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Some asymptotic results for kernel density
estimation under random censorship
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Random censored data consist of i.i.d. pairs of observations (X.8), i=I....n If §=0, X; denotes a
censored observation, and if 6= 1, X, denotes a survival time, which is the variable of interest. In this
paper, we apply the martingale method for counting processes to study asymptotic properties for the
kernel estimator of the density function of the survival times. We also derive an asymptotic expression
for the mean integrated square error of the kernel density estimator, which can be used to obtain an
asymptotically optimal bandwidth.
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1. Introduction

Let Ty,..., T, be a sequence of independent, non-negative random variables with common
continuous distribution function F. Independent of the T, let U},...,U, be another
sequence of independent, non-negative random variables with common right-continuous
distribution function G. We will refer to the T; as survival times and to the U/; as censoring
times. Under the random censorship model, we are only able to observe the smaller of T;
and U; and an indicator of which variable was smaller:

X, =min(T;, U), 8 = <y for i=1,...n, (1.1)

where [ for any event A, denotes the indicator function of 4. Based on these randomly
censored data, the Kaplan and Meier (1958) product limit estimator for the survival
function F is defined by

Oy
II;, | s e i <
I—FR(I)= I:,X(;‘]Sf( n_k+l): if t_X(n}! (1-2)
1 — F,,(X(,,)), if 1> X(,,),
where X3y < Xp) < ... < Xy are the order statistics of X}, .., X,, and 6, is the value of 6

associated with X, that is, 6y = §; when X, = X;. Write S,(r) = 1 — F,(¢).

In this paper, we assume that the distribution function F has a density function f with
respect to Lebesgue measure on R, and we are interested in estimating /* using the randomly
censored data in (1.1). Based on the Kaplan—Meier estimator ¥, Blum and Susarla (1980)
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proposed to estimate f by a sequence of kernel estimators f, defined by
1 t—s
=5 [T K (52)em (13)

where X is a kernel function having finite support on {—1, 1] and 4, is a sequence of positive
bandwidths tending to 0 as n — co. The properties of the kernel estimator f, have been
examined by Blum and Susarla (1980), Féldes er ol. (1981) and Mielniczuk (1986), among
others. It is the purpose of this paper to study the asymptotic properties of £, using the
theory of martingales for counting processes. The martingale approach to the statistical
analysis of counting processes was introduced by Aalen (1976; 1977; 1978) and has proved
remarkably successful in yielding results about statistical methods for many problerns
arising in randomly censored data from biomedical studies. Fleming and Harrington (1991)
provided an excellent exposition on the counting process and the martingale methods used
with censored survivai data. In this paper, we apply the counting process approach to
establish some asymptotic results of the kernel estimator f, for arbitrary distribution
function G, including the asymptotic bias, weak consistency and asymptotic normality of
f,. Furthermore, we show that this approach can be successfully employed to obtain a
simple asymptotic expression for the mean integrated square error of the kernel estimator
£, from which we can easily derive an asymptotically optimal bandwidth for f,.

In order to formulate our results, we first introduce some notation. Let S{t} = 1 — F(1),
C(t) = 1= G(1), v(t) = P(X; = 8) = SO)C(t=), Me) = £(9/S()) and  A(t) = [ A(s)ds.
Note that A and A are the hazard function and the cumulative hazard function of the
survival times, respectively. Furthermore, the following stochastic processes on [0, o) are
used throughout this paper:

Nty = Ixgra=,
=1

HMUES Zl[xizr]: (1.4)
pa

ag:ﬁnmmw,

M@zN@—AM:N@—LY@MM@.

