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1. Introduction

In this paper we first study the behavior of Riesz potentials of functions
near a given point, which may be assumed, without loss of generality, to be
the origin. For 0 <« <n and a nonnegative measurable function f on R",
we define U,f by

U f(x) = J lx — yI*=" f(y)dy.
RVI
It is easy to see that U,f# oo if and only if
(L.1) J (I+1y)*""f(y)dy < .
R'\

By Sobolev’s imbedding theorem, we know that if f is a nonnegative
function in LP(R") satisfying (1.1), and if ap > n, then U,f is continuous at
the origin (in fact, on R"); however, in case ap <n, U,f may fail to be
continuous at the origin. Thus, our main concern in this paper is the
bordering case p =n/o, and one of our aims is to find a condition on f,
which is stronger than the condition that fe LP(R") with p = n/a but assures
the continuity at 0 of U,f.

For this purpose, we assume that f satisfies a condition of the form:

(1.2) j P,(f(Mo(lyl)dy < .
Rn

Here &,(r) and w(r) are positive monotone functions on the interval (0, c0)
with the following properties:

(1) @,(r) is of the form r’o(r), where 1 <p<oo and ¢ is a positive
nondecreasing function on the interval [0, o).
(p2) ¢ is of logarithmic type, that is, there exists A; > 0 such that
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ATto(r) < @(r’) < A,@(r)  whenever r> 0.
(w1) w satisfies the (4,) condition; that is, there ‘exists A, > 0 such that
A;'o(r) < w(2r) < Ayo(r)  whenever r > 0.

For example, ¢(r)=[log2+7r)]% §>0, and w(r)=r? satisfy all the
conditions. We know in [18] that if o =1, p> 1 and

(1.3) Jl UP(V_‘)]‘”‘”‘”Q < oo,
0 r

then U, f is continuous on R". Thus we aim to find a more general condition
relating to both ¢ and w, under which U,f is continuous at the
origin. Further, if U, f is not continuous at 0, then we shall find a function
k for which [xk(]x|)]"'U,f(x) tends to zero as x — 0, possibly avoiding an
exceptional set. As an application of the existence of such fine limits, the
radial limit theorems can be derived. ' Our results will give generalizations of
those in [5] and [11], where ¢(r) =1 and w(r) is of the form r?.

We also deal with the limit of g-th means of U, f over the spheres 0B(0, r),
where 0B(x, r) denotes the boundary of the open ball B(x, r) with center at
x and radius r. In case p = 1, our results imply Gardiner’s results in [4].

If « is a positive integer, then U, f is a Beppo-Levi-Deny function on R"
(cf. Mizuta [8]); for the definition of Beppo-Levi-Deny functions, we refer the
reader to Deny-Lions [3] and Mizuta [8]. Conversely, Beppo-Levi-Deny
functions are represented as Riesz type potentials in [8], [16] and [19], as an
extension of a result by Wallin [26]. In this paper, we give another integral
representation, as a generalization of the sobolev integral representation for
infinitely differentiable functions with compact support.

Moreover, we are concerned with Beppo-Levi-Deny functions u on the
half space D = {x = (x,,...,x,)€eR"; x, > 0} satisfying

(1.4) Y i mf (18/ 0%y u(x) ) (x,) dx < oo

for any bounded open set G = D, and study the existence of limits along
curves or sets tangential to the boundary 0D, where n>2 and (9/0x)* =
(0/8x,)*'---(0/0x,)* for a point x = (x,,...,x,) and a multi-index A = (4,,...,4,)
with length [A|=A4, +--“+ 4,. If ¢ satisfies condition (1.3), then u is
continuous on D as shown in [18]. We show that u has limits along the sets

T, a) = {xeD; y(Ix — {|) < ax,},

where £€0D, a > 0 and ¢ is a positive nondecreasing function on the interval
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(0, ©0). 1In case Y(r) =r, such limits are called nontangential limits; in case
Y(r)=rP, B> 1, they are called tangential limits. First we prepare some
results concerning the existence of limits at points of dD for Riesz potentials
U,f with nonnegative measurable functions f satisfying (1.1) and

j D,(f)o(ly.)dy < © for any bounded open set G < R",
G

and then apply the same discussions to the study of boundary limits of
Beppo-Levi-Deny functions u on D satisfying condition (1.4), with the aid of
the integral representations. Nagel, Rudin and Shapiro [20] proved the
existence of (non) tangential limits of harmonic functions represented as Poisson
integrals in D. Their results will correspond to ours in the case where ap > n
or condition (1.3) holds. The size of the exceptional sets of £, at which U, f
or u fails to have a boundary limit under consideration, will be evaluated by
Hausdorff measures and Bessel type capacities.

Our arguments are applicable to the study of boundary limits of Green
potentials G,f defined by

J {Ix —yF "= |x—y* "} f(y)dy incase a<n,
Gaf(x)": P
flog(lf—Y|/|x—y|)f(Y)dy in case « =n,
D

where x = (xq,...,%,-1, — X,) for x =(x;,...,%,-1, X,) and f is a nonnegative
measurable function on D satisfying

J D,(f(Moly,)dy < © for any bounded open set D’ < D.
.

We try to give generalizations of results in Aikawa [1], Mizuta [14], Rippon
[23] and Wu [27].

In the last section, we investigate continuity properties for logarithmic
potentials Lf in R", which is defined by

Lf(x) = jlog fay;

[x — yl

here it is natural to assume
flog(Z + yDIfWdy < oo.

We note that if fe L?(R") with p > 1, then Lf is continuous on R". Thus we
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deal mainly with functions f satisfying

J‘Pl(lf(y)l)w(lyl)dy < o,

and give extensions of the results in [15].
The author is grateful to Professor Fumi-Yuki Maeda for a number of
useful suggestions and improvements.

2. Preliminary lemmas
First we give several properties which follow from conditions (¢ 1) and
(92):
(p3) ¢ satisfies the (4,) condition, that is, there exists A; > 1 such that
o(2r) < A3 0(r) whenever r > 0.
(p4) For any y > 0, there exists A(y) > 1 such that
A o) < o) < A)o(r) whenever r > 0.
(p5) If y> 0, then
sTe(s™) <A, p(t”!)  whenever 0<s<t< A7,

Throughout this paper, let M, M,, M,,..., denote various constants
independent of the variables in question.

For xeR"— {0}, the Riesz potential U,f of f satisfying (1.1) will be
written as U, + U, + U;, where

r

U, (x) = lx = yI*=" f(y) dy,
J R"—-B(0,2|x|)
Uy(x) = Ix = yI*~"f(y) dy,
J B(0,2|x|) — B(x,|x|/2)
r
Us(x) = [x — y[*="f(y)dy.
J B(x,|x|/2)

Then we can easily find a positive constant M such that

@1 Uilx) < M lyl*="f(y)dy
R"-B(0,2|x|)

and
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22 Ux(x) < Mlxl’“"J f)dy.

B(0,2]x])

LeMMA 2.1. Let p>1,0<d < B <n and f be a nonnegative measurable
Sfunction on R". If 0<2r<a<, then

J Iyl""‘f(y)dysj lylF~"f(y)dy + Ma?~?
R"—B(0.r)

R"—B(0,a)

1/p

a 1-1/p
+M (f [t"“"’n(t)]”“""t‘ldt> ( J D,(f (y))w(lyl)dy> ,
r . B(0,a)

where n(t) = o(t " Y)w(t) and M is a positive constant independent of x and a.

Proor. Let 0 < a < 1 and assume that f = 0 outside B(0, a). We write

J Iyl f(y)dy =f IyIP="f(y)dy
R"—-B(0,r)

{yeR"—B(0,r); f(y)> |y| ~ %}

+J IyP="f(y)dy
{yeR"—B(0,r);0< f(y)<|y| =4}
= Up1(x) + Uy, (x).

From Holder’s inequality, we obtain

1/p
U (x) < <J f(y)"<p(f(y))w(|y|)dy)
{yeR"—B(0,r); f(y)>|y| = %)

1/p’
x (J Iyl”‘"[(/’(f(y))w(lyl)]"’""dy> ,
{yeR" = B(0,r); f(»)> |y| — ¢}

where 1/p + 1/p’ = 1. By condition (¢4), we see that

o(f)) = o(Iy™%) = M 0(y™)

whenever f(y) > |y|~%. Hence

a 1/p’ 1/p
Upi(x) < Mz(j [t""""rl(t)]_”"”t"‘dt> (j ¢’,(f(y))w(|y|)dy> .
r R"—-B(0,r)
On the other hand,

UlZ(X)SM&)J Iy~ "dy < MyaP 2.
B(0,a)~ B(O,r)

Thus Lemma 2.1 is proved.

For 5(r) = o(r Y a(r), set
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1 1/p’
<J [t""”n(t)]"”“’t“dt> , incase p>1,
r

SUp,<i<1 ta_"["’(t)]_l, incase p=1,

Ky(r) =

where 0 < r < 1/2; further, set k,(r) = x,(1/2) when r > 1/2.

COROLLARY 2.1. Let 0 < < o and f be a nonnegative measurable function
on R". If 0<2|x|<a<, then

Ul(x)SJ Ix =y~ "f(y)dy + Ma*~?

R"— B(0,a)
1/p
+MK1(|x|)<J ¢,,(f(y))w(|yl)dy> ,
B(0,a)

where M is a positive constant independent of x and a.

The case p > 1 follows readily from (2.1) and Lemma 2.1 with f = « and
r =|x|, and the case p=1 is trivial.

By using (2.2) and the case f=n in Lemma 2.1, we can establish the
following result.

COROLLARY 2.2. If 0 < d < a, then there exists a positive constant M such
that

1/p
U, (x) < Mx,(|x|) (J ¢p(f(y))w(ly|)dy> + M|x|*~?

B(0,2|x]|)

for any xeB(0, 1/2) — {0}, where

r 1/p’
r"""([ [n(t)]‘”'“’t"“dt) , incase p>1,
’Cz(r)={ %—n ° -1 .
r Sup0<15r[n(t)] ) in case p = 1
For a set E < R" and an open set G = R", we define

Ca.(Dp(E; G) = infgj ¢p(g(y))dya
G

where the infinum is taken over all nonnegative measurable functions g on R"
such that g vanishes outside G and U,g(x) > 1 for every xeE.

The following results can be proved easily by the definition of C, o, (cf.
[11, Lemmas 1 and 2]).

LEMMA 2.2. Let G and G' be bounded open sets in R".
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(1) C,0,(+; G) is countably subadditive.
(ii) If F is a compact subset of GNG', then there exists M > 0 such that
Ce0,(E; G) S MC, ,(E; G)  for any EcF.

(i) If C,o,(E; G)=0, then C, ,(ENG’; G')=0.
(@v) If C,o,(E;G)=0, EcG, then, for any positive nonincreasing
Sfunction @ on (0, ©), there exists a nonnegative measurable function

f on G such that U,f £ o, U,f = o0 on E andj D, (f(Mw(p(y)dy
G

< o0, where p(y) denotes the distance of y from the boundary 0G.

For the reader’s convenience, we give a proof for (iv). Let {a;} be a
sequence of positive numbers. If we define G; = {xeG; p(x) >~} for each
positive integer j, then C, o (ENG;; G) =0 by (ii)). Hence, for each j, we
can find a nonnegative measurable function f; on G; such that U,f;>1 on

EnG; and J ®,(f;(y))dy < a;. Consider the function f=sup;2’f;. Then
Gj
U, f(x) > 2'U, fi(x) = 2/ for xe ENG;, so that

U,f(x) =0 on E.
On the other hand, M = sup,, ,®P,(2r)/P,(r) < o and hence

jd’p(f M)e(p()dy <3 jj ?,(2 fi()w(p(y))dy
Gj

<Y Mo j'l)j @,(fi(»)dy

GJ
<Y, Mao(j™a;
Now choose {a;} so that the last sum is convergent.
LemMA 2.3. Let f be a nonnegative fuhction satisfying condition (1.2), and
x be a positive function on (0, 1] for which there is a positive constant M such
that y(r) < My(s) whenever 0 <r <s <2r <1. Then there exists a set E c R"
such that

(i) 1, pepn—g [2(1X1)] 7 Us(x) = O;
() T, [K*1 0@ )C,o,(E); B) < o,

where
E; ={xeE;277 <|x| <27/*1},

B; ={xeR"; 277 <|x| <27/},
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N 2,611
K* = SUPg<r,s<1/2 ¢p(s/x(2r)) '

Proor. For a sequence {a;} of positive numbers, we set
Ej={xeR"; 27 <|x| <277*1, Us(x) 2 a7 "x(IxD)},  j=12..,
and

E=UR,E;

Since U;(x) < J |x — y|*""f(y)dy if xe E;, we have by the definition of C, 4,
B;j

Ce0,(Ej; B) < f @,(Mya;[x27)17" f(y))dy
Bj

< K*’f ®,(Ma;[x()]' £ () dy.
Bj

By condition (1.2) we can find a sequence {b;} of positive numbers such that

}'Llf b,-¢p(f(y))w(lyyl)dy < .

Bj

By (¢3) there exists g, > 1 such that ¢(st)/¢(t) < M,s® whenever s > 1 and

t>0. Now let a?**=b, Then, since Zﬂxf D,(a;f(y)w(lyl)dy < oo, it
follows that B

i1 [K*1 7 0(279)C, o, (E;; B) < c.
Since (i) follows readily, Lemma 2.3 is established.

REMARK 2.1. If @, =r", w(r)=r and yx(r)=r"""*2*P/?  then (ii)
implies

Yo 27H=enC, (E;; B) < o,

where C, , = C, o, is the usual (o, p)-capacity.

3. Fine limits
Our first aim is to establish the following result.

THEOREM 3.1. If f is a nonnegative measurable function on R" satisfying
conditions (1.1) and (1.2), then there exists a set E = R" such that
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limx—'o,xeR"—E Uaf(x) = Uaf(o)
and
210Q27)C, 0, (E;; B)) < o,
where E; and B; are as in Lemma 2.3.

Proor. If U,f(0) = oo, then, by the lower semicontinuity of U, f, we see
that lim,_,U, f(x) = oo = U, f(0).
If U,f(0) < oo, then Lebesgue’s dominated convergence theorem implies

lim, .o [U,(x) + U,(x)] = U, f(0),

since |x — y|*™" < 3" %|y|*™" for yeR" — B(x, |x|/2). Thus Lemma 2.3 with
x =1 yields the required assertion.

In case U,f(0) = oo, we discuss the order of infinity at the origin.

THEOREM 3.2.  Let [ be a nonnegative measurable function on R" satisfying
conditions (1.1) and (1.2). Set k =k, +x,. If lim,_ok(r)= o0, then there
exists a set E = R" such that

lim, o vepn—g [®(Ix[)]17 ' U, f(x) = 0
and
;.';1 K"'a)(2_j)C,,¢,p(Ej; B) < w0,
where E; and B; are as before, and
K = supg <, s<1)2 [Pp(s/k(r))]1/[P,(s/k(2r))].
Proor. By Corollary 2.1, we have

lim sup, o [x(|x)]7" Uy (x) < M(J

B(0,a)

1/p
¢,,(f(y))w(lyl)dy>
for any a > 0, which implies that the left hand side is equal to zero. Further,
from Corollary 2.2 it follows that
lim,_q [x(Ix])]7' U,(x) = 0.

Thus, applying Lemma 2.3 with y = k, we can complete the proof of Theorem
3.2.

ExaMpLE 3.1. In case 5(r) = r’, where ap — n < B < (p — 1)n, we see that

1 if ap—n<f<n(p-1)

~ p(n=ap+py
KO~ px{{log(l/r)}“"" if f=op—n or f=n(p—1
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as r— 0. In addition, if w(r) =r® (and hence ¢(r) = 1), then E in Theorem
3.2 satisfies

212707, L(E;; By < oo

Therefore, by use of the inversion: x — x/|x|?>, Theorem 3.2 gives a
generalization of Theorem 4.5 in [5].

If p>1 and

G.1) Jl [~ o(t=1)] /Pt~ dt < oo,

0

then we consider the function

K (r) = k() + [o()]~ P o*(),
where

r 1/p
<p*(r)=( f [t“‘%(fl)]‘?’/pf‘dt) :
0

Here note that

(3-2) @*(r) = M[r" (=] '"
and

(3.3) K(r) = M[r"~*Pn(r)]~ "
for r > 0.

THEOREM 3.3. Let p > 1 and assume that (3.1) holds. If f is as in Theorem
3.2 and lim,_, K(r) = o0, then

lim,_o [K(|x[)]7 U, f(x) = 0.
If K(r) is bounded, then U, f(0) is finite and U, f(x) tends to U, f(0) as x — 0.

