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Abstract It is shown that if (Ω, Σ, μ) is a finite measure space and A" is a

Banach space then X* has the μ-Pettis Integral Property if and only if

\\(weak*)- fdμ\\ = \\ (Dunford)- fdμ\\
J Ω J Ω

for every bounded weakly measurable function /: Ω -> X*.

A negative answer to a question of E. Bator is also given.

1. Introduction

Let (Ω, Σ., μ) be a finite measure space. For a Banach space X we denote
by bwm(μ\X) the space of all bounded and weakly measurable X-valued
functions defined on Ω. X* denotes the dual of X. B is the unit ball of X.

It is well known that if /e frwm(μ; X*) then for every E e Σ there exists
x| e X* such that, for every xeX9

i = xfdμ
JEJE

and, for every EeΣ there exists x£**eX*** such that, for every x*

x***(x**) = x**fdμ.
JE

x| is called the weak* integral of/over E, denoted by w* — fdμ, and x|** is
JE

called the Dunford integral of/over E, denoted by D — fdμ. /is said to be
JE

Pettis integrable if D - fdμeX* for all EeΣ.
JE

X is said to have the μ-Pettis Integral Property (μ-PIP) if every /e
bwm (μ; X) is Pettis integrable. More information on Pettis integral and μ-PIP
can be found in [3].
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E. M. Bator proved in [1] that X* has μ-PIP for a perfect measure μ if

and only if

- (fdμ = D-ίj
J Ω J Ω

fdμ

for every febwm(μ;X*). The proof was based on Fremlin's subsequence

theorem. It is the purpose of this note to give a short and elementary proof of

the theorem of Bator in the case of arbitrary finite μ.

Moreover, assuming the existence of measurable cardinals we present a
negative answer to a problem of Bator.

2. Characterization of μ-PIP of X*

THEOREM. If (Ω, Σ, μ) is a finite measure space and X is a Banach space,

then X* has μ-PIP if and only if for every febwm(μ',X*) the equality

- ίfdμ = D-ίj
J Ω J Ω

fdμ
JΩ J

holds.

PROOF. Noting that only one implication needs a proof let us assume that

w*- \ fdμ = D- I fdμ
J Ω J Ω

for all/e bwm(μ:,X*), and take an hεbwm(μ\X*}. By the assumption, for each

EeΣ and each x*eAT* we have

- ί (h - x*)dμ = D - I (h -
J E JE

x*)dμ

_ ( f \
Setting x* = μ(E) 11 w* - hdμ 1 if μ(E) > 0, we get at once the required

V J E /

equality

- I hdμ = D - \
JE JE

hdμ.

This completes the proof.

As a consequence we get also a generalization of Corollary 6 in [1].

COROLLARY. X* has μ-PIP if and only if for each febwm(μ',X*) and each

x**eAr** there exists a bounded sequence {xn: n =!,-••} in X such that

\\xn\\ ^ l | x * * H for eacn n
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PROOF. The proof of the "only if" part in [1] contains a gap (the
pointwise convergence of (xβ°f) does not yield, in general, the Lx(μ)-
convergence). We shall present here an independent proof.

Assume that X* has μ-PIP, and take/e&ww (μ X*). Then 7}: X -» L^μ)
given by 7}(x) = xf is weakly compact and so Γ^*(Jf**) c L^μ). It follows
that T^*is weak*-weak continuous. Applying the Goldstine theorem, we see
that T**£** is in the weak closure of TJ*B. But TJ*B is convex and so the
Mazur theorem yields the norm density of TJ*B in Γ**#**. Now, it is only
sufficient to observe that the Pettis integrability of / yields the equality

To show the reverse implication it is sufficient to observe that the

convergence yields the equality [fdμ = D-\ fdμ
J Ω J Ω

for all fε

), since the main theorem can then be applied.

3. Integration of a single function

In connection with the theorem the following problem arises: Assume that
fεbwm(μ;X*) satisfies for each EεΣ the equality

(*) ID- [fdμ
II J E

- (
J

fdμ

Is / Pettis integrable ?
The following example, which is a generalization of an example of

Talagrand ([3], 6-2-3) shows, however, that this is not the case even if μ is
perfect.

EXAMPLE. Let K be the first real-measurable cardinal, and let μ be a
universal diffused probability on [0, TC] (i.e., defined on all subsets of [0, κ~] and
vanishing on points) endowed with the order topology. Consider /: [0, K]
->C*[0, κ~\ given by /(α) = <5α. Clearly / is weakly measurable and
bounded. Using the fact that each continuous function on [0, κ~] is eventually
constant (cf. [2] , Π.8.6.3), one can easily show that

-1fdμ = μ(E)δκ

for all E^ [0, K}.

Since ||/|| < 1 we have - fdμ μ(E) and so (*) holds. Let us

define now zeC**[0, K] by the equation z(v) = v ( { κ } ) for veC*[0, K]. It
follows that for E = [0, κ~\ we have
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( z, D - \ fdμ \ = 0 while ( z, w* - ) fdμ } = 1.
\ JE / \ JE I

Thus / is not Pettis integrable.
We now take K to be the first two-valued measurable cardinal and μ to be a

two-valued universal diffused probability on [0, K]. Then we obtain the
desired example involving a perfect measure.

REMARK. The above example (with the two-valued universal μ) gives also
a negative answer to the following question posed in [1]: Suppose that/e bwm
(μ X*) and for each x**eX** there exists a sequence {xn} in X such that xnf
-> x**f, μ-a.e. Is / Pettis integrable ?

Indeed, assume that K is the first two-valued measurable cardinal, take / to
be the non-Pettis integrable function considered in the example, and fix
x**e/00[0, κ](we are applying the fact that C*[0, κ~\ is linearly isometric to
/ι[0, κ:](cf. [2] , V.19.7.8 or [3] , 2.4.4), and so C**[0, /c] is linearly isometric
to /oo[0, K]). Since μ is two-valued x**/ is μ-a.e. equal to a constant
c. Setting xn = c we get a sequence of functions xπeC[0, K] such that xnf
->x**/, μ-a.e.

Observe yet that if K is assumed only to be real-measurable then the
function / considered in the example satisfies (*) but such a sequence {xn} as
mentioned above cannot exist in general. This follows from the fact that a
functional x**e/00[0, κ~\ which is μ-a.e. limit of a sequence of functions
xπeC[0, K] has to be constant μ-a.e.
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