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ABSTRACT. A theorem of Hardy asserts that a function and its Fourier transform
cannot both be very small. We prove analogues of Hardy’s theorem for the Harish-
Chandra transform for spherical functions on a non-compact semisimple Lie group and
the Helgason transform on a Riemannian symmetric space of the non-compact type.

Introduction

Hardy’s theorem for the Fourier transform [10] asserts that f and its
Fourier transform f cannot both be very small. More precisely, if f is a mea-
surable function on the real line such that f(x)= O(e~(/2*") and f(x)=
O(e~ /2"y as |x| — oo, then f(x) is a constant multiple of e~ (1/2~’,

It follows easily from Hardy’s result that if o and f are positive numbers,
aff > 1/4, f(x) = O(e=™"), and f(x) = O(e#") as |x| — oo, then f = 0 almost
everywhere. Sitaram and Sundari [16] generalize the result for semisimple Lie
groups under some restrictions on groups or functions. Subsequently, similar
results for general cases were proved independently by Cowling, Sitaram, and
Sundari [5], Ebata, Eguchi, Koizumi, and Kumahara [7], and Sengupta [14].

In this paper, we give an analogue of Hardy’s original result for functions
on a Riemannian symmetric space of the noncompact type. It is crucial in
Hardy’s theorem that the Fourier transform of the heat kernel

1 X2 /(4)

Vant
on the real line is ¢, Similar result is no longer true for the heat kernel on
a Riemannian symmetric space of the noncompact type. Our idea is to use the
heat kernel and its transform for estimating functions. Using known estimates
for the heat kernel, some connections between results of us and those of
Sitaram and Sundari will be discussed.
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The result for SL(2,R)/SO(2) was given in our previous paper [15].
We are grateful to the referee, whose suggestions improved the presen-
tation of the paper.

1. The Harish-Chandra transform

In this section, we review on the elementary spherical function and the
Harish-Chandra transform on a Riemannian symmetric space of the non-
compact type. We refer the reader to Helgason [11] for details.

Let G be a noncompact connected semisimple Lie group with finite center
and K be a maximal compact subgroup. Let G = NAK be corresponding
Iwasawa decomposition and g =1+ a+f be corresponding decomposition of
its Lie algebra. For ge G, let A(g) € a denote the unique element such that
ge NedWK. Let X denote the set of roots of g with respect to a and X+
denote the set of positive roots. Then n is the direct sum of the root spaces
for all positive roots. Let p =13 _ .m0, where m, denotes the multiplicity
of a. Let a* denote the dual of a and ag its complexification. Let W denote
the Weyl group for 2.

A function f on G is said to be spherical if f(kgk') =f(g) for all k,
ke K and ge G. As usual, we identify functions on G/K with right K-
invariant functions on G and those on K\G/K with bi-K-invariant functions
on G.

For / € a¢, the function defined by

(1.1) 4,(g) = J LA g geG
K

is called the elementary spherical function. Here dk denotes the Haar measure
on K with total measure 1. ¢, is a spherical function on G and satisfies

(1.2) 192(@)] < Pims(a) < emerCrInAleE g (g) - ae A,

Let ¥(K\G/K) denote the space of spherical functions f on G such that

(1.3) sup (1 + 191)¢o(9) ™ (D )(g)] < o0

for each integer ¢ > 0 and each invariant differential operator D on G. Here
lg| = |log a| if g € KaK. )
For f e %(K\G/K), we define the Harish-Chandra transform f(1) by

(1.4) 7 :j F)b(9)dg, e ag.

G

Here dg denotes the (suitably normalized) Haar measure on G.
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By the restriction mapping G — A4, €(K\G/K) is isomorphic to the space
Fw(A) of W-invariant rapidly decreasing functions on A.
The following theorem is due to Harish-Chandra.

THEOREM 1.1. For f e ¥(K\G/K),

; J*mwgncu)m

(1.5) f(9) =

where ¢(1) is the Harish-Chandra c-function.
The Harish-Chandra transform extends to an isometry of L*(K\G/K) onto
L2(a* /W, |e(2)|2dA).

Explicit formula for ¢(4) is given by Gindikin and Karpelevic. For
details, we refer to Helgason [11, Ch. IV], Gangolli and Varadarajan [9,
Chapter 6], and references therein.