CoROLLARY 3.1 (cf. Theorem 1 in [18]). Let p=n/a > 1 and ¢*(1) < co.
If f is a nonnegative measurable function on R" satisfying (1.1) and

f(bp( f)dy < oo, then U,f is continuous on R" in the usual sense.
ProOF OF THEOREM 3.3. Let 0 <d <a. Since
Us(x) = f yI*7"f(x + y)dy,
B(0,]xl/2)

we have by Lemma 2.1
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1x]/2 1/p'
Us(x) < M, <J [r" P F/rr-t dr>

0

1/
x (f ®,(f(x + y))dy) " b My
B(0,|x]/2)

< szP*(le)[G)(lXI)]'””(J

1/p
¢p(f(y))w(|y|)dy> + M, |x[*°.
B(x,]x|/2)

If K(r)> o0 as r — 0, then it follows that

lim, o [K(Ix])]7!Us(x) = 0.
As in the proof of Theorem 3.2, we have

lim, o [K(|x))]~"{U,(x) + U,(x)} =0,

and hence

lim, .o [K(Ix|)]17* U, f(x) = 0.
If K(r) is bounded, then U;(x) >0 as x —» 0. Also, Corollary 2.1 implies

lim sup, o, U, (x) < oo,

and Corollary 2.2 implies that U,(x) tends to zero as x — 0. It follows that
U,f(0) < oo and

lim,_,o U, f(x) = lim,_.o {U; (x) + U,(x)} = U,f(0)
as in the proof of Theorem 3.1. Thus we complete the proof of Theorem 3.3.

Here we discuss the best-possibility of Theorem 3.3 as to the order of
infinity.

PropoOSITION 3.1. Let ap = n, and suppose ¢*(1) < oo,
lim,_o[w(r)] Pe*(r) =00 and lim,_.or™? [w(r)]” Pe*(r) = 0.

Then, for any positive nondecreasing function on a(r) on (0, c0) such that
lim,_,a(r) = oo, there exists a nonnegative measurable function f on R"
satisfying (1.1) and (1.2) such that

lim sup,. .o a(|x[) [w(IxD)]"? [o*(Ix)] ™" U, f (x) = o0.

Proor. Let {j;} be a sequence of positive integers such that j; + 2 < ji,,
and Y a;*/? < o0, where a;=a(r) and r; =277, Setting x? =(r;, 0,...,0)e R",
we define

10) = a7 P Lp*(r) 1P P Lar(r) ] 71X — y "2 [o(Ix? — y| 1177
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if yeB(x®, r,/2) fori=1,2,...,and f(y) =0 on R" — U2, B(x?”, r,/2). Then
we have

~[f(y) dy =3,a; ' ?[e*(r)] " Pw(r)]™"/"

xf [0 = yI ™[ (1x? = y| 717" dy
B(x(),r;i/2)

<M, Y a7 P Lo*(r)] 7P P [o(r) ] VPP o* (r)”
=M, Zi a7 VP {w(ri)}-l/pw*(ri)] < o,

so that f satisfies (1.1) by our assumption. Note that {a; !/} and
{rM"? w(r)~'"?@*(r,)} are bounded. Hence, using (3.2), we obtain

SO) < My[o*(r)1 77770/ o*(r)1~ XD — yI " *[o(1x® — y[~1)] 77/
< My — y| 7 s
on B(x, r;,/2). Hence, in view of (¢3) and (¢p4),
e(f) < Myo(Ix?9 —yI™h)

there. Consequently, by condition (w1) we establish

f¢,,(f(y))w(|y|)dy SMsyiar [o*r)]7"

X J |x® = y|7*[@(|x® — y|" )] 7"'Pdy < Mg) a7 ! < oo,
B(x(),r;)

which implies that f satisfies (1.2). Since

U f(x?D) > a7 VP[o*(r)] " /P[w(r)]~ /7

XJ Ix? — yI7"[o(IxD — y|=H)]77/*dy
B(x(),r;i/2)
2 M7ai_“p[w(ri)]_”p(l’*(ri),
we find
a(x)) [ (XD /7 [o* (101 Unf (<) 2 M [a(lxO])]H — oo

as i —» oo. Thus f has all the required properties.

REMARK 3.1. In Proposition 3.1, if ¢*(1) = oo, then we can find a
nonnegative measurable function f on R", which satisfies (1.1) and (1.2), and
a set 4, which is of the form (J);[B(0, 2r;) — B(0, )] with some sequence {r;}
of positive numbers tending to zero, such that
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lim, ¢ xeqa(|x]) [w(I1x)]*PL@*(1x])] ™" U, f (x) = oo.

4. Radial limits

Before discussing the existence of radial limits of Riesz potentials, we
prepare two lemmas concerning the capacity C, o,

A mapping T: G— G’ is said to be bi-Lipschitzian if there exists 4 > 1
such that

A Y x —y| <|Tx—Ty| < Alx — y| for all x, yeG.

The following result can be proved easily by the definition of C, o (cf.
[11, Lemma 3]).

LEMMA 4.1.  Let T be a bi-Lipschitzian mapping from G onto TG. Then
Ce0,(TE; TG)<MC, o,(E; G)  for any Ec G,

where M is a positive constant which may depend on A (the Lipschitz constant

of T).

For a set E < R", we denote by E the set of all £€dB(0, 1) such that
réeE for some r >0. By using Lemma 4.1 and applying the methods in the
proof of Lemma 5 in [11], we can prove the following lemma.

LEMMA 4.2. There exists a positive constant M such that
Ca0,(E; B(0, 4) < MC, o (E; B(0, 4))
whenever E < B(0, 2) — B(0, 1).
We consider the quantity

~ 27%
K=2‘°’"sup,>ou (27 <1).

o(1)
Lemma 4.3. If 3% 2VKIC, o, (E;; B) < o0, then
Cs0,(E*; B(O, 2))=0,
where E* = ﬂ,‘f:l(Uj":kEj).
Proor. Let f be a nonnegative measurable function on R”" such that

f=0 outside B; and U,f(x)>1 on E;. If xeE;, then

1< J lx =y~ "f(y)dy = 2_“’! 127x — z|*~" (27 z) dz.
Bj Bo



92 Yoshihiro Mizuta

Hence, by the definition of capacity C, 5,, we obtain

@,27 4 f(27iz))dz = 27 f ®,27* f(y))dy

B;

C..0,(2E;j; Bo) < f

Bo

< 2mKJ j @,(f()dy,
5.

J

which implies
Ceo0,(2E;; Bo) < 2"KIC, o (E;; B).
Therefore it follows from Lemma 4.2 that
Ca,q,p(Ej; B(0,4)) < M,C, ,(2E;; B(0, 4)) < M22""szC,,.¢p(Ej; B)

with positive constants M, and M, independent of j. Thus, C, o,(E*; B(0, 4))
= 0, which together with Lemma 2.2 (iii) gives the required resuit.

Now we show radial limit theorems as generalizations of the results in
[11].

By Lemma 4.3 and Théorem 3.1, we have
THEOREM 4.1. Let f be as in Theorem 3.1, and suppose
sup,; [2"K']/w(279) < co.
Then there exists a set E < 0B(0, 1) such that Cuo, (E; B(0,2)) =0 and
lim,_o U, f(ré) = U,f(0)  for every E€dB(0, 1) — E.
By Lemma 4.3 and Theorem 3.2, we can prove
THEOREM 4.2. Let f, k and K be as in Theorem 3.2, and suppose
MK
sup; m < 0.
If lim,_, ok (r) = 00, then there exists a set E = 0B(0, 1) such that Ceo, (E; B(0, 2))
=0 and
lim, Lo [k(")] U, f(ré) =0  for every E€dB(0, 1) — E.

Theorems 4.1 and 4.2 give generalizations of Theorems 1 and 2 in [11].

5. g-th means of potentials

For ¢ > 0 and a nonnegative Borel function u on R", define



Continuity properties of potentials 93

1 1/q
S,ur)= —— u(x)?dsS(x)) ,
! "t 2B(0,r)

where ¢, denotes the area of the unit sphere 0B(0, 1).
Set R,(x, y)=|x—yPr ™", O<a<n.

LemMMA S5.1. Let B=6q(n—«a) for 6 >0. Then

Sq(Ra( ) Y)a, r) < MU(U’I, r)]llq,

where
t=* in case t > 2r,
ro# in case r/l2<t<2r and n—1->0,
It,)=3 r ®(t—r|/ry "%  incaser/2<t<2r and n—1-4<0,
r~*log(2r/lt —rl) in case r/2<t<2r and n—1—f=0,
rf in case t <r/2,

and M is a positive constant independent of r,t and y.

Proor. Let t =|y|. First we note

1

Sq(Ra('sy)b, r)SMl(J

0

l/q
" 2{(t —r)? + tr02}‘/’/2d()> .

If t>2r, then Sy(R,(+, yory<Mythe If t< r/2, then Sy(Ry(+, y)?, r)
< M,rPla, If r/2 <t < 2r, then

SoR (-, ¥y, 1) < M4<r"’fl 0" 2{[(t —n)/r]* + 02}_’”2d9)”q

0

Hence we obtain the required inequalities.

For 0 < f < n, we define an outer capacity by setting
C4(E) = C{" (E) = inf pu(R"), EcR",

where the infimum is taken over all nonnegative measures x4 on R" such that
flx——yl”'"du(y)z 1 for every xeE.

For simplicity, let R, denote the open interval (0, c0).

LEMMA 5.2. Let 0 < B <1 and u be a nonnegative measure on R, such
that u(R.) < co. Then there exists a set E = R, such that
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limx—*O.xeR+ —Exﬁj‘ Ix - yl_ﬁd#(y) =0

R+
and

where C,_5=C{"), and E;= {xeE; 27/ <x <277*1}.

Proor. For x > 0, we write Jlx — yl " #du(y) = u,(x) + u,(x), where

uy(x) = j lx — y|#du(y)
(yilx—yl <x/2}

and

uz(X)=f Ix — yI7* du(y).
{yeR + ;|x—y| 2 x/2}
If |x—y|>x/2, then xf|x —y|~# <2¥. Hence we can apply Lebesgue’s
dominated convergence theorem to obtain
lim, o xPu,(x) = 0.

For each positive integer j, we define

Ej={x;279 <x<279*1, 27y, (x) > aj '},
where {a;} is a sequence of positive integers so chosen that

lim;,  a;= o0

and

Y.;a#(D) < with D; = (27771, 277%2),
Then it follows from the dual definition of C,_, that

C,_4(E) < a;27Pu(D)).
If we set E = (J;E;, then we see easily that E has the required properties.
Let I;=[27/,277*!). Then we have

J [x —y| ™ Pdx < 2J2-1/2|x|—ﬂdx =21 =B Qi Yy t= A,,ziw—n‘
I; 0

If Jlx —yI7%du(y) = 1 on I;, then
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j dxsj (ﬁx—yl“f’du(y))dx
I; I;

= f(f |x — yl"’dx)du(y) < A2 Du(R,),
1;
which implies 2#C, _4(I}) > A;' > 0. Thus I;— E; #@ for large j, so that
Lemma 5.2 gives the following result.
COROLLARY 5.1. If u and B are as in Lemma 5.2, then
lim infx_.ox”j |x — y|"#du(y) = 0.
R+

Now we study the behavior at 0 of spherical means of Riesz potentials.

THEOREM S5.1. Let ap>1, q>0 and (n—ap)/pn—1)<1/q. If
lim,_ o x(r) = oo, and if f is a nonnegative measurable function on R" satisfying
conditions (1.1) and (1.2), then

lim, o [k(r)]17 'S, (U, f, ) = 0.

REMARK 5.1. In case p = 1, Theorem 5.1 implies a result by Gardiner [4].

ProorF orF THEOREM 5.1. For xeR", set E(x)= B(x, |x|/2). First we
consider the case g > p > 1. Take J such that
—ap n—1

<0< .
p(n — o) q(n — o)

0<d<1l and

Since (¢ — n)(1 — 6) + n/p’ > 0, by the computations as in the proof of Lemma
2.1 and using Holder’s inequality, we have

1/p’
Us(x) < (j [R,(x, y)](l—b)p'[(p“x _ yl_‘)]—”'“’dy>
E(x)

" 1/p
X ( [R,(x, y)]"”¢,,(f(y))dy> + f |x — yI*~""*dy
Y, E(x)

E(x)
< My |x|@mma =% [p(|x]|76)] P

r 1/p
X < [R,(x, y)]""d’p(f(y))dY> + M, |x|*75

E(x)

where 0 < ¢ <a. Using Minkowski’s inequality and (¢4), we obtain

S,(Us, 1P < M, [re=mU=0%mr Lo~ Har(r)] ™!
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X J (Sq(Ra( o ,V)", r))P ¢p(f(y))a)(|y|)dy + Mzr(a—e)p‘
B(0,2r)
Here we note
(5-1) K1 () 2 (fz [t”‘“"n(t)]""“’t“dt)w > My [~ *Py(r)] 7.

Since dq < (n — 1)/(n — &), by Lemma 5.1, we find
Sq(Ra( i) y)é, r) < M4r¢5(a—n)
for ye B(0, 2r), so that
(52 S4(Us, 1" < Ms[x(r))” f @,(f()e(lyl)dy + Myre=or.
B(0,2r)

This is true in case p =1, too. Since S,(u, r) is nondecreasing with respect
to g, (5.2) also holds for g smaller than p. Thus the required result holds
for U, instead of U,f. The same fact is also valid for U; and U,, in view
of Corollaries 2.1 and 2.2, and hence Theorem 5.1 is established.

THEOREM 5.2. Let q>0and 1/p—a/(n— 1)< 1/q. If f is a nonnegative
measurable function on R" as in Theorem 5.1, then

lim inf, o x(r) "' S,(U,f, r) = 0.
Proor. First we consider the case g > p > 1. Take J such that

- - -1
n—1 <d<1 and n-op <0< n + 1 .
qn — o) p(n — ) qin—o) pn—a

Then, as in the previous proof, we have

Sq(U3, r)" < Ml[r(a“")“"»*’"/P']P[(p(r—l)w(r)]—l
X J (S,(Ra(- > ¥, NP ®,(f () (ly)dy + M re=o7.
B(0,2r)

Set f=—pn—1—-56q(n—a)]/q. Then 0<f<1. By Lemma 5.1, we
obtain

— -8 \
Sq(Us,r)”SMz[K(r)]”J (”y'r ") &, (f Iy dy + M,re=or.

B(0,2r)
If p=1,g>1and n—1)/n—a)<gqg<(n—1)/(n—a—1), then the above
inequality also holds with f=n—a —(n—1)/q. Now, applying Corollary
5.1, we see that the required result holds for U; instead of U, f, if ¢ > p. Thus,
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using the monotonicity of S,(u, r) with respect to g, Corollaries 2.1 and 2.2,
we end the proof.

6. Global fine limits

Let D denote the half space {x =(x, x,)eR"™! x R; x,>0}. In this
section we study the global fine limit at the boundary D of the Riesz potential

U,f, where f is a nonnegative measurable function on R" satisfying condition
(1.1) and - :

(6.1) J D,(fy)o(ly.l)dy < for any bounded open set G = R";
G

recall that w is a positive and monotone function on the interval (0, o)
satisfying the (4,) condition (see (w1)). As an application, we shall study the
fine boundary limits of Beppo-Levi-Deny functions u on D satisfying (1.4), and
give a generalization of [17, Theorem 1] (see Section 10).

In what follows, let p > 1.

Our aim in this section is to establish

THEOREM 6.1. Assume that
(w2) r?~Urw(r)~1P  is nondecreasing on (0, ) for some B < 1.
Let f be a nonnegative measurable function on R" satisfying (1.1) and (6.1). If .
lim,_x,(r) = oo,
then there exists a set E — D such that
lim,, o xep - [K1(x)]1 7 U f(x) = 0
for any bounded open set D' = D and
21K 0(279)C, 4,(E;nB(0, N); D;nB(0, 2N)) < o0

for any N >0, where K = K* in Lemma 2.3 with y =k, E; = {x = (X, x,)€
E; 277 < x, < 2_j+1} and Dj = {x =(x, x,); 2-it1 < x, < 2—j+2}‘

REMARK 6.1. In case w(r) = r#, (02) holds if and only if f<p—1. In
fact, if p<p—1, then take B,e[(1+p)/p, 1) and note that rf~/Py(r)~1/7 is
nondecreasing on (0, ).

