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ABSTRACT. We study the uniqueness of meromorphic functions when two nonlinear
differential polynomials generated by two meromorphic functions share the same simple
and double 1-points and improve an earlier result given by Fang-Fang [1] and a recent
result of Lahiri-Mandal [10].

1. Introduction definitions and results

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. If for some a e CU{o0}, f —a and g — a have the
same set of zeros with the same multiplicities, we say that f and g share
the value @ counting multiplicities. Let m be a positive integer or infinity
and ae CU{oo}. We denote by E,)(a; f) the set of all a-points of f with
multiplicities not exceeding m, where an a-point is counted according to its
multiplicity. If for some a e CU{0}, E,)(a; f) = E.)(a;g) we say that f, g
share the value a counting multiplicities.

During the last few years a great deal of work has been carried out on the
uniqueness problem concerning differential polynomials generated by two
meromorphic functions. (cf. [1], [2], [4], [6], [9], [10], [11], [12]). In [4, 6]
Lahiri studied the uniqueness problem of meromorphic functions when two
linear differential polynomials share the same 1-points. In [4] Lahiri asked the
following question: What can be said if two non linear differential poly-
nomials generated by two meromorphic functions share 1 counting multi-
plicities? Several authors like Fang-Fang [1], Fang-Hong [2], Lin [11], Yi-Lin
[12] investigate the problem of uniqueness of meromorphic functions when two
nonlinear differential polynomials share the same 1-points.

In 2001 Fang and Hong [2] proved the following result.
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THEOREM A. Let f and g be two transcendental entire functions and n > 11
be an integer. If f"(f — 1)f' and g"(g — 1)g’ share 1 counting multiplicities,
then f =g.

Also in 2002 Fang and Fang [1] improved the above result and proved the
following theorem.

THEOREM B. Let f and g be two nonconstant entire functions and n > 9 be
an integer. If Ex)(1; f"(f = 1)f") = E5(1:9"(g — 1)g"), then [ =g.

The following example shows that Theorem B is not valid when f and g are
two meromorphic functions.

ExamPLE 1.1.

(n+2) e+ +elitl):
(A1) 14et 4 4 etz

and

(n+2) 1+e +---+e”
(n+1) 1 +ez+4 .-+ etz

g(z) =

Clearly f(z) =eg(z). Also f*(f—1)f’ and ¢"(g—1)g’ share 1 counting
multiplicities but f # g.

So it is a natural query that if in Theorem B f and g be two non constant
meromorphic functions then under which condition f = ¢?

In this regard recently Lahiri and Mandal [10] proved the following result
for meromorphic functions.

TaeorReMm C. Let f and g be two transcendental  meromorphic
functions such that ©(co; f) + O(o0;1g) >4 and n>17 be an integer. If

E2 (l’f (f )f)*E2)(l’g (g_l) ), then f—g

Now one may ask the following question which is the motivation of the
paper: Is it possible in Theorem C to reduce the lower bound of n from
17? In this paper we give an affirmative answer to the above question. We
now state the following theorem which is the main result of the paper.

THEOREM 1.1. Let f and g be two nonconstant meromorphic functions

and n >max{ — 5 min(@(o0; ), O(0;9g)), 7909 } be an integer,
where  @(o0; f) 4+ @(c059) > 0. If Ez (LS =1Df") =Ey(lig"(g — 1g')
then f =g.

From Theorem 1.1 we can immediately deduce the following corollary
which improve Theorem C.
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CorROLLARY 1.1. Let f and g be two nonconstant meromorphic

functions such that ©(co; f) + O(o0;g) > -4, and n(=14) be an integer. If

Exn(L; f"(f = 1)f") = E5(1;9"(g — 1)g’) then [ =g.

The following example shows that the condition @(o0; f) + O(0;9) > ;34

is sharp in Corollary 1.1.
)(1 —hmhy (n+2)(1—h+! 1)
ExampLE 1.2 [9]. Let f— e 9= (n+1)(lfh”+2 and h—ﬁ

2ni
n+2

() (bR 4 h") . (n2) (A hth 4 Ah") .
f*(n+1)(1+h+h2+~~+h~+l) and g = ho rEr e - So it follows  from

Mohon’ko’s Lemma {See [13]} T'(r,f) = (n+ 1)T(r,h) + O(1) and T(r,g) =
(n+ 1)T(r,h) + O(1). Further we see that / # «,«> and a root of 4 = 1 is not
a pole of f and g. Hence O(c0; f) = O(0;g) =-2r. Also f"! (%—ﬁ)

where o = exp( and n is a posmve integer. Since 71 %1 we have

n+1

=" (7 —7h1) and £7(f = 1)f' =g"(g — g’ but f #g.