2. The heat kernel

Our main tool we shall use is the following /,, which is an analogue of
the heat kernel on the real line.
For ¢ > 0, define the function /,(g) on G by

1) ) = i1 | exp(=t128 + )0

We state some properties of /4,, which is due to Gangolli [8, Proposition
3.1].

ProposITiON 2.1.  The function h, has the following properties:

(2.2) h € €(K\G/K),
(2.3) h(2) = exp(=t(12> + p]*)),
(2.4) Lh, = %

(2.5) hyshy=hey  t,5>0.

Here L denotes the Laplace-Beltrami operator on G/K and x denotes the con-
volution product on G/K.

Moreover, there is an estimate of the heat kernel obtained by Anker [1, 2].
For any #, > 0 there exists C > 0 such that
|H|®

(26)  hilexp H) < Cr"2(1+ |HP)" 0P exp<—|p|2z —p,HY - T)
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for all 0 <t<1t and H ea", where n=dim G/K and r=dima, and at
denotes the closure of the positive Weyl chamber in a.

3. An analogue of Hardy’s theorem

We now state and prove an analogue of Hardy’s theorem for the Harish-
Chandra transform.

THEOREM 3.1. Let t be a fixed positive constant. If f is a K-invariant
measurable function on G/K satisfying

(3.1) |f(a)| < Chi(a)  for all ae A
and
(3.2) If ()] < Cexp(—t|A|®)  for all 4ea,

where C is a positive constant, then f is a constant multiple of h,.

Proor. The proof goes along the line of the first proof of Hardy [10]
in the Euclidean case that is based on the Phragmén-Lindel6f theorem.

By (1.2) and (2.6), f is holomorphic on af, if f satisfies (3.1). By (3.1)
and (2.3), we have

(3.3) 70| < cja 1) 1 2(9)d

= Cexp(([Im 2> — [p?))1)
= C’ exp(|Im %)

for all 1€ ag, where C and C’ are some constants.
Since f satisfies estimates (3.2) and (3.3), it follows from [16, Lemma 2.1]
that

(3.4) f(2) = Cexp(—1]4]*), iea
for some constant C, hence f is a constant multiple of %, by (2.3). O

In the Euclidean case, Hardy proved more general result: Let m be a
non-negative integer. If f and f are both O(x"e (/") as |x| — oo, then
f(x) =p(x)e"/2¥ where p(x) is a polynomial of degree m.

We do not know whether an analogous result is true or not for the Harish-
Chandra transform. Here we give a family of functions which satify condi-
tions weaker than (3.1) and (3.2).

PrOPOSITION 3.2.  Let p(a) be a W-invariant polynomial function on A and
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define f by f(kak') = p(a)h,(a) for all k,k' € K and a€ A. Then for any fixed
t>0, f satisfies

(3.5) |f(a)] < Ce™p,(a)  for all ae A
and
(3.6) |f(A)] < Cexp(d|A| —1|2)?)  for all Jea*,

where C, y, and 0 are positive constants.

Proor. (3.5) is obvious. By (2.3) and [4, Theorem 6.2 (6.8)],
F2) = Ap(exp(= (12" + [p1)1)),

where 4, is a difference operator which is a product of the Damazure-Lusztig
operators. Thus f is of the form

f(2) = 0(4) exp(—|A[*1),

where Q(Z) is an analytic function of at most exponential growth. O

4. The case of the Helgason transform

In this section, we prove an analogue of Hardy’s theorem for functions
on G/K.

First, we review on the Helgason transform on G/K. For details, see
Helgason [12, Chapter III].

Let M denote the centralizer of 4 in K and A(x,b) denote the function
on G/K x K/M defined by A(gK,kM) = A(k~'g).

Let 4(G/K) denote the space of C*-functions on G/K satisfying (1.3)
for each integer ¢ > 0 and each invariant differential operator D on G. For
f €%(G/K), the Helgason transform f(2,b) is defined by

@1 F.b) = J FR)TEACE) g ear beK/M.
G/K

Here dx denotes the (suitably normalized) invariant measure on G/K. 1If f e
%(K\G/K), then the Helgason transform f(4,5) does not depend on b e K/M
and coincides with the Harish-Chandra transform f(4).

