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We study the problem of nonparametric estimation of a probability density of unknown smoothness in

L2(R). Expressing mean integrated squared error (MISE) in the Fourier domain, we show that it is

close to mean squared error in the Gaussian sequence model. Then applying a modified version of

Stein’s blockwise method, we obtain a linear monotone oracle inequality. Two consequences of this

oracle inequality are that the proposed estimator is sharp minimax adaptive over a scale of Sobolev

classes of densities, and that its MISE is asymptotically smaller than or equal to that of kernel density

estimators with any bandwidth provided that the kernel belongs to a large class of functions including

many standard kernels.
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1. Introduction

A Stein weakly geometrically increasing (WGI) blockwise shrinkage estimator, employing a

classical Stein blockwise shrinkage together with WGI blocks, has recently been proposed

and studied for a filtering problem in Cavalier and Tsybakov (2001) and Tsybakov (2002).

It has been established that the estimator possesses several very nice statistical properties.

This paper suggests a Stein WGI estimator for the problem of probability density estimation

and then studies its properties via an oracle inequality. It also shows how to use an oracle

inequality to obtain Stone type results for kernel estimates.

Consider independent and identically distributed random variables X 1, . . . , X n having an

unknown common probability density p 2 L2(R). We study the estimation of p based on

the sample Xn ¼ (X 1, . . . , X n). Let p̂pn be an estimator of p. We measure the performance

of p̂pn by its mean integrated squared error (MISE),

E pk p̂pn � pk2 ¼ E p

ð
R

( p̂pn(x)� p(x))2 dx, (1:1)

where E p denotes the expectation with respect to Xn. Define the characteristic function

j(t) ¼
Ð
R
ei tx p(x)dx and the empirical characteristic function jn(t) ¼ jn(t, X

n) ¼
n�1
Pn

k¼1 e
i tX k : For any function h 2 L2(R), let ø 7! F [h](ø) ¼

Ð
R
eiøx h(x)dx be its Fourier

transform (the integral is understood in the ‘limit in mean’ sense). Consider a linear estimator

of the characteristic function j defined by
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ĵjº(ø) ¼
˜ jn(ø)º(ø), (1:2)

where ø 7! º(ø) is a weight function in L2(R). We define a density estimator p̂pº of p as the

inverse Fourier transform of ĵjº. The performance of this new estimator is measured by its

MISE which, by the Plancherel equality, can be written as

E pk p̂pº � pk2 ¼ 1

2�
E p

ð
R

jĵjº(ø)� j(ø)j2 dø ¼˜ 1

2�
Rn(ĵjº, j),

where

Rn ĵjº, jð Þ ¼
ð
R

j1� º(ø)j2jj(ø)j2 þ 1

n
jº(ø)j2

� �
dø� 1

n

ð
R

jj(ø)j2jº(ø)j2 dø:

Hence, the MISE of the linear estimator equals the ˜-risk

˜n º, jjj2
� �

¼˜
ð
R

j1� º(ø)j2jj(ø)j2 þ jº(ø)j2
n

� �
dø, (1:3)

minus a residual term of order n�1 which is usually small compared to ˜n. This suggests

that, for sufficiently large n, the linear oracle ºoracleH on a class H satisfies

ºoracleH ¼˜ argmin
º2H

Rn ĵjº, jð Þ � argmin
º2H

˜n º, jjj2
� �� �

: (1:4)

Note that expression (1.3) is similar to that for the mean squared error in the Gaussian

sequence model, transposing the formula in the continuous case and replacing � by n�1=2.

Therefore, it seems natural to extend the results for the Gaussian sequence model to

nonparametric density estimation. The similarity between density estimation and the

Gaussian sequence model based on Fourier analysis has been examined by Golubev (1992)

and later by Boiko and Golubev (2000). Golubev and Levit (1996) consider the problem of

the second-order minimax adaptive estimation of an unknown distribution function over

Sobolev ellipsoids. They develop techniques that are also useful for the density estimation

problem considered here.

The Gaussian sequence model has been studied by many authors in the past decades and

oracle inequalities have been widely used, although initially in an implicit form, to derive

adaptation – see Shibata (1981), Efroimovich and Pinsker (1984), Li (1987), Golubev

(1990, 1992), Golubev and Nussbaum (1992), Polyak and Tsybakov (1992), Kneip (1994),

Birgé and Massart (2001) and Cavalier et al. (2002). Most of these papers use the Mallows

C p or its modifications to derive estimators that mimic the best estimator in various

subclasses of linear estimators (i.e. the oracle). In particular, blockwise constant weights

show particularly good statistical properties and have been widely discussed in the statistical
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literature, first by Efroimovich and Pinsker (1984), and more recently by Efromovich

(1999), Nemirovski (2000) and Efromovich (2004a) who consider block estimators different

from Stein’s one. Tsybakov (2004) considers Stein’s estimator with a particular system of

blocks, namely, WGI blocks. Cavalier and Tsybakov (2001) improve the previous results by

using a penalized version of the block Stein estimator.

