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ABSTRACT. Let R be a complete discrete valuation ring of equal characteristic
p>0. In this paper we investigate finite and flat morphisms f:Y — X between
formal R-schemes which have the structure of an étale Z/p"Z-torsor above the generic
fiber of X, for n = 1,2, with some extra geometric conditions on X and Y. In the case
n =1, we prove that f has the structure of a torsor under a finite and flat R-group
scheme of rank p and we describe the group schemes that arise as the group of the
torsor. In the case n =2, we describe explicitly how the Artin-Schreier-Witt equations
describing f* on the generic fiber, locally, degenerate. Moreover, in some cases where
f has the structure of a torsor under a finite and flat R-group scheme of rank p2, we
describe the group schemes of rank p? which arise in this way.

Introduction

Let p > 0 be a prime integer. Let R be a complete discrete valuation ring
of equal characteristic p, with fraction field K, and residue field k. Let X be a
formal R-scheme of finite type, which is normal, connected, and flat over R.
Assume that the fibers of X (over Spec R) are geometrically integral. Let
f:Y — X be a finite, and flat, cover of degree p”, with Y normal. Assume
that f has the structure of an étale torsor; with group Z/p"Z, above the
generic fiber Xx := X xg K, of X. Further, suppose that the special fiber
Yi:=Y xgk, of Y, is reduced. In this paper we are interested in describing
the map f, and its special fiber f; : Y — X;. One of our main results is the
following:

THEOREM 2.2.1. Assume that deg(f)=p (ie. n=1). Then the cover
f Y — X has the structure of a torsor, under a finite and flat R-group scheme
of rank p.

Moreover, we give an explicit description of the group schemes which appear as
the group of the torsor in 2.2.1 (cf. 2.1). More precisely, we provide integral
(local) equations for the torsor f: Y — X, which also provide, by reduction,
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(local) equations for its special fiber f; : ¥, — Xj. Next, we investigate covers
of degree p>. Our main result is theorem 3.3.3. We are able in 3.3.3 to find
“integral” equations for f, which provide (by reduction) equations for its
special fiber f : Yx — Xj. In other terms, we describe how the Artin-Schreier-
Witt equations of degree p’> degenerate.

The proof of 3.3.3 is rather involved, and uses the technical lemma 3.3.2.
It is based on a (non-trivial) iteration of the process used in the proof of
theorem 2.2.1. This method can, in principle, be generalized to provide in-
tegral equations for p"-cyclic covers f: Y — X as above (for n > 2). How-
ever, this leads to quite complicated equations, which are not so easy to write
down.

In the case of covers of degree p?> we exhibit certain cases as above, where
f has the structure of a torsor, under a finite and flat R-group scheme of rank
p? (cf. 3.3.3, and 3.3.4). In these cases we explicit the group schemes which
appear as groups of the torsor. These group schemes are basically obtained by
“twisting” the Artin-Schreier-Witt theory (cf. 3.2, for more details). We are
also able to associate some degeneration data to the cover f, which determine
explicitly the cover f; (cf. 3.3.5).

In [S-2] we apply the results of this paper to the study of the semi-stable
reduction of cyclic Galois covers, of degree p, and p?, in equal characteristic p.
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0. Notation

In this paper we will adopt the following notations: p >0 is a fixed
prime integer.

For a positive integer n > 0, W, denotes the fppf-sheaf which is repre-
sented by the group scheme W, y,, of Witt vectors of length n, over F,.

If X is a scheme, and G is a group scheme, H'(X,G) will denote the
cohomology groups, for the fppf-topology, of X with values in the sheaf which
is represented by G. Recall, that if G is a smooth commutative group scheme,
then the H'(X, G) coincide with the cohomology groups for the étale topology.
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Also, H'(X,W,) coincides with the cohomology group for the Zariski to-
pology, and the étale topology.
For computations, in the sheaf W,, we will use the following notation
XP4+YP—(X+7Y)
p

W(X,Y)= eZ[X,Y].

We will frequently use the following (well-known) congruence

WX, )= ~——Xxky?* mod p.

1. Artin-Schreier-Witt theory of p”-cyclic covers in characteristic p

In this section, we review the Artin-Schreier-Witt theory (first developed in
[W]) which provides, in characteristic p, explicit equations for Z/p"Z-torsors.
We refer the reader to a modern treatment of the theory in [D-G].
Throughout this section X denotes a scheme of characteristic p. Also, any
addition or subtraction of Witt vectors will mean the addition and subtraction
in Witt theory.

1.1. We denote by F the Frobenius endomorphism of W,, which is locally
defined by

F.(x1,x2, .., x,) = (xV, x,oo0 x2),

and by Id the identity automorphism of W,.
We have an exact sequence of group schemes over F:

iy Wn F-Id Wn 07

(1) 0— (Z/p"2Z)

which is exact for the étale topology on X. Here, (Z/p"Z) denotes the con-
stant group scheme defined by the cyclic group (Z/p"Z), and i, is the natural
monomorphism which sends 1 € Z/p"Z to 1 € W, (cf [D-G], chapitre 5, 5.4).
From the long cohomology exact sequence associated to (1), one deduces the
following exact sequence:

2) rx,w,) = roe,w,) — H\(X,2./p"Z)

— H' (X, w,) 2 v (x, W),
Assume that X = Spec 4 is affine, in which case

HY (X, W,)=0.
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Hence, we have an isomorphism
H'(Spec 4,2 /p"Z) ~ W,(A)/Im(F — Id).

The above isomorphism has the following interpretation. To an étale Z/p"Z-
torsor

f:Y — X = Spec 4,
corresponds a Witt vector

(a1,az,...,a,) € Wy(A),

of length n, which is uniquely determined, modulo addition of elements of the
form

F.(b1,by,...,by) — (b1,b2, ... by).
Further, the equations
F.(x1,x0, ..., x0) — (X1, X2, ..., Xn) = (a1,a2, ..., ay),

where the x; are indeterminate, are equations for the torsor f. More precisely,
there is a canonical factorization of f as

Y=Y, v oy oy =,
where each
Y; = Spec B;,
is affine, and

fi: Y;:=Spec B; — Y;_| := Spec B;_i,

is the étale Z/pZ-torsor corresponding to the algebra extension B,_; — B,
where

Bl' = Bifl [Xi}.

