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1. Introduction

Recently S. Kojima showed in [5] that any finite group G is isomorphic to
the outerautomorphism (class) group Out (π) = Aut (π)/Inn (π) of some discrete
subgroup π of PSL(2,C) (cf. §5). The purpose of this paper is to show the
following theorem.

THEOREM. For any group G there is a group π such that G is isomorphic to

the outerautomorphism group Out (π) of π.

In terms of the homotopy theory our theorem says that G is isomorphic to
the group $(K(π, 1)) of free homotopy classes of homotopy self-equivalences,
with multiplication by the composition, of the Eilenberg-MacLane space K(π, 1)
(Corollary 4.2). In [3] J. de Groot showed that any group G is isomorphic
to the homeomorphism group Homeo (X) of some metric space X. This
implies also that G is isomorphic to the (outer)automorphism group of
the ring of real-valued continuous functions on X. Moreover, we can see that
Homeo (X) = δ(X) in his specific example (cf. §4).

It is easy to see that there is no group π whose automorphism group
Aut (π) is the cyclic group of odd order Φ 1 (cf. [3]). In contrast with this we
may ask if there is any based space X such that G is isomorphic to the group
S0{X) of based homotopy classes of based homotopy self-equivalences of X.
In [9] S. Oka showed that S0{X0) is a cyclic group of order n for some
1-connected finite CW complex Xo unless n = 8 mod 16.

This paper is an outcome of the talk presented on the occasion of the Oka
memorial symposium held at Kyushu University on October 29-31, 1986. The
author would like to express his hearty thanks to Professor Toru Maeda at
Kansai University for informing him of de Groot's paper and helping him to
correct and improve the first version of the result by teaching about the
fundamental group of a graph of groups. The author is also deeply grateful to
Professor Eiichi Bannai at Ohio State University who taught him a proof of the
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key lemma (Proposition 3.2) by a personal letter. Without these helps this

paper could not be completed.

2. Directed graph and fundamental group of a graph of groups

A graph Γ consists of the set V(Γ) of vertices and the set E(Γ) of

edges with maps ~: E(Γ) -• E(Γ) and (/, τ): E(Γ) -• V(Γ) x V(Γ) satisfying ^ = e,

ι(e) = τ(e) and τ(e) = ι(e). An orientation of Γ is given by a subset E+(Γ) of

E(Γ) with E(Γ) = E+(Γ)KJ E+(Γ) (disjoint union). A graph with orientation is

called a directed graph. An automorphism of the directed graph is a pair

of bijections of V(Γ) and E+(Γ) to themselves commuting with the map

(z, τ)\E+(Γ). To prove our theorem we quote the following result of de Groot

with a rough proof.

THEOREM 2.1 (Corollary to Theorem 6 of de Groot [3, p. 96]). Any group

G is isomorphic to the automorphism group of some connected directed graph Γ.

PROOF. We take first the Cayley graph Γ(G) associated to a system

{Qa)*eA. of generators of G: V(Γ(G)) = G and E+(Γ{G)) = {(g, ga); geG,aeA}

with ι(g9 ga) = g and τ(g, ga) = gga. Then, the edges of the Cayley graph have

colors corresponding to the generators and it is easy to see that G is isomorphic

to the color and orientation preserving automorphism group of Γ(G). So, it

suffices to replace the directed colored edges with the distinct rigid graphs color

by color. A rigid graph is constructed from a directed edge as follows and its

(orientation disregarding) automorphism group is the identity. Let e = [α, b],

which means ι(e) = a and τ(e) = b, be the given edge. Take three edges [α, p],

[p, q] and [q, b] with the new vertices p and q instead of the edge [a, b~\. At

the first step we take a cardinal m > \A\. From q we draw new m directed

edges [q, g α i ] . At the n-th step we draw new m α i _ α n directed edges [#α i...α r ι,

Qaι...anΛn+ι'] fr°m e a c n #«!...«„• We need that the cardinals mα i an are different

from each other and from all the cardinals previously defined. The rigid graph

is defined after a countable number of steps. The rigidity of the resulting

graph is easily deduced. Repeat this construction for the other edges with

different cardinals when the color is different. q.e.d.