Moreover, we also need the following:

‘AN (x)
Al = L Y(u)’
AL = L Iy dAG), (15)

70 =5 [ k(57)semanien,

n JO

fitd) = hinfx(‘;s)f(s)ds,
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where A, (1) is the well-known Nelson cumulative hazard estimator of A(z) (Nelson, 1969).
According to Theorem 1.3.1 of Fleming and Harrington (1991, p. 26), the process M given
in (1.4} is an #,-martingale, where &, = o{Jiy. ;51 J <=0 0 S5 < ti=1,...,n}. 1n
fact, M is a local square-integrable martingale. In this paper, we assume that the kernel
function K is bounded on [-1, 1] and satisfies the following conditions:

Jl Kndr=1, Jl 1 tK{(H)dr =0, and r : P K(Hdt =k; #£0. (1.6}

-1

This paper is structured as follows. In Section 2, we summarize some results about the
bias of f, by expressing f, — f,' as a stochastic integral with respect to the local square-
integrable martingale M. Section 3 deals with the weak consistency and the asymptotic
normality of £,. Finally, in Section 4, we derive an asymptotic expression for the mean
integrated square error of f,, including an asymptotically optimal bandwidth.

2. Bias of ]

Under the notation used in (1.4), the Kaplan—Meier estimator in (1.2) can be expressed as
follows (Fleming and Harrington 1991, p. 97)'

S.(8) =1-F,() =H[ )’J TIl - AA(s (2.1)

5<t s<y

where AN(s) = N(s) - N(s—) and AA,(s) = A,(s) — A,(s—). Equation (2.1) implies that
Si(0 = 1= | sis-)ans),

so the kernel estimator £, in (1.2) can be written as

£l0) =hinj°°x(‘h;f) Sals=)dAL(s). 22)

0
Simple algebra shows, from (1.5) and (2.2), that

M) = 4300 = [ 1520 aneg

Y{u)
and
A0 =50 = 5 [T K (52 s 120 ane), 23)
Thus, 7,(1) - £ (0 1s a stochastic integral with respect to the local square-integrable
martingale M (1) = N(£) — J§ A(s) ¥ (s)ds. The following theorem summarizes some proper-

ties about the bias of f,.

Theorem 2.1. Suppose that f is continuous at 1.
(i) Asm—> oo and h, — 0,

-1 = j KWL~ ) = £ (D]du = 0.
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(i1}
. 1= t—s
B0 =E£0) =5 || K (5 IS0l
i n
(i) If 7 is positive in a neighbourhood of t, then we have

BUA0 50 = 570 A0 =~ [ K (5 B[ 2525 e

where Ty = inf{s: Y(s) = 0}.
(iv) Under the same conditions as in part (i}, we have, for large n,

. 1
BIA (0 = A0 < €0 | RGN — by

As a result, E[ £,(1) —-f,,(t)} converges to zero at an exponential rate as n — oo and b, — 0.
(v) In addition to the conditions in part (iii), if f is twice continuously differentiable at t,
then as n — oo and h, — 0, we have the following expression for the bias of f,:

1) ~£(0) = 52" + o) + o 1),

where ky is given in (1.6).

Proof. Part (i) is trivial. For part (ii), using (2.3} and Theorem 2.4.5 of Fleming and
Harrington (1991, p. 73) and noting that (M, M}(¢) = J§ Y{s)A(s)ds, we have

L - 0F = | [T K (52) sn(s—)ﬂ-‘,i,“(%‘”dms)r

Sl t—s v »o
-5l (% )Sﬁ(“‘ Iy (A6

J KZ( )E[SZ ] ;Y{; jnl‘)>0)]il (t—h,,u)du (24)

1
< ij KXu)A(t — hyu)du < oo,

and hence

B =0 = B[y [T k(4 sits-am0)|

h%,J:o K (rT_:—) E[Sa(s— ) v »0)dA(s)
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To prove parts (iil) and (iv), applying part (i) and Lemma 3.2.1 of Fleming and
Harrington (1991, p. 99) gives

BLfo(®) = /()] = ELf3 () = /(2]

h,.f (th— S)E[S( )ldA(s)——j (,;S)E[Sn(s—)fm,)ﬂudm)
b
r (h )E[I[,,.:,] () [S(ry) — S(s )]—S,.(s~)f[,,,<,]] aA(s)

S(Ty)
I Ty)S(s
k_ ( ) [I[ry<s] ( Y) }dA(s)
As a result, for large »,

\-...____./

S{s—-)dA(s)

h-‘l,_.

."-'.'r-1._.