Though we use the standard notations and definitions of the value
distribution theory available in [3], we explain some definitions and notations
which are used in the paper.

DEerFINITION 1.1 [5]. For ae CU{o0} we denote by N(r,a;f|=1) the
counting function of simple a points of f. For a positive integer m we denote
by N(r,a; f|<m) (N(r,a; f|> m)) the counting function of those a points of f
whose multiplicities are not greater (less) than m where each a point is counted
according to its multiplicity.

N(r,a; f|<m) and N(r,a; f |> m) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r,a; f|<m), N(r,a; f|>m), N(r,a; f|<m) and N(r,a;f|>m) are
defined analogously.

DEFINITION 1.2 (cf. [16]). We denote by N»(r,a; f) the sum N(r,a; f)+
N(r,a; f|>2).

DeriNITION 1.3, Let m be a positive integer and for a € C, E,(a; f) =
E,y(a;g). For an a-point z of f, g, we deni)te by ,u(z,a,f_'), w(z,a,g) their
multiplicities respectively. We denote by Np(r,a;f,g) (Np(r,a;g,f)) the
intregeted reduced counting function of a-points z with u(z,a, f) > u(z,a,g) >
m+1 (u(z,a,9) > u(z,a, f) =m+1), by ]\_fg’ﬂ(r,a;f, g) the integrated
reduced counting function of those a-points z with wu(z,q,f) = u(z,a,9) >
m+1, by N (r.a; f|g#a) (N (r,a;g| f #a)) the integrated reduced
counting functions of a-points z with wu(z,a,f)>m+1 and ¢g(z) #a
(u(zya,9) =m+1 and f(z) # a).
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DErINITION 1.4, We denote by N(r,a; f |=k) the reduced counting func-
tion of those a-points of f whose multiplicities is exactly k& where k > 2 is an
integer. For k=1 we refer Definition 1.1.

DeriNiTioN 1.5 [7]. Let a,b e CU{o0}. We denote by N(r,a;f|g=>)
the counting function of those a-points of f, counted according to multiplicity,
which are b-points of g.

DEerFINITION 1.6 [7]. Let a,b e CU{cc}. We denote by N(r,a; f|g # b)
the counting function of those a-points of f, counted according to multiplicity,
which are not the b-points of g.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let f, g, F, G be four nonconstant meromorphic functions. Henceforth we
shall denote by & and H the following two functions.

h _ f—// B 2f/ B g_// 3 2g/

S =1 g g-1

H _ F/l 2F/ G// 2Gl
“\F F-1 G G-1)

Lemma 2.1 [10]. If f, g be two nonconstant meromorphic functions such
that E\(1; f) = E(1;9) and h #0 then

and

N(r,1; f|< 1) < N(r,0:h) < N(r, 005 h) + S(r, /) + S(r,9).
Lemma 2.2, Let Ey(l;f) = Ey(l;g9) and h #0. Then

N(r,o0;h) < N(r,0; f|=2) + N(r,0;g|> 2) + N(r,00; f |=>2) + N(r, 059> 2)

3

+ NP L flg# )+ N (r,Lig| f # 1)+ No(r,1; f,g)

+NL(V>1;g>f)+N0(r70;f/)+]v0(rvo;g/)v

where No(r,0; 1) is the reduced counting function of those zeros of f' which are
not the zeros of f(f —1) and No(r,0;g') is similarly defined.

ProoF. We can easily verify that possible poles of /i occur at (i) multiple
zeros of f and g, (ii) multiple poles of " and g, (iii) the common zeros of f — 1
and g — | whose multiplicities are different, (iii) those 1-points of f* (g) which
are not the l-points of g (f), (iv) zeros of f’ which are not the zeros of
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f(f = 1), (v) zeros of ¢’ which are not zeros of g(g — 1). Since all the poles of
h are simple, the lemma follows from above.