Now we review the notion of a graph of groups and its fundamental group

owing to Bass-Serre. (See [10].) Let Γ be a graph. A graph of groups (^, Γ)

consists of the vertex groups % for v e V(Γ) and the edge groups &e = ^ for

eeE(Γ) with the monomorphisms ^e^^τ(e) denoted by a-+ae. Group F(@9 Γ)

is defined by the group generated by the groups % (v e V(Γ)) and the elements

e (e e E(Γ)) with relations e = e'1 and eaee~ι = a* if e e E(Γ) and a e <Se. Let

υ0 e V(Γ). Then, the fundamental group πx(% Γ, v0) is defined by the subgroup
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of F(&, Γ) generated by (the image of) the elements

aoe1aίe2...enan with vn = v0, υt = ι(ei+ί) = τ(et) and ate9Vi.

Let T be a maximal tree of Γ and nx(%Γ9T) is the group generated by

the groups ^v and elements te with relations tέ = ί"1, tea
et~x = ae (e e £(/"),

a e <Se) and ίe = 1 (e e £(T)). Note that the canonical projection p: F(0, Γ) ->

π ^ , 7", Γ), defined by p(e) = ίβ, induces an isomorphism of π±(% Γ, v0) onto

πx(% Γ9 T) for any maximal tree T (Proposition 20 of [10, p. 63]). In parti-

cular, the isomorphism class of the fundamental group does not depend on the

choice of the vertex v0 when Γ is connected. Moreover, the natural maps

%-> n^y, Γ9 T) are monomorphisms. When Γ is a finite graph, this is so

because π^9Γ9Ύ) is a generalized HNN extension, that is, a group con-

structed by a repeat of either HNN extension or free product with amalga-

mation. We shall use the same notation % for its image in πγ(% Γ9 T).

Recall that the fundamental group is called an HNN extension or a free

product with amalgamation when the graph is the loop {v, e] with ι(e) =

τ(e) = v or the segment {t?1} e, v2} with ι(e) = vί and τ(e) = v2 respectively. A

sequence g0, tε\ gί9 . . . , rε", gn (n ^ 0, g^e^ and εf = ±1) in the HNN

extension (%, t = te; taet~ι = ae for a e ^ e >, with a factor @V9 is called reduced

if there is no consecutive subsequence ί, gh ί"1 with g( = af and αf e
 (Se or ί"1,

gi9 t with gt = b\ and bt e^e. A reduced sequence is called cyclically reduced if

ίε"» QnQoi tEi i s also reduced. Similarly, a sequence gθ9 gί9 . . . , gn (n ^ 0, gf£ e ^ l 7 l

or e%2) in the free product with amalgamation (f0Όχ9 ^ 2 ; ae = ae for α e ^ e > ,

with factors %χ and ^ 2 , is called reduced if no successive gt and gi+ι are

contained in the same factor. A reduced sequence is called cylically reduced if

gn9 g0 is also reduced. In both cases we know that the product got
είgi'"tεngn

o r GoGι'"9n °f t r i e elements in a reduced sequence is not trivial in the funda-

mental group if n ^ 1 (Britton's lemma cf. [6]). Any element can be expressed

as a product of the elements in a reduced sequence. An element which is a

product of the elements in a cyclically reduced sequence will be called a

cyclically reduced element.

LEMMA 2.2. Let <$* be either an HNN extension <G, ί; taΓ1 = φ(a) for

a e H} with G =3 H and φ: H cz+G or a free product with amalgamation <G l 5

G2; a = φ(a) for a e H} with Gλ^> H and φ: H a+ G2. The image of H (or

φ(H)) in &* is also denoted by H (or φ(H) resp.).

(1) Any finite subgroup F of &* is contained in a conjugate of some factor.