Before giving a proof of Theorem 6.1, we prepare the following result
similar to Lemma 2.1. '

LemMmA 6.1. Let y,,7,>0, 6 >0 and assume that r*~'Y?w(r)"/? is
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nondecreasing on (0, ©) for some f<1+7y,. Let f be a nonnegative
measurable function on R". If x = (x', x,)eD and 0 <s < x,/2 <r/4, then

f [x —yI*™"x — y|" "y f(y)dy
DnB(x,r) — B(x,s)

< MF(r) {( jr [t~ Pt =Pt~ o (r)] 7P /PE ! dt)llp,

Xn

+ x, T [w(x,.)]’”"<fxn ("~ (t™ )] 7/Pe™! d‘>1/p}

+M |x — y[F~" 70X — y| "ty dy,

Dn B(x,r) — B(x,s)

where x = (x', — x,) and F(r) = <f

DnB(x,r)

. 1/p
D, (fMw(y,) dy) .

PrOOF. As in the proof of Lemma 2.1, we have by Holder’s inequality

J Ix —y|I*™"x = y|" "y f(y)dy
Dn B(x,r)— B(x,s)

SF(’)J+J lx — yI*="7%1% — y| " yizay,

Dn B(x,r) - B(x,s)

where
_ ) 1/p’
J= <J [x = yl7"1x = yI 7" {o(Ix — y| " )o(y,)} ~*?yi?]? d)’) .
Dn B(x,r)— B(x,s)
In order to evaluate J, we set
, 1/p’
Jj= <j [x —yPF"x =y {o(x — y| )o@} ~Pyi2]? dy) ,
E;

where
E, ={yeB(x,r) = B(x, 5); y» > X,/2},
E, = {yeDnB(x, r) — B(x, s); y, < X,/2}.
Since y, < x, + |x — y|, we see from condition (w2) that
P[0T < (g + |x = yIP T HP[o(x, + [x — yD]THP
for yeD. Set t=|x—y| and |x, — y,| =t cos §, and note

3V, = 1% — Yul + x, = (t + x,)cos 0 for any yeE,.
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Since p'(y, — B+ 1/p) > — 1, we see that

n/2
f (cos G 2~E*+1IP g9 < oo,
0

If y, — B+ 1/p <0, then, applying polar coordinates about x, we have

(r

Ji < M1< [ "ot Yar(x, + 0} 1P(x, + )18~}

Js

X (xn + t)P'(YZ‘B"‘ l/P)t”'ldt)l/P'

(r 1/p’
sM2< [t“"'("‘“+”{<p(t“)w(t)}““’]”’t‘1d:)

Xn

X

+ sz;““[w(xn)]"“'( f

s

n . 1/p’
[t"““"<p(t‘1)]"’“’t‘1dt> .

Similarly, if y, — 8+ 1/p >0, then, noting y, < x, + |x — y|, we derive the
same estimate of J, as above. Next, since y,<|z—y| if yeE,, where

z = (x', 0), by the condition on w again, we have
[o)]™ VP <y, PPVP Iz — yP =Y P[w(z — y|)] 717
for ye E,. Consequently, by using polar coordinates about z, we obtain

Jo < M3x:_"_y’+ﬂ_”"{<P(x,,—1)w(x,,)}“1/l’<J

DnB(z,xn/2)

. 1/p’
¢ -p+
y'll’( /p—8 ”)dy

+ M3<Jr [tu—"/P‘Yl+Y2{(p(t—1)w(t)}—IIP]P'[—ldt>1/p,

Xn/2
< Myx VP [p(x, Ho(x,)] 7P

N M4<J‘r [t.,;—n/p—yl+yz{(p(':—l)w(t)}—1/,,]’,,t_1 dt)l/p,

Xn/2

< M5<J" [ta_njp_71+'y2{(p(t—l)w(t)}—l/p]p’t—ldt>1/p,;

Xn

the last inequality follows from the (4,) conditions on ¢ and o (see
(5.1)). Now our lemma is proved.

REMARK 6.2. If o« — 3 —y, +y, >0, then

,[ X — "0 — yI Ty dy < MytToT T,
Dn B(x,r)— B(x,s)

REMARK 6.3. The above proof shows that if w is as in Lemma 6.1, then
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. 1/p’
(J [lx — yI**{o(x — y|" Yoy}~ 1y."T° dy)
B(x,r) — B(x,s)
r . 1/p’
< M(J [t“_"/”+72{(p(t_1)w(t)}'””]p’t"dt)

Xn 1/p’
+szz[co(x,,)}'””<f [t"'“"qo(t“)]"’""t“dt) .

s

In view of Remark 6.3, we obtain

LEMMA 6.2. Let 0 < < a and assume that w satisfies (w2). Let f be a
nonnegative measurable function on R". If x = (x', x,)eD and 0 <s <27 'x, <
471y, then

J [x —ylI*""f(y)dy
B(x,r)— B(x,s)

1/p r 1/p
sM(f ¢,,(f(y))w(lynl)dy) {(J [t"'“"qJ(t")w(t)]“’""t“dt)
B(x,r)

Xn 1/p’
+ [w(x,,)]’”"(f [t"'“”(p(t'l)]""“’t"dt> }+ Mr—4,

Proor oF THEOREM 6.1. For x = (x', x,)e D, we write U,f(x) = u,(x) +
u,(x), where

u;(x) = J [x = yI*7" f(y)dy,
R"—B(x,x,/2)

Uy(x) = J Ix — yI*"" f(y)dy.
B(x,xn/2)

For a > 1 and a bounded open set D' in D, let D'(a) = {x = (x', x,)eD’; 0 <
x, < a}. For xeD’'(a), write :

ul(x)=J Ix—yl"“"f(y)dy+f [x =yl "f(y)dy
R" - B(x,2a) B B(x,2a) = B(x,xn/2)

=uy;(X) + up,(x).

By condition (1.1), we see that u,, is bounded on D’(a), so that
lim, .o cep [%1 ()17 'uy 1 (x) = 0.

For u,,, we obtain by Lemma 6.2,
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u,(x) < M, Kl(xn)<f

D’

1/p
’d’p(f(y))w(ly,.l)dy) +M,,

for any xeD’, where D" =), B(x, 2a). Hence it follows that [x,(x,)] ™ u,,(x)
tends to zero as x,—0, xeD’. To complete the proof, take a sequence {a;}
of positive numbers such that

;'LIJ D,(f(MNwy,)dy < o,
Bj
where B; = {x = (x', x,)e DnB(0, 2j); 0 < x, < a;}. Further take a sequence
{b;.,} of positive numbers such that
lim[_.w bj,l = o0

and

;_D:l <Z(l;2‘l$a1/2}J ¢p(b].lf(y))w(yn)dy> < @,
A5,
where 4;, = B;nD, when 27 < a;/2; cf. the proof of Lemma 2.3. As in the
proof of Lemma 2.3, we consider the sets
E;,={xeDnB(0,j); 27 < x, <27*, uy(x) > b} k,(x,)}
for j and ¢ such that 27¢<a;/2; we set E;,=Q for other (j,¢). If
x€E;,nB(0, a), then, since B(x, x,/2) < 4;,nB(0, 2a), we find

Cs0,(E;,NB(0, a); D,nB(0, 2a)) < Mlj P, (bj k(277 f(y)dy

4j,¢
< M4K’[w(2")]‘1j P,(bj.f (V) 0(y,) dy.
4j,¢

Define E=J;,E;,. We see that E,NB(0, a) = Uy,2-<a2) Ej,e N B(O, @), so
that E has all the required properties. Hence the proof of Theorem 6.1 is
completed.

ReEMARK 6.4. If k, is bounded, then we can take K =1 in Theorem
6.1. Hence, in view of the proof of Theorem 6.1, U, f(x) tends to U, f(¢) as
x—¢ xeD — E, for any £edD, where

;‘;1 w(2‘f)Ca_a,P(EjnB(0, N); D;nB(0, 2N)) < o0
for any N > 0.
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7. T,limits

Let ¢ be a positive nondecreasing continuous function on the interval
(0, o0) satisfying the (4,) condition and the following:

W1 r () is nondecreasing on the interval (0, c0).
For a >0 and (€dD, we set
T, a)={x= (X, x)eR"™" x R'; Y(lx — &]) < ax,}.
We say that a function u has a T,-limit / at {€dD if
M,y ceryat(X) = ¢

for any a > 0;if y(r) =r", then we say “T,-limit” instead of T,-limit. We
here discuss the existence of T,-limits of Riesz potentials U, f for functions f
satisfying condition (6.1), when ¢ satisfies a condition similar to (1.3).

We consider the quantity

Co0,.0(E; G) = infj ?,(g(a(ly.l)dy
G

for a set E and an open set G, where the infimum is taken over all nonnegative

measurable functions g on G such that j [x — y|* "g(y)dy > 1 for every
xeE. For simplicity, we write ¢
Ca,OP,w(E) = 0

if C,.0,,o(ENG; G) =0 for any bounded open set G = R". In case w(r) =,
we write C, 0,4 for C, 4, ,; With this notation, remark C, o,,0 = Cy 0,

Let h be a positive nondecreasing function on (0, co) satisfying the (4,)
condition. We denote by H, the Hausdorff measure with the measure
function h. Set

E;,= {éeaD; Jlé -y "fy)dy = 00}

and

Frp= {é €0D; lim sup, ., [h(r)]~* D,(fM(y.l)dy > 0}

B(S.r)

for a nonnegative measurable function f on R".

By the definition of C, o, ., We have
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Lemma 7.1. If f is a nonnegative measurable function on R" satisfying
(1.1) and (6.1), then

Ca.0p,w(Ef) =0.
Applying a covering lemma ([25, Lemma 1.6, Chapter 1]), we prove
LEMMA 7.2. Let h be a positive nondecreasing function on (0, o) satisfying

the (4,) condition. Let g be a nonnegative function in L'(R") and set

F= {ée@D; lim sup, o [A(r)] ! g(y)dy > 0}.

B(%r)
Then H,(F)=0.

Proor. For ¢ > 0, consider the set

F(e) = {é €0D; lim sup, .o [A()]™} g(y)dy > e}-

B(,r)

Let 6 > 0. By definition, for each &€ F(g), there exists a number r(£) such
that 0 < r(¢) < 6 and

f g(y)dy = eh(r(¢)).
BEr@)

By using the covering lemma mentioned above, we can find a disjoint family
{B(;, r)} of balls such that &;eF(e), r;=r(&) and {B(, 5r)} covers
F(e). Then note

Zjh(Srj) < Mlzl.h(rj)

<Mty g(y)dy
B(&j,rj)

< Mls“f g(y)dy,
D(d)

where D(0) = Useop B(&, €). Letting 6 =0, we find
Hy(F(e)) = 0,
which implies H,(F) = 0.

COROLLARY 7.1. If f is @ nonnegative measurable function on R" satisfying
(1.1) and (6.1), then

Hh(Ff,h) =0
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for any measure function h.
REMARK 7.1. If h(0) > O, then F,, is empty.

LEMMA 7.3. Let w be a monotone function on (0, o) satisfying (w1), (w2)
and .

(w3) rfo(r) is nondecreasing on (0, 00) for some B < 1.
Then, for any a > 0, there exists M > 1 such that
M_I[Kl,a(r)]—p S Ca,Op,m(B(O, r)9 B(Oa a)) S M[Kl,a(r)]—p

whenever 0 <r < a/2, where

Kpalr) = < f ’ [t"‘”n(t)r"'“’i’tﬁ)w

with n(r) = o(r” Ho(r).

Proor. If suffices to prove the required inequality for a=1, by
considering a change of variables: x — ax; in this case, k; , = k;. Consider
the function ’

IyI=2Lyl"~*Pn(lyN]~»"»  if yeB(0, 1) — B(0, r),
0 otherwise.

L) = {

If xeB(0, r), then |x — y| <2|y| for yeB(0, 1) — B(0, r), so that

flx -y " f(y)dy = 2"'"J

Y1 LIy~ *Pn(ly)1~ 77 dy
B(0,1)-B(0,r) :

> M, [x,(N]".

Hence it follows that

| o
Ca,op,w(B(O’ r), B(O, 1)) < J¢p< M1 [Kl(r)]p'

By (w2), there exists B, <1 such that w(|y|)"}? < M,|y|"#1*!/P for
y€ B(0, 1), so that

)w(!y..l)dy-

£) <M [y|~#
(01 = k27 Y1

whenever yeB(0, 1), for B =a + (n — ap)p’/p + (B; — 1/p)p’. Thus we find

4£0) ) ( £0) > -
o2V Vo, |
P<M1[K1(r)]p < [k, (1] (P(‘|y| )
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< M 1777 |yl Elyl =P n(1yD] " @Iyl ~Y).

On the other hand, by (w3), r’2w(r) is nondecreasing on (0, ) for some
B> < 1. Consequently we establish

Ca,Op,w(B(Oa r)’ B(O’ 1))

< Ms[Kl(r)]_””'f

B(0,1)—B(0,r)

Lyl n(IyDI 7 1yI" oyl Ho(ly.l) dy

< Ms[Kl(r)]‘""J. LIy =P n(yDI= " 1yI™**n(yDIyIP2 1 yal P2 dy

B(0,1)— B(O,r)

< Mgk, (17"

Conversely, take a nonnegative measurable function g on R" such that
g =0 outside B(0, 1) and U,g > 1 on B(0,r). Then we have

f dx SJ <J|x - yl“"‘g(y)dy)dx

B(0,r) B(0,r)

J(I Ix — yl"‘"dx> g(y)dy
B(0,r)

M,r f(r + [y1)* " "g(y) dy.

IA

Let e>0 and 0 <d <a. As in the proofs of Lemmas 2.1 and 6.1, Holder’s
inequality gives

J(r + 1y "g(y)dy

= f (r+ 1yl "g(y)dy + f (r+ 1yl "g(y)dy
{y:g(y)>ely| ~ %}

{y;0<g(y)<ely| =%}

1/p’
S(j [+ Iyl)“”{(p(8|y|"’)w(|y,,|)}'”"]”'dy)
B(0,1)

x ( f &, e(ly,| )dy)”p e f (¢ + Y Iyl dy.
B(0,1)
By (¢3) and (¢4),
[olet™91™17 < M) [p(t™)1™ "7 < M(e)M,[p(t™)]
for any t > 0. By condition (w2),

W(1yal) P < [y [V R ()7
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for ye B(0, r), where f; < 1. Hence,

Ly
(f Lo+ 1y~ "{o(elyl ")y} 71" dy)
B(O,r)

1/p
Iy"|p’(l/p-ﬂn) dy)

< MEM[r" ()17 < M(e)M ok, (1)

< M(E)Msra—n+ﬂl-1/p[r’(r)]_1/p<I

B(0,r)

by (5.1). Similarly,

1/p
<f [+ Iyl)“‘"{<P(8|y|“‘)w(ly,.l)}"“’]"'dy>
B(0,1)— B(0,r)

1/p
SM(e>M8J t"'“‘”[n(r)t""-1]'?’/"|yn|"'“/"-“dy) .=l

B(0,1)-B(0,r)
1 1/p’
< M(s)M11<J [t"’“"r](t)]""“’t"dt) .
Thus we derive
1/p
J(r + [y "g(y)dy < M(E)Muxl(r)<J¢p(g (y))w(ly.,l)dy) + M,

so that
1 < M(e)M,;3k,(1)[Cyp0,,.(BO, 1); B(O, 1))]'? + M.
If M ;¢ =1/2, then we establish
My, [k (0177 < Cqpo,,.(BO, 1); B(O, 1)).

By using a covering lemma (cf. [25, Lemma 1.6, Chapter 1]), we have

COROLLARY 7.2. Let w be as in Lemma 1.3. If G and G' are bounded
open sets in R" such that G' = G, then there exists M > 0, depending on the
distance between 0G' and 0G, such that

Ca,d)p,w(E; G) < M Hh(E)
for any set E < dDNG’', where h(r) = [k,(r)]"".
In view of Theorem 12.2 given later, we have

CorOLLARY 7.3. Let —1<B<p-—1, and assume C,q, 4(E)=0. If
E < 0D, then E has Hausdorff dimension at most n — ap + f; if E = D, then E
has Hausdorff dimension at most n — op.
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COROLLARY 7.4. Let w be as in Lemma 1.3. Then, for x,€0D,
Co0,,0({X0}) =0 if and only if x,(0)= oo.

For xy,€eD,
1
Cuo,({X0}) =0  if and only if f [t Pt~ 1)~ VP~ D=1 dt = o0,
' 0

THEOREM 7.1. Assume that (w2) holds and ¢*(1) < oo, that is,

0o

(7.1 jl [P Y] 7/Pr ldr < .