LemMa 2.3 [8]. If N(r,0; f%)| f #0) denotes the counting function of
those zeros of f*) which are not the zeros of f, where a zero of f® is counted
according to its multiplicity then

N(r,0; f9 | f #0) < kN(r, 00; f) + N(r,0; f |< k) + kN(r,0; £ |= k) + S(r, f).
LeMMA 2.4. Let Ey(1;f) = Ey(l;9). Then

N 1519 # 1) < 3N (0 1) + 3 N 05 ) = 3 Nolr,0: 1) + S0, 1),

where Ny(r,0: is the counting function of those zeros o which are not the
h No(r,0; f/ h g h " which h

zeros of f(f —1).

Proor. Using Lemma 2.3 we get

N 15/ g # 1) < N(r, 1 /|2 3)

IA

1 oo

< SN0 |f #0) =3 Nolr, 0: 1)

1 - 1 - 1
=< EN(’%O;f)+§N(V700;f)—ENO(’GO;f/)"‘S('ﬁf)-
Lemma 2.5. Let Ey(l;f) = Ey(l;9). Then

ANL(r 1 f1g) + 2NL(r 159, /) + 2N (r, 1 f,g) + N(r, 15 f |=2)
—'_ZJVB(V71u(']|f5‘é 1) SN(V,I,Q)_N(}’,I,Q)

Proor. Since E)(1;f) = Ey(l;g), we note that the simple and double
1-points of f and g are same. Let zy be a 1-point of f with multiplicity p and
a l-point of g with multiplicity g. If ¢ =3 the possible values of p are as
follows (i) p=3 (ii) p=4 (iii) p=0. Similarly when ¢ =4 the possible
values of p are (i) p=3 (ii)) p=4 (iii)) p=5 (iv) p=0. If g=5 we can
similarly find the possible values of p. Now the lemma follows from above
explanation. This completes the proof of the lemma.

LemMMa 2.6 [14]. Let [ be a nonconstant meromorphic function and
P(f)=ao+a f+af?+ - +af", where ay,ai,a;...,a, are constants and
ay, #0. Then T(r,P(f)) =nT(r,f)+ O(1).
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LemMma 2.7 [10]. Let f and g be two nonconstant meromorphic functions.
Then

f"f=101"g"(g—1Dg" #1,
where n > 5 is an integer.

Lemma 2.8 [10]. Let f and g be two nonconstant meromorphic functions
and

Yy 1 _ o+l 9 1
=7 (n+2 n+1> and Gi=9g (n+2 n+1)’

where n >4 is an integer. Then F| = G| implies F| = G|.
LemMMa 2.9 [10]. Let f and g be two nonconstant meromorphic functions

such that

)

O(0; f) + O(0;g) > P

where n > 2 is an integer. Then
f" N af +b) = g™ (ag + b)
implies [ =g, where a and b are finite non-zero constants and n is an integer.

Lemma 2.10 [15]. Let f be a nonconstant meromorphic function. Then
N(r,0; f ) < kN(r,00: f) + N(r,0; ) + S(r. f).
Lemma 2.11.  Let Ey(1;f) = Ey(l;9) and h#0. Then
T(r,f)+ T(r,g) < 2{Na2(r,0; f) + Na(r, 0; f) + Na(r, 0y g) + Na(r, 003 )}
FNE LS g # )+ MO g | f # 1) = 2N2(r.1: £ g)
m(r, 1; f) —m(r, 1;9) + S(r, f) + S(r,9).

Proor. By the second fundamental theorem of Nevenlinna we get

(21> T(nf)—&-T(r,g) SN(r,O;f)—l—N(r,oo;f)—&-]V(nO;g)—i—]V(noo;g)

+N(r,1;f)+]V(r,1;g) —No(l’,o;f/) —N()(V,O;g/)
+ S0, f)+ S, g).