(2) If a cyclically reduced element g of &* is conjugate to an element h of

H, then g is in some factor and there is a sequence h9 hί9 . . . , hk9 g where every

hi is in H (or possibly φ(H) in the case of HNN extension) and consecutive terms

of the sequence are conjugate in a factor (or possibly by ί±1 in the case of HNN



212 Takao MATUMOTO

extension). Moreover, if Ho = c~1Xc <= H for a subset X of &* consisting of

cyclically reduced elements, then there is a sequence of subsets Ho, Hί9 ..., Hn,

X where Ht c H (or possibly Ht a φ(H) in the case of HNN extension) and

consecutive terms of the sequence are conjugate in a factor (or possibly by ί± in

the case of H N N extension) and c is a product of the elements which give such

conjugations. In particular, X itself is contained in a factor.

(3) // a cyclically reduced element g of &* is conjugate to an element g' of

some factor by an element c, but not in a conjugate of H, then g, g' and c are in

the same factor.

Before giving a proof of Lemma 2.2 we state a corollary applied to a

generalized HNN extension.

LEMMA 2.3. Let (% Γ) be a graph of groups and consider the fundamental

group π = πx(% Γ, T) of (&, Γ) associated to a fixed maximal tree T of Γ.

(1) Any finite subgroup F of π is contained in some conjugate of (Sυ for

some v e V(Γ).

(2) Assume that the union Uv of the conjugates of (J τ ( e )= t ;

<^ e in (3υ is not full

in %. Then, any element of % — Uv is not contained in any conjugate of &v> for

v' (Φv)eV(Γ).

PROOF. Since F is contained in a finite generalized HNN extension, we

have (1) by applying (1) of Lemma 2.2 repeatedly. The statement (2) is also a

consequence of (3) of Lemma 2.2. q.e.d.

PROOF OF LEMMA 2.2. Any element of finite order is contained in a

conjugate of some factor by Britton's lemma ([6], [7]). The Britton's lemma

shows also that the product of two elements of conjugates of different factors or

different conjugates of the same factor cannot be in a conjugate of a factor

(assuming that any factor is not contained in another factor). This shows (1).

The first half of the statement (2) and the statement (3) for the free product

with amalgamation are Theorem 4.6 (i) and (ii) of Magnus-Karrass-Solitar

[7, p. 212]. We will give a proof in the case of HNN extension. To prove (2)

suppose that g0, tε\ g1, ..., tEn, gn is a reduced sequence for c and note

that XczcHc'1. If n = 0, then c = g0 and the sequence Ho = g^XgQ, X

is of the required type, since X a gQHgQl a G. Let n ^ 1. We use the

notation φm(H) which stands for H if εm = 1 and φ(H) if εm = — 1 for m > 0

and φo(H) = H and put cm = gmtErn+1... tEngn for 0 ^ m ^ n with c 0 = c.

Suppose there is a largest integer q ^ 0 such that CQHQC'1 is not contained

in φq(H). Then, either q = n or CJHQC]'1 a cpj(H) for j > q. If now q > 0, then

some element

g = chc'1 = g0... tε*(cqhc-ι)Γε*...gΌι ,
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with he Ho, cannot be a cyclically reduced element. Hence, q = 0 or there is

no q. In both cases the sequence

Ho, GnHoGn1 = cnHoc~n\ . . . , cmHoc-\ f-CnHoC-H-*-, . . . , cHoC-1 = X

is of the required type and X c G. Since a proof of the second statement for

the free product with amalgamation can be carried out in the same way, we

have (2). To prove (3) note that g = cg'c~γ with g' e G and suppose that gθ9

tε\ gί9 ..., tEn, gn is a reduced sequence for c. If n = 0, then c = g0, g' and

g = 0O00O1 a r e contained in G. Suppose now w jg 1. Then, in order that

g = g0 - - tεngng'gή1 t~En... g^1 be a cyclically reduced element, gng'g~ι should be

contained in φn(H). But this contradicts the assumption. Hence, n = 0 and

we complete the proof. q.e.d.

3. Proof of Theorem in the introduction

We shall prove Theorem 3.1 and Proposition 3.2 which imply the theorem

stated in the introduction.