Let Y be as above, and set
1(r) = [k, (177,
7,(r) = infrsrsl w(t) [(p*(t)]—p,
©(r) = min {7,(r), 7(r)},
hir) =t(y(r)

for 0<r< 1. Let f be a nonnegative measurable function on R" satisfying
(1.1) and (6.1). Then there exist E,, E, = 0D such that

Co0,0(E) =0,  HyE;)=0

and U,f(x) has a finite T,-limit U,f(¢) at £€dD — (E,UE;). If in addition
7(0) > 0, then U, f(x) has a limit U, f(&) at any E€0D; in this case, E,UE, = Q.

Proor. For xeD, we write U, f(x) = u,(x) + u,(x), where

uy(x) = J [x — yI*~"f(y)dy
R"—-B(&,2|x—¢&|)

and

uz(x)=J lx — yI*~"f(y)dy.
B(&,2]x~¢l)
Since yeR" — B(£, 2|¢ — x|) implies |¢ — y| < 2|x — y|, we can apply Lebesgue’s
dominated convergence theorem to obtain
u(x) — U, f(§) as x— ¢

If {edD — E;, then U,({) < 0. By Lemma 7.1, Ci0,0(Ef)=0. On the
other hand, in view of Lemma 6.2 with r =3|x — ¢|, s=0 and f replaced by
the restriction of f to the ball B(&, 2|x — £|), we can establish
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1/p
uz(x) < Ml<[f(x,.)]'1 ‘P,,(f(y))w(lynl)dy) + M, |x = &2

B(&,2|x~-¢))

where 0<dé<a. If éedD—F/,, then, noting that [t(x,)] ' <M(a)[h(x—¢&)] ™"
for xe T, (¢, a), we see that u,(x) tends to zero as x —¢ along T(¢, a). In
case 1(0) > 0, t(x,)”! is bounded for 0 < x, < 1, so that u,(x) tends to zero
as x - ¢, xeD. Since H,(F,,) =0 by Corollary 7.1, the proof of Theorem
7.1 is completed.

By using Theorem 7.1 and Corollary 7.2, we have

THEOREM 7.2. Assume that (w2) and (7.1) hold. Let f be a nonnegative
measurable function on R" satisfying (1.1) and (6.1). If 7,(r) < Mt,(r) for
0 <r <1, then there exists a set E < 0D such that C, o, ,(E) =0 and U,f(x)
has a nontangential limit at any £€0D — E; that is, U, f(x) has a finite T,-limit
at any £€dD — E.

COROLLARY 7.5. Let O<ap—n<pB<p— 1. Let f be a nonnegative
measurable function on R" satisfying (1.1) and
(7.2) J d5,,(|f(y)l)|y,,[”dy < for any bounded open set G < R".

G

Then there exists a set E < 0D such that C, o, s(E)=0 and U,f(x) has a
nontangential limit at any £€oD — E.

In fact, in case ap > n, ¢*(1) < oo and, moreover, we find

T, ~ """ P p(r~!) as r—0,

so that rl(r)letz(f) for 0<r<1. Now Corollary 7.5 is a direct
consequence of Theorem 7.2.

THEOREM 7.3. Assume that (7.1) is satisfied, and let — 1 < <p—1. Let
f be a nonnegative measurable function on R" satisfying (1.1) and (7.2).

(i) If n—oap+ B >0, then for y > 1, there exists a set E, = D such that
H,(E,) = 0, where h(r) = t,(r") with
t -p+1
7,(r) = inf, _,_, t”(j [s"‘“”(p(s“1)}‘1/‘”'1’ds/s> ,
0

and U, f has a finite T,-limit at any {€0D — E,.

(ii) If B=ap —n>0, then there exists a set E = 0D such that C, o, 4(E)
=0 and U,f has a finite T-limit at any {€dD — E for any y > 1.
(i) If p=ap—n=0o0orn—ap+ B <0, then U,f has a finite limit at
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any £e€dD.

Proor. First note by (7.1) that ap > n. Hence, if n — ap + B > 0, then
>0 and

T, = M " P o) = My, (r)

for 0 <r <1, according to the notation in Theorem 7.1. Now we apply
Theorem 7.1, together with Corollary 7.3, in order to prove (i).
If B=ap—n>0, then

12(1) 2 My~ (e,

so that 7,(0) > 0. Further, in this case, 7,(r") ~ [x,(r)]”? for any y > 1.
Hence, if we set h,(r) = t(r) with 7 in Theorem 7.1, then h,(r) ~ [x,(r)] 7 for
any y > 1. It follows from Corollary 7.2 that Ca‘d,p,,,(F r.n,) =0. Now (ii) is
a consequence of Theorem 7.1.

If B <0, then

k1 (0) < 9*(1) < o0,

on account of (7.1). Further, in this case, 7,(0) > 0. If 0 < <ap —n, then
k,(0) < o0, so that 7,(0) > 0, and further 7,(0) > 0, as seen above. In the case
of (iii), it follows that t(0) > 0. Thus (iii) also follows from Theorem 7.1.

REMARK 7.2. Theorem 7.2, together with Theorem 7.3, (ii), is best possible
as to the size of the exceptional sets; that is, if E<dD and C, 4,,,(E) =0,
then we can find a nonnegative measurable function f on R" such that
U,f# oo, Uf=o0o0 on E and

j‘ﬁp(f()’))w(lynl)dy <o

(cf. the proof of Lemma 2.2, (iv)). Clearly, U, f does not have a finite Tj-limit
at any £€E, by the lower semicontinuity of U, f.

REMARK 7.3. In Theorem 7.2, if (7.1) does not hold, then we can not
generally expect the existence of limits of u along T,(¢, a).

In fact, by Corollary 74, C,,,(F)=0 for any countable set F < D.
Hence we can find a nonnegative measurable function f on D such that
U,f# o, Uf=o on F and

(7.3) j ?,(f (M aw(y,)dy < o
D

(see Lemma 2.2, (iv)). If in addition F is everywhere dense in D, then we
see easily that U, f does not have a finite T;-limit at any boundary point of D.
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8. Curvilinear limits

Let y be a positive nondecreasing continuous function on [0, o) satisfying
conditions (4,) and (¥ 1), as before. Take continuous functions y;, j = 2, 3,...,
n—1, on [0, o) such that y;(0) =0 and

[ i(t) — ¥i(s)] < M|t —s| for any s,t>0.

For convenience, let ¥, (r)=r, Y,(r) =¥ () and ¥(r) = Y, (r),...,¥,(r)). For
EedD, we define

Er)=E+ P(r) and Ly(é)={&(r);0<r<1}.

THEOREM 8.1. Let w be a positive nondecreasing function on (0, o)
satisfying both (wl) and (w2). Assume further that there exists a positive
nondecreasing function w* on (0, 00) satisfying the following conditions:

(i) w*Q2r) < Mw*(r) on (0, 0);

(i) J w*(s)Ps™ ds < Mw(r)t'?  for any r >0,
(V]

where M is a positive constant. Let t, be as in Theorem 7.1,

3(r)=inf,_, ., " P 0*(O)p(t” Y
and

h*(r) = min {t, (Y (r), T3 ("))}

Jor 0<r<1. Let f be a nonnegative measurable function on R" satisfying
conditions (1.1) and (6.1). Then there exist two sets E, and E, such that
Ce0,.0(E) =0, Hy(E) =0 and

lim,_o U, f(£(r) = U f(§)  for any {edD — (E UE,).

PrROOF. Letting a=10""' and ¢e€dD, we write U,f(x) = u;(x)+ u,(x)
+ u5(x), where

»

uy(x) = Ix = y[*="f(y)dy,
J R"—B(,2|x—-¢&)

uy(x) = [x = yI*""f(y)dy,
v B(&,2|x - &|) — B(x,axn)

uz(x) = [x —yI*~"f(y)dy.
o B(x,axn)

If {edD — E,, then, as in the proof of Theorem 7.1, u,(x) has the finite limit
U,f(¢) at £, Further Lemma 6.2 yields
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fusy(x)] < M, Kl(xn)<.[

1/p
d’p(f(y))w(lynl)dy) + M, |x —¢[*7°
B(&,2]x—¢])

for xeDNB(&, 1), where 0 < d < a. If we set

E = {f €0D; lim sup, .o [, (¥ (1)]™* j

B(,r)

D, (f)o(ly.l)dy > 0},

then Lemma 7.2 implies H,.(E') = 0. Moreover, if b > 0 and xe T,(¢, b), then
we have

Ky (x) < M) [t ((Ix — E1)]P

for some positive constant M(b). Hence we see that u, has T,-limit zero
when ¢edD — E'. If x = &(r)e Ly(&), r > 0, then

Ix =&l = [P0 =X ;)2 < Myr,
so that

Y(lx — &) < ¥(Myr) < M3y (r) = M3x,.

Consequently, Ly(&) <= T, (¢, M), and it follows that u,(x) tends to zero as
x — £ along the curve Ly(&) when £€0D — E'. Thus it suffices to prove that
u;(x) tends to zero as x — £ along the curve L (&), for any £€dD except those
in a set E” such that H,.(E") = 0. For this purpose, we may assume that f = 0
outside DN B(0, N) for some N > 1, so that f satisfies (7.3). Set

X;={xeD;277 < x,<279*  uy(x) > aj '},
where {a;} is a sequence of positive numbers such that

@.1) lim; . a;=c0, lim;.,j 'a;=0

and

2 I D,(f(M) () dy <
D;

J

with D; = {xeD;27/"! <x,<279*2}. For a set X = D, we denote by X
the set of all £e€ 0D such that £(r)e X for some r with 0 <r < 1. We consider
the set

E" = nk(Uj>ka)~

Then it is easy to see that uy(&(r)) tends to zero as r—0 whenever
£edD — E”. What remains is to prove that H,(E") =0. If xeX;, then
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aj! <J |x — yI*~"f(y)dy
B(x,axn)

=(n-— a)j "Fl(x, Nre " dr + (ax,)* "F,(x, ax,),

0
where F,(x, r) = f(y)dy. By Lemma 2.1, we have

B(x,r)
(82 Fi(, 1) S My[r=s + " {o(r™ )}~ 1P {Fe,(x, n)}''"],

where 0 <& <min{l,a} and Fy (x,7) =J @,(f(y))dy. Let xeX; and

B(x,
assume that .

(8.3) Fo,(x, 1) < Maj ?o(x,) "' t%(r)

for any r with 0 <r < ax,. Then it follows from (8.2) that

1< Myn-—- a)(ajf re e lgr

0

axn

+ Mllp{w(xn)}—llpf {‘rﬁ(r)r“"’"(p(r'1)”‘}””r‘1dr>

0
+ My(ay(ax, " + MUP(ax, """ {p((ax,) olax,)} "7 {t5(ax,) }7).

Since t%(r) < w*(M)[r""*p(r~1)], in view of conditions (i) and (ii) for w*, we
see that

1< M5<aj(ax,,)"_‘ + M””{w(xn)}_l/pj‘

0

"{w*(r)}“”r"ldr>
+ M MP{w(ax,)} " VP {w*(ax,) } /P < Mga,277®"9 + MM/,

where Mg does not depend on j nor M. In view of (8.1), there is j, such
that Mga;279"9 < 27! for any j > j,. Thus, if xe X, j > j,, and (8.3) holds
for all re(0, ax,], then M must satisfy

MMP > 271,

Now, if we take M so small that M M!/? < 27!, then, for any x€Xj, j = jo,
we can find r(x), 0 < r(x) < ax,, such that

Fo,(x, r(x)) = Ma;? {w(x,)} " t%(r(x)).

Since {B(x, r(x)); xe X;} covers X;, there exists a mutually disjoint (finite or)
countable family {B(x;,, r;,)}, r;« = r(x;), such that x;,eX; for all k and
{B(x;, Sr; )} covers X;. Then
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(84) LT3 < M7aff D,(f () (y,)dy.

D;
Now we are ready to show
H,(E") = 0.

Let ;, be the point on 0D such that x;, = &; ,(s;,) for some s;, > 0. Since
Y(r) is strictly increasing on account of condition (1), for any r > 0 we can
find only one r* satisfying y(r*)=r. If £€dD, {€dD, x = &(t), y = {(s) and
ye€B(x, r) with r < ax, < 1, then condition (Y1) gives

Y(ls —tD) < 1Y) — Y@ = |x, — yul < Ix =yl <7 =y (r¥),
so that |s—t| <r*. Also, if 0<r<1, then r* =y~ !(r) <y~ !(1), which
together with (Y1) yields
yer _ 1 -

or r<

oyt v

Hence
1€ =Ll <Ix =yl + X2 Wils) — Y@ <7 + s —t] + (n — 2 M|s — t| < Mgr*.
This implies ;s (Ui {B(; 1, Mg(5r;)*)}) o E” for any £ > j,, so that
HP(E") <Y, (T * (Mg(57;,0%))
SMoY . (3, t3(r0)

< MlOij{aff ¢p(f(y))w(yn)dy
D;

by (8.4), where 8} = sup;,,{sup, Mg(5r;,)*}. Here note

Y (%) = sup;,, {sup, Y (Mg(5r; )*)} < My, 27771,

so that lim,, 0} =0. Thus it follows that H,(E”) =0, and the proof of
Theorem 8.1 is completed.

COROLLARY 8.1. Letap—n<f<p—1. Let Yy(r)=r" for y>1; in this
case, ¥(r) = (r, Y(r),...,W,_1(r), ¥"). Further, let f be as in Theorem 7.3.

(i) If >0, n—ap+ >0 and y > 1, then there exists a set E < 0D
such that H,(E) = 0 with h(r) = inf,_,_, """ ***P ot~ and U, f has
a finite limit along the curve Ly(&), for any {€0D — E.

(ii) If >0, n—oap+ B >0 and y =1, then there exists a set E < 0D
such that C, o, 4(E)=0 and U,f has a finite limit along the curve
L (&), for any (€0D — E. '
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(i) If B<O and y>1, then there exists a set Ec 0D such that
H,,_op+5(E) =0 for any 6 >0, that is, E has Hausdorff dimension
at most y(n — ap), and U,f has a finite limit along the curve L y(&),
for any ¢€dD — E.

Proor. If >0, then we can take
w*r)=wr)=r" and t3(r)=inf, ., """ o)

in Theorem 8.1 If in addition n —ap + f >0, then h* =h. In case y > 1,
C.0,,5(F) =0 implies H,.(F)=0 by Corollary 7.3. Thus (i) follows from
Theorem 8.1. In case y = 1, 7,(r) < Mt%¥(r) by (5.1) and h*(r) ~ [k,(r)]"?. In
view of Corollary 7.2, H,(F) = 0 implies C, 5, 4(F) = 0. Hence (ii) also follows
from Theorem 8.1.

If B <0, then, for § > 0, consider

wy(r) = w3 () =1°.
Sincen—ap + 6 >n—ap + B >0, we can apply (i) with § = ¢ to establish (iii).

Here we give radial limit results as generalizations of [12, Theorems 3
and 4].

THEOREM 8.2. Let —1<f<p—1 and f be as in Theorem 1.3. Then
there exists a set E < 0D satisfying

(1) Cuo,4(E)=0;
(i) to each (€D — E, there corresponds a set E, such that C, ¢, (E;) =0
and

lim, o, U, f (& + 1) =U,f(&) for any (eDndB(O, 1) — E,..

This fact can be proved by [14, Theorem 2'] and the contractive property
of the capacity C, o,, which is derived in the same manner as that of C,,
(see [11, Lemma 5]). More precisely, to complete the proof, apply the proofs
of [12, Theorem 4] and [14, Theorem 4].

THEOREM 8.3. Let w be a nonnegative nondecreasing function on [0, )
satisfying (w1) and (w2). Let {eD be fixed. If f is a nonnegative measurable
Sfunction on R" satisfying (1.1) and (6.1), then there exists a set E = 0D such
that C, 0, ..(E) =0 and

lim, U, f(¢ +t0) = U,f(&) at any &¢edD — E.

Proor. Define
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uy(x) = f Ix —yI*~"f(y)dy,
R"— B(x,xn/2)

uy(x) = J lx = yI*""f(y)dy
B(x,xn/2)

for xeD. If x=¢+1t{, é€dD, t>0 and yeR" — B(x, x,/2), then
ly = ¢l <ly—x[+tlfl < [1 + 2(1C1/8)]1x — yl,
so that
lim, oy (¢ + 1) = U, f(S)

for every ¢e€dD. In fact, if U, f(£) = oo, then it follows readily from Fatou’s
lemma; if U,f(£) < oo, then apply Lebesgue’s dominated convergence
theorem. As in the proof of Theorem 6.1, we can find a set E = D such that

lim, o vepna@-£42(X) =0
and
1210Q279)C, 0,(E;nA(a); D;jn A(2a)) < 0
for any a > 0, where A(a) = {x = (x,,...,%,); |x;| < a for any j}. Define
E¥ ={(x',0); (x', t)e E; for some t> 0},
E; ={(x',0);(x',0)+ t{eE; for some t> 0}.