S(ry)

Ce

E[f(1) - f(8]] <

o

| k(22N [y < gSutr) o dA(s)
(7 el essim )
(52 Bt st

K
nd0

- j K[ = (e~ A]" Nt~ bt}

b:

-

Il IA
|’_‘ a
g =1 '8' o '
~
|7
[

) Ef[y(s]___g])«(s)ds

a

]

=

<1 = (e A [ GG ~ A

1
< g Tmltth) L | K () IA(t — hpee)du.

Part (v} can be derived from parts (i) and (iv) and by a straightforward calculation. The
proof is complete. O

Remark 2.1. Theorem 2.1 indicates that the kernel estimator f,, is, in general, not unbiased.
However, it is asymptotically unbiased.

Remark 2.2, If the Kaplan—Meier estimator in (1.2) is defined in such a way that the
function S,(7) = I — F,(#) is equal to zero for 1 > X, then in this case the quantity
appearing in part (iii) of Theorem 2.1 is identical to zero, because it is proportional to
S,(ry), where 7y = Xi.
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3. Weak consistency and asymptotic normality of £,

In this section, we establish the weak consistency and asymptotic normality for the kernei
density estimator f,. The following theorem concerns the weak consistency of .

Theorem 3.1. If £ is continuous at t and © is positive in @ neighbourhood of t, then, as n — o0,
h, — 0 and nh, — o0,

oL 7.

Proof. Since f is continuous at ¢, A = f /5 is continuous at ¢ as well, and hence both £ and A
are bounded in a neighbourhood of t. In view of part (i) of Theorem 2.1 and the following
inequality,

|£:00) = SOOI S (0 = £ (OF + 150 = )] + | ful) — £,

it is enough to show that, as n — oo,

1500 £ @) 2o, (3.1)
- o (3.2)

By our equation (2.3) and Corollary 3.4.1 of Fleming and Harnington (1991, p. 113}, we
have for large # and any €,5 > 0,
- e)

L[> (r—u Iy >0

1 t—u fiyew>q

- K S, dM{u)| >
(" k.zl:zwk h ( Pn ) ¥y Y(u) )] >«

PUAE —fr )l > ¢ = P(

_n L‘ 2\ S2/(s — _MA_;, d>)
_€2+P(h j_lK(”)S"[(‘ o)~ | TR~ o 2

1
n ! L J :
<tap(L L o 2@ Kweza)
2 ("hn n'lY(t-i-hﬂ)_fe[t—hEHn] “ -1

Since 5 and € are arbitrary, (3.1) is established by the Glivenko—Cantelli theorem applied to
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n ¥ (-). To prove (3.2), using (1.5) gives
70 =00 = [T k(52 450 = S(018A()

1
< l , | K ()| vty >0} Su( (2 — Bape)=) — S({t — k) =).[A(t — hyu)du

!
[, KGO e (= B

s[ sup  Ms) sup  [8,(s) - S(9)

SEIf—ka-fl,,] SE[I-J!,"!-H‘!,,]
+ L yuan)=0)  SUP f(s):\ I | K(u){du. (3.3)
SE[r—ky )

The Giivenko—Cantelli theorem and Theorem 3.4.2 of Fleming and Harrington (1991, p.
115) imply that supe;_p, 14, [Se(8) — S(.s)IL 0. Furthermore, it is easy to show that
I vt y=0 £, 0. Thus, (3.2) is established, and hence the proof of Theorem 3.1 is
{¥(r+h,)=0]

complete. a

Next we study the asymptotic normality of £,.

Theorem 3.2. Suppose that f is continuous at t and 7 is continuous and positive at . Then, as
n— oo, h, — 0 and nh, — oc,

VAR =)L N©,0*0),
where (1) is given by (1.5), and

1
o2(t) = E:%%J. K2(u)du. (3.4)

Proof. By (2.3) we can write
Un(1) = vk (1) = £ (1))
- - I 5) >
_ 1/nhnlfK(Ts)Sﬂ ) “}’E() )“1 dM(s)
= j:c H (s)dM{s),

where

— o Sptp (S RSSO
H,(s5) nh; K( S )S,,(s )—Y(S) .
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By Theorem 2.4.3 of Fleming and Harrington (1991, p. 70), we have
[0
(Uns Un (1) = | Ha(s)(M, M) (s)
) o
= | B9 ¥

.1 I o
= | nK2(u)SH((t — hyu)—) 122 5 (4 - pu)du,

J-1 Y{(t - hyu)
Now, let
1
4= K2(u)S2((t - h,,u)—)w)\{t)du,
; Y(f - h,,u)
1
A0 = || KRGS — b)) 225,
As() = || K23~ i) 25
40 = [ K@~ n - L2220

As(t) = -: K2(u)S(1) W,\(:)du.