Now let Γ be a directed graph. We take a barycentric subdivision Γ' of

the directed graph Γ. More precisely we denote:

(1) V(Γ) = V(Γ) u VE(Γ) with VE(Γ) = E+(Γ)9

(2) E+{Γ) = E1(Γ')vE2(Γ) (disjoint union) with bijections E^Γ')^

E2(Γ) £ E+(Π and,

(3) for eeE+(Γ) we have e^E^Γ) (i = 1, 2) with /(ej = ι(e), φ j =

j(e2) = e (= ^ as an element of VE(Γ')) and τ(e2) = τ(e).

Let Kx and X 2

 a r e common subgroups of groups K and K. Then, a

graph of groups {% Γ') is defined by

\K if veV(Γ) _(KX if eeE^Γ)

if ΌEVE(n9 e~[K2 if eeE2(Γ)

and the monomorphisms &e -» %(e) are the inclusions.

THEOREM 3.1. Let Γ be a connected directed graph and Γ' its barycentric

subdivision. Let π denote the fundamental group nx(^ Γ'9 v0) of a graph of

groups (% Γ') defined above. Then, the outerautomorphism group Out (π) of the

group π is isomorphic to the automorphism group Aut (Γ) of the directed graph Γ,

provided that K, K, Kλ and K2 satisfy the following conditions:

(a) K and K are finite groups and they are not isomorphic to each other.

(b) Out (K) = {id}.

(c) N(Ki9 K) = K, and N(Ki9 K) = K( for i = 1 and 2, where N(H, G) is the

normalizer of H in G.
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(d) Some element of Kx (or K2) is not conjugate to any element of K2 (or

K1 resp.) in K and in K.

(e) The union of conjugates of K1 and K2 is not full either in K or in K.

(f) Center (Kx) = Center (K2) = {1}.

(g) Let a be an element of Aut (K) or Aut (K). Then, α|K f = id implies

α = id for i = 1 and 2.

PROPOSITION 3.2 (Bannai [1]). There is a quadruple (K, K, Kί9 K2) satisfy-

ing the conditions in Theorem 3.1. In fact, we can take K = Aut(M 1 2), K =

Aut(M 2 2 ), K1^Aut(A6) and K2 ^ Aut (PSL(2, Z n ) ) , where Mn denotes the

Mathieu group of degree n and Ak is the alternating group on k elements. This

quadruple satisfies also the following conditions (b') and (d') stronger than the

conditions (b) and (d):

(b') Out (K) = Out (K) = {id}.

(d') Some element of Kλ (or K2) is not conjugate to any element of a group

isomorphic to K2 (or K1 resp.) in any ambient group.

PROOF OF PROPOSITION 3.2. We use the Atlas [2]. According to the Atlas

(pp. 31-33) K = Aut(M 1 2 ) is a non-trivial split extension of M 1 2 by Z 2 . We

take one of the maximal subgroup ^ M 1 0 : 2 ^ AβΊ
2 (in the notation of the

Atlas) of M 1 2 (<=K) as Kx. Kλ is isomorphic to Aut (A6) by these iso-

morphisms. Let K2 be a maximal subgroup ^ L 2 ( l l ) :2 (in the notation of the

Atlas) of K such that K2nM12 is isomorphic to PSL(2, Z1X) ( = L 2 ( l l ) in the

notation of the Atlas) and K2 is a non-trivial split extension of K2nM12 by

Z 2 . Since Out (P5L(2, Z n ) ) ^ Z 2 and the extension is non-trivial, the iso-

morphism class of K2 is uniquely determined. Similarly by the Atlas (p. 39)

K = Aut (M 2 2 ) is a non-trivial split extension of M 2 2 by Z 2 . X x is a maximal

subgroup ^ M 1 0 : 2 ^ A6'2
2 of K and K2 is a maximal subgroup ^ L 2 ( l l ) :2 of