As for the wavelet framework, the subject has been discussed by Donoho and Johnstone

(1994, 1995) and Härdle et al. (1998). In the same setting, Cai (1999) and Efromovich

(2000) use block thresholding type estimators that both satisfy oracle inequalities within the

class of blockwise linear estimators. These estimators exhibit good performance in

simulations.

Goldenshluger and Tsybakov (2001) apply the block Stein estimator with WGI blocks to

the Gaussian regression problem with infinitely many parameters. They show that it is sharp

minimax adaptive over a scale of Sobolev ellipsoids in ‘2. Tsybakov (2002) discusses in

particular the anisotropic multidimensional white noise model. He shows that the block

Stein estimator, again with WGI blocks, is adaptive simultaneously with respect to the real

dimension, direction and smoothness of the parameter over a scale of Sobolev ellipsoids. In

both papers, adaptation is derived from oracle inequalities.

Whereas the Gaussian sequence model has been extensively studied, there are few results

concerning blockwise density estimation. A discussion of blockwise density estimates can

be found in Efroimovich (1985) and Efromovich (2000, 2005), where the Efromovich–

Pinsker shrinkage procedure together with polynomial blocks is explored, and in Hall et al.

(1998), where a block-thresholding shrinkage procedure employing small logarithmic blocks

is explored.

Cavalier and Tsybakov (2001) obtained powerful oracle inequalities for penalized Stein

estimates in the context of the Gaussian sequence model. Under certain hypotheses, they

lead to adaptive properties in the minimax sense – in particular, over any ellipsoid in ‘2
with monotone decreasing coefficients.

This paper is devoted to developing a Stein WGI estimator for a density estimation

setting. The estimator employs a classical Stein blockwise shrinkage which uses a zero

thresholding (imposes no penalty). Let us recall that this shrinkage procedure has been very

attractive for filtering problems; see the discussion in Tsybakov (2002). The WGI blocks

employed were also recommended in Tsybakov (2002). Note that these blocks are larger

than the ones traditionally studied in the literature, but this choice is justified in Efromovich

(2004b) where it is shown that the smaller blocks do not imply sharp minimaxity.

The primary complication in the development and study of a density estimate, based on a

known analogue for Gaussian sequence models, consists in the fact that the observations are

not Gaussian and precise results such as Stein’s lemma do not apply. In Section 2, we use

unbiased estimation of the risk to derive several oracle inequalities for the proposed

estimator. We then give two corollaries of these results. First, in Section 3 we show that it

is sharp minimax adaptive over a scale of Sobolev classes of densities. Second, in Section 4

we show that its MISE is asymptotically smaller than or equal to that of kernel density

estimators with any bandwidth provided that the kernel belongs to a large class of functions

including many standard kernels. A simulation study for the proposed estimator can be

found in Rigollet (2004).
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2. Application of the blockwise Stein method to density
estimation

2.1. Estimation of the ˜-risk

Blockwise Stein methods in the Gaussian sequence model are related to the unbiased

estimation of the risk. For density estimation, we will consider only an asymptotically

unbiased estimator of the risk. The empirical characteristic function jn is an unbiased

estimator of j that satisfies

E pjjn(t)j2 ¼ 1� 1

n

� �
jj(t)j2 þ 1

n
: (2:1)

Therefore, [jjn(ø)j2 � 1=n] is an asymptotically unbiased estimator of jj(ø)j2 and we can

define an asymptotically unbiased estimator of ˜n(º, jjj2) which, up to an additional term

independent of º, is given by

ln(º) ¼˜
ð
R

jº(ø)j2 � 2Re º(ø)ð Þ
� �

jjn(ø)j2 þ
2

n
Re º(ø)½ �

� �
dø, (2:2)

for º such that the integrals are finite. It is natural to drop this additional term since the idea

is to choose a weight function º that minimizes ln over a certain class H. To define a

reasonable H, we shall restrict the possible weight functions º to admissible ones. Cline

(1988) proves that if º is an arbitrary complex-valued function, it is possible to find a real,

non-negative function º, bounded by one, such that the risk corresponding to º is smaller

than that corresponding to º. All such º will be called admissible. For all admissible º, the
functional ln(º) defined in (2.2) becomes

ln(º) ¼
ð
R

º2(ø)� 2º(ø)
� �

jjn(ø)j2 þ
2

n
º(ø)

� �
dø: (2:3)

We also impose the restriction that º is even. From now on, let H0 be the class of all

even, square-integrable functions on R taking values in [0, 1].