In the general case, where H'(X, W,) # 0, the above equations provide local
equations for an étale Z/p"Z-torsor, in characteristic p.

1.2. Examples. We follow the notations in 1.1.
1.2.1. Z/pZ-Torsors. Let
f:Y—-X

be an étale Z/pZ-torsor. Then f is locally given by an equation
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x’ —x=a,

where a is a regular function on X, which is uniquely determined up to
addition of elements of the form b” — b.

1.2.2. Z/p*Z-Torsors. Let
fY =X,
be an étale Z/p*Z-torsor. We have a canonical factorization of f as
v, =v%volx,

where f>, and fi, are étale Z/pZ-torsors. The torsor f is locally given, if
p # 2, by equations of the form

F'(xlﬂXZ) - (xl,xQ) = (X{) - Xl,Xé] — X2+ W(xf)v 7)61)) = (alaa2)a
which can be rewritten as
L
F.(x1,x2) — (x1,x0) = | x — x1,x§ —x3 — ZEX{’ ) = (a1, ),
k=1
resp.
F.(x1,x2) — (x1,x%2) = (x2 — X, X — Xy 4 X — xz) = (ay,a2)
) ) 1 ) Xy 1 1 yad2),

if p =2; for some regular functions a; and a, on X.
Moreover, the Witt vector

(a1, a2),

is uniquely determined, up to addition (in the Witt theory) of vectors of the
form

(b7,05) — (b1, b2),
which if p # 2 equals
(bY = b1, b5 — by + W(b{, ~b1)),
resp. equals
(bF = b1,03 — by + b} — bY),
if p=2. Thus, locally, the torsor f; is defined by the equation
x! = x1 = a,

and the torsor f, by the equation
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P*ll

k+p—k

xf—xz:az—W(xf’,—xl):ag—FE %xf’ =
=1

if p#2, resp.
x%—xzzaz—xf—i—xlz,
if p=2. Moreover, if we replace the vector
(a1,a2),
by the vector
(a1,a2) + (b], b5) — (b1, b2),
the above equations are replaced by

2
xlp—xlzal—kb{ — b

and
LIV IR g pprava
xf—xz:az—i-bg—bz—l—zzxf’ > —Zzb{’ >
k=1 k=1
p—1 k—1
-1 -
B e A
k=1
if p #2, resp.
X3 =Xy =X} — X +ay+ b3 —by+ b} —b} —ay(b} —by),
if p=2.

2. Degeneration of p-cyclic covers in equal characteristic p > 0

In this section we use the following notations: R is a complete discrete
valuation ring of equal characteristic p > 0, with perfect residue field k, and
fraction field K := Fr R. We denote by 7 a uniformising parameter of R.

2.1. The group schemes .#, (cf. also [M], 3.2). Let n> 0 be an integer,
and let G, gr = Spec R[T] be the additive group scheme over R. The map

¢n :(;LR - (LLRa
given by
T — TP —glr=nr,
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is an isogeny of group schemes. The kernel of ¢, is denoted by .#, r, or
simply .#,, if no confusion occurs. Thus,

My, = Spec R[T]/(T? — nP=1"T),

and ./, is a finite and flat R-group scheme of rank p. Further, the following
sequence is exact:

(3) 0 — My — Gur 2> Gy r — 0.

If n =0, the sequence (3) is the Artin-Schreier sequence, and .# is the étale
constant group scheme (Z/pZ),. 1If n > 0, the sequence (3) has a generic fiber
which is isomorphic to the étale Artin-Schreier sequence, and a special fiber
isomorphic to the radicial exact sequence

) 0= oy — Gui — Gy — 0.

Thus, if n > 0, the group scheme .#, has a generic fiber which is étale, iso-
morphic to (Z/pZ)g, and its special fiber is isomorphic to the infinitesimal
group scheme o, .

Let X be an R-scheme. The sequence (3) induces a long cohomology
exact sequence
5)  I(X,0x) % T(X,0x) — HY (X, 4t,) — H'(X,0x) " H'(X, 0y).
The cohomology group

HY(X,.,)

classifies the isomorphism classes of fppf-torsors with group .#,, above X.
The exact sequence (5) allows the following description of .#,-torsors. Lo-
cally, a torsor

f:Y—-X
under the group scheme .#,, is given by an equation
T? — g~ — a,

where 7 is an indeterminate, and « is a regular function on X which is
uniquely determined, up to addition of elements of the form b? — (=17} (for
some regular function ). In particular, if H'(X,0x) =0 (e.g. if X is affine),
then an .#,-torsor above X is globally defined by an equation as above.

2.2. Degeneration of étale Z/pZ-torsors. In what follows let X be a
formal R-scheme of finite type which is normal, connected, and flat over R.
Let Xgx := X xgr K (resp. X := X Xgk) be the generic (resp. special) fiber of
X. By “generic fiber” of X we mean the associated K-rigid space (cf. [B-L]).
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We assume that the special fiber X} is integral. Let # be the generic point of
the special fiber Xj, and let ¢, be the local ring of X at #, which is a discrete
valuation ring with fraction field K(X) := the function field of X. Let

k Yk — Xk,
be a non-trivial étale Z/pZ-torsor, with Yx geometrically connected. Let
K(X)— L,

be the corresponding extension of function fields. The main result of this
section is the following.

2.2.1. THEOREM. Assume that the ramification index above 0, in the
extension K(X)— L, equals 1. Then the torsor fx: Yx — Xk extends to a
torsor f:Y — X under a finite and flat R-group scheme of rank p, with Y
normal.

Let 6 be the degree of the different above n, in the extension K(X) — L.
Then the following cases occur:

a) 0=0. In which case f is an étale torsor under the group scheme M,
and fi: Yx — Xy is an étale Z./pZ-torsor.

b) 0>0. In which case 6 =n(p—1), for a certain integer n > 1, and f
is a torsor under the group scheme M,. Further, in this case fi : Y, — Xy is a
non-trivial radicial torsor under the k-group scheme w,,.

Note that starting from a torsor fx : Yx — Xk, as in 2.2.1, the condition
that the ramification index above ¢, equals 1 is always satisfied, after possibly
a finite extension of R (cf. e.g. [E]).