Then we can show that

| K~ ) T2 )~ A

(U, Un(0) — 4y (2)] = |j

; Y(f - h,,u)
1 1 ) .
A MR MU
! 2 2 1 1
40 = 401 = J K (@)Sa({t — Bat) Mirie-na 028 | 7 Y(1-h )_ﬂ(r—h u) a
_ ~Y(t—h,u n
All) J b
- ﬂ(‘ + hn)ﬂ_’l Y(I + h,,) _,E{‘_shuﬁ.,.},n] n Y(S) ?T(S) J—l K (H)du,
(3.6)
S 2 1 1
[42(2) — 43(2)] = U—l K2 ()S2((t = hyt) =)y ppy M) [m _ F{)] du‘
M o, .
S T+ ) s orany O |, Kt (67)
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|5(0) ~ 44(0)] = Hl KIS0~ A=) = SH(( = b)) 220 )

7(1)
L2 bz
sup IS,,(s)—S(t)|J K (u)dy; (3.8)
( )se {#=bn sty ~!
440 = 4500 = | [ KIS~ h) - SY0) L2 5
(3) _ 2 )
< ﬂ( ‘)se[:-stl:m] |S(s) S(t)[J_IK (u)du; (3.9)
1
|45(2) - *(5)| = Mg@] KX ()1 - ypu>o)du

1
< é;( ))f[ Y(:+is,.)—0]J K (u)du (3.10)
Combining (3.5)—(3.10), the inequality

(Uns Und (9) = 02 ()] < K Up, Unh{() = A1()] + 141 (1) — Ax(0)] + | 42(%) — 45(0)|
+ids(t) ~ Ag(n)| + |4a{r) — A5()] + | 45(2) — o7 ()

and the Glivenko—Cantelli theorem with Theorem 3.4.2 of Fleming and Harrington (1991,
p. 115), we have shown under the given conditions that

(Uny Un ()2 o3(0). @3.11)
Now, we define

0
Upe(t) = L HH(S)IH H_(3)|2¢]dM(S);
then applying Theorem 2.4.3 of Fleming and Harrington (1991, p. 70) again gives

(Unes Une) (1) = F H2()y 091> Y (5)4A(S)

= J l K@) S3((t ~ hou)~- ){-‘MM: — hy)I3du
- Y(t - h,u)

1 1
< —— su AlsY| 7, K*(u)dy,
PTG [,e[,_,.,‘3+a,] (’)] 3| m

where 4 and B are the two sets

= K0S, (6~ A=) 12020 5 ¢ /o L
~¥(t— hy)
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and
SUPyg(-1,1) | K ()]
B= (e~ > g4/ .
{ V(4 Ry =V
Since the Glivenko-Cantelli theorem implies that Jz(n)— 0, we have

{Unes Um)(r}L 0. (3.12)
Therefore, it follows from our (3.11) (3.12), and from Theorem 5.1.1 of Fleming and
Harrington (1991, p. 204), that

Un(t) = Vaka(falt) — 72 () 2> N(0,0%(0)). (3.13)

Next, we are to show

VAR () = F(0) 2 0. (3.14)
By (3.3), we have

mvn*(t)—f::(f)léx/nz[ sup  A{s) sup lSn(S)~S(S)|“l|K(u)Idu

SE[t—hy t+hRy) SE[t—hy t+hy) -
1
+V"hn1[1’(:+k,,)=0]|: sup f(s)]J | K ()| s (3.15)
SE[f—hq t+h,] 1