THEOREM 4.1. For fe%(G/K),

1

42) f(x)= WJ JK/M WHIAEDDE (G bYe(A)|2didb,  x e G/K.
.
We now state and prove an analogue of Hardy’s theorem for the Helgason

transform.
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THEOREM 4.2. Let t be a fixed positive constant. If [ is a measurable
Sfunction on G/K satisfying

(4.3) |f(9)| < Ch(g)  for all ge G
and
(4.4) |f(2,b)] < Cexp(—t|A]*)  for all iea*, beK/M,

where C is a positive constant, then f(,b) = h(b) exp(—t|A|?), where h is a
bounded function on K/M.

Proor. The proof is similar to that of Theorem 3.1. We give an outline

of the proof. By (4.3), f(4,b) is holomorphic in /€ af with
(4.5) £ (2:b)] < C" exp(|lm 2[1),

hence it follows from (4.4) and (4.5) that
2

(4.6) £ (5, b) = h(b)e he L™ (K/M). O

Dym and McKean [6] stated Hardy’s result in the following form: Let a
and f be positive constants and assume that f is a function on the real line
satisfying

S < G
and
) < ce?”
for some positive constant C. Then
(1) If of >1/4, then f =0.
off = , then f is a constant multiple of ¢ .
2) If 1/4, then f i ltiple of e~
ap < , then there are infinitely many that are linearly inde-
3) If 1/4, then th infinitel h li ly ind

pendent.
We give an analogue of (1) for the Helgason transform.

COROLLARY 4.3. Let o and f§ be positive constants and assume that f is a
measurable function on G/K satisfying

(4.7) |/ (@) < Chijuwy(g)  for all ge G
and
(4.8) |f (7, b)| < Cexp(—BlA]*)  for all Jea*, be K/M,

where C is a positive constant. If off > 1/4, then f =0 almost everywhere.
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PrOOF. Since > 1/(4x), f satisfies the assumptions of Theorem 4.2 with
t =1/(4x), and hence f(2,b) = h(b) exp(—|A|*/(4x)), which contradicts (4.8).
This corollary also follows from (2.6) and [16, Theorem 4.1]. ]

An analogue of (3) of the above statement of Dym and McKean might
be true for the Helgason transform. Here we give an affirmative answer for
some symmetric spaces, where conjectural lower bounds for the heat kernel is
true.

COROLLARY 4.4. Assume that G is complex, G/K is of rank one, or
G =SL(3,R). Let o and f be positive constants. Suppose f is a measurable
Sfunction on G/K satisfying (4.7) and (4.8), where C is a positive constant. If
off < 1/4, then there are infinitely many such f that are linearly independent.

ProoF. A lower bound for the heat kernel is known for each of symmetric
space cited above (see [3] and references therein). Choose «’ such that o <
o' < 1/(4f). Let p(a) be a W-invariant polynomial function on A4 and define
f by f(kak') = p(a)hijuy(a) for all k,k'e K and ae A. It follows from
Proposition 3.2 and [3, (3)] that each f satisfies (4.7) and (4.8). Therefore the
desired result follows. O

COROLLARY 4.5. Assume that G is complex, G/K is of rank one, or
G =SL(3,R). Let o and f be positive constants. Suppose f is a measurable
function on G/K satisfying

(4.9) \f(kak')| < Ce°8”  for all k,k' €K, aeA

and (4.8), where C is a positive constant. If aff < 1/4, then there are infinitely
many such f that are linearly independent.

Proor. Choose o' such that o < o’ < 1/(48). By (2.6), there is a con-
stant C’ such that

I j(azry(kak') < C'e~ el

for all k,k' e K and ae A. Therefore, by Corollary 4.4, there are infinitely
many independent f satisfying f(kak') < Ce~*l°¢4" and (4.8). N

REMARK 4.6. After we have finished our work, Mr. Mitsuhiko Ebata
kindly sent a copy of preprint of Narayanan and Ray [13]. They also give
an attention to the heat kernel and prove that Theorem 4.2 remains to be true
if (4.3) is replaced by

|f (kak')| < Ce=*18 g (a)(1 + [loga|)”  for all k,k' e K, ae A,

where r is a positive constant.
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