By Lemmas 2.1, 2.2 and 2.5 we get
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(22)  N(r,L;f) +N(r,1:g)
SN Lfl=1)+N(r, 1 f[=2)
+ Ni(r 1 f.9) + Ni(r, 19, /) + N5 (.1 /. 9)
+NB(r 1 f g # 1)+ N(r, 159)
< N0, f|=2)+ N(r,0; f|=2) + N(r,0;g > 2)
+ N(r, 039> 2) + NP(r, 15/ [g # 1)
+ NP Lig|f # 1)+ No(r, 15 f,9) + Ni(r, 159, /)
+ No(r,0; f") + No(r,0;9") + N(r, 1; f |=2)
+ NL(r, 15 £,9) + Ni(r 19, /) + NR(r, 1 £,9)
+NE( 1 19 # 1)+ N(r, 13.9) = 2N5(r, 15 £, 9)
—2Ni(r,1;f,9) = 2Ni(r, 1,9, f) = N(r, 15 f |=2)
—2NP(r, Lig| f # 1)+ S(r, /) + S(r,9)
< N(r,0; f|=2)+ N(r,0; f|=2) + N(r,0;g9|= 2)
+ N(r,0059]2 2) +2NB(r, 15 f | g # 1) + T(r,9)
m(r,1;9) + O(1) = Nj(r,1:.f,9) = NE(r, 19| £ # 1)
+ No(r,0; /) + No(r,0;9") + S(r, f) + S(r, ).
From (2.1) and (2.2) we get
(2.3)  T(r,f) < No(r,0; f) + Na(r, 003 f) + Na(r,0;9) + Nao(r, 003 g)
+2NB(r 1 f g # 1) = NG (r, 1 £,9) = NP (r, 1ig|f # 1)
—m(r,1;9) + S(r, f) + S(r, 9).
Similarly we can obtain
(24)  T(r,g) < Nao(r,0; f) + Na(r, 003 f) + Na(r,0;9) + Na(r, 005 g)
+2NB(r 159 | £ # 1) = NE(r 13 /1) = NP 1 /g # 1)
—m(r, 1; 1) + S(r, f) + S(r,g).

Adding (2.3) and (2.4) we get the conclusion of the lemma.
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LeEMMA 2.12. Let f and g be two meromorphic functions and n > 7 be an
integer. Also let F=f"(f—1)f", G=g"(g—1)g’ and O(c0; )+ O(0;g) >
w1
b+1)G+(a—-b-1)

2. F =
235) bG+ (a—b) ’

where a # 0, b are two constants then f =g.
PrOOF.  Since
T(r, F)=T(r,/"(f = 1S

<T(r/"(f=1D)+ T [
<+ DT f)+2T(r, f) + S0, f)
= (14 3)T(r, 1) + S(r. /)

and

T(r,G) < (n+3)T(r,9) + S(r,9)

it follows that S(r, F) can be replaced by S(r, /) and S(r, G) can be replaced by
S(r,g). Using Lemma 2.6 we note that

18+ m(r ) = Moo *0 = D7) 4" = D7)+ (17

> N(r,00; f"(f = 1)) + N(r, 005 f") +m(r, ["(f = 1))
= (n+ DT (r,f) + N(r,00; /') + O(1).
Therefore
(26)  T(rF)=(n+1OT(rf) =T [") + N0 )+ N(r,0; 1) + S, /)
> (n+ DT (r, f) = T(r,f) + N(r,0: ) + N(r,0: /') + S(r, /)
=nT(r, )+ N(r,0: f) + N(r, 0, /') + S(r, [).
Similarly we can obtain
(2.7) T(r,G) = nT(r,g) + N(r, 53 9) + N(r,0;¢') + S(r,g)

Without loss of generality we suppose that {r>0;T(r,f) < T(r,g)}, is of
infinite linear measure. Now we consider the following cases.
Case I b #0,—1: If a—b—1+#0 then from (2.5) we get

— a—b—1 —
N(I’,—ﬁ,G> :N(V7O,F)
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By the second fundamental theorem and Lemma 2.10 we get
_ _ _ —-b—1
T(r,G) < N(r,0;G)+ N(r,0;G) +N(r, - abT; G> + S(r, G)

= N(r,0;G) + N(r,0; G) + N(r,0; F) + S(r, 9)
< N(r,00;9) + N(r,0;9) + N(r,1;9) + N(r,0;¢)

+ N, 0; f) + N(r, 15 f) + N(r,0; f') + S(r, 9)
< N(r,00;9) + N(r,0;9) + N(r,1;9) + N(r,0;¢)

+ N(r,00; f) +2N(1,0; f) + N(r, 15 f) + S(r, 9)
<2T(r,g) + N(r,00;9) + N(r,0,g") +4T(r, f) + S(r,9)
< 6T(r,g) + N(r,0;9) + N(r,0;9") + S(r, 9).