Proor. We denote by v the discrete valuation of K(X) corresponding to
the valuation ring ¢,, which is normalized by v(z) =1. Note that = is a
uniformiser of @,. We first start with the special case where H'!(Xg, Ox,) = 0.
The torsor fx is then given by an Artin-Schreier equation of the form
T? — T = akg, where ag is a regular function on Xx. We have ag = n"a,
where m e Z is an integer, and a is a regular function on X, with v(a) = 0.

First, note that necessarily m < 0. For if m > 0, then ax = b” — b, where
b =an™ + (an™)? + (cm’”)”2 + -+ (an™)?" + --- (the sum converges, since X
is complete for the m-adic topology). But this contradicts the fact that fx is a
non-trivial torsor.

If m = 0, the equation 77 — T = g defines an étale Z/pZ-torsor f: ¥ — X
above X, which coincides with fx on the generic fiber, and we are in the case
a). In this case the étale torsor f; : Y, — X is given by the Artin-Schreier
equation 77 — T = a, where a is the image of ¢ modulo 7.
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Next, we treat the case where m < 0. In this case m is necessarily di-
visible by p. For otherwise, the extension K(X) — L is totally ramified above
O0,. Write —m =np. Assume first that the image @ of ¢ modulo =, via the
canonical map I'(X,0x) — I'(X,0x) /7l (X, 0y), is not a p-power. Consider
the cover f: Y — X given by the equation 77 — z"?"VT = 4. Then f is an
fppf-torsor under the group scheme .#,, which coincides with fx on the generic
fiber (consider the change of variables T := T/zn"). Its special fiber f; : Y; —
X, is the a,-torsor given by the equation #’ = a.

In the case where @ is a p-power, the following two cases occur.

First: a is a p*-power for every integer s, which implies necessarily that
aek. In this case, and after some modifications (allowed by the Artin-
Schreier theory) which do not change the torsor fx, we can reduce to an
equation of the above form, where @ doesn’t belong to k. To explain this,
assume for simplicity that n =1. Then a = a” + n*b, where be I'(X,0y),
and «' € R. Thus, the equation defining fx is 77 — T = a”?/n? + n®b/n?,
which after some modifications (which are allowed by the Artin-Schreier
theory) can be written as 77 — T = a'/n + n*b/%”. But this equation ramifies
above 7, which is not the case by assumption. Thus the first case doesn’t
occur and we are lead to the second case.

There exists a positive integer r such that @ is a p’-power but not a p’*!-
power. We assume for simplicity that r = 1 (the general case r > 1 is treated
in a similar way, and is left to the reader). Let @ = b”, so that a = b” + nb,
where b and b are functions on X, and b reduces to » modulo z. Our
equation is then of the form 77— T = (b/n")’ +b/z(P"~V). After adding
(b/n") — (b/m"™)” to the right hand side, which doesn’t change the torsor fx, we
get the equation 77 — T = (b/n") + b/a'? 1, which can also be written in
the form 77 — T = (b/n") +b'/n", where b’ is a function with v(b’) =0,
and n’ < pn—1. If n>n', then n is necessarily divisible by p, by the above
argument. Write n = ps. The equation T? — n°?"VT = b+ 2" "'b’ defines
a torsor f: Y — X under the group scheme .#, which coincides with fx on
the generic fiber. Its special fiber fi : Yx — Xi is the o,-torsor given by the
equation 77 =bh. In the case where n’ >n, n’ is necessarily divisible by p.
Write n’ = s'p. In this case if b’ (resp. b’ + b in case n’ = n) is not a p-power
(where b, and b’, denote the reduction of b, resp. ', modulo 7), then the
equation T7 — 7¥'(P"DT = 7" ~"p + b’ defines a torsor f:Y — X, under the
group scheme .#,, which coincides with fx on the generic fiber. Its special
fiber fi : Y — Xy is the o,-torsor given by the equation ## =5’ (resp. # =
b’ 4 b, in the case n =n'). Otherwise, if b’ (or b’ 4+ b in case n=n') is a p-
power, then we repeat the same procedure as above. Since n and n’ decrease
at each step this process must stop at some finite stage, and we end up with an
equation of the form 77 — z"(P~)T = b, where b is a function whose reduction
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modulo 7 is not a p-power, for some positive integer . Hence the required
result. Observe that in the above case m < 0, the o,-torsor fi : Y — X; that
we obtain above is non-trivial, since the ramification index above ¢, in the
extension K(X) — L, equals 1.

The argument in the general case, where H'(Xg, Oy, ) # 0, is similar to
the one used in [S], proof of 2.4. More precisely, in general there exists an
open covering (U;); of X, and regular functions a; € I'(U; x, Ox) (Where U; g :=
U; xg K, and the a; are defined up to addition of functions of the form
b? — b;), such that the torsor fx is defined above U; g by the equation 77 — T;
=a;. Now the above discussion shows that after some modifications (of the
type used above) the torsor fx can be defined above each open U; x by an
equation T; — 7"(?~)T = q;, for some (uniquely determined) integer n; > 0,
such that if n; > 0 the image a; of a;, modulo =, is not a p-power. Moreover,
the degree of the different J; above the generic point # of U, ; := U; xg k equals
ni(p—1). From this we deduce that all n; are equal. Write n:=n;. Then
the .#,-torsor f : ¥ — X, which is locally given by the equation 7; — z"(?~VT;
= a;, above the open U;, coincides on the generic fiber with the torsor fx.

2.2.2. It follows from 2.2.1 that an étale Z/pZ-torsor above the generic
fiber Xx of X induces canonically a degeneration data, which consists of a
torsor above the special fiber X; of X, under a finite and flat k-group scheme
which is either étale or of type «,. Reciprocally, we have the following result
of lifting of such a degeneration data.

2.2.3. PROPOSITION. Assume that X is affine. Let f,: Y, — X; be a
torsor under a finite and flat k-group scheme, which is étale (resp. of type a,).
Then fi can be lifted to a torsor [ :Y — X, under a finite and flat R-group
scheme of rank p, which is étale (resp. isomorphic to M,, for an integer n > 0).