Letting Dj = {(x', x,); |x,| < 277*2} " we have by the contractive property of
Ca0, (cf. [10, Lemma 1]),

Ca0,(EFnA(a); D;nA(2a)) < C, 0,(E;nA(a); D;nA(2a)),
so that
Coo,.0(EfNA(a); AQRa)) < C, 0,.(EFNA(a); DinA(24a))
<07 C, 0,(EfnA(a); Djn A(2a))
<M, 027)C, 4,(E;jn A(a); D;n A(2a)).
On the other hand,
Co0,0EiNA(@); AQ2a) < M,C, o, (EFnA(a); A(2a))
(cf. [11, Lemma 3]). Hence if we set E = N2, U E;, then C, o, o(E)=0
and

lim, ,ou,(§ +t0) =0 whenever ¢edD — E.
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Thus Theorem 8.3 is obtained.

REMARK 8.1. In case ¢ = 1, these results are considered in Wu [27] and
Mizuta [14].

Finally we study the best-possibility of our theorems, as far as the
exceptional sets are concerned.

THEOREM 8.4. Let n=2. Let w and Y be positive nondecreasing
continuous functions on (0, o) satisfying the (4,) condition, together with the
Sfollowing :

(1) ¢ satisfies (Y 1).
(i) w satisfies both (w2) and (w3).

Suppose there exists ¢ > 2y(1) such that 2k, (cr) < k,(Y(r)) for 0 <r <1, and
set h(r)=[x,0@)]"?. If EcoD and H,(E)=0, then there exists a

nonnegative measurable function f on D such that U, f # oo, f D,(f()w(y,)dy

D
< o0 and

lim sup, .o U, f(C + (r, ¥(r))) =0 for any (€E.

Proor. For each positive integer i, we can find a family {B;;} of discs
such that B;;= B(x;j, 1; ), Zjh(ri_j)<2"' and E c |J;B;;. Here we may
assume further that x;;edD and r;;<1. Let z,;,=x;;+ (¢r;;,0) and
Cije=B(zi s cri) — Bz 27 Y(r)) for £=0,1. For simplicity, set
i(r) = r* " o(r Yo(r), and define

fi.j,{(y) = i[h(ri,j)]pl/pw - zi.j,t!_a[ﬁ(ly - zi.j.tl)]—p,/p

for yeDnC;;,; and define f;;,(y) =0 otherwise. Consider the function
f=sup,;,fij. Since, by (w2), ' *Pu(r)~!/" is nondecreasing on (0, )
for some f; <1, we note

fij e <M, |y — zi,j.ll—ﬂ
for f>a+ (2 —ap)p'/p+ (B, — 1/p)p’. Hence we have

j D,(f:.;.: ) o(y,)dy
D

< Mzi"[h(ri_j)]p'j |y—zi,j,(| _ap[;;“y_zi,j.fl)] _p’(P(|Y"zi.j,/|— l)w(Y2)dy

DnCi,j,,

< Maip[h(ri,j)]p"[ Iy — Zi,j,,|‘2[;7(|y — zi,j’ll)]—p’-*-l dy

Cije
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cri,j
< MiP[h(r, )1° J (1~ 7"Pr=tar
27 1y(ri, )
< MsiPh(r; ),
so that

f Pp(f 0oz dy < Z.-,,-,,J P, (fis M @(y2)dy < 2Ms Y iP271 < oo
b D

Next we see that for xe DnB(z;j ., Y(r; ),

j|x - J’!a_zf()’)dy = Msi[h(ri,j)]pl/pj‘ ly — Zi,j,tl—z[ii(ly - zi,j,tl)]—p’/pdy
Ci,j,¢

cri,j

= M7i[h(ri,j)]”'“’J‘ [7()]~?"Pr~ dr > Mi.
27 1y(ri, )

Let £€E. For each i, there is j such that e B, ;. Further observe that the

curve Lgy(&) intersects at least one of two half balls DnB(z;;,, ¥(r;)),

¢ =0,1. Consequently,

lim sup,.o U, f(§ + (, ¥(r))) > lim sup;., ,, Mgi = 0.

REMARK 8.2. Let w(r)=rf. If —1 < B <p—1, then w satisfies both
(w2) and (w3). If in addition 2 — ap + B > O, then one can take c so large that

2ic,(cr) < Kk, (U(r)  for any O<r<l;

in this case, h(r) ~r2~*?*#p(r~') as r -0, in Theorem 8.4. Moreover, if «
is a positive integer m, then, as will be shown later (see Lemma 12.1),

f D, (|Vu Up f (X)), 1P dx < 00 for any bounded open set G < R".
G

9. Beppo-Levi-Deny functions

For an open set G < R", we denote by BL,(L?(G)) the space of all
functions uel? (G) such that D*uel”(G) for any A with |i| =m, where
D* = (8/0x)* = (8/0x,)* ---(8/0x,)*; if the restriction of u to any relatively
compact open subset G of G belongs to BL,(L"(G')), then we write
ue BL,,(L%,.(G)) (see [3]).

In order to study the boundary behavior of Beppo-Levi-Deny functions
on D, we have to prepare an integral representation for functions in
BL,(L?(R"). The following sobolev integral representation for infinitely
differentiable functions with compact support is fundamental (cf. Reshetnyak

[22]).
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LemMma 9.1. If yeCZ(R"), then

(x —y*
Y(x) = Z“'=malj~|x e Dl‘/’()’)d%

where {a;} are constants; a, = m/(c,A!).
Our first aim in this section is to show the following result.

THEOREM 9.1. If u is a function in BL,,(L},(R") such that

9.1 f(l + [y1)" " D*u(y)ldy < o0
for any A with length m, then there exists a polynomial P of degree at most

m — 1 such that

(x — y)*
[x —yI"

u(x) = Zm=mak D*u(y)dy + P(x)

holds for almost every x in R".

REMARK 9.1. In [8, Theorem 3.1], this representation is given under the
assumption of the existence of {¢;} = C(R") such that

lim,-_.oo lel=m ||D;'((P1 - u)”l’ =0.

PrOOF OF THEOREM 9.1. Let Yy € C§(R") and |u| = m. By condition (9.1),
we can apply Fubini’s lemma and Lemma 9.1 to obtain

Y
f (Z.A.Wal f =y )| Dhu(y) dy) DAY () dx

|x —y

(c =y D“W(x)dx) D*u(y)dy
x =yl

A

= Z|A|=maz
Y

(
|
= Z|z|=ma1 |z " D*y(z + y)dz> D*u(y)dy

J
]

»
ZA

z|"

(
;<

=Y i=m ( f D*y(z + y)D*u(y)dy)dz

= Z|u=maz <J‘Dll//(z + ,V)D"“(Y)d)’> dz

A
= j(zwmazﬁ—% D*y(z + y)d2> D*u(y)dy
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=(=D" J'P(y)D“u'(y) dy

= Ju(y)D“!//(y) dy.

(x—y*

- D*u(y)dy is equal ae. to a
Ix — yl

Hence it follows that u(x)—leI:malj

polynomial of degree at most m — 1.

CoROLLARY 9.1. If u is a function in BL,(L},.(R"), then there exists a
continuous function on R" which is equal to u a.e. on R".

Proor. For any e C{(G), Yu can be seen as a function in BL,(L!(R"),
and hence by Theorem 9.1 there exists a polynomial P such that

-
-y

for almost every xeR". It is easy to see that the right hand side of (9.2) is
continuous on R". Hence the required assertion follows.

9.2 V0 0) = 31310 j D*(Yu) () dy + P(x)

Here we relax condition (9.1). To do this, we introduce the kernel
functions:

ka(x) = x*|x|™"
and

ki(x —y), if |yl <1,
kl,[(x, J’) =

A =3 = Ty ,(D"kl)(—y), if [yl=1
(see [16], [19]). We now show an extension of Theorem 9.1, in the same
manner as [16, Theorem 1] and [19, Theorems 1 and 17].

THEOREM 9.2. Let ue BL,(LP(R")). Then there exists a polynomial P of
degree at most m — 1 such that

() = Y3 m s Jkl.z(X, »D*u(y)dy + P(x)
holds for almost every x in R", where ¢ is the integer such that { <m —n/p

</{+ 1.

REMARK 9.2. In view of [16] and [19], the function u is also represented
as

u(x) Zm =m ka 2 x y)Di“(y)dy + P(X),
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where k¥, is defined as above with k; replaced by kj‘{ = D*R,,,, R,,, denoting
the Riesz kernel of order 2m, {b,} are constants, / is the integer given in
Theorem 9.2 and P is a polynomial More prec:sely, {b,} is chosen so that

= CZm mbi

with some constant c. In the latter representation of u, the logarithmic term
may appear, and hence Corollary 9.1 may not follow from this representation.

PrROOF OF THEOREM 9.2. Set

Ux) = Zm m@ szfx ,V)Dlu(.V)

By the mean value theorem, we see that
’lkl,((xa W< M, |x| Yyt

whenever |y| > 1 and |y| > 2|x]| (cf. Lemma 2 in [19]). Hence, if xe B(0, a),
a > 1, then Holder’s inequality gives

f ks,.(x, Y)I1D*u(y)| dy
Rn—B(0,2a)

SMla“‘f IyI"="=¢=1|D*u(y)ldy < o0
B(0,2a)
for any 4 with length m. Since

f ky.c(x, y)D*u(y)dy = f ki(x — y)D*u(y)dy + a polynomial,
B(0,2a) B(0,2a)

U is defined almost everywhere and U e L},.(R"). Note that fx”D*W(x) dx=0

whenever |o| < |A] and Yy e CP(R"). Hence, as in the proof of Theorem 9.1, we
have for y e CE(R"), |ul=m and |v| =

j UMDY (x)dx = ¥, _na; f( fku(x, y)D“”llf(x)dx> D u(y)dy

= Z|l|=m a, J( jkl(x - Y)DMH'//(x)dx)Dl“(,V)d.V-

For a positive integer j, set k¥ = x*{|x|? + (1/j)*} ™2. Then, in view of
Lemma 3.3 in [8], we see that

fk‘{’(x = DY (x)dx — Jk,x(x — )Py (x)dx
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as j— oo in LY(R") for any number ¢ > 1. Hence we apply Fubini’s lemma
again to establish

j( J‘k}.(x - y)D“”x/x(x)dx) D*u(y)dy
= limj_,ooJ(J’kf{’(x - y)D“*"lﬁ(x)dx)D’lu(y)dy

=(— 1)"lim;_ (J‘D“kf{’(x - y)D"l//(x)dx>D‘u(y)dy

o

=(— 1)"lim,_, D“kf{’(z)( D*Y(z + y)D‘u(y)dy)dz

o

.
= (— 1)"lim;., D“k‘,{’(z)(fD‘l//(Z + y)D“u(y)dy)dz

_ J ( J k(x — y)D“Mp(x)dx) D*u(y) dy.

Therefore, as in the proof of Theorem 9.1, we find

JU(x)D"”ap(x) dx = ju(x)D“”lp(x)dx.

Thus P(x) = u(x) — U(x) is equal a.e. to a polynomial of degree at most
2m — 1. By the above considerations, we see also that if |u| = m, then

<

UU(x)D“l//(x) dx

Y em f ( f ky(x — y)DWx)dx)Dlu(y)dy

< MUY 1, (X oI DR,

on account of Lemma 3.3 in [8]. This implies D*Pe LP(R") for |u| = m, so
that the degree of the polynomial P is at most m — 1.

THEOREM 9.3. Let ue BL,(L?(G)) satisfy

Z|i|=mj ®,(|D*u(x)|)dx < oo.
G

1

If ©*(1) < oo, that is, J [~ ™~ 1]V "Pr~Ydr < co, then there exists a
0

continuous function u* on G such that u = u* a.e. on G.

Proor. For any € C$(G), Yu can be seen as a function in BL,,(L?(R"))
by [24, Chap. 9, Théoréme XV (Kryloff)], and hence by Theorem 9.1 there
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exists a polynomial P such that

(
|

for almost every xeR". In view of the proof of Theorem 3.3, note that if

Y
9.3) W) = Y 3o f — i )| D*yu)(y)dy + P(x)

G’ is a bounded open set in R" and J

®,(|f(y)])dy < oo, then the function
&

x =
-f(y)dy
¢ |x—yl
is continuous on G’ when |i| =m; in case mp > n, the continuity is well
known as a part of Sobolev’s imbedding theorem. Hence, if in addition y = 1
on a neighborhood of a point x,€G, say, ¥ =1 on B(x,, ro), then

Y
f O = I payuy ) dy

n— B(x0,ro0) [x — y|"

is continuous on B(x,, r,) and

(x = y* (x = y*

f =2 DAyu)(y)dy = =~ Diu(y)dy
B(xo0,ro0) |x - yl B(x0,r0) |x - yl

is continuous at x,, by the above consideration. Thus we can find a

continuous function u* on G which is equal to u a.e. on G.

REMARK 9.3. In case mp > n, ¢*(1) < co. Hence Theorem 9.3 gives an
extension of Sobolev’s imbedding theorem, concerning the continuity of
Beppo-Levi-Deny functions.

10. Boundary limits of Beppo-Levi-Deny functions

In this section we study the boundary limits of Beppo-Levi-Deny functions
u on the half space D = {x = (x', x,)eR"™! x R!; x, > 0} satisfying (1.4).

We say that a function u on an open set G = R" is (m, ®,)-quasicontinuous
on G if for any ¢ > 0 and any bounded open set G’ = G, there exists an open
set G" = G’ such that C,, 4,(G"; G') <¢ and the restriction of u to G' —G”"
is continuous. As in Lemma 2.3 in [8], if u is a function in BL, (L% (D))
satisfying (1.4), then we can find a function u* such that u* =u a.e. on D
and u* is (m, @,)-quasicontinuous on D. In case mp > n, u* may be taken
as a continuous function on D (cf. Remark 9.3).

THEOREM 10.1. Let u be a function in BL, (L%, (D)) satisfying (1.4). If
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(10.1) Jl Lot Ho@)] ?/Pdt < o,
0

then there exists a function u* € BL,,(L},.(R") such that u* =u a.e. on D and
u* is (m, ®,)-quasicontinuous on D.

ProOF. Let a>1. As in the proof of Lemma 2.1, using Holder’s
inequality, we have

j |D*u(x)|dx < <[ dip(ID‘u(x)I)w(x,,)dx)l/p
DnB(0,a) DnB(0,a)

1/p’
X <f [(p(x,,’")w(x,,)]“"“’dx> : + f x; %dx
DnB(0,a) DnB(0,a)
1/p a 1/p’
< M1<J~ ¢p(|Dlu(x)|)w(xn)dx) <j [<P(l_1)w(l)]_"'“’dl>
DnB(0,a) 0

+ M,a""?

for any A with length m, where 0 <6 < 1. This implies that the restriction
of u to the set DnB(0, a) belongs to BL,(L'(DNnB(0, a))). Hence, in view of
the extension theorem in Stein’s book [25, Chap. 6], we can find a function
# in BL,(L},.(R") such that 4 =u a.e. on D. For this # we have only to
take an (m, @,)-quasicontinuous representation on D.

ReMArRk 10.1. Condition (@w2) implies (10.1).

As applications of the results in Sections 6—8 concerning Riesz potentials,
we can study the existence of boundary limits of Beppo-Levi-Deny functions,
generalizing the results in the case m=1;see Wallin [26] and Mizuta

{91, [12], [17].

For this purpose, let

1 1/p’
ky(0) = (f [r"‘m"n(r)]-"'wrldz> ,

r 1/p’
<p*(r)=<f [t"""”w(t‘l)]“’"”t‘ldt> ;

0
7, () = [k, (177,
1,(r) = inf, ., <, @) [0*()]77
for 0<r<27t.

THEOREM 10.2. Let w be as in Theorem 6.1, and let u be an
(m, ®,)-quasicontinuous function on D satisfying condition (1.4). If k,(0) = oo,
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then there exists a set E = D such that
lim,, o,xeq £ 1 (x)] () = 0
for any bounded open set G = D and
(10.2) = K w(279)C,, 0,(E;nB(0, a); D;nB(0, 2a)) < o0
for any a >0, where K, E; and D; are defined as in Theorem 6.1.