We first study a simple class of weight functions which leads to the definition of an

analogue of the Stein estimator for density estimation. For this estimator, a first oracle

inequality is given. Then the construction is generalized to a slightly more complex class of

weight functions to define the blockwise Stein estimator.

2.2. Stein’s estimators applied to density estimation

Consider a particularly simple class of weight functions,

HA ¼˜ º : º(ø) ¼ t1A(ø), t 2 [0, 1]f g � H0,

where A is a finite union of bounded, non-trivial intervals on R such that a 2 A ) �a 2 A

(later we use the union of two intervals symmetric about 0, which we will call symmetrized
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intervals) and 1A denotes the indicator function of A. Define the Stein estimator on A as the

solution of the minimization problem º�A ¼˜ argminº2HA
ln(º), which can explicitly be written

as

º�A(ø) ¼ 1� jAj
n
Ð

A
jjnj2

� �
þ
1A(ø) ¼˜ t�A1A(ø), ø 2 R, (2:4)

where jAj is the Lebesgue measure of A. Then let ºoracleA be the linear oracle on HA, defined

by

ºoracleA ¼˜ arg min
º2HA

RA
n ĵjº, jð Þ, where RA

n ĵjº, jð Þ ¼˜ E p

ð
A

����ĵjº(ø)� j(ø)
����
2

dø: (2:5)

It is easy to see that

ºoracleA (ø) ¼
Ð

A
jjj2Ð

A
jjj2 þ n�1

Ð
A
1� jjj2ð Þ

� �
1A(ø) ¼˜ toracleA 1A(ø): (2:6)

Theorem 2.1. Let 1 < jAj < 4n and let j satisfy
Ð

A
jj(ø)jdø < G, for some G , 1. Then

there exist an absolute constant C . 0 and a constant D1 . 0 that depends only on G such

that, for any �n . C, the Stein estimator on the set A satisfies the oracle inequality

RA
n ĵjº�A , j
� 	

<
1

1� C��1
n

RA
n ĵjºoracleA

, j
� 	

þ D1

log nð Þ4�n

n

 !
: (2:7)

The proof of Theorem 2.1 is given in Section 6.

Now introduce a constant b0 . 0 and a finite value �n depending only on n and consider

a partition Bj


 �J

j¼0
of [��n, �n], such that B0 ¼ (�b0, b0) and,

81 < j < J , Bj ¼ �B9j [ B9j, B9j ¼
˜
[b j�1, b j), �B9j ¼

˜
(�b j, �b j�1], 0 , b j�1 , b j:

Let H� be the class of weight functions given by

H� ¼ º : º(ø) ¼
XJ

j¼0

t j1B j
(ø), 0 < t j < 1, j ¼ 0, . . . , J

( )
� H0: (2:8)

Minimization of ln over H� follows directly from the minimization over HB j
. Indeed, the

function ~ºº ¼˜ argminº2H� ln(º) is constant on each Bj, ~ºº(ø) ¼
PJ

j¼0 º
�
B j
1B j

(ø), where º�B j
is

defined in (2.4). Define the blockwise Stein estimator on the system Bj


 �J

j¼0
by

~ºº(ø) ¼˜
XJ

j¼0

1� jBjj
n
Ð

B j
jjnj2

 !
þ

1B j
(ø): (2:9)

From (2.7) we obtain an oracle inequality for the blockwise Stein estimator. Indeed, if every

Bj, j ¼ 0, . . . , J , satisfies 1 < jBjj < 4n, by Theorem 2.1, for �n . C and
Ð
jjj < G we

have
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Rn(ĵj~ºº, j) ¼
XJ

j¼0

RB j

n ĵjº�B j

, j
� �

þ
ð
jøj.�n

jj(ø)j2 dø

<
1

1� C��1
n

XJ

j¼0

RB j

n ĵjºoracleB j

, j
� �

þ JD1

log nð Þ4�n

n

 !
þ
ð
jøj.�n

jj(ø)j2 dø: (2:10)

Let ºoracleH� be the linear blockwise constant oracle defined by ºoracleH� ¼˜ argminº2H� Rn ĵjº, jð Þ.
Since

XJ

j¼0

RB j

n ĵjºoracleB j

, j
� �

þ
ð
jøj.� n

jj(ø)j2 dø ¼ Rn(ĵjºoracleH�
, j),

equation (2.10) implies the following result.