Proor. Since X is affine, the torsor f; is given by an equation x” — x = @,
where a is a regular function on X (resp. an equation x? = a, where a is a
regular function on Xj). Let a be a regular function on X which reduces to a
modulo #. The equation X? — X =a (resp. X? — n"?~VX = a, where n >0
is an integer) defines a cover f: ¥ — X above X, which has the structure of
a torsor under the étale group scheme (Z/pZ), (resp. under the group scheme
AMy,), and which clearly induces the torsor f; above the special fiber Xj.

2.2.4. Remark. If X is not affine, one can find examples of an a,-torsor
above the special fiber X; of X, which cannot be lifted to a torsor above X,
under a finite and flat R-group scheme of rank p, which is étale above the
generic fiber of X. This is indeed the case if X is a proper and smooth R-
curve, whose generic fiber is ordinary, and whose special fiber has a jacobian
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which is isogenuous to a product of supersingular elliptic curves. However, for
a proper and smooth R-curve X, the same arguments used in [S-1], 4.7, show
that it is always possible to lift an o,-torsor above the special fiber X of X,
after possibly replacing X by another R-curve X' which lifts Xj.

3. Degeneration of p’-cyclic covers in equal characteristic p > 0
Throughout this section we use the same notations as in section 2.

3.1. The group schemes W,, ,,. Let m; and m, be non-negative inte-
gers, such that m, — pmy; > 0. We define the twisted R-Witt group scheme

Wini,my
of length two, as follows. Scheme theoretically
Woni,ms = G gs
and the group law is defined by
(x1,%2) + (y1, y2) = (X1 + Y1, X2 + y2 + 7" P W(x1, y1))-

Note, that if p =2, then the subtraction in W,, ,, is given by

my—2my (

(x1,x) — (i, )= —yu,x2—»m+nm iy — »i).

The generic fiber (W, m,) x> Of Wiy, m,, 1S isomorphic to the Witt group scheme
Wi,k = Wi xy, K, via the map

(Wml,mz)K — Wk
(x1,x2) = (1 /7™, x2 /7).

Its special fiber (W, m,), is isomorphic either to the Witt group scheme
Wi == Wy xg, k, if my— pm =0, or to the group scheme ij, otherwise.
Note that we have an exact sequence

0= Gy L Wy = Gu— 0,
where
ViGa = Winym,,
is the Vershiebung homomorphism defined by

V(x) = (0,x),



326 Mohamed Saip1

and
R: Wy m — Gq,
is the projection
R(x1,x2) = x1.

3.2. The group schemes .7, ,,. We use the same notations as in
3.1. The following maps I, »,, and F, are group scheme homomorphisms:

]ml,mz : Wml,mz - mehpmp
(x1,x2) — (77:"71(17_1)_)61’an(P_l)xZ),
and
F: VVnan; - mel,pmza
(x1,%2) — (x7,xD).
Consider the following isogeny:
Py,my = F— 1L my 2 Winymy — Womy,pms
(x1,x2) = (x7,x5) — (a™M P Dy 7M1 )
which, if p # 2, is given by
(x1,x2) — (xF — nml(p—l)xhxé' —gm( Dy, o Pma—pim W(x?, _7-[’711(P_])x1));
which can be rewritten as

p—1 JrM2p—m (pk+p—k)

k

p+(p—Dk

p
X ,

(x1,20) = | x] — n"’](”_”xl,xé’ — 2Py,

k=1

and if p =2, is given by

2 2 2 x} x7
(x1,x2) = | x] — 7™M x1, x5 — 7n"™xp + 77 L7 .

n3m1 nzml

We define the group scheme

%Hhmzv
to be the kernel of the above isogeny. Thus, we have an exact sequence:
‘ F—Ly s
(6) 0 ——— Hny.my —— Wp.my ——— Womi pmy —— 0,

and #,, m, is a finite and flat commutative R-group scheme of rank p2.
Further, we have the following commutative diagram:



Degeneration of étale torsors 327

0 0 0

(ﬂ/l‘ll,l”z
0 %ml-,mz Vle , 1) mel , P2 0

R R

0 —— My,

, — G, — G, — 0

0 0 0

The group scheme 7, ,,, is an extension of the group scheme .#,, by .#,,.
Its generic fiber (4, m,)x 1s isomorphic to the étale constant group scheme
Z/p*Z. lts special fiber (A m,), is either isomorphic to the product
Z/pZ x a,, if m; =0, and m, > 0; in which case we denote it by Hy. Or, is
isomorphic to the product o, x «,, if m; > 0; in which case we denote it by
Gr. We have the following exact sequences:

(7) 0 H, ¢, g2, 0,
and
(8) 0_>Gk_>G§,kﬂ>G§7k_>o.

Let X be an R-scheme. The sequence (6) induces a long cohomology
exact sequence

(ﬂml.mz

(9) F(X7 Wml.mz) - F(Xa me,,pmz) - Hl(Xv %ml,mz)

w’”l smy

- Hl(Xa Wml,mz) - H](X7 mel,sz)’

The cohomology group
H'(X, Aoy my)

classifies the isomorphism classes of fppf-torsors, with group i, ,,, above
X. The above exact sequence (9) allows the following description of #5,, m,-
torsors. Locally, a torsor

f:Y—-X,
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under the group scheme J,, ,,, 1s given by the equations
T — 2" IT = ay,
and
T — a0 0Ty = ay — g™ P (T), —a™ 70Ty,
which can be rewritten as:

(-1 -1 qmap—mi(pk+p—k)
T2[)—7Zmzp7>T2:az—|—E _
k=1

p T]p+k(p7 1) 7

if p #2, resp.

T? T}
P _m _ 2m; | 1
TZ 7 T2 =+ (7[2111] 73m )

if p=2; where T}, T>, are indeterminates, and a;, a, are regular functions on
X. Its special fiber is either the Hj-torsor given by the equations

-1 =a,

and

if my =0. Or, the Gi-torsor given by the equations
l‘lp =day,

and

otherwise. Here, a; (resp. ay) is the image of a; (resp. @) modulo z. In
particular, if H'(X,0x) =0 (e.g. if X is affine), then an %, ,,-torsor above X
is globally defined by an equation as above.

3.3. Degeneration of étale Z/p>Z-torsors. In this section we use the
same notations as in 2.2. Our aim is to describe explicitly the degeneration of
étale Z/p*Z-torsors.