Proor. It follows from condition (w2) that (10.1) holds. Hence, by
Theorem 10.1, there exists a function u*e BL,,(L},. (R")) which is equal to u
on D. For a > 1, take {€ CF(R") such that { = 1 on B(0, 2a). Then it follows
from Theorem 9.1 that

A
(103) ) = Yy m@ j _ﬁ’l D*(u¥)())dy + P(x)
holds for almost every xeR", where P is a polynomial. Since u is
(m, ®,)-quasicontinuous on D, (10.2) holds for every xeD except those in a
set E' with C,, o,(E) = 0. But, since E' satisfies (10.2) clearly, we may assume
that (10.3) holds for every xeD. Set f,(y) = le'=mi(6/6y)‘(6u*)(y)l. Then it
satisfies

j D, (fa)(|ya)dy < co.
B(0,2a)

In view of Theorem 6.1, we can find E, = Dn B(0, a) such that
21K 027)C,,0,(E, ;; D;nB(0, 2a)) < o,
where E, ;= {x€E,;27/ < x,<277*!}, and
lirnx,.—'O,xeDﬁIB(O,a) —E, [Kl (xn)] -1 u(x) =
Now, as in the proof of Theorem 6.1, we can find a sequence {j,} of positive
integers such that E = {J;2, (U;s;, E. ;) has all the required properties.

Similarly, by Theorems 7.2 and 7.3, we obtain the following results.

THEOREM 10.3. Assume ‘that (w2) holds and ¢@*(1) < 0. Let u be a
continuous function on D satisfying condition (1.4). If 1,(r) < Mt,(r) for
0 <r< 1, then there exists a set E < 0D such that Cm.0,.0(E) =0 and u has
a nontangential limit at any £€dD — E.

CorOLLARY 10.1. Assume that O<mp—n<B<p—1 and u is a
continuous function on D satisfying

(10.4) Doil= "‘_[ ,(1D*u(x)])xE dx < oo
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Jfor any bounded open set G <= D. Then there exists a set E = 0D such that
Cn,0,.4(E) =0 and u has a nontangential limit at any {€0dD — E.

THEOREM 10.4. Let — 1 <f<p—1, ¢*(1) < o0 and u be as in Corollary
10.1.

(i) If n—mp+ B>0, then for y> 1, there exists a set E, < 0D such
that H,(E,) = 0 with h(r) = 1,(r") and u has a finite T,-limit at any
¢edD - E,.

(ii) If B=mp—n>0, then there exists a set Ec dD such that
Cm0,.4(E) =0 and u has a finite T, limit at any (€dD — E for any

y=> 1
(i) If B=mp—n=0or n—mp+ p <0, then u has a finite limit at
any £e€dD.

In the above theorem,

t , -plp’
rz(r)=inf,s,51t”<J [s"“""’go(s‘l)]"’/”s_lds> .
0

THEOREM 10.5. Let w and w* be as in Theorem 8.1, and set
3() =inf,c, < " * (O,
*(r) = min {7, (r), t3(r)},
h*(r) = ™Y (r))

Jor 0<r< 1. If uis an (m, ®,)-quasicontinuous function satisfying (1.4), then
there exist E, and E, such that C, o, ,(E;) =0, His(E;) = 0 and u has a finite
limit along L (€), for any £E€0D — (E,UE),).

Proor. For simplicity we assume that u vanishes outside some bounded
set. In this case,

u(x) = zmwaszx(x — YD*u(y)dy + P(x)

holds for every xeD — E’, where P is a polynomial and E’ is a subset of D
with C,, ¢,(E)=0. Denote by u* the function defined by the above
summation about A Since C, o,(E)=0, we can find a nonnegative
measurable function f on D such that U, f# oo, U,f =00 on E and (7.3)
holds. Then, in view of Theorem 8.1, there exist E{ and E; such that
Cno,.0o(E1) =0, Hu(E3) =0 and U, f has a finite limit at {edD — (E{UE3).
This implies that if £edD — (E{UE3), then u =u* + P on Lg(&)nB(¢, ry) for
some r, > 0. Now we apply the same discussions as in Theorem 8.1 to the
function u*, and complete the proof.
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Noting Corollary 8.1, we have

COROLLARY 10.2. Let mp—n<f<p—1,y=>1 and ¥ be of the form
(r, Y2(r),...;Y,—1(r), ) as in Corollary 8.1. Further, let u be an (m, P,)-
quasicontinuous function on D satisfying (10.4). Then:

(i) If B>0,n—mp+ B>0 and y > 1, then there exists a set E < 0D
such that H,(E) = 0 with h(r) = inf, _, ., """ ™*P (¢t~ ') and u has a
finite limit along the curve Ly(&), for any £€0D — E.

(ii) If p>0,n—mp+ B>0 and y =1, then there exists a set E < 0D
such that C,, o, 4(E)=0 and u has a finite limit along the curve
L (&), for any E€dD — E.

(i) If B<0 and y > 1, then there exists a set E = 0D such that E has
Hausdorff dimension at most y(n — mp) and u has a finite limit along
the curve Ly(&), for any E€dD — E.

By Theorems 8.2 and 8.3 we derive radial limit results for Beppo-Levi-
Deny functions on D.

THEOREM 10.6. Let — 1< B <p—1 and let u be an (m, @ ,)-quasicontinuous
function on D satisfying (10.4). Then there exists a set E < 0D such that
Chmo0,s(E)=0 and if (€dD — E, then u( + r{) has a finite limit as r -0 for
every {eDNJB (0, 1) except those in a set E; with C, o (E;) = 0.

THEOREM 10.7. Let w be a nonnegative nondecreasing function on ([0, o)
satisfying (w1) and (w2). Let (€D be fixed. If u is an (m, ®,)-quasicontinuous
Sfunction on D satisfying (1.4), then there exists a set E < 0D such that
Cm0,,0(E) =0 and u(l + t{) has a finite limit as t|0 at any {€dD — E.

11. Green potentials
In the half space D, we consider the function

|x —yl* ™" —|Xx—y/*™" incase a<n,
Ga(x,y>={ ! ‘

log(|x — yl/lx = yl) in case a = n,
where X = (xy,...,x,-,, — x,) for x = (x,,...,X,_,, X,), and define
G, f(x) = J G,(x, y)f(y)dy

D

for a nonnegative locally integrable function f on D.
The following lemma can be proved by elementary calculations (cf. [14,
Lemma 9]):
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LemMa 11.1.  If a < n, then there exist positive constants M, and M, such
that

XnYn
1 e
Ix — yI" %% — y|?

XnYn .
Ix = yI"=olx — yI*’

S— Ga(x9 Y) < MZ

if o =n, then for any ¢, 0 < ¢ < 1, there exist positive constants My and M ()
such that

XnVn < G,,(x, y) < M(B) XnYn

M, < ) _.
- y? [x — y[*|x — >

| x

CoROLLARY 11.1. For any nonnegative measurable function f on D, G,f
# oo if and only if

(11.1) f (I + 1y " 2y, f(y)dy < c0.

In this section we are concerned only with the case o < n.
We can derive the following result from the Corollary 3.1.

THEOREM 11.1. Let f be a nonnegative measurable function on D satisfying
(11.1) such that

J D,(f(y)dy < o0 for any bounded open set D' with closure in D.
D

If (1.3) is fulfilled, then G,f is continuous on D.

THEOREM 11.2. Let w be a positive monotone function on the interval
(0, 0) satisfying (w1) and

(w4) rP=YPe(r)~YP s nondecreasing on (0, o) for some f < 2.

Define
Ka(r) = r(J1 [tn—ap+pr,(t)]‘l7'/pt- 1 dt)”‘y

for 0 <r <27, where n(t)= @t "w(t) as before. Let f be a nonnegative
measurable function on D satisfying (11.1) and

(11.2) J D,(f()w(y,)dy < for any bounded open set D' < D.
D

Then there exists a set E = D such that

limxn”o.xeD’—E[K3(xn)]_1 Gaf(x) = 0 lf lirnr-*O K3(r) = 0,
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lim, .o yep -G f(x)=0 if K5(r) is bounded on (0,277%)
Jfor any bounded open set D' and
1K 70279)C, ¢,(E;nB(0, a); D;n B(0, 2a)) < co
for any a >0, where K = K* in Lemma 2.3 with y = max{l, k,}.

Proor. First, from condition (11.1), we can apply Lebesgue’s dominated
convergence theorem to see that, if D' = DnB(0, N), N > 1, then

limx"—*O,xeD’J\ Gu(x’ y)f(y) dy = 0
D-B(0,2N)

For x =(x', x,)eD, 0 <a<1 and N > 1, we write

r

Gnf(x)= Gy (x, y)f () dy,

J DnB(0,2N) —B(x,xn/2)

Gionflx)= G (x, V) f (y)dy,
J {yeDnB(0,2N)— B(x,xn/2);yn=a}

Granf(x) = G,(x, ) f(y)dy.

J {yeDnB(0,2N) — B(x,xn/2);yn <a}

Then we see easily that G, , yf(x) tends to zero as x,—0, xeD. Further
we have by Lemma 11.1,

Gz,a.nf(X)SMxan [x — yI*7"x — y| "2y, f(») dy.

{veDNB(0,2N) — B(x,xn/2);yn <a}

By (w4) we can apply Lemma 6.1 with 6 > 0 such that « — 1 < <, and
obtain

Guanf(x) < M2K3(xn)<f

{veDNB(0,2N);yn<a}

1/p
D,(f (y))w(y.,)dy> + M,

for 0 < x, <27, Thus, if lim,_,qx5(r) = oo, then we find

hm supx,.—*O,xeD [K3(xn)] -1 GNf(x) S M2 <J‘

{veDNB(0,2N);yn<a}

1/p
®,(f () dy)

Letting a — 0, we establish

lirn.vc,.-*O..xeD [K3(xn)] -t GNf(x) = 0

By Lemma 11.1, note
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f G,(x, ) f(y)dy < J [x — y[*7" f(y)dy.
B(x,xn/2)

B(x,xn/2)

The right hand side is just equal to u,(x) in Theorem 6.1. Hence, considering
E;, as in the proof of Theorem 6.1, with «k, replaced by x;, and noting
Remark 6.4, we complete the proof.

Next we discuss the existence of tangential limits of Green potentials G, f
for f satisfying conditions (11.1) and (11.2).

THEOREM 11.3. Assume that (7.1) and (w4) hold. Let Y be a positive
nondecreasing function on (0, 00) satisfying conditions (4,) and (Y 1), and define

t3(r) = inf, _, <, [k5(r)] 77,
1o = min {7,(r), 75(r)},

ho(r) = 7o (¥ ()

for 0 <r < 1, where 1, is as in Theorem 1.1. If f is as in Theorem 11.2, then
there exists a set E < 0D such that H, (E) =0 and

Mg xery g Gof (x) = 0
for any a>0 and any £€0D — E. If in addition 1,(0) > O, then
lim, ¢ cp Gof(x) =0
for any £€0D.
Before proving this theorem, we note the following lemma (cf. [13, Lemma

3]).

LEMMA 11.2. For {e€dD, set ge(x) =[ G, (x, f()dy. Then
D-B(&.2|x—¢&))

limx—'é.xebgé(x) = 0 lf and Only lf lil’nr—'O ra—n- IJ‘ ynf()))dy = 0

DnB(&,r)
PrOOF OF THEOREM 11.3.  For ¢edD, we write G, f = v; + v, + g,, where
vy(x) = f G.(x, y) f(y)dy,
DnB(&,2|x —&|)— B(x,ax,)
vy(x) = f G,(x, ) f(y)dy.
B(x,axn)

Define
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E= {éeaD; lim sup,_.oho(r)'lf D,(f(M)wly,)dy > 0}~

DnB(,r)

Then, by Lemma 7.2, we see that H, (E) =0. By (w4),

f [0 73,17 dy < [~ P a(r)~H17)7 J yp A gy
DnB(&,r) DnB(,r)
= M, 77 [w(n] 7",

Hence, as in the proof of Lemma 2.1, we have for 6,0 <d < a,

r"‘"“J Yaf () dy = r“‘"“f yf(y)dy
DnB(,r) {yeDnB(&,r); f(y)>r~9)

o j Yol O)dy
{yeDnB(&,r); f(y)<r~9)

1/p
< r“’""(f D,(f(y) oy, dy)
DnB(,r)

1/p’
X < f [o(f M) w(y)]1~ 7 PyE dy)
{yeDnB(&,r); f(y)>r~ 9%}

+ra-n-—1—6.[ ,V,,dy
DnB(,r)

< Mz[f"'“”fl(ﬂ]'”"(j

DnB(¢,r)

1/p
<15p(f(y))w(y,.)dy> + M, r*¢,

Here note
K3(r) = M3[r"~*"n(r)]~ 17"
and
ho(r) < to(W(1)r) < M, [x3(N]77
for 0 <r < 1. Therefore, if £€0D — E, then it follows that

lim, r“'"“f yaf()dy = 0.
DnB(&,r)

Lemma 11.2 implies that g.(x) tends to zero as x = ¢, xeD. By Lemmas 6.1
and 11.1, we find

1/p
vi(x) < M, Ks(%)(f b,(f (M) (y,) dy) + My|x = &17?

DnB(&,2|x-¢))
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for any xeDnB(¢, 1). Thus, since #3(x,) < M3[ho(|x — &)1~ /7 for xe T, (&, a),
if {edD — E, then v,(x) tends to zero as x — ¢, xe T,(¢, a). Finally, Lemma
6.1 yields

05(x) < M, [7,(x,)]" 1/p<J‘

B(x,xn/2)

1/p
D,(fMo(y,) dy> + M X278,

Hence it follows that v,(x) tends to zero as x = &, xe T, (¢, a), if E€0D — E. In
case 70(0) >0, lim,_; ,.pG,f(x) =0 for any {€dD. Now Theorem 11.3 is
proved.

In the same way as Theorem 7.3, we can derive the following result.
COROLLARY 11.2. Assume that (7.1) holds. Let — 1 < B <2p— 1 and let
f be a nonnegative measurable function on D satisfying (11.1) and

f D,(f(y)yhdy <o  for any bounded open set D' < D.
D

(i) If n—ap+ B >0, then, for each y > 1, there exists E, < 0D such that
H, (E,) = 0, where h,(r) = t,(r") with

t , —plp’
rz(r)=inf,s,sltﬂ<f [s""“"<p(s‘1)]"’“’s’1ds> ,
0
and G,f(x) has T,-limit zero at any {€0D — E,.

i) If n—ap+ B <0, then G, f(x) has limit zero at any £€dD.

In fact, if p<2p—1, then w(r)=r? satisfies condition (w4). If in
addition n —ap + p + > 0, then the corresponding 7, and t; in Theorem
11.3 satisfy

13() = M " P o(rmh) 2 My, (),

so that (i) follows from Theorem 11.3. On the other hand, in case
—p<n-—ap+ f <0, the above facts also imply 75(0) > 0; in case n —ap + p
+ p <0,

1 1/p’
x3(r)s<f [Cp(t—l)]_"'”’t"'_ldt> < 0,

0
so that 15(0) > 0. Thus, if n —ap + f <0, then
753(0) > 0.
Further, in case 0 < f<ap —n,

1,(r) = M=t o(r ),
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so that 7,(0) > 0. In case B <0, 7,(0) >0, too. Thus, if n —ap + f <0, then
7,(0)> 0. Now, if n —ap + f <0, then 74,(0) > 0 and the proof of Theorem
11.3 yields the required conclusion of (ii).

In case f>2p— 1, w(r) =r® does not satisfy condition (w4). We can,
however, give some results concerning nontangential limits.

ProOPOSITION 11.1. Let B >2p— 1. For 1, in Corollary 11.2, (i), define
h(r) = min{r"~**!, 1,()}  for r>0.

If f is as in Corollary 11.2, then there exists a set E = 0D such that H,(E) =0
and G,f has nontangential limit zero at any £e€0D — E.

Proor. Consider the set

A= {éeaD; lim sup,_.or“‘”'lj vuf ) dy > O}.

DnB(,r)

Lemma 7.2 together with (11.1) implies H,(4) =0. It follows from Lemma
11.2 that g, has limit zero at any {€0D — A. Further, in the proof of Theorem
11.3,

v;(x) < M1Xﬁ'"“f yof () dy,
DnB(,2|x—¢])

which implies that », has nontangential limit zero at any £€0D — A. Since
v, can be evaluated in the same manner as in the proof of Theorem 11.3,
the required result now follows.

PrROPOSITION 11.2. Let f be a nonnegative measurable function on D
satisfying (11.1) and

f D,(f)y2 tdy <o
G

1
for any bounded open set G = D. Suppose J [~ Y] PPt~ 'dt < o0, and
define 0

t =p/p
h(r) = infrstsltn_lnpu_h(‘[‘ [(P(S_l)]—p’/ps_lds> .
0

If ap >n, then there exists a set E < dD such that H,(E)=0 and G,f has
nontangential limit zero at any £€dD — E.