It is seen that E(v/nh.J; y(4n, y=a) = V7 ho(1 — m(t + hy))" and (1 — (2 + h,))" converges to
zero at an exponential rate since = is assumed to be positive in a neighbourhood of .
Consequently, the second term on the right-hand side of (3.15) converges to zerc in
probability. On the other hand, similar to the proof of Theorem 6.3.1 of Fleming and
Harrington (1991, p. 235), we can show that for any € > 0,

Va(S,(} = S()) = SO)W(()) on Dlt-¢t+¢,
where v{s} = _H[a'r(s)rldA(s) and W(-) is a Wiener process. Thus,

Z
sup {ValS,(s) - S()I} = sup {S(s)|W(v(s))l}.
SE[t—¢,t+e] SE[1—e re

So we can conclude for fixed ¢ that as n — og,

sup  {VnlS,{s) — S(s)[} = O,(1).
sE[t—e,1+e]
As a result, as » — oc and &, — 0, we have
nhy  sup  S,(s) — S(s)| = Op(h%).
SE (=t t+h,)

Thus, the first term on the right-hand side of (3.15) converges to zero in probability as well,
and hence (3.14) holds. The proof of Theorem 3.2 is complete by combining (3.13) with
(3.14). O

Corollary 3.1. In addition 1o the conditions in Theorem 3.2, if f satisfies the condition
If(t + k) —f ()| € C|A|* for h in a neighbourhood of O, where a € [0, 1] and C depends only
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on t and if Rkl — 0 as n — oo, then we get

VIR0 ~£() 2 N(0,530),
where o(t) is given by (3.4).

Proof. Asn — oo,
Vil o) = f(D)) = /b,

The proof is complete. O

1
L K(@)[f(t — ho) — f(:)]du\ < Cy/nki+2e L u| K (u)|du — 0.

Note that the assumption that nk."2* — 0 for @ € [0,1], as n — oo, requires that the
bandwidth tends to zero faster than » 21701420 , which is not satisfied when /, is chosen to be
the asymptotically optimal bandwidth in (4.1 1) of the next secnon The following corollary
gives the asymptotic normality of £, for bandwidths of order n~

Corollary 3.2. In addition to the conditions in Theorem 3.2, we assume that f is twice
continuousiy differentiable in a neighbourhood of t and that the bandwidth h, satisfies
h, = O(n*7*) as n — oc. Then, we have

7] g
Vka(fo(8) = £(6) =} 1" () N(0,0°(2))
as n — oo, where ky and o*(t} are given by (1.6) and (3.4), respectively.

Proof. Applying a two-term Taylor expansion gives, as n — oo,
VAR Fu(8) = £(2) = LS (ko] =4 AR\ K ()£ (6)dn ~f”(f)kz|
=1 ViR Ly K (6) ~ £ ()
<} VRl [L @ K@) (&) = 1" (Hldu = 0,

where £, € (min(¢, ¢ — h,u), max(z, ¢ — h,u)). The proof is complete O

4. Mean integrated square error and optimal bandwidth

In this section, we consider the mean integrated square error of the kernel estimator f, asa
measure of the global accuracy of f,. The mean integrated square error will enable us to
choose an optimal bandwidth. Let = be such that #(r) > 0; then, for any ¢ > 0, the mean
integrated square error of £, on the interval [0, 7 — €] is defined to be

Mise(s) = (|| 140 ~roPar) (41)

The following theorem summarizes some properties of MISE( £,).
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Theorem 4.1. Suppose that f is continuous on 0,7), where 7 is such that () > 0.
() Asn > occand b, — 0,

MISE(/) = [ Uit - f(oPae+ [[ BLAO ~@Far+o(5). 42

(i) If fis twice continuously differentiable on [0, 7], then as n — oo and h, — 0, the first
term of (4.2) can be written as

f i) - ]zdt_~—h4r [F" () Pde + o(BY),

where ky is defined in (1.6).
(iii) If = is continuous on [0, 7], then as n — 00, h, — 0 and nh, — oo, the second term of
(4.2) can be expressed as

R O AR SRl

(iv} If f is twice continuously differentiable on [0, 7] and  is continuous on [0, 7], then as
n — o0, h, — 0 and nh,, — oo, we have