Let

Jx Yk — Xk,
be a non-trivial étale Z/p>Z-torsor. Let

K(X)— L,
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be the (degree p?) cyclic extension of function fields, corresponding to the
torsor fx, which canonically factorizes as

K(X)—>L —L,:=L,
where
K(X) — Ly,

is a cyclic extension of degree p. We assume that the ramification index above
the generic point n of Xy, in the extension K(X) — L, equals 1. We have a
canonical factorization

Y = Yok b, Y1k Lx, Xk,

of fx, where f; x is a Z/pZ-torsor, i€ {1,2}. Moreover, by 2.2.1, the torsor
JSo.x (resp. fi1 k) extends to a torsor f,: Y, — Y (resp. f1: Y] — X) under a
finite and flat R-group scheme of rank p. The composite f := fjo f; is a
finite and flat cover which coincides, on the generic fiber, with fx. We assume
that the special fiber Y5 4, of Y3, is irreducible. In particular, above the generic
point 7, there exists a unique generic point #; in Y;, which lies above . We
denote by 0 (resp. J;, and 6,) the degree of different in the extension L above
the point # (resp. the degree of different in the extension L;, above the point 7,
and that of the different in the extension L,, above the point #;). Note that
0 =101 + 0s.

3.3.1. We start with the following lemma 3.3.2, which will be used in the
proof of 3.3.3. In what follows we assume that

X = Spf 4,
is affine, and that
NH:Y1:=Spf B— X,

is a torsor under the group scheme .#,, for some integer n > 0 (cf. 2.1). Thus,
f1 1s given by an equation

7 —7"r=D =y,

where ve A is such that its image © € A := A/nA is not a p-power. In par-
ticular, the special fiber

f1: Y1 = Spec B — X = Spec 4,

of the torsor fi, where B := B/nB (resp. A := A/nA), is the o,-torsor given by
the equation
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tr=1.
Further, B is a fiee A-algebra with basis
{1,0,¢%,...,"71}.

We need to characterize elements of 4 which become p-powers, modulo 7, in
B, but are not necessarily p-powers, modulo 7, in A.

3.3.2. LEMMA. Letue A. Assume that the image u, of u, is a p-power in

B.
Then u= f(v) + nu', where u' € A, and f(v) belongs to the additive subgroup

Ay = A" DA’ v @ -+ @ AP P!
of A. Moreover, let
f@)=al +alv+--+a v ed,
and let m > 0 be an integer. Consider the element g := f(v)n " € Ax. Then
g=n""(al +al (T? - 2P IT) 44 a (TP — 7" D)ty

in Bk, and after addition of elements of Bg, of the form b? —b, one can
transform ¢ in

g=n"(a+arT + - +ay T'") + 7z P ( Zjaprjl )

+ nf(pmon(p%))h(T)

)

where h(T) € B.  Moreover, the image of

)

P
—Zjajl-’T”(f’l) = —al'T-2dT"" — ... — (p— 1) TP

in B, is not a p-power.

ProOOF. We have B=A®@ A.t® --- ® A.t’"'. Hence, B? = A? ® AT
@ - @AP.5P"', and the first assertion of the lemma follows. Let ¢:=
(af +afv+---+a) P ")n " e Bg. Since TP —72"»"VT = v in Bg, we can
write g =7 ""(af +af(T? — 2" P VT) + - +a) (T? — a"P=DT)P"1y in By
After developing the terms (77 — n(P~ 1)T) for je{l,p—1}; according to
the binomial expansion, and putting together the terms with the same power
of © we get that
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g=n""(al +alT’ +-- + af,lTp(”_l))
+ nf(pmfn(pfl))(_af’T _ zangH ——(p- 1)6,571Tp(p72)+1)
+ nf(pmon(p%))h(T)’

where h(T)e B. Finally, after adding (ag+a T+ +a, TP~ /2™ —
(@) +af TP +---+a)  TP?~V)/m™ to the right hand side of the above
equality, we get the desired expression for g.

The next theorem is the main result of this section. It describes locally (and
explicitly) the degeneration of étale Z/p>Z-torsors. More precisely, we are
able to find “canonical integral equations” which describe the reduction of p>-
cyclic covers, in equal characteristic p.

3.3.3. THEOREM. We use the same notations as in 3.3. Assume that X =
Spf A4 is affine. Then the torsor fx can be described by an equation of the form

(Tlp, sz) — (Tl, Tz) = (nm‘ahn’”zaz)

where ay, aa, are regular functions on X, with v(a)) = v(az) =0, m; <0, my e Z
is an integer. Moreover, the following cases occur:

a) my =0, and my >0. In this case [ is an étale Z./p*Z-torsor above X,
given by the equations

(T, 19) — (T, T2) = (a1,7™ay).
Its special fiber fi : Yy — Xi, is the étale Z/p2Z-t0rs0r given by the equations
(i, 85) = (t1,12) = (@1, n"™ay),

and 6 =0, =0, =0 (here, a, (resp. n'2ay) denotes the image of a, (resp.
n"a,) modulo 7).

b) my =0, my <0 is divisible by p, and a; is not a p-power modulo n. In
this case f is a torsor under the R-group scheme Ho,my; where m}, := _Tmz (cf.
3.2), and is given by the equations

Tlp — T] =dai,
and
N L g _
T} a0 VT =gy~ "W(T =T =+ ™y o TPk
k=1

if p#2, resp.
T22—7Tm12T2 2612—77.'7m2(T13 — le)

if p=2. Its special fiber is the torsor under the k-group scheme (A, mé) =~ Hi,
given by the equations



332 Mohamed Saip1

le - =a,
and
t}n =,
where ay (resp. a) is the image of a; (resp. of ay) modulo m. In this case
01=0, and 6 =06, =mb(p —1).
c) my <0 is divisible by p, and the image a, of ay modulo n, is not a

p-power.  Write m; = —pm{. In this case fi is an My -torsor, given by the
equation
Tlp — nnll/(p_l)Tl =aqay.
Its special fiber fi i : Y1k — Xk is the op-torsor given by the equation
i =a.