Theorem 2.2. Let 1 < jBjj < 4n, for any j ¼ 0, . . . , J, and let j satisfy
Ð

B j
jj(ø)jdø < G,

for any j ¼ 0, . . . , J and some G , 1. Then there exist an absolute constant C . 0 and a

constant D1 . 0 that depends only on G such that, for any �n . C, the blockwise Stein

estimator on the system fBjgJ
j¼0 satisfies the oracle inequality

Rn(ĵj~ºº, j) <
1

1� C��1
n

Rn(ĵjºoracleH�
, j)þ JD1

log nð Þ4�n

n

 !
: (2:11)

2.3. Linear monotone oracle

Consider the classes of ‘monotone’ weight functions

H1
mon ¼˜ º 2 H0 : º(ø) < º(ø9), 0 < ø9 < øf g and H� n

mon ¼˜ º1[�� n,� n] : º 2 H1
mon


 �
:

The space L2(R) equipped with the k � k-norm is a reflexive Banach space, and H�n

mon is a

closed convex subset of L2(R). Moreover, the functional F : º 7! Rn(ĵjº, j) is quadratic and

coercive (i.e. F(º) ! þ1, kºk ! 1) and thus strictly convex and continuous. These

remarks and Proposition 1.2 of Ekeland and Temam (1974, Chapter II) show that there exists

a unique º� n

mon ¼˜ argminº2H�n
mon

Rn(ĵjº, j). Similarly there exists a unique º1mon

¼˜ argminº2H1
mon

Rn(ĵjº, j). We call º� n

mon and º1mon linear monotone oracles. In the Gaussian

sequence model, under some assumptions on the system of blocks, the blockwise Stein

estimator is almost as good as the linear monotone oracle (Tsybakov 2004). An analogue of

this result for density estimation is given below. Let the system of symmetrized intervals

satisfy the following assumption.

Assumption A. The inequality

max
0< j<J�1

jBjþ1j
jBjj

< 1þ �,
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holds for some � . 0.

Lemma 2.1. Under Assumption A, for all j 2 L2(R),

min
º2H�

Rn(ĵjº, j) < min
º2H�\H�n

mon

Rn(ĵjº, j)

< (1þ �) min
º2H� n

mon

Rn(ĵjº, j)þ
1

n
jB0j þ 3(1þ �)kjk2
� �

:

(2:12)

Proof. We need to show that for any º 2 H� n

mon, there exists º 2 H� \ H� n

mon such that

Rn(ĵjº, j) < (1þ �)Rn(ĵjº, j)þ
1

n
jB0j þ 3(1þ �)kjk2
� �

: (2:13)

Fix º 2 H� n

mon and define ~ºº(ø) ¼˜ min º(ø), 1þ n�1=2
� ��1

h i
. Inequality (2.13) holds for

º(ø) ¼˜
PJ

j¼0º( j)1fø2B jg, where º( j) ¼˜ sup f 2B j
~ºº( f ). Indeed,

Rn(ĵjº, j) <
ð
R

(1� ~ºº(ø))2jj(ø)j2 þ 1

n
º2(ø)

� �
dø� 1

n

ð
R

jj(ø)j2~ºº2(ø)dø:

But º satisfies ð
R

º2(ø)dø ¼
ð� n

�� n

º2(ø)dø < jB0j þ (1þ �)

ð
R

~ºº2(ø)dø:

Since ð
R

(1� ~ºº(ø))2 �
~ºº2(ø)

n

 !
jj(ø)j2 dø > 0,

it follows that

Rn(ĵjº, j) < (1þ �)Rn(ĵj~ºº, j)þ
jB0j

n
: (2:14)

On the other hand,

Rn(ĵj~ºº, j) <
ð
R

(1� ~ºº(ø))2jj(ø)j2 døþ 1

n

ð
R

1� jj(ø)j2
� �

º2(ø)dø:

But, if we note
Ð

f ¼˜
Ð

R
f (ø)dø for a function f , the first term of the right-hand side

becomes ð
(1� ~ºº)2jjj2 ¼

ð
(1� º)2jjj2 þ

ð
(º� ~ºº)2jjj2 þ 2

ð
(1� º)(º� ~ºº)jjj2

<

ð
(1� º)2jjj2 þ 3

kjk2
(1þ ffiffiffi

n
p

)2
:
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Therefore, Rn(ĵj~ºº, j) < Rn(ĵjº, j)þ 3kjk2=n, which, combined with (2.14), proves the

lemma. h

Theorem 2.3. Let the system Bj


 �J

j¼0
satisfy Assumption A and let the conditions of Theorem

2.2 hold. Then there exist an absolute constant C . 0 and a constant D1 . 0 that depends

only on G such that, for any �n . C, the blockwise Stein estimator on the system fBjgJ
j¼0

satisfies the oracle inequality

Rn(ĵj~ºº, j) <
1

1� C��1
n

(1þ �)Rn(ĵjº�n
mon
, j)þ 1

n
jB0j þ 3(1þ �)G þ JD1 log nð Þ4�n

� 	� �
:

(2:15)

Proof. The proof follows directly from Theorem 2.2 and Lemma 2.1. h

The next lemma allows us to extend the oracle inequality (2.15) to the class H1
mon of

monotone weight functions that do not necessarily have a compact support. Set

�n ¼ n(log n)2 so that, for sufficiently large n, �n > Gn log n.