MISE(f;) = hzr [F (Pde+—— JIIKZ(:)d: _{'—f((—))dH- (h“)+o(;i7).
(4.3)

Proof. For part (i), since the integrand in (4.1) is non-negative, we have

MISE(f) = [ 170 - riopar+ [0 Bt ~Aorar

+2[ U0 - FOIBLL ~ ol
Using parts (i) and (iv) of Theorem 2.1 gives

U: ELAA0) —FO1LAule) — ol

< 71, st = na - scna][emesm [ s -

2
< e-rmlT-e+hy) l sup  sup |f(t— hpu) —f(t)l] Uil |K(u)|du] Alr—e+h,) = 0(}:).

tel0r—e ue[-1.1]

The proof of part (ii) is straightforward and is therefore omitted here. To prove part (iii), we
first write

ELf(0) ~ /(02 = E[fa(0) — fir (OF + ELf (6) = fu( + 2E{[fult) = " (0147 (1) = 2 (1}
(4.4)
Now, by our equations (2.4) and Lemma 3.2.1 of Fleming and Harrington (1991, p.99), we
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have for large n,

1
L) ~ e - 25 [ K

sup
tef0,r—e]

n 2(, 2 " D ¥(t-hoiy 0] *' y MOS8 (D 3
LK()E[S[(: )} 2 )]A(r i) — =2 jx()dl

! [ ¥(1—Eyu) >0} 1
J_! K*(u)E I:Sf,[(t — hu) ]{ Y0 - b g hnu)}])\(r - hu)du

= sup
tef0,r—¢

= sup
tef0,r—¢

+f K> @E(SF(t ~ p)-)) [m - W] At — hyu)du

", E(SE[(t — k)
+-_1K {(u) 0

E{S7{(t — k)] = 8°[(t — ha) -}
) A(0)du

+ K()Sz(’ k) = Sz(‘),\(e)du|
< Isup E

J-1 1T(f)
< l lsup A{s}} J] K*(u)du
s€l07] seld,7] -

| 1| J 2
+ | su sup sup A K(u)d
L[o ,}15} ue(-1, 1]|ﬂ'(t By w(0)] sE[OF:'] ) -1 () du

+[: sup sup |A(f — hu) — A(t)!l (I)Jl K*(u)du

e[0,7—e we[~1,1]

ml [A(t = Bau) — A(O)]du

+.K()

Iyg>q 1
1Y) w(s)

A1)
+2Lzl[.:)p E{S,(s—) - S(s )}]?(T)J_ K*(u)du

i
A@) [

Wj_le(u)du
\irw>0 Ayl | L == b
- Li}ﬁ%E Y wls) — SZE%'\(S) J—IK ()

1
2
] Lz][.{l]}:; ,\(s)] J_IK (w)du

+ L sup sup |A(z — h,u) — A(t)]} ;%rjj_ 2(u)du+ 21 — a{r)]" Mt; J_IK (u)du

€[t 7—elue{-1,1]

+2[ sup  sup |S(t—h,,u)—-5'(f)il

€0, 7—¢| we(-1,1}

+ [ sup  sup
I

€[,y ~¢] we[~1,1]

w1 — hau)  7(1)

€f0,7—¢] ue[— 1, 1] ()

+2 [: sup sup [S(t— (£)|] /\(t)j K (u)de. (4.5)
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Since Y(s) has a binomual distribution with parameters » and =(s) for each fixed
s € [0,7] and since

x>0 Iyl _ 1 1
In=tY(s) wls) | E"lfmleH Y G ﬁ(s)’ Y(s) >0}
= (1= 1= w0 o = 5 Y0 = o],

it follows from Lemma 4.2 of Aalen (1976, p. 18) that

Ly sy >0
lim sup EI [r9>0 =0. 46
i Y e | &

By (4.5), (4.6) and the continuity of f and m, we have shown that

i sup |n e SO 2(0du| =
Jim, sup ok B17,() (0 - 5 | Ko -0
Thus, we have
1
ELL(0 — 0P n;g((’))] Kz(u)du-f-o(n;n), 4.7)

umformly for t € [0, 7 — ¢|. To deal with the sccoad term on the right—hand side of (4.4), let
= E[l;, < Sa(my){S(7y) — S(5)}/S(7y)], where 7y =inf{s: ¥(s) =0}. Then by
Equatlon {2.13) of Fleming and Harrington (1 19, p. 104), we can show that for s € [0, 7],

nE[S,(s) - S(s) — B(s)?

st [ B [52092) Dre>g v
-6 [SZ(w) 7w ]“ .