We have 61 =m{(p—1). As for f>, the following cases occur:

c-l) mi(p(p—1)+1)>—my (resp. m{(p(p—1)+1)=—my). In this
case m{ is necessarily divisible by p. Write mj{=pm{. If m =
m{(p(p—1)+1), then f> is a torsor under My, r given by the equation:

~ =~ ~ =~ ’ o /o~
sz _ nml(p71>T2 — nm1p+mza2 _ nml(p(pfl)Jrl) W(n_fmlpTlp’ g Tl)

=1 m!(p—1)*=(p-1)k
iy ST s
k=1

if p#2, resp.
T2 - Ty = a¥mg, g F2 TS,
Its special fiber is the wo,-torsor given by the equation
= _ff(plel
resp.
=t g

Otherwise, —my > m{(p(p — 1) + 1), in which case m; is necessarily divisible by
p. Write —my = pm),.  We have the following description for n™ay:

n_mzaz _ fl(al)/ﬂpmé + fz(al)/npmé—tl 4t fr(al)/n_pm;—zl_m_f,,l
L gfmrmin

where fi(ay) belongs to the subgroup A, of A (c¢f. 3.3.2), g € A, and the t; are
positive integers (note that g and the f; can be 0). Moreover, the torsor f, k is
given by the equation



Degeneration of étale torsors 333

T) — To = fila)/a" + fala) /a0 4 - folar) P00

p—1 n—n1l’(pk+p—k) _

+ g/n_pmé—tl—...—z, + Z T Tlpr(pfl)k7
k=1
if p#2, and
TZ _ T, = 2m 2mh—1 . 2mhy—t =ty

5 =T = fila)/n" + falar)/n +t frla)/n

, T2 T

2my—ty—- 1 1

+ q/n e n2ml’ 3111’ ’

if p=2. And the following distinct cases occur:

¢2)  pmy—(p—Dmy>sup(mi(p(p —1) +1),pmy —t1 —--- — 1) (resp.
pmb — (p— )mj =mj(p(p—1) + 1)>pm’2—t1—--~—t) In this case
pmb —mi(p—1) is divisible by p, and 62 mfy(p —1); where m’ = (pm/, —

mi(p—1))/p. Let fi(ar):=c{+clai+--+c _af L Then f5 is a torsor
under My and its special fiber is the o,- torsor given by the equation

0 =-élt, — ?_cptp+l = (p- 1)65_15117(17*2#1
resp.

P _GPF AP P+l g el pp(p-Dl
h=-ah =25t == (p=1)¢,_ 11 -1 ;

where ¢; is the image of c¢; modulo .

¢-3) pmy—ty — =1, >sup(pmy — (p — Dmj,m{(p(p — 1) + 1)) (resp.
pmy—(p—1V)mi=pmh—t, —---—t, >mj(p(p—1)+1)), and the image of
g modulo 7 is not a p-power in @(Yl k) In this case pm)—1t; —---—1t. is
divisible by p, 0, = mj(p — 1); where m% := (pmy —t; —--- — t.)/p, and fz is an
AMyy-torsor.  Its special fiber is the a,-torsor given by the equation

=g
resp.
_ p o pp=241
==t 2c21“”+1 ~~f(p71)c£71tlp(p I+ +g.
c-4) mi(p(p—1)+1)>sup(pmy —t; — -+ —t,, pmy — (p — 1)my) (resp.

pmy—ti—---—t.=mi(p(p—1)+1) >pm) — (p — l)m{) In this case my is
divisible by p, and if m :=m{(p(p—1)+1); where m{ := " then fris a

p B
torsor under My, g. Its special fiber is the oy,-torsor given by the equation

o zp(p—1)+l
==

resp.

N L)
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c-5) pmy—ti = —t,=m(p(p—1)+1)=pmy—(p—U)mj. In this
case m{ is divisible by p, and if m; :=m{(p(p — 1)+ 1); where m{ := %, then
f» is a torsor under Mpm, g 1ts special fiber is the oy,-torsor given by the
equation

b 7 _pip+l p o p(p=2)+1  p(p-D)+1 |
tf:—cft1—2c‘gt{’ _“'_(p_l)cﬁ—ltlp(p ) _tlp(p ) +4.

Further, in all the above cases, if fi (resp. f») is a torsor under the group
scheme My, (resp. Myp,), then necessarily my > m(p(p—1)+1)/p. More-
over, in all the cases c-2, c-3, c-4, and c-5 above the functions ¢y, ¢3,...,Cp—1
(resp. g) are uniquely determined (resp. is uniquely determined up to addition of
elements of the form h?, where h is a regular function on X;). In the case c-1
the function @, is uniquely determined up to addition of b, where b is a reqular
function on Xj.

Proor. The torsor fx is given, by the Artin-Schreier-Witt theory, by an
equation of the form

(17, 1)) — (11, 1) = (a1, @),

where @), and @, are regular functions on Xx. We can write @, = n”a; (resp.
a, = n™a,), where a;, and a, are regular functions on X, with v(a;) = v(a2) =
0. Also, it follows from 2.2.1 that m; < 0. If m; =0, and m, > 0, then we
are in case a), and our assertion there is then clear.

Assume that m; =0, and m, < 0. Then it follows from 2.2.1 that m, is
necessarily divisible by p, and after possibly some modifications (as in the proof
of 2.2.1) we may assume that a, is not a p-power modulo 7z (here one uses the
fact that a regular function # on X, which is not a p-power modulo n in X,
cannot become a p-power in Yjy, since fj is an étale torsor, hence is not
radicial). Write m, = —pm). Then f is defined by the equations

W —T) =a
and
T; — M DTy =gy — g™ w(T?,—T)
if p#2, resp.
T3 — 1Ty =ay — "™ (T} — T})

if p =2, where T, := n2T5. The rest of the assertion in case b) follows then
easily. Assume now that m; < 0. Then the assertion concerning f; follows
from 2.2.1. Assume first that m, > 0. The assertion concerning f, follows
then easily after adapting the equation defining the torsor f; x to the change of
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variables T = %, and we are in the case c-1). In this case mj is divisible by
n 1 . . .
p, and the cover f is given by the equations:

Tlp — ﬂm{(p_]>T1 =a

and
- N - . . o
sz _ 7_cml(ll I)T2 — 7_[m1p+mza2 — gmp W(?T m]pTlp’ — T])
=1 (i —m))p-m{(p—1)
_ T 1 1 ~ _
— + p+(p—1k
= g™ Mg, E B T;
k=1
if p # 2, resp.