Lemma 2.2. Assume that kjk2 < G. For n > n0(G) . 0, there exist positive constants

k1 ¼ k1(n0) and k2 ¼ k2(n0) such that

min
º2H�n

mon

Rn(ĵjº, j) < 1þ k1
log n

� �
min

º2H1
mon

Rn(ĵjº, j)þ k2
G

n
:

Proof. Define

�0
n ¼˜ max jøj : jº(ø)j > (log n)�1=2

n o
:

Then, setting º ¼˜ º1mon and º0 � 0 2 H1
mon,

kjk2 ¼ Rn(ĵjº0 , j) > Rn(ĵjº, j) >
1

n

ð
jøj<�0

n

1

log n
dø� kjk2

n
¼ 2�0

n

n log n
� kjk2

n
:

Thus �0
n < kjk2n log n < �n. Now define º� n

(ø) ¼˜ º(ø)1fjøj<� ng; therefore º�n
2 H�n

mon

and

Rn(ĵjº�n
, j) <

ð
R

(1� º(ø))2jj(ø)j2 þ
º2� n

(ø)

n

" #
dø

< 1� 1ffiffiffiffiffiffiffiffiffiffi
log n

p
� ��2ð

R

(1� º(ø))2jj(ø)j2 þ º(ø)2

n


 �
dø

< 1þ k1
log n

� �
Rn(ĵjº, j)þ k2

G

n
, for n > n0:

h
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An important question is how to construct systems of symmetrized intervals Bj


 �J

j¼0

satisfying the assumptions of Theorem 2.3 and such that the residual term on the right-hand

side of inequality (2.15) is asymptotically negligible with respect to the principal term

(1þ �)Rn(ĵjº�n
mon
, j) under rather general conditions on j. We now give an example of such

a construction. In what follows, set �n ¼ nÆ(log n)Æ9, where Æ > 1=2, Æ9 > 0. Let �n be a

deterministic quantity such that �n ! 1 when n ! 1.

Set �n ¼˜ 1=�n and define the system of symmetrized intervals fBjgJ
j¼0 with the size jBjj

of each symmetrized interval Bj:

jB0j ¼ �n,

jBjj ¼ (1þ �n)
j�n, j ¼ 1, 2, . . . , J � 1,

jBJ j ¼ �n �
XJ�1

j¼0

jBjj,

where

J ¼˜ min m :
Xm

j¼0

(1þ �n)
j�n > �n

( )
:

Clearly, this system satisfies Assumption A with � ¼ �n. We call the system fBjgJ
j¼0 a

weakly geometrically increasing system of symmetrized intervals or WGI system. The

corresponding blockwise Stein estimator is called the Stein WGI estimator. For n > 2,

XJ�1

j¼0

(1þ �n)
j�n < �n: (2:16)

Solving inequality (2.16) with respect to J , we find that there exist n0 > 2 and

C ¼ C(n0, Æ, Æ9) such that J < C log nð Þ�n, for n > n0. For the Stein WGI estimator, by

the Plancherel identity, inequality (2.15) yields the following theorem.

Theorem 2.4. Assume that
Ð
R
jjj < G. Then there exist an absolute constant C . 0 and a

constant D2 . 0 that depends only on G such that, for any �n . C and sufficiently large n,

the Stein WGI estimator satisfies the oracle inequality

Rn( p̂pº, p) <
1

1� C��1
n

(1þ ��1
n )Rn( p̂pº�n

mon
, p)þ �n(D2)

2�

� �
, (2:17)

where the residual

�n(D2) ¼
˜ D2�n

n
1þ log nð Þ5�n

� 	
:
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3. Application to sharp minimax adaptation

For any Q . 0 and � . 0, define the Sobolev class of densities ¨(�, Q) as the set of

functions

¨(�, Q) ¼˜ p 2 L2(R), p > 0,

ð
R

p(x)dx ¼ 1,

ð
R

jj(ø)j2jøj2� dø < 2�Q

� �
:

We will show that the Stein WGI estimator is sharp minimax adaptive on a wide scale of