K. We know that Kγ ^ K1 and K2 ^ K2 by these data. We note here that

|K| = 27335 11, | X | = 2 8 3 2 5 7 11, | K 1 | = 2 53 25 and \K2\ = 233 5 11. This

shows the condition (a). We prove now the other conditions, (b') Since

Aut (M 1 2 ) is a semi-direct product of M 1 2 with Z 2 and Aut (Z 2) = {id}, we see

that Aut (Aut (M1 2)) = Aut (M 1 2). Hence, Out (Aut (M 1 2)) = {id}. The same

is true for Aut (M 2 2). It is known also that Aut (Aut (G)) = Aut (G) for any

non-abelian simple group G. (c) By the construction K2 is a maximal sub-

group of K and hence N(K2, K) is K2 or K. But the latter means that K2 is a

normal subgroup of K. Since M 1 2 is the unique normal subgroup of K, we get

N(K2, K) = K2. The same argument implies that N(Kh K) = Kt for i = 1 and

2. By the Atlas (p. 33) M 1 2 has another maximal subgroup isomorphic to Kι

which is not conjugate to Kx in Ml2 but conjugate to Kx in K. Hence,

N(KU K) is contained in M 1 2 . So, N(Kl9 K) is Kl9 because K± is maximal but
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not normal in M 1 2 . (cΓ) An element of order 11 of K2 cannot be conjugate to

any element of a group isomorphic to Kλ, because 11 does not divide \KX\. By

the Atlas (p. 5 and p. 7) Kx has an element of order 8 and K2 does not. So,

such an element cannot be conjugate to any element of a group isomorphic to

K2. (e) Since K has an element of order 7 and 7 does not divide \Kt\ and

|K 2 | , such an element is not contained in the union of the conjugates of Kx and

K2. By the Atlas (p. 33) K - M12 has an element of order 6. If

such an element is conjugate to an element g of Kι u K 2 , 9 must be contained

in K2 — K2nM12 because M 1 2 is normal in K. But there is no element of

order 6 in K2 - K2 nMl2 ^ Aut (L2(ll)) - L 2 ( l l ) by the Atlas (p. 7). (f)

Since Kt => A5 and Center (A5) = {1}, Center (Kt) = {1} for ί = 1 and 2. (g)

This comes from (b'), (c) and (f). Every automorphism of K is an inner-

automorphism and N(Kl9 K) = Kx. So, oc(K1) = K1 means that α is the

conjugation by an element g of Kx. But cc\K1 — id and Center (K^ = {1}

imply g = 1. So, α = id. The argument applies to the other cases, too. The

proof is outlined by Bannai [1] but to the description of the present proof only

the author is responsible. q.e.d.

We start now a proof of Theorem 3.1.

We take a maximal tree T by applying the Zorn lemma. We take a

maximal tree T of a barycentric subdivision Γ' of Γ so that T contains the

barycentric subdivision of T. We consider that π = nx(% Γ\ T') hereafter.

Take an αeAut(π). Suppose \K\ ^ \K\. (Otherwise argue about V(Γ)

before VE(Γ')) For e e VE{Γ') we have an e' e V(Γ') and a gεπ such that

0L(9e) c g<Se.g-χ by (1) of Lemma 2.3. Since K^^cz α'Hg^g'1), we see that

e'eVE{Γ'). Since cΓ1(g(&e.g-1) = (χ-1(g)α-1(%)(oc-1(g))-\ the correspondence

e -• e' gives a bijection of VE(Γ') by (2) of Lemma 2.3 and the condition (e).

For v e V(Γ) c F(Γ') we have an e' e VE(Γ) or a υ' e V(Γ) and a geπ

such that α ( ^ ) cz g^e>g~ι or α(^y) c g^g'1 respectively. But the former case

cannot be possible by (2) of Lemma 2.3, the condition (e) and the fact that

on~ι{g^e'9~ι) i s a conjugate of ^e with e = oc~1(ef). So, by the same reasoning

as before the correspondence v -• ι/ gives also a bijection of V(Γ). To prove

that α induces an automorphism of Γ we have to show that τ(oc(e)) = α(τ(e)) for

e e VE(Γ).