~ "~ ~ !~ ~
T22 . 7Z3ml T2 _ n_2m|+m2a2 + 7™M T12 o T13

if p=2; where m{ :=mj/p, and m; :=m{(p(p—1)+1). From this we
deduce that the special fiber of the cover f is given by the equations

"
1

and

=p __ zp(p=1)+1
L =-4

)

where 7, (resp. ) is the image of T, (resp. image of T}) modulo 7.
Finally, we assume that m; < 0. Then the torsor f; x is given by the
equation

il e
7Y — T, =n"ay — W(n ™PT?, —n ™ Ty)

p=l m 1k
_ iy 4 Z - ml(p:p )k) T{’Hﬂ_l)k
k=1

)

if p # 2, resp.
P T}

2 _ _ my
T2 Iy =n"a + n.Zm{ n3ml’ )

if p=2. The highest power of n in the denominators of the summand

=1 n.fml’(pkﬂnfk)

Fp+(p—1)k
k T ’
k=1
resp.
72 73
I T
n.2ml’ 7.[3)11{ )



336 Mohamed Saip1

is m{(p(p— 1) + 1), and in order to understand the reduction of the torsor f>
we have to compare this to m,. Assume first that m{(p(p — 1) + 1) > —m».
Then it follows from 2.2.1 that m] must be divisible by p. Write m] = m{p,
and let Ay :=m{(p(p—1)+1). Then we are in the case c-1), and f; is a
torsor under the group scheme .#; r defined by the equation

8 P . ; o o
TP — g™MP=VTy = gMrtmgy — gMP Wy (=P TP —g "™ T})

-1
— ﬂm1p+l712612 +
k=1

Ao D
k 1

if p+#2, resp.
~ "~ P / ~ ~
T22 _ 7[3m| T2 — n2m1+mza2 + n_m] T]2 _ T]3,

if p=2. Its special fiber is the o,-torsor given by the equation

zp _ _ zp(p=1)+1
15 =—1 .

Assume next that m{(p(p — 1) + 1) < —m; (the case where m{(p(p —1)+1) =
—my is easily treated, and is left to the reader). Then it follows from 2.2.1
that my = —pm), is divisible by p, and two cases occur, depending on whether
or not the image @, of a, modulo =z is, or is not, a p-power in O(Y) ). If
@ is not a p-power in O(Y] ), then f is a torsor under M, R given by the
equation

~ 1 ~ ’ ol !
sz _ n_mz(p I)Tv2 =ay — P W(?T mlp:I-vlp7 g™ Tl)

-1 n.(m;—ml’ )p—m|(p—1)k

k

T{H(pf l)lc’

k=1

if p#2, resp.
~ )~ ’ ’ o~ ’ !~
T22 — ™M T =a+ 7Z2”72*2’”1 T]Z . 752’”273’”1 T137
3 — - /. T
if p=2; where m} :=
equation

Its special fiber is the o,-torsor given by the

o
lz =,

and we are in the case c-3). Assume that @, is a p-power in ((Y; ). Then
either a, is already a p-power in O(X}), in which case we can transform (using
the kind of transformations used in the proof of 2.2.1) the term n"2a, into
n™a,, where 0 > my > my, and G, € A. Or, a, is not a p-power in O(X ),
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but becomes a p-power in (Y ;). In the latter case it follows from 3.3.2
that a» = fi(a1) + =n"gi, where fi(ar):=c)+cla+---+ c']",llaf_l belongs to
the subgroup A4, of A4, #; >0, and g; € 4. Moreover, the term n"a, =
filar) /7™ + g1 /7™~ can be transformed to £ (T7) /P21~ 4 g /gpma=t
where the image fi(Ty) :=—'fy —2&0" —... — (p— 1)'” N =¥l of
fl(Tl) modulo 7, is not a p-power (cf. loc. cit.). At this point we can repeat
the same argument as above. Namely if in the first case the image d», of d»
modulo 7, is not a p-power in €(Y) x), then we conclude as above that we are
either in case c-3), if 7y > m{(p(p — 1) +1). In this case 1, is divisible by p,
and f> is a torsor under My, RS where m) := m,/p, whose special fiber is the
op-torsor given by the equation

o =a.

Otherwise, we repeat the same process as above. And in the second case if

pmy — (p = 1)my > sup(pmy — ti,mi(p(p — 1) + 1)), then pm) —(p—1)my is
divisible by p, and f> is a torsor under the group scheme .7, r; where
mj = (pm’, — (p — 1)m{)/p, defined by the equation

~ ~ H_ ! " ! !
sz m — f (Tl) + b pmz+tlgl — qhm W(?Z mlpTlp’ T Tl)

p—1 (my—m)p—m/(p—1)k
~ " ! T 2 1 1
= fi(Ty) + npmz*pmﬁng] + Z .
k=1

Tl;r+(p—1)/(

if p #2, resp.

72 v 2m’ -2 2 Tl T13
T2 _ 71'sz2 f](Tl) 47 m n, +Z1J —‘rﬂ,’ m2 _ ,

2mI P 3m]

if p=2. Its special fiber is the o,-torsor given by the equation

i =—efn -2 — -~ (p - 1)5§_1ff(p_2)+17

and we are in the case c-2). If m{(p(p—1)+1) > sup(pm} — 11, pm} —
(p — 1)mj), then m{(p(p — 1)+ 1) is divisible by p, f> is a torsor under the
group scheme ! (p(p-1)+1))/p, 8- 1t8 special fiber is the o,-torsor given by the
equation

and we are in the case c-4). If pm)—t; >sup(mi(p(p—1)+1), pm)—
(p — 1)mj), and the image g, of g1 in O(Y, ) is not a p-power, then pm) —
is divisible by p, pm), — t; = pm is divisible by p, and f; is a torsor under the
group scheme .#,,; g; where mj := (pm}, — 11)/p, defined by the equation
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T? — 2P VTy = 7™ f(Ty) + g1 — 2" W (n " TP, —a "™ T})

~ ~ p71
=2 fi(T) +g1+ Y
k=1

(m%—m)p—m!(p—1)k
T ' Fp+(p—1)k

k g

if p#2, resp.