Sobolev classes, that is, it is asymptotically sharp minimax simultaneously on all the classes

¨(�, Q), for � . 1=2 and Q . 0. Set � . 1=2 and Q . 0 and define the Pinsker type

density estimator which is a linear estimator of the form (1.2) with the weight function

‘(ø) ¼˜ 1� k�jøj�
� �

þ, where k� ¼˜ �

(2�þ 1)(�þ 1)�Q

� ��=(2�þ1)

n��=(2�þ1): (3:1)

It is obvious that, for sufficiently large n, ‘ 2 H
ffiffiffi
n

p
mon. Now, if p 2 ¨(�, Q), for � . 1=2 we

have
Ð
R
jjj < C(�, Q), where C(�, Q) , 1 is a positive constant that depends only on �

and Q. Taking the supremum over a Sobolev class of densities ¨(�, Q) of both sides of

(2.17), we obtain

sup
p2¨(�,Q)

Rn( p̂p~ºº, p) <
1

1� C��1
n

(1þ ��1
n ) sup

p2¨(�,Q)

Rn( p̂pº�n
mon
, p)þ �n(D(Q, �))

2�

 !
, (3:2)

where D(Q, �) , 1 depends only on Q and �. But ‘ 2 H
ffiffiffi
n

p
mon, so for every p 2 ¨(�, Q) with

Fourier transform j, we have that Rn(ĵjº
ffiffi
n

p
mon
, j) < Rn(ĵj‘, j), which implies that

Rn( p̂p
º
ffiffi
n

p
mon

, p) < Rn( p̂p‘, p). For �n ¼ ffiffiffi
n

p
, inequality (3.2) with, for instance, �n ¼ �n ¼

log(log n) yields

sup
p2¨(�,Q)

Rn( p̂p~ºº, p) <
1

1� C��1
n

(1þ ��1
n ) sup

p2¨(�,Q)

Rn( p̂p‘, p)þ �n(D(Q, �))

2�

 !

< C�n�2�=(2�þ1)(1þ o(1)), n ! þ1, (3:3)

where

C� ¼˜ (2�þ 1)
� 2�þ 1ð Þ(�þ 1)

�


 ��2�=(2�þ1)

Q1=(2�þ1):

The last inequality in (3.3) is a known upper bound for the Pinsker type density estimator

that is proved by Schipper (1996) for integer �, although the proof remains valid for any

positive �. On the other hand, the following lower bound holds.

inf
Tn

sup
p2¨(�,Q)

n2�=(2�þ1)Rn(Tn, p) > C�(1þ o(1)), n ! þ1, (3:4)

where the infimum is taken over all estimators of p. This result can be found in Golubev

(1992) without proof. The first proof of (3.4) should be attributed to Schipper (1996) who
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considered however, only integer values of �. Dalelane (2005) gives a proof of (3.4) which

essentially follows that of Schipper (1996). In fact, it can be deduced from Golubev (1991)

with additional arguments that are detailed in Rigollet (2004). Recently, Efromovich (2000)

proved a general result for finding sharp minimax lower bounds in the multivariate case

extending the one-dimensional setting of Efroimovich and Pinsker (1982). However, it cannot

be applied in our set-up in full generality since it treats the densities with respect to a finite

measure. From (3.3) and (3.4), we conclude that the Stein WGI estimator p̂p~ºº is sharp

minimax adaptive over the scale of Sobolev classes of densities ¨(�, Q), � . 1=2, Q . 0f g
in the sense of standard definitions given, for example, in Tsybakov (2004).

4. Application to kernel density estimation

For h . 0, define the kernel density estimator

p̂pn,h(x) ¼
1

nh

Xn

i¼1

K
X i � x

h

� �
,

where the kernel belongs to the class K0, the class of kernels K that admit a version of

Fourier transform F [K] symmetric about 0, decreasing on Rþ and taking its values in [0, 1].

Set �n ¼ n(log n)2. Lemma 2.2, Corollary 2.4 and the fact that

F [ p̂pn,h](ø) ¼ jn(ø)F [K](hø) together lead to the following theorem.

Theorem 4.1. Assume that
Ð
R
jjj < G. Then there exist an absolute constant C . 0 and a

constant D3 . 0 that depends only on G such that, for any �n . C and sufficiently large n,

the Stein WGI estimator satisfies the kernel oracle inequality

Rn( p̂p~ºº, p) <
1

1� C��1
n

(1þ ��1
n )(1þ k1(log n)�1) inf

K2K0

inf
h.0

Rn( p̂pn,h, p)þ �n(D3)

2�

� �
: (4:1)

Note that we do not suppose that K 2 L1(R). This can be interpreted to mean that the

infimum over K0 on the right-hand side of (4.1) is not attained for such kernels. The

following lemma is similar to one in Stone (1984).