Hence by (2.7) and for n > 7 we see that {r > 0;(n — 6)T(r,g) < S(r,g9)}, is of
infinite linear measure which is impossible.
Next if a—b—1=0 then from (2.5) we get

(b+1)G
bG+1

So
— 1 —
N(r,—g; G) = N(r,o0; F)
By the second fundamental theorem of Nevanlinna and Lemma 2.10 we get
_ _ _ 1
T(r,G) < N(r,0;G) + N(r,0; G) +N(r,b;G) + S(r,G)

< N(r,00;9) + N(r,0;9) + N(r, 1;9)

+ N(r,0;9") + N(r, 00; f) + S(r,9)
< 2T(r,g) + N(r,00;9) + N(r,0:¢") + T(r, ) + S(r,9)
<3T(r,g) + N(r,0;9) + N(r,0;¢") + S(r,9).

Again from (2.7) and for n > 7 we see that {r > 0;(n —3)T(r,g) < S(r,9)}, is
of infinite linear measure, which is a contradiction.
Case II: If b= —1 (2.5) becomes
a

(a+1)—G°
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If a+ 150 then

N(r,a+1;G) = N(r,0; F)

we deduce a contradiction as in Case I.
If a+1=0 then FG=1 ie.

=099 —-1)g' =1,

which is impossible by Lemma 2.7.
Case III: If b =0 then (2.5) gives

_Gta-1
R

F

If a—1%#0 then

N(r,1 —a;G) = N(r,0; F)

We can similarly deduce a contradiction as in Case I.
Ifa—1=0then F=G. Let F/ =F and G = G. Then by Lemma 2.8
we have F| = Gj.

Therefore
wir( S _ 1 _ i 9 1
! (n+2 n+l)_g (n+2 n+1)'

Hence using Lemma 2.9 for a =15 and b == we get [ =g.

3. Proof of Theorem 1.1

Let F and G be defined as in Lemma 2.12. Suppose H # 0. Then from
Lemmas 2.11 and 2.4 we get

3.1) T F)+T(rG)
< 2{Na(r,0; F) + Na(r, 00; F) + Na2(r,0; G) + Na(r, 00; G)}
+%{]V(r,0;F) + N(r,00;F) + N(r,0: G) + N(r,0; G)}
+S(r,F)+ S(r,G)
<2{2N(r,0; f) + N(r, 1; /) + N(r,0; /") + 2N (r, 00; f)}

+ 2{2N(r,0;g) + N(r,1;9) + N(r,0;4") + 2N(r, c0; 9)}



A uniqueness result on some differential polynomials sharing 1-points 407

3 N0 1)+ N 15 1) + N 0: 1)+ N 01 1)

+ N(r,0;9) + N(r,0;9) + N(r, 1;9) + N(r,0;¢")}
+ S, )+ S(rg)

gN(r Of)—i-SN(r,l,f)—&-;N(rOf) %]V(noo;f)
—&-% (rOg)-l—;N(r,l,g)—F;N(rOg) %]V(rooc)

+ 80 )+ S(r.9).

Now using (2.6) and (2.7) in (3.1) and by Lemma 2.10 we obtain

(3.2) nT(r, f)+nT(r,g) <TT(r, f) —&—%N(r, 0; /) + % N(r, 00; f)
2
+S(r, )+ S(r,9)

17

ST f) 45 T(rg) + 5N (003 1)

+5N(r,00;9) + S(r, 1) + S(r,9).

3 7 -
+7T(r,g9) +=N(r,0;9") + EN(r 00; ¢g)

So for 0 <&<n—2Z+5min{O(w0;f);O(x0;9)} we get from (3.2)

2 2
(n=Z 500 ) =) 7001+ (-5 + 56(0030) ) T00)
< S(r,f)+S(r,9),
which is a contradiction. Hence H =0. So

(b+1DG+(a-b-1)

F =T ta—b

Also by the given condition of the theorem @(o0; f) + O(w0;g) > %. So by

Lemma 2.12 we obtain f =g. This completes the proof of the theorem.
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