’“’2 "~ o ~ 2 " le Tl3
m o nm m
Iy —a" T =a"fi(T\)+ g1 +7 2<nzm; n3m;)’
if p = 2; where 71y := pm% — pm), + (p — 1)m]. Its special fiber is the o,-torsor

given by the equation
i; = gl?
and we are in the case c-3).

Finally, in the general case, we repeat the same argument as above if in
the first case the image a,, of @ modulo 7, is a p-power. Or, if in the second
case pm’ — t; > sup(mj(p(p — 1) + 1), pm, — (p — 1)m{), and the image g, of
g1 in O(Y, ) is a p-power. As the zm-exponent of the denominators in the
equation defining f, x decreases at each step, we conclude that this process

must stop after finitely many steps, and we end up with an equation as claimed
in the statement c). The rest of the conclusion follows then easily.

3.3.4. REMARK. Assume that we are in the case c-3) of 3.3.3, that
tp=---=t=0,and fj=---= f, =0. Then f is a torsor under the R-group
scheme Hont m), given by the equations

Tf) — 7Tml,(p71>T1 =a
and

sz — gm0 DTy = g — gP W(n_'”l/”Tlp, —nm T)

(m2 m|)p—m{(p—1)k _

A
M"w
~
X
ki
=

if p#2, resp.

. . (TP T}
TZZ_nszzzg_i_anz( 1 1)7

7.[2m]’ 71.31111’
if p=2. Its special fiber is the (J, m! ) )¢ = Hi-torsor given by the equations

p__
n =

=
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and
n=4g.

Next, we define the “degeneration data” arising from the reduction of an
étale Z/p*Z-torsor.

3.3.5. DerNITION. Let fx: Yx — Xx be an étale Z/p*Z-torsor, with
X = Spf A affine as in 3.3.3. Then we define the degeneration type of the
torsor fx as follows: fx has a degeneration of type A, or of type {etale, etale},
if we are in the case a) of 3.3.3, a degeneration of type B, or of type
{etale, radicial}, if we are in the case b) of 3.3.3 and a degeneration of type C,
or of type {radicial, radicial}, if we are in the case c) of 3.3.3. Further, we
define the degeneration data associated to a degeneration type as follows:

a) A degeneration data of type A consists of an element of
H'(X, Z/p*Z).

b) A degeneration data of type B consists of an element of H'(Xy, Gy),
where Gy ~ Z/pZ x u,, is defined in 3.2.

¢) A degeneration data of type C consists of an element of H'!(Xy, Hy) ®
F(Xk,@x,()pfl, where Hj ~ a, x a, is defined in 3.2.

A Z/p*Z-torsor fx : Yg — Xk as above gives rise naturally, via 3.3.3, to a
degeneration data as in 3.3.5. More precisely we have the following.

3.3.6. PROPOSITION. Assume that X is affine as in 3.33. Let
fx: Yk — Xg be an étale Z/p*Z-torsor which has a degeneration of type A
(resp. B, or C). Then fx induces canonically a degeneration data of type A

(resp. of type B, or C).

Proor. This is a direct consequence of 3.3.3. More precisely, let
f Y — X be the finite cover that we obtain in the proof of 3.3.3, and which
extends the torsor fx. If fx has a degeneration of type A, then the special
fiber f; of f is an étale Z/p>Z-torsor, and the assertion follows in this case.
Assume that fx has a degeneration of type B. Then the special fiber f; of f is
canonically a Gj-torsor, and the assertion follows in this case too. Finally,
assume that the torsor fx has a degeneration of type C. Then it follows
from 3.3.3 that the special fiber f; of the cover f is defined by the equations:

ff=a and #=-&f 235" — . —(p- 1 frIT g g
(resp. ' =a, and & =—&'f —2e8 — ...~ (p— 1)51“,’7151”(”_2)+l +g, or
17 = ay, and #J = g) where ¢|,...,¢,_1 (resp. §) are functions on X (eventually

equal to 0) which are uniquely determined (resp. determined up to addition of
element of the form /4?, where £ is a function on X;). The pair (a,g) defines
then canonically an element of Hflppf(Xk,Hk), and the tuple (¢i,...,¢y—1) an
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element of I'(Xy, Oy, )" ~!. Thus we get canonically, in this case, an element of
H'(Xp, Hy) @ I'(Xg, Ox )" associated to fx.

3.3.7. 1t follows from 3.3.6 that an étale Z/p>Z-torsor above the generic
fiber Xx of X induces canonically a degeneration data of type either 4, B, or C.
Reciprocally, we have the following result of [ifting of such a degeneration
data.

3.3.8. PROPOSITION. Assume given a degeneration data, say 2, of type
either A, B or C, as in 3.3.5. Then there exists a Z/p*Z-torsor fx: Yx — Xg
such that the degeneration data associated to fx, via 3.3.6, equals 9.

Proor. The proof in the case where the degeneration data is of type A4, or
B, is similar to the proof in 2.2.3, and is left to the reader. Assume that the
degeneration data is of type C, and consists of the pair (a;,a,), where a;, and
a,, are functions on X; which are not p-powers, and the tuple of functions
(C1y...,6-1). Let aj, and a (resp. ci,...,c,—1) be regular functions on X
which lift @, and a, (resp. which lifts ¢i,...,¢,—1). Let n= pn’ =p’n" >0
be an integer. Consider the Z/p*Z-torsor fx : Yx — Xy given by the equa-
tions: (Tlp, sz) —(Th, )= (Cl]?l'_'l/p,f(al)ﬂ_pm + azTC_pmHl,(p_l)), where f(a))=
cay +-~-+cp_1a{’71, and m =n'p. Then it follows easily from the proof
of 3.3.3 that the degeneration data associated to fx, via 3.3.6, equals 2.
Moreover, in this case we have d; =n'(p—1), and d =n"(p(p—-1)+1)-
(p—1). We have also the following possibility for such a lifting. Namely,
consider the Z/p?Z-torsor given by the equations: (77,75)— (T, T>) =
(e ™"?, f(a))m " + gn P+ (P=1)) where m is a positive integer such that
mp—n'(p—1)>n'(p(p—1)+1), and mp —n'(p—1)=pm’. In this latter
case we have 6, =n'(p—1), and d, =m'(p —1).
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