Lemma 4.1. Let p be any density in L2(R) and K 2 L1(R) be a symmetric kernel satisfyingÐ
K(x)dx ¼ 1 and one of the following two conditions:

(i) K is non-negative;

(ii) K is a kernel of order 2s for a positive integer s (i.e. with moments Æk ¼˜Ð
t k K(t)dt ¼ 0, 8 1 < k , 2s) such that (�1)sþ1Æ2s . 0 and jKj has a finite absolute

moment of order 2s þ �, 0 , � < 1, that is, �2sþ� ¼˜
Ð
jtj2sþ�jK(t)jdt , 1.

Then there exists positive constants c, depending on p and K, and a , 1, depending on K,

such that

inf
h.0

Rn( p̂pn,h, p) > cn�a: (4:2)
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Proof. The usual bias/variance decomposition is given by Rn( p̂pn,h, p) ¼ E pk p̂pn,h

� E p[ p̂pn,h]k2 þ kE p[ p̂ph,h]� pk2. To bound the bias from below, we begin as in Stone’s

(1984) proof. According to the Plancherel identity,

2�kE p[ p̂pn,h]� pk2 ¼
ð
R

jF [K](hø)j(ø)� j(ø)j2 dø ¼
ð
R

(1�F [K](hø))2jj(ø)j2 dø:

Since j is continuous and j(0) ¼ 1, there exists � . 0 such that jj(ø)j2 > 1=2 for jøj < �.
Then, ð

R

1� F [K](hø)ð Þ2jj(ø)j2 dø >
1

2

ð�
��

1� F [K](hø)ð Þ2 dø: (4:3)

Suppose that K satisfies (i). Then it is a probability density and F [K] is its characteristic

function. From Theorem 4.1.2 of Lukacs (1970), we obtainð�
��

1� F [K](hø)ð Þ2 dø >
1

24m

ð�
��

1�F [K](2m hø)ð Þ2 dø, 8m 2 N:

Now choose m such that 2�(mþ1) < h , 2�m:ð�
��

1� F [K](hø)ð Þ2 dø > h4

ð�=2
��=2

1� F [K](ø)ð Þ2 dø ¼ c1h4,

where c1 ¼
Ð �=2
��=2 1� F [K](ø)ð Þ2 dø is a positive constant. Indeed if c1 ¼ 0 then, by

continuity, 1� F [K](ø) ¼ 0, for any ø 2 (��=2, �=2): Thus, by Theorem 4.1.1 of Lukacs

(1970), F [K] � 1, which contradicts the conclusion of the Riemann–Lebesgue lemma.

Therefore, there exists a positive constant c1 such that

kE p[ p̂pn,h]� pk2 > c1

4�
(h4 ^ 1), 8h 2 Rþ: (4:4)

Suppose now that K satisfies (ii). By Theorem 2.2.1 of Lukacs (1983), since K is symmetric

and of order 2s, F [K](t) admits an expansion of the form

F [K](t) ¼ 1þ
Xs

k¼1

(�1)k Æ2k t2k

(2k)!
þ O jtj2sþ�

� �
¼ 1þ (�1)s Æ2s t2s

(2s)!
þ O jtj2sþ�

� �
,

as jtj ! 0. Note that Lukacs’ theorem is stated for characteristic functions but it can be easily

extended to our case. It is enough to suppose that h < h0 for some positive constant h0. If

h . h0, the bias is bounded from below by a positive constant and the lemma is trivially

proved. For h < h0 and jøj < � with sufficiently small �, 1� F [K](hø) >
(�1)sþ1Æ2s h2sø2s=[2(2s)!] . 0. Therefore, for h < h0,

kE p[ p̂pn,h]� pk2 > c2h2s, (4:5)

where c2 is a positive constant depending on K.

If h < h0 for sufficiently small h0, the variance term can be written (see Tsybakov 2004)
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E pk p̂pn,h � E p[ p̂pn,h]k2 ¼
1

nh2
E p

ð
R

K2 X1 � x

h

� �
dx �

ð
R

E p K
X 1 � x

h

� �
 �
dx

� �2
" #

>
c3

nh
, c3 . 0:

Using (4.4) and (4.5), we find that in both cases (i) and (ii) of the lemma there exists a

positive constant ~aa such that

inf
h.0

Rn( p̂pn,h, p) > inf
h.0

c4h~aa þ c3

nh

h i
> cn�a,

for positive constants c and a , 1. h

Corollary 4.1. Let K 2 K0 be a kernel satisfying the conditions of Lemma 4.1. Then for every

fixed probability density p 2 L2(R) with characteristic function j 2 L1(R),

Rn( p̂p~ºº, p) < 1þ o(1)ð Þinf
h.0

Rn( p̂pn,h, p), n ! 1: (4:6)

Here o(1) depends on K and p.