_ fiyw>0  diyon>o)| | Alw)
= %9 [ st { Tpet - 1 Hemer

Sz,,(w—)f[ Yiwy>a | Alw)
2 w
+8°(s) EE l (W) 52%(w) d

Iyw»0 vy |] T
<< sup E||Z - sup A(w)| +
{we[& e -5 iy | e 00

which, together with (4.6) and the boundness of A on [0, 7], implies that

-
7(7)S%{1) [wil[lor,)r] A(W)] ’

sup E[S,(s) — S(s) - B(s)]* = o(ﬁ). (4.8)

se0,7]
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Furthermore, by our equations (1.5) and Lemma 3.2.1 of Fleming and Harrington {1991, p.
99), we can show that for large n,

sup ELf; (1) = f(0F

tel,r—¢

= sup L8[ [ Kyicnar»olSn(l = =) = S~ ) 1A =
1€[0,7—¢] -1

_ ,r Ky i-n=a f (e h"“)du] 2}

! 2 242
< s {a] KAWEBIS, (= ha) = S~ had IR0~ i

tel0,r—
+4 Jil Kz(“)EI[ Y(l—k,u)=0]f2(f - h,,u)du}
< 16‘[1 1 KZ(H)E[SH((I — hnu)“) — S((f — h"u)__) - B((I . hnu)‘—)]z)\z(.{ _ hnu)du

+ 16J]_1 K*()E[B((t ~ ) )N (1 — hytt)dus -+ 4,r-1 K2 () Elyp ety f 2t = hys)d

< {16 sup )\2(5)}{ sap E[S,(s) — S(s) ~B{s)]2} Jl_le[u)du

5e[0,7] se(0,7]

+ lsup P(Y(s)= O)] llé sup AX(s) +4 sup f*(s)
sefo,r] sefo,7] $€[0,7]

Jil K?(u)du

< [16 sup Az(s)] { sup E[S,(s) — S(s) - B(s)]z} Jil K2 (w)du

5€[0,7] se[0,7]

+ Ie—mu-('r') l16 sup ,\2(3) + 4 sup f2(5)] Jl_i Kz(u)dﬂ.

s€[0,7) sefo,r]

As a result, by (4.8) and the boundness of f and X on [0, 7],

- = of
re?ﬂ‘f-fli E]E[f; () —ful)f = O(H)- (4.9)
Finally, by (4.7), (4.9), and the Schwarz inequality, we have
- 1
—f* () — =0 X 4.10
v (UL~ @l -0 = 0(7) (.10)

Therefore, combining (4.4), (4.7), (4.9) and (4.10) completes the proof of part (iti). Part (iv)
is easily derived from parts (i), (ii) and (iii}. The proof of Theorem 4.1 is complete. O

In view of Theorem 4.1, the ideal choice of the bandwidth 4, from the point of view of
minimizing the mean integrated square error of f,,, can be derived by minimizing the sum of
the two leading terms in (4.3). In doing so, we have arrived at the following results
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regarding the asymptotically optimal bandwidth and the corresponding mean integrated
square error of f,.

Corollary 4.1. The asymptotically optimal bandwidth is
 _ 1 i ! 2 - f(t) /3 - ” 2 -1/
"”_}}7?3157“_11( ol C(I_)dr} {J: 10 dr} . @.11)

Substituting by, into (4.3), we have the following expression for the mean integrated square
error of f,, with optimal bandwidth k),:

25 —e 45 ¢ rre 1/5
MISE(fn)=4§%{J_1K2(r)dt . %dr} {0 [f”(r)]zdt} +o(n*%). O
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