Proor. As in the proof of Theorem 11.3, we have
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1/p
r“'”“f Yuf()dy < r"‘“"“(f ¢p(f(y))y3”"dy>
DnB(&,r) DnB(,r)

1/p’
x <J y;‘[fp(y;‘)]‘”’”dy) + r"'""f ya~ldy
DnB(,r) DnB(,r)

r 1p
Ser“_z_("_l)/p(J [fp(t_l)]_p'/”t_ldt) <I ¢p(f(Y))Yfp_ldJ’>
0 DnB(&,r)
+ M, r*°

1/p

1/p
< Ml([h(r)]“l ,(fya"™? dJ’> + M2,

DnB(&,r)

where 0 < 6 <min{2, o}. Hence H,(4) =0 by Lemma 7.2, for the set A in
the proof of Proposition 11.1. On the other hand, if w(r)=r?*"!, then 1,
in Theorem 11.3 satisfies

t -plp’
7,(r) > inf, ., 12771 X t"‘“”(f [(p(s’l)]"’""s“‘ds) = h(r).
0
Thus, as in the proof of Proposition 11.1, we see that G,f has nontangential
limit zero at any £€dD — E, where H,(E) = 0.

By the proofs of Theorems 8.1 and 11.3, we can derive the following result.

THEOREM 11.4. Let 1% be as in Theorem 8.1 and 15, Y be as in Theorem
11.3. Define

h§(r) = min {73 (1), 3 (¥ (1))}

for 0 <r < 1; define h§(r) = h§(1) for r > 1. If f is as in Theorem 11.2, then
there exists a set E < 0D such that Hyy(E) =0 and

lim,,,G,f(((r) =0  for any £€dD — E,
where E(r) = & + Y(r) with Y(r) = (r, Y5(r),..., ¥, - 1(r), Y(r)) is as in Section 8.

COROLLARY 11.3. Let — 1< B <2p—1 and P@)=(r, Y,),...,¥,_,(1),
r), y =1, as in Corollary 8.1. Further let f be as in Corollary 11.2.

(i) If B>0and n—ap + B >0, then there exists a set E = 0D such that
H,(E) =0 and G, f has limit zero along the curve Ly(&), for any &€

t

0D —E, where h(r)=1,(r") with rz(r)=inf,5,51t"<f [s" *Pp(s~ )]~ PP

-plp’ o
ds/s) .

(@) If B<O0 and n—ap >0, then there exists a set E = D such that E
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has Hausdorff dimension at most y(n — ap) and G,f has limit zero
along the curve Ly(&), for any £€0D — E.

ReMARK 11.1. Our results give generalizations of the results in Rippon
[23], Wu [27], Aikawa [1] and Mizuta [14].

12. Singular integrals

In view of Theorem 9.2, if ue BL,(L?(R"), then

u() = ¥ p31omds jku(x, WD u(y)dy + P(x)

for almost every xe R", where / < m and P is a polynomial of degree at most
m — 1. Conversely, it is known (cf. [16, Lemma 3]) that each integral in the
above equality belongs to BL,(L?(R")).

Let us begin with the following result, concerning the @, estimate for the
derivatives of potentials.

Lemma 12.1 (cf. [9, Lemma 6], [18]). Let —1<f<p—1 and f be a
nonnegative measurable function on R" such that

f (L+ 1|y "f(y)dy < oo and J D,(fWyalPP)dy < 0.
Rn Rn

Set
u(x) = f ki(x — y) f(y)dy,
RVI

where k;(x) = x*/|x|" and |A| = m. Then u is a function in BL,,(L},.(R") for
q such that 1 <q <min{p, p/(B + 1)}. Further, u is (m, ®,)-quasicontinuous
on D and satisfies

'[¢p(|7mu(x)l |x,|P/P)dx < Mj¢p(f(,")|yn|’3/”) dy
with a positive constant M independent of f, where lV,,,u(x)|=(Z| A=m |D*u(x)|?)*2.

Proor. First of all, if we note f D,(f(y))dy < oo for any relatively
G
compact open set G in D, then u is (m, p)-quasicontinuous on D in the sense

of [8]. If the required inequality of the present lemma is obtained, then we
see that u is (m, ®,)-quasicontinuous on D. If 1 < g <min{p, p/(B + 1)}, then
we have by Holder’s inequality
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q/p 1-q/p
J fy)dy < (J f(y)"ly,,l”dy) q Iy..l""'""""dy> <
G G G

for any bounded open set G = R*. Consequently it follows from [8, Lemma
3.3] that ueBL,(Li.(R"). For &¢>0, set kP(x)= x*(|x|> +¢*) "2, and
consider the function

Uy (x) = fk‘f’(x - f)dy.

In view of [8, Lemma 3.3], we see that (0/0x)"u,(x) tends to (0/dx)'u(x) in
L3,.(R") as ¢ >0 for any v with length m. First we show

(12.1) jl(5/5X)”ue ()17 1x,1P dx < M jf(y)"ly,.l”dy,

where |v| =m and M, is a positive constant independent of ¢ and f. For
this, note

(0/0x)"uy(x) = f(a/ 0x) kP (x — y) f(y)dy.
Setting v,(x) = J(a/axrk‘f’(x — g dy with g(y) = f(»)y,l*'?, we have

(12.2) f! Vb (X)IPdx < M, jg(y)" dy,

in view of the proof of [8, Lemma 3.2] (see also Stein [25, Theorem 2, Section
3.2, Chapter 2]). Further, we obtain

1— Blp
520105 5) = 012 ) < M [ el gy
1— Blp
[ [|x WP G
%0 — Yl
where G(x/, x,, y,,)=‘[ |Xn = Yl g0y, y)dy. As in the
oo (X — VP + %y — 3PP

proof of Lemma 6 in [9], using Minkowski’s inequality (see [25, Appendix
A.1]) and the property of Poisson integral in the half space, we find

1 xal?72(0/0x) (-, ) = (@/0%)"0,(+ » Xa) | Loqgn-1)

Blp
<M3j~l1 ,x l/ly"] '“G("xn’ yn)”pdyn
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s fll—[lx..l/lynll”“’l
= Xy — Val

Moreover, by [25, Appendix A.3], the L?-norm in R! of the right hand side
is dominated by M| g, as long as

”g( ) yn) ”pdyn

e o]
f [T —r BP||1 — 7|~ YPdr < oo,
0

which is true because — 1 < f < p— 1. Thus (12.1) is obtained with the aid
of (12.2). Letting ¢ —» 0, we establish

(12.3) Jl(a/ 0x) u(x)|”|x, 1" dx < M ,[f ) 1yal” dy,

which proves the case ¢ = 1. Now we apply the usual interpolation methods
(cf. [28], [25, Appendix B]) and prove

f¢p(l(5/5x)“u(X)l |x,1/P) dx < Mj¢p(f(Y)|an”/”)dy-

For this purpose, let y = f/p and note from (12.3)
(12.4) J[I(a/axyu(x)l |xa|"]7dx < qu[f(y)ly,.l’]”dy

for any g such that g>1and —1<yg<q—1. Since —1/p<y<1/p, we
can take q,, q, such that

1
1<qg,<p<g, and — —<yp<—;

recall that p’ and g are the exponents conjugate to p and q,, respectively. For
a > 0, decompose f as f, ; + f,,, where

fo)  if g(y) = a,

= Y
0 otherwise, g = SOyl

f;,l(y)={

and write u,; and u,, for u with f=f, | and f,,, respectively. Applying
(12.4), we have

J[I(5/3X)"ua,i(x)l | x,"]% dx < M, j[ﬁ,,i(y)lynlyl‘“dy

fori=1,2. Here remark that M, does not depend on a. Since u=u, , +u,,,
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m,({x; 1(/0x)" u(x)||x,|" > 2a})

< J[(I(a/axyua,l(x)lIx,.ly>"‘ + (I(ﬁ/aJC)"ua,z(x)lix,.l’)‘"]dx
a a

<Mj;a~® I[L,l(y)lynly]‘“ dy + Mqa™% j[fa,z(y)ly,.lyl‘“ dy,

where m, denotes the n-dimensional Lebesgue measure. Hence,

ffp,,(l(a/axru(X)l | xa]") dx = jm,.({X; 10/0x)" u(x)||x,]" > 2a})d D ,(2a)

<M, Ig(y)‘"( f "(”a-qldqb,,(za)) dy

0

+ M, jg(y)‘“(j00 a"“d(D,,(Za))dy.
9(»)
By (¢1) and (¢9),

sTUTIP,(25) < Mgt~ T0®,(21) and sTR0D,(25) > Mgt 0db,(21)

whenever 0 < s < t, where é > 0 is chosen so that g, + d < p <gq, — 8. Hence
it follows that

g(y) g(y)
J a~dd,(2a) = j ®,(2a)d(— a™) + [9()]1 " @,(29(»))

0 0

g9(»)
< qlMa¢,,(29(y))[g(y)]“'""j a’~tda + [g(»)]1" " D,29(»)
0

SMy®,(g(y) g1 *.
Similarly,

f a™”2d®,(2a) < M, P,(9(»)g(y)” .

g(»)

Now we find

J‘P,,(I(a/@x)vu(X)l |x,[dx < Myy | @,(9(»))dy = My, fd’p(f(y)lynlv)dy,
which yields the required inequality. Thus the proof of Lemma 12.1 is
completed.

REMARK 12.1. If we replace k; by R, or k¥ = D*R,,, then the same
conclusions as in Lemma 12.1 still hold.
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LEMMA 12.2. Let —1 < B <p—1. For a nonnegative measurable func-
tion f on R",

n

D,(fW)yalf'P)dy < 0 for any bounded open set G = R"
LY G

if and only if

m»

D,(f)yalfdy < 0 for any bounded open set G < R".

JG

Proor. Let ¢ >0 and B(1 + ¢"')> — 1. Then, for a bounded open set
G = R", we have

f 2,(fW)Iyal"'")dy
G

<

D,(f()|yal*'?)dy +j D,(f W) yal??)dy

J‘(yeG;f(y)”zlan"/P) (yeG; f(y)%<|yn|P/P}

< J LSOy PP P o(f () o) dy + J ®(|y, |1 +e 817 dy
¢ G

sM(ﬁ)U ¢,,(f(y))ly..l”dy+f Iy..l“”'””(p(lynl”)dy}-
G G

Since B(1 +&7')> — 1, the last integral is convergent. Thus the “if” part
follows. The “only if” part can be proved similarly.

THEOREM 12.1. Let —1 <f <p—1 and f be a nonnegative measurable
Sfunction on R" such that

(12.5) Ln P,(fW)Iyalfdy < 0.
If £<m—n/p—B/p<{+ 1, then the function
u(x) = J kie(x, y)f () dy
satisfies
(12.6) J dip(leu(x)l)lx,,l”dx < o0 for any bounded open set G c R".
G

ProoF. Since feL!R"), 1<gq <min{p, p/(1 +p)}, by the proof of
Lemma 12.1, we see that ue BL,,(L4,.(R") by [19, Lemma 5]. For a > 0, set
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Uy (x) = J ki o(x, y) f(y)dy,
B(0,2a)

U, (x) = j kie(x, ) (y)dy.
R"—B(0,2a)

Since u, is infinitely differentiable on B(0, 2a), it satisfies

J P, (1t (x)])1x, | dx < co0.
B(0,a)

On the other hand, u,(x) is of the form v,(x) = f k,(x — ) f(»)dy + w,(x),
. B(0,2a)
where w, is a polynomial. Lemma 12.1 implies

J D,(IVmva(x)] [ x,P7)dx < M P,(f)lyalP'?)dy < co.

B(0,2a)

Hence, if we note Lemma 12.2, then we have

D (|7 itz ()] x,/# dx < o0.
< B(0,a)

Therefore,

»

D,(|Vmtu(x)])| x4/ dx < 0.

v B(0,a)

Since a is arbitrary, Theorem 12.1 is obtained.

LEMMA 12.3. Let w be a positive monotone function on (0, o0) satisfying
(0l) and (02). If C, 0, (E) =0, then there exists a nonnegative measurable
function f on R" such that

J(l + 1y " f(y) < oo,

jd’p(f M)w(yal)dy < o

and

U f(x)=0  for any xe€E.

Proor. Foranya>0,C, 4, ,(ENB(0, a); B(0, a)) =0 by our assumption.
Hence we can find a nonnegative measurable function f, such that f, =0
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outside B(0, a), U,f,= o on EnB(0,a) and J D,(fa(y))w(|yal)dy < o0.

As in the proof of Lemma 6.1, we establish Bo.a

f(l + YD) fa(y)dy < M(a) ?,(fan))(|y,l) dy

B(0,a)

for some constant M(a) > 0. For a sequence {¢;} of positive numbers, consider
the function f =sup;e;f;. Then

U, f(x) 2 gU,f;= o for any xe EnB(0,j),
which shows that
U,f(x)= 0 for any xeE.
On the other hand,

J%(f Mao(lyal)dy <3, ®,(¢; ;) o(|yal) dy

B(0,))

and

J(l +IyDT"f()dy < Zj‘o"jM(j)j ?,(fi(Ma(ly.l)dy.

B(0.))
Now choose {¢;} so small that the last two sums are convergent.

LemMa 12.4. Let — 1 < fB <p—1 and let f be a nonnegative measurable
function on R" satisfying (12.5). If we define

E= {éeﬁD; f [E—=y" " f(y)dy = 00},
B(¢,1)

then Cy_pp.0,(E) = 0.

Proor. For a > 0, consider the function
Uy(x) = f [x —y["""f(y)dy.
B(0,a)
Then Lemma 12.2 yields
J D,(fD)yalf'P)dy < co.
B(0,a)
Hence, in view of Lemma 12.1 and Remark 12.1, we see that

fd’p(leua(X)I |x41/P)dx < 0.
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Define

E = {ieaD; f 1& =y =P [V uta(9)] | yal?P1 dy = 00}.
B(&,1)
Then it follows from the definition of C, 4,0, that C,_g/, ¢, (E)=0. If
we show ENB(0, a) c E’, then we obtain Cn-p/p.0,(ENB(0, a)) = 0, so that
Cn-s/p.0,(E)=0. If (edDNB(0, a)—E’, then [E—y|™ "V, u,(»)|dy

B 1D)NT1(&,1)
< o0, which together with [12, Lemma 3] implies

J 1€ =y "V u,(y)|dy < oo.
B(&,1)nT1(&,1)

By using polar coordinates, we deduce that u(£ + rn) is absolutely continuous
on [0, 1] for almost every nedB(0, 1)nT;(0, 1), and hence it follows that
u(é) < oo. Thus, £¢E, so that ENB(0, a) = E'. Now the proof is completed.

THEOREM 12.2. Let —1<B<p—1. For Ec 0D, C,, o, 4(E) =0 if and
only if Cp_g;p0,(E)=0.

Proor. The “only if” part follows from Lemmas 12.3 and 124. We
show the “if” part. For this purpose, assume C,_z, 0,(E)=0. Then, by
Lemma 12.3, there exists a nonnegative measurable function f on R" such that

J(l + D" () dy < o,

Jdip(f(y))dy <o

and
U, f(x)= o0 for any xeE,

where o =m — f/p. Consider the Bessel potential
F(x)=g,*f(x', 0) = Jga((X’, 0) — ) f(ydy
and the Poisson integral
u(x’, x,) = P, *F(x);

see Stein’s book [25] for the definitions of Bessel kernel g, and Poisson kernel
P,. First we treat the case when f is bounded and has compact
support. Thus feL?(R") for any g > 1. Then F belongs to the Lipschitz
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space 424, (R""!) and

a=1/q

1F L agea, -1y < M@ 1L/,

as long as a > 1/q, on account of [25, §4.3 of Chapter 6]. In view of [25,
(62’) and (63) in p. 152],
1/q
(J {xﬁ““—”"’leu(X)l}“x.."dX> < M(q, k) I Fllpg.s, orn-1)
b :
for any integer k greater than o — 1/p. If we set k =m > (1 + B)/q, then
j [P mu(x)|x5/7]1?dx < M(qY jf(y)" dy.
D
As in the proof of Lemma 12.1, we find

J D, (1Vu(x)|x4'?) dx < de)p(f(y))dy-
D

Since the constant M does not depend on f, this inequality holds for general
f, so that

f D,V u(x)|xEP)dx < c0.
D

By the property of Poisson integral,
lim, ;. pu(x) = oo for any (eE.

As in the proof of Lemma 12.4, set
E'={€€0D;J Ié—yl'"_"leu(y)ldy=00}-
B(%1)

Then it follows that C,, o, 4(E) =0 and u(¢ + r{) has a finite limit as r -0
for almost every {€dB(0, 1)nD whenever £€0D — E'. Therefore E = E' and
hence C,, o, 4(E) =0, as required.