Fix an edge eeE+(Γ) (or e E+(Γ)). By composing some conjugation we

may assume that cc(&e) = ^α{e) and α coincides with the identity with respect to

fixed identifications of &e and %{e) with K. We know that α(^τ ( e )) = gf^^^gΓ 1

for some geπ.

CLAIM 1. Suppose that %{e) n g%Kτmg~^ => K 2 (or Kx resp.) m »β(β) = K.

Then, <x(τ(e)) = τ(φ)).
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PROOF OF CLAIM 1. Let a be an element of K2 (or Kx resp.) c &a(e) = K

which is not conjugate to any element of Kt (or K2 resp.) in K and K. Such

an element exists by the condition (d). By the assumption g~1ag e &a(τ(e)y So,

both a and g~ιag are cyclically reduced elements. We consider a subgroup

π(7"i) of π containing α and g which is the fundamental group of a graph of

groups over a finite connected subgraph Γx of /"". By retaking T we may

assume that <Se. = A^ (or X 2 resp.) for e' 6 E(Γ) - E(V). Let fe ^ 1 and

assume that if k ^ 2 then /^, (1 ^ /c' < /c) are already defined. If Γk contains a

cycle, we take an edge ek on the cycle and put Γk+1 = Γk — ek. Otherwise we

take an edge ek and put Γk+1 = the connected component of Γk — ek containing

oc(e) and Γk+ί = the other component. In both cases we may take ek so that

&ek = Kι (or K2 resp.). Then, π{Γk) is either an HNN extension <G = π(Γk+ί)9

t; tat"1 = φ(a) for a e H} or a free product with amalgamation <G = π(Γk+ί)9

G' = π(Γk+ί); a = φ(a) for a e H>, where H is an edge group &ek embedded in

yτ{ek) and φ is an into-isomorphism induced from ^ β k = ^ k . We may assume

that both a and gk

ιagk are cyclically reduced with gι = g. Now we have two

cases: either (i) a is conjugate to an element of H in π(Γk) or (ii) otherwise. (If

we assume the condition (dr), we choose a e K2 (or Kx resp.) not conjugate to

any element of a group isomorphic to Kι (or K2 resp.) and we see from the

beginning that the case (i) does not occur by the choice of ek with H = ^ek = K1

(or K2 resp.).) In case (i) we see that a is conjugate to an element of H (or

possibly φ(H) in the case of HNN extension) by an element gk+1 of G by (2) of

Lemma 2.2. In case (ii) gk

λagk is contained in G and gk e G by (3) of Lemma

2.2. Define gk+1 = gk in the case (ii). So, in both cases we can argue further

on π(Γk+1) unless Γk+1 contains no edges with group K1 (or K2 resp.). Since Γx

is a finite graph, we see that at some n the subgraph Γn consists of one vertex

v e V(Γ) and a finite number of vertices υt e VE(Γ') and edges e{ e E(Γ') with

&e. = K2 (or Kγ resp.) connecting v and ι?f. If every step passes through the

case (ii), then gk = g for 1 ^ k ^ n and # is contained in π(/^). This implies

easily that α(e) is one of vt and i; is α(τ(e)), that is, τ(α(^)) = α(τ(e)). If the last

step passes through the case (i), then we see that a is conjugate to an element of

K1 (or K2 resp.) in K or K by (2) of Lemma 2.2. This contradicts the choice of

a. In the remaining cases we can change the order of the steps so that the last

step passes through the case (i). q.e.d.

So, we get a map p: Aut (π) -»Aut (Γ), which is immediately seen to be a

homomorphism of groups with respect to the compositions. To show that p is

surjective we consider for a while π = π^, Γ',υ0) with voeV(Γ). Take a

β G Aut (Γ). Choose a path γ from v0 to β(v0) in 7". An element

a0eιaιe2... enan (vn = υ0, vt = ι(ei+ί) = τ(et) and a( e <$ )
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of π is transformed to the element

yaoβ(e1)a1β(e2)... β(en)any , where a{ is considered now in <&β{Όi).

Then, this induces an automorphism β of π = πx(% Γ\ v0). It is not difficult to

see that p(β) = β.

