (LE) has no solutions belonging to JVΊ

(1 = 1, 2 , . . . , n - l ) . Thus it suffices to show that \x(t)\ | 0 as 11 oo if XEJT0,

and |Lw_!x(OI ΐ oo as ί T oo if xejKn. But these facts can be proved in the same

manner as in the proof of Theorem 3.2.

THEOREM 5.2. Equation (LE) is oscillatory if:

( i ) for σ=l and n odd, there exist α + , α_ e{ l , . . . , N}, ψeC(R + , R+) and

β+,β.e{l,...9N} which satisfy (4.11), (4.12;/) (/ = 2, 4,..., n - 1 ) and (4.13),

respectively;

(ii) for σ = - l and n even, there exist cc+, α_ e{l,..., N}, ψe£(R + , R+),

β+,β_e{l,...,N}, and γ+, y_ e{l,..., N} which satisfy (4.11), (4.12;/) (/ =

2, 4,..., n - 2 ) , (4.13) and (4.14), respectively;

(iii) for σ = — 1 and n odd, ίnere exist a + , a_ e{l,..., iV}, \j/eC(R + , R+)

and γ+, y_ e {1,..., N} which satisfy (4.11), (4.12; /) (/= 1, 3,..., n - 2 ) and (4.14),

respectively.

This theorem is an easy consequence of Theorems 4.4—4.5.
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The above results specialized to the equation (4.15) are stated below.

COROLLARY 5.1. Let σ = l and n be even. If

\ dΓKϋg'^ήqiήdt = oo for some ε > 0,

then (4.15) is oscillatory.

COROLLARY 5.2. Let σ = 1 and n be odd. If

roo

\ Ql'K^-^qiήdt = oo for some ε > 0

and

ί°° tn-γq(i)dt = oo,

then (4.15) is almost oscillatory. If in addition

mgw {s)ds >,
(n-ι-l)l il

for some ί = 0, 1,..., n — 1, ί/ien (4.15) Ϊ*5 oscillatory.

COROLLARY 5.3. Let σ = — 1 and n be even. If

rco

\ tgl~\i)gι-E{t)q{t)dt = oo for some ε > 0,

/•oo

\ tn'1q(t)dt = oo

= oo,

(4.15) is almost oscillatory. If in addition

for some i = 0 , 1,..., n — ί, and

i i m s u P ( _ p O T tow-Piβum* {Pψύ-sy^ {s)ds

/or some j = 0, 1,..., n — 1 , ί/ien (4.15) is oscillatory.

COROLLARY 5.4. Let σ = — 1 and n be odd. If
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\°° tgΐ~2(t)g~ε(t)q(t)dt =00 for some ε > 0

and

^ gn-\t)q(i)dt = oo,

then (4.15) is almost oscillatory. If in addition

ψ g i s ) d s
ji (n—j — ί ) ι

for somej = 0, 1,..., n — 1, then (4.15) is oscillatory.

EXAMPLE 5.1. Consider the third order equation

(5.2) ( r V(0) ' + 4r4x('/2) = 0.

Since

σ = 1, px(t) = 1, p2(0 = ί, q(t) = 4 r 4 and flf(ί) = ί/2,

we obtain

and we can easily calculate that

Γ /2(τ|>] (0, βW; Pi, Pi)Φ)ds

= [1/6 + Iog2]/12 = 0.071651 < 1,

ίi(s, τ ^ ] (0; P2)h(?\j9\ (0, ̂ (s);

= [19/6 - 41og2]/4 = 0.098519 < 1

and

= [16 log 2 - 29/3]/12 = 0.118641 < 1.

This shows that (4.13) of Theorem 4.5 is not satisfied for the equation (5.2).
Indeed this equation has a solution x(t) = t~ί which belongs to J^o.
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