The proof is straightforward from Theorem 4.1 and Lemma 4.1.

It is important to note that the Stein WGI estimator mimics an oracle that is more

powerful than any kernel oracle in a large class of kernels. The main difference from

previous results of Stone’s type (Stone 1984; Devroye and Penrod 1984; Wegkamp 1999) is

that one and the same estimator is shown to be simultaneously as powerful as or even more

powerful asymptotically than the kernel oracles corresponding to various kernels.

Some examples of admissible kernels covered by Theorem 4.1 and Corollary 4.1 are: the

triangular kernel, the biweight kernel, Silverman’s kernel, Fejer’s kernel, the Gaussian kernel

and the sinc kernel (the last one being covered only by Theorem 4.1 and not by Corollary

4.1). Note that in this list, which is not exhaustive, only the triangular and biweight kernels

obey Stone’s (1984) conditions. Of course, Theorem 4.1 says nothing about the kernels

whose Fourier transform does not take values in [0, 1]. These kernels are not admissible

(see Cline 1988) because they have higher MISE. This is the case of the Epanechnikov

kernel and of the rectangular kernel.

5. Conclusion

In this paper, we propose a new density estimator called the Stein WGI estimator. The main

result is an oracle inequality given in Theorem 2.4 showing that the estimator mimics the

linear monotone oracle. We give two consequences of this inequality. First, we show that

the Stein WGI estimator is sharp minimax adaptive over a scale of Sobolev classes of

densities and second, that it is simultaneously as powerful as the kernel oracles

corresponding to a large class of kernels.
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6. Proof of Theorem 2.1

In all the lemmas presented in this section, we suppose that the assumptions of Theorem

2.1 are satisfied.

Let �n be the empirical process

�n(ø) ¼˜
1ffiffiffi
n

p
Xn

k¼1

eiøX k � j(ø)
� �

¼
ffiffiffi
n

p
jn(ø)� j(ø)ð Þ:

Several properties of this process have been given by Golubev and Levit (1996). We recall

some of their results adapted to our framework. The following two lemmas are proved in

Golubev and Levit (1996) for any j such that
Ð
R
jjj < G.

Lemma 6.1. Let n > 1 be a fixed integer and b be an even real function such thatð
R

jb(ø)jdø < 2
ffiffiffi
n

p
kbk, (6:1)

where k : k denotes the L2(R) norm. Then, for any k > 1, there exists a constant C ¼
C(G) . 0 such that ����E p

ð
R

b(ø)�n(ø)dø

����
2k

< Ckð Þ4kkbk2k : (6:2)

If, moreover, b satisfies

max
l2N
l>3

kbk� l

ð
R

jb(ø)j ldø < 1, (6:3)

then, for any integer k > 1, there exists a constant C9 ¼ C9(G) . 0 such that

E p

ð
R

b(ø) j�n(ø)j2 � E pj�n(ø)j2
� �

dø

� �2k

< C9kð Þ4kkbk2k : (6:4)

Lemma 6.2. Let ~JJ 2 f1, . . . , Ng be a random index and (	(ø), ø 2 R) be a random process

satisfying

E p

����
ð
R

b j(ø)	(ø)dø

����
2k

< Dkð Þ4kkb jk2k , k 2 N�, j ¼ 1, . . . , N , (6:5)

for some constant D . 0. Then there exists a constant D9 . 0 such that

E p

����
ð
R

b ~JJ (ø)	(ø)dø

���� < D9 log Nð Þ2 E pkb ~JJk2
� �1=2

:

The following lemma, stated by Golubev (1992), gives two important formulae that are

used to construct oracle inequalities. The proof of this lemma can be found in Rigollet

(2004).
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Lemma 6.3. Let A be a Borel subset of R and

RA
n ĵjº, jð Þ ¼˜ E p

ð
A

jĵjº(ø)� j(ø)j2 dø:

Then for all º such that º(ø) ¼ º(ø, Xn) ¼ h(Xn)1fø2Ag ¼ h1fø2Ag, h 2 R,

RA
n ĵjº, jð Þ ¼ E p ln(º)½ � þ

ð
A

jj(ø)j2 dø

þ 2

n
E p

ð
A

h j�n(ø)j2 � 1
� �

dø


 �
þ 2ffiffiffi

n
p Re E p

ð
A

(h � 1)j(ø)�n(ø)dø


 �

(6:6)

and

E p ln(º)½ � ¼ E p ˜n º, jjj2