By Theorem 12.2, we can rewrite our theorems by replacing the condition
Cs0,.5(E) = 0 by the condition C,_g4/, ,(E)=0. Among them, we give the
following results.

THEOREM 12.3 (cf. Corollary 10.1). Let O<mp—n<f<p-—1. Ifuis
a continuous function on D satisfying (10.4), then there exists a set E < 0D
such that C,,_4/p.0,(E) = 0 and u has a nontangential limit at any {€0D — E.

THEOREM 12.4 (cf. Theorem 104, (ii)). Let O<mp—n<p—1. If u is
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a continuous function on D satisfying
f D, (17 u(x)))]x,/™P " "dx < oo for any bounded open set G < D,
G
then there exists a set E — 0D such that C,, o (E)=0 and u has a finite

T.-limit at any {€0D — E for any y > 1.

THEOREM 12.5 (cf. Theorem 10.6). Let —1 < f <p—1 and let u be an
(m, @,)-quasicontinuous function on D satisfying (10.4). Then there exists a set
E < 0D such that C,,_g;, 0,(E)=0 and if {€0D —E, then u( +r{) has a
Sinite limit as r -0 for every {€0DNB(0, 1) except those in a set E, with
Cmno0,(E)=0.

THEOREM 12.6 (cf. Theorem 10.7). Let 0<f<p—1 and {eD. If uis
an (m, ®,)-quasicontinuous function on D satisfying (10.4), then there exists a
set E < 0D such that C,,_4,, o,(E) =0 and u({ + r{) has a finite limit as r -0
at every £€dD — E.

We now give an integral representation for Beppo-Levi-Deny functions in
the half space D.

THEOREM 12.7. Let —1<f<p—1 and let u be a function in
BL,(L%,.(D)) such that

(12.7) f D,(|Vyu(x)|xEP)dx < oo.
D
If ¢ is the integer such that £{ <m —n/p— B/p <{¢ + 1, then
u(x) = Z,l,=mb;j k% /(x, y)D*u(y)dy + h(x)
D

for almost every xeD, where h is a function which is polyharmonic of order
m in D satisfying (12.7); see Remark 9.2 for b, and k¥ ,.

This is a Riesz-type decomposition of Beppo-Levi-Deny functions as the
sum of potentials and polyharmonic functions.

Proor oF THEOREM 12.7. For yeCg (D), we have by Fubini’s theorem
and [16, (3)]

f(Zm =mD1 J k¥ (x, y)D*u(y) dy> A" y(x)dx

= 1i=mb1 f < ka,a(x, 4™ x(x) dX> D*u(y)dy
D
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= C*meb;f D*x(y)D*u(y)dy
D

=f x(y)4™u(y)dy
D

where ¢* = (— 1)"c with ¢ in Remark 9.2. Thus Lemma 12.1 establishes the
required assertion.

THEOREM 12.8. Let —1<f<p—1 and ¢ be the integer such that
£{<m-—n/p—B/p<{+ 1. If uis a function in BL,(L%,.(D)) satisfying (12.7),
then there exist a function u*e€BL,(L},.(R") satisfying

(12.8) J DIV, u*(x)||x,[f'P)dx < o0
RVI
and a polynomial P of degree at most m — 1 such that
u(x) = Z,umb;j k% :(x, y)D*u*(y)dy + P(x)
er

for almost every xeD.

To show this theorem, by the extension theorem in Stein’s book [25,
Chapter 6], we can find a function u* satisfying (12.8) such that u* =u a.e.
on D. In view of the proof of Theorem 12.8,

u*(x) = Zpu:,,.b;f k%, (x, y)D*u*(y)dy + h(x)
D

for almost every xeD, where h is a function which is polyharmonic of order
m in R" satisfying (12.8). As in the proof of [8, Lemma 4.1], we see that h is
a polynomial of degree at most m — 1.

In the same way we can prove

THEOREM 12.9. If B,/ and u are as above, then there exist a function
u*eBL,,(L},.(R") satisfying (12.8) and a polynomial P of degree at most m — 1

loc

such that
u(x) = Z"“:'"alj kz.c(x, y)D*u*(y)dy + P(x)
Rn

for almost every xeD.
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13. Logarithmic potentials
For a nonnegative measurable function f on R", we define

1

Lf(x)= flog S () dy,
|x =yl
where we always assume that
(13.1) Jf(y)log(2 + |yl)dy < 0.

In this case Lf(x) > — oo for all xeR" and |Lf|# oo.
In what follows, we investigate the behavior of logarithmic potentials Lf
at the origin, where f satisfies (13.1) and

(13.2) J‘Ddf(}’))w(lyl)dy < 00.
For xeR" — {0}, we write Lf(x)= L,(x)+ L,(x) + L;(x), where

Ly(x) = log(1/1x — )£ () dy,
J R"fB(O.lel)
. :

Ly(x)= log(1/|x — yl) f(y)dy,
JB(0,2|x|) ~ B(x, |x|/2)

L;(x) = log(1/]x — y) f(y)dy.
B(x,|x/2)

Then we can easily find
MMSJ log(2/1y1)f (y)dy
R"—B(0,2|x|)
and
L,(x) <log(2/Ix[) f(y)dy.
B(0,2|x])

For nonnegative functions ¢ and w as before, we set

K1(r) = sup,<,<; [log(1/)1[n(®1™"  with n(r) = @(r™ Mo (r)

for 0 <r<1/2 and k;(r) = x1(1/2) for r > 1/2.
The following results can: be proved in the same manner as the lemmas
in Section 2.
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LEMMA 13.1. Let 0<d<n If 0<2|x|<a<, then

Ll(X)Sf log(2/Iy)f(y)dy + Ma"~*log(2/a)
R"-B(0,a)

+MK1(IXI)<J ¢1(f(y))w(|y|)dy>,
B(0,a)

where M is a positive constant independent of x and a.

LEMMA 13.2.  If 0 < & < n, then there exists a positive constant M such that

L, (x) < Mx; (IXI)<I

B(0,2[x|)

¢1(f(y))w(|y!)dy) + M|x["~*log(1/|x])

for any xeB(0, 1/2) — {0}, where

K3(r) = <log %)supo«s,[n(t)]"1

for 0 <r <1/2 and x5(r) = k5(1/2) for r > 1/2.
For an open set G = R", we define
Cho,(E; G) = infgf D,(9(»)dy,
G

where the infimum is taken over all nonnegative measurable functions g on R"
such that g vanishes outside G and

L*g(x) = fmax {0, log| I}g(y)dy >1 for every xeE.

LEMMA 13.3. Let f be a nonnegative measurable function on R" satisfying
condition (13.2), and x be a positive function on (0, ) for which there are
positive constants M and r, such that x(r) < My(s) whenever 0 <r <s <2r <r,.
Then there exists a set E = R" such that

(i) lim, .o xern-g[x(1x1)]7! L3(x) = 0;
() Y32, [K*10@279)C, e,(E;; B) < o,
where
E; ={xeE;27 <|x| <277*1},
B, = {xeR% 27171 <|x| <27/*2},
@,(5/1)
P, (s/x(2r))

K* = SUPo <r,s<ro/2
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Using these lemmas, we obtain the following theorems on the existence
of fine limits for logarithmic potentials.

THEOREM 13.1 (cf. Theorem 3.1). If f is a nonnegative measurable function
on R" satisfying conditions (13.1) and (13.2), then there exists a set E = R"
such that

lim, o yern—g Lf(x) = Lf(0)
and
1210(27)C,,0,(E;; B) < c0.

In case Lf(0)= oo, we are concerned with the order of infinity at the
origin.

THEOREM 13.2 (cf. Theorem 3.2). Let f be a nonnegative measurable
function on R" satisfying conditions (13.1) and (13.2), and set ¥’ = k; + k3. If
lim,_,,K'(r) = o0, then there exists a set E — R" such that

lim, ¢ yern—g [K'(Ix)]~ ! Lf(x)=0
and

P K w(279)C, o,(E;; B)) < oo,

where E; and B; are as before, and

K = supo<;,s<1/2 [P1(s/x'()]/ [P (s/K'(27))].

THEOREM 13.3 (cf. Theorem S5.1). Under the same assumptions as in
Theorem 13.2,

lim, o [K' (17! Sy(Lf, 1) = 0
for ¢ > 0.

For this, it suffices to treat only L,. In case g > 1, setting A(r) =
B(0,3r/2) — B(0,r/2), 0 <r <2~!, we have

Sy(Ls, 1) < J [S,(og|- —yl, N1f(y) dy

A(r)

<M, log1/r)| f()dy

A(r)

< M, [log(1/n]Le(rH1™" ¢1(f(y))dy+M1[10g(1/r)]r“f dy

A(r) A(r)



148 Yoshihiro MizuTa

S Myki() | P1(fO)(ly)dy + M, [log(1/n]r" ™,

)
so that
lim, o ['(r)] 7' S,(L3, 1) = 0.
THEOREM 13.4 (cf. Theorem 3.3). Let f be as above. Set
K(r) = x'(r) + [0(]™ ! supo<,<,[log(1/01[@(t™ )] ™",
and assume K(r) < oo for r> 0. If lim, o K(r) = o, then
lim, o [K(1x)]7" Lf(x) = 0.
If K(r) is bounded, then Lf(0) is finite and Lf(x) tends to Lf(0) as x — 0.

CoroLLARY 13.1 (cf. Corollary 3.1). Let f be a nonnegative measurable
Sfunction on R" satisfying (13.1) and

(13.3) If (log(2 + f(y)dy < oo,

then Lf is continuous on R".

Remark 13.1. If f is a nonnegative function in L?(R"), p > 1, satisfying
condition (13.1), then Lf is continuous as a consequence of Corollary 13.1. In

this case, in view of Lemma 4.3 in [8], we find J [V (Lf)(x)]Pdx < 0.
R'l

REMARK 13.2. If f is a nonnegative measurable function on R" satisfying
condition (13.1), then there exists a set E, which is thin at the origin, such that

limx—'O.xeR"—ELf(x) = Lf(O)
and
lim, o xern—£ [10g(1/1x1)17 ' Lf (x) = 0.
These facts follow readily from Theorems 13.1 and 13.2. For other
generalizations of these facts, see Mizuta [15].

Next we consider the boundary limits of Green potentials of order n. We
recall (see Corollary 11.1) that, for a nonnegative measurable function f on
D, G,f # o if and only if

(13.4) f (I +1yD7 2y f () dy < .
D
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From Corollary 13.1, we have
THEOREM 13.5. If f is a nonnegative measurable function on D satisfying
(13.4) such that

(13.5) J S)log2+f())dy < a0

for any bounded open set D' with closure in D, then G,f is continuous on D.

LemMMa 13.4. Let o be a positive monotone function on (0, o) satisfying
(wl) and

(w5) " wr]? is nondecreasing on (0, c0) for some B < 2.

Set k3(r) = Sup, <, <1 (M) for 0 <r <27 and x4(r) = k527") for r>271.
Then

G,(x, )] ' < Mki(x,) whenever 0<y,<1 and 0<x,<2|x—y|.
Proor. If y,>x,>0 and |x — y| > x,/2, then Lemma 11.1 implies
G,(%, Y [n(y)1™ < My [n(y)]17! < M55 (x,).

If 0<y,<x,<2|x—y|, then Lemma 11.1 implies

G, (x, WM)1 ' < M,yx, 'y, [n(y)17!
=M,x; 'y Lo, D17 ¥ [o(y,)] 7!
< M;[n(x)]17 " < Mskj(x,).

Thus the present lemma is proved.

By Lemma 13.4 and the proof of Theorem 11.2, we have

THEOREM 13.6. Let w be as in Lemma 13.4. If lim,,ok5(r) = 0 and f
is a nonnegative measurable function on D satisfying (13.4) and

(13.6) J D, (fMoly,)dy < © for any bounded open set D' < D,
D

then there exists a set E = D such that
limx"—*o,xeD’ -E [K‘J:! (xn)] -1 an(x) = 0
for any bounded open set D' = D and
;°=1 K"'w(Z‘j)C,,,,,,l(EjnB(O, a); D;nB(0, 2a)) < o

for any a > 0, where K = K* in Lemma 13.3 with y = k3.
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THEOREM 13.7. Assume
13.7) o(r~Y) > Mlog(2t/r) whenever 0 <r <t
for a positive constant M and
(w6) rlo()]! is nondecreasing on (0, 00).

Let y be a positive nondecreasing continuous function on (0, ) satisfying
conditions (4,) and (Y1), and set

K@) =15() with t3(r) = inf, <, {(t)info<,<, [log (2t/5)]1" ' o(s™ )}
for 0 <r < 1. If fis a nonnegative measurable function on D satisfying (13.4)
and (13.6), then there exists a set E = 0D such that H,.(E) =0 and

limx—)f,xeTW({,a) an(x) = 0

for any £€0D — E and a > 0.

Proor. For (e€dD, as in the proof of Theorem 11.3, we write
G,f =v, + v, + g,, and consider the set

E= {feaD; lim sup, .o [H'(r)]™" . (fMaw(y,)dy > 0}-

DnB(,r)

Then, by (13.6) and Lemma 7.2, we see that H,.(E) = 0. Using (w6), we have
for 6, 0<d6 <2,

’_IJ ynf)dy < Mi[o(r™ Do (r)]™" 2, (f) o) dy + M,r"~°
DnBE,r) DnBE,r)

< My[1(0]7! P, (f)o)dy + Mr"~°.
DnB(,r)

Hence, if £€dD — E, then

lim, ,or™! f yaf () dy = 0.
DnB(&,r)

Since Lemma 11.2 is still true in the present case (x = n), g.(x) tends to zero
as x> ¢ xeD. By Lemmas 11.1 and 13.4, we find

v (x) < f Gu(x, ) [0 )17 @1 (f () dy
DnB(&,2|x—&|) — B(x,xn/2)

+ f Gu(x, y)ys®dy
DnB(&,2]x—¢&|)
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< M;[t5(x,)]71 D,(fW) o) dy + My|x — £"°
DnB(&,2)x—¢&))
and

vy(x) < M4f log(3x,/Ix =y f(y)dy

B(x,xn/2)

< Ms[@(x,)]17* {SUPo <y <2 [108 3x,/N] [0~ )17} . (f)w(ya)dy

B(x,%n/2)
-3
+ Msx,

< Ms[fi(xn)]“f P, (fe()dy + Msx, ™.

B(x,xn/2)
Hence it follows that
lim, s ceryem [01(X) + 02(x)] =0
for any é€dD — E and any a > 0. Now Theorem 13.7 is proved.
The case p > 1 is quite similar to Theorem 11.3. In fact we can prove
THEOREM 13.8. Assume that p > 1 and (w4) holds. Let Y be a positive
nondecreasing continuous function on (0, ) satisfying (Y1), and set
1 1/p’
k() = r( j [r"-"”"n(t)r"’/vt-*dr) :
14(r) = inf, ¢, < [k4 (D177,
h'(r) = 74y (1)

for 0<r<27!. If f is a nonnegative measurable function on D satisfying
(13.4) and (11.2), then there exists a set E < 0D such that H,.(E) =0 and

limxag,xsm(g.a) G,f(x)=0
for any £€0D — E and a > 0. If in addition t,(0) > 0, then
lim, g ep G, f(x) =0
for any E€0D.
REMARK 13.3. If w(r)=r® and B > n(p — 1), then
()~ e(r~l) as r—0.

Here we may assume n—np + f <n— 1, when we evaluate the size of the
exceptional sets in the boundary 0D. In the bordering case f=np—1, w
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does not satisfy (w4). In this case, however, by (13.4),

limr-’or_IJ‘ ynf(Y)d)’:O
DnB(,r)

for every ¢€dD — E, where H,(E) =0. Hence the proofs of Theorems 13.7
and 11.3 show that G,f has nontangential limit zero at almost every boundary
point of D. '

Corresponding to Theorems 8.1 and 11.4, we also 1

THEOREM 13.9. Let w and w* be positive nondecreasing functions on the
interval (0, o0) satisfying (wl), (w6) and, further,

j w*(s)s”lds<w()  for any r>

0

Let Y be as in Theorem 13.8, and define
h*(r) = t5(Y(r)) with 3(r) =inf,_, ., {0*(t)infy., ., [log(2t/s)] To(s™ 1)}

for 0O<r< 1. If f is a nonnegative measurable function on D satisfying
conditions (13.4) and (13.6), then there exists a set E such that H(E) = 0 and

lim,,G,f(&@) =0 for any Ee€dD —E,
where £(r) = & + P(r) with ¥(r) = (r, Y5 (r),.., ¥u-1(r), Y(r)).
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