Now p induces a surjective homomorphism p: Out (π) -» Aut (Γ). Take

α e Aut (π) with p(α) = id. We will show that α is conjugate to the identity.

Abbreviate υ0 — 0. Then, a(%) = g%g~x for some g e π. Putting αx = g~xocg

we have 0Ci(%) = %. By the condition (b) we have an he% with ha1h~1\% =

id. So, we define a new α by ha1h~1 and will show that α = id.

Recall α e Aut (π) with π = πγ(% Γ9 T ) , p(oc) = id, a(%) = % and u\% =

id. If e E E+(Γ) and ι(e) = 0, then α |# β l = id and # β i = X x cz K = <$e. So,

»β l cz α(»β) = gf^e^"1 for some ^ G π. In particular, g^eg~ι n »ί(β) =) Ki in <&m .

CLAIM 2. (1) Suppose that ^er\g%{e)g~γ => K 2 (or X J in ^ e = K for an

e e E+(Γ) (or E+(Γ) resp.) and a g e π. Then, g e ^ τ ( e ) .

(2) Suppose that g^eg~ι n # l ( e ) z> Kx (or X 2 ) in » l(β) = K for an ee E+(Γ)

(or E+(Γ) resp.) and a g e π. Then, g e &e.

PROOF OF CLAIM 2. (1) Let H be the edge group ^ e n ^ τ ( β ) isomorphic

to K2 (or X x resp.). Put X = g~1Hg. Then, X is a subset of %e) and

gXg"1 = H. Note that /f is the edge group on the edge e' e E(Γ') if and only

if <Se. ^ K2 (or Kx resp.) and e' is contiguous to τ(β). We consider a subgroup

π(7~i) of π containing H and g which is over a finite connected subgraph Γx of

Γr. Using the condition (d) and Lemma 2.2 as in the proof of Claim 1 we see

that g is contained in π(Tτ{e) e)\ where Tτ{e)e is the tree consisting of the edges e'

contiguous to τ(e) with ^e> ^ K2 (or Kί resp.). (If we assume the condition (d'),

it suffices to apply (3) of Lemma 2.2 to the edge groups isomorphic to Kx

(or K2 resp.) repeatedly, because an a e X is not conjugate to any element

of a group isomorphic to K1 (or K2 resp.).) Define a tree Tk by V(Tk) =

{υ9υu...9 vk}, E(Tk) = {el9..., ek}, ι(et) = v and τ(β£) = vt. We can identify

Tτ(e) e = Tn for some n with v = τ(e) and consider H a (Sυ. Applying (2) of

Lemma 2.2 to π(Tn) = <π(7;_1), &Όn; a = φ(a) for a e H} with gXg'1 = H, we

see that g is a product of elements of N(H, π(7^_x)), elements of N(H, %n) and

an element gί of π(TΠ_x) with gxXg^x = iί. We may assume gk e π(TΠ_k), with

gkXg^1 = H, are already defined. Then, by the same argument gk is a product

of elements of N(H, π(Tn-k-y))9 elements of N(H,%nk) and an element gk+1

of πίT^.^-i) with gk+1Xgklι = H. If we consider X = H for a while, an

element of N(H, π(Tn_k)) turns out a product of elements of N(H, ^T^^ ^)) and

elements of N(H, &Vn_k). Consequently, g is a product of elements of N(H, %J,

. . ., elements of N(H, ^Vχ\ elements of N(H, π(T0) = %) and an element gn of

^ . Since N(H, %) = N(H, %) = H by the condition (c), g is a product of
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elements of H and gn e %{e), that is, g e <&τ{e). This completes the proof of (1).

The proof of (2) is almost the same and omitted. q.e.d.

By (2) of Claims 2 we see that g e % and hence g%eg~ι = %, that is,

α(^J = &e. Since α |# β l = id, the condition (g) for K implies oc\&e = id. Now

^ e ZD ge2 = κ2 cz oc(%e)) = g%{e)g~ι for another g e π. By (1) of Claim 2 we

have g e &τ(e) and hence α(^ t ( e )) = ̂ τ ( e ). Since oc\%2 = id, the condition (g) for K

implies α|^ τ ( e ) = id. Let now e e E+(Γ) and τ(e) = 0. Then, applying Claim 2

for e in the same way we see that α(^e) = &e and α |^ e = id and then α(^ ( e ) ) =

<&ι{e) and α|^ / ( β ) = M/. Repeating this process from υ E V(Γ) along the maximal

tree T we see that a{%e) = %e and α | ^ β = id for any ^ e F ( Γ ) = F ( Γ ) .

What we have not yet proved is that α(ί) = t for t = te with e e E(Γ') — E(T').

Put α, = α(ί). Then, α ^ α " 1 = ίαί"1, that is, ( ί " 1 ^ ) ^ " 1 ^ ) " 1 = a for any a e ^ e .

In particular, ( r 1 ^ ) ^ " 1 ^ ) " 1 = // with H = 9e.

CLAIM 3. Let geπ and H = %e = %e) n » l ( e ) /or an β e E(Γ). Then,

gHg~ι = H implies g e H.

PROOF OF CLAIM 3. By the assumption we have gfy^g'1 n ^ι{e) => H

(= Kx or K2). So, by applying (1) of Claim 2 in case ι(e) e E(Γ) and τ(e) e

V(Γ) and (2) of Claim 2 in case τ(e) e E(Γ) and ι{e) e F(Γ), we see that gf e %e).

Since we have no non-trivial normalizer of H in %{e) by the condition (c), we

see that g e H. q.e.d.

By Claim 3 we have Γ 1 ^ e H. But Cenίer (H) = {1} by the condition (f).

This implies ί"1^ = 1, that is, αf = ί. This completes the proof of Theorem 3.1

and consequently the main theorem stated in the introduction. q.e.d.

4. Remarks related to the homotopy theory

We know the following lemma. So, we get the corollary mentioned in the

introduction.

LEMMA 4.1. (1) δo(K(π, 1)) = Aut (π), and (2) £(K(π, 1)) = Out (π).

COROLLARY 4.2. For any group G there is an Eίlenberg-MacLane space

K(π, 1) such that G is isomorphίc to $(K(π, 1)).

PROOF OF LEMMA 4.1. (1) The based homotopy class of a map / :

K(π, 1) -• K(π9 1) induces a homomorphism π^f): π = π^Kiπ, 1)) -• π. This

defines a canonical homomorphism π ^ S0(K(π, 1)) -• Aut (π). If α e Aut (π) is

given, there is a map fx on the 2-skeleton of K(π, 1) to K(π, 1) so that

α = π ^ / t ) . Then, there is no obstruction to extend to / : K(π, 1) -> K(π, 1) with
α = π i ( / ) Suppose n1(f) = πι(f). Then, / and / ' are homotopic on the
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1-skeleton and the homotopy extends on the whole K(π, 1) without obstruction.

This finishes a proof of (1). (2) is a direct corollary of (1), since both the groups

are the orbit spaces by the adjoint action of n^Kfa 1)). q.e.d.

Note that de Groot's example X is given by replacing each edge of a

non-directed graph Γ of Theorem 2.1 with a rigid space. Here, a rigid space is

defined by the property that any continuous map of the rigid space to itself is

either the identity or a contraction to a point. So, it is easy to see that

Aut (Γ) = Homeo (X) = δ(X).

5. Case of finite groups

Due to Kojima [5] or Kawauchi [4] every finite group G is realized by the

full isometry group Iso (M) of some closed hyperbolic 3-manifold M. Hence,

any finite group G is represented by Outfa^M)), since Mostow's theorem [8]

says that the natural homomorphism Iso (M) -• Out (π^M)) is an isomorphism

for any closed hyperbolic n-manifold M if n ^ 3. Note that M is a X(π1(M), 1)

and O u t M M ^ ^ M ) . Note also that Out(πί(Nί))^N(π1{M)9PSL(29C))/
π^M) by Mostow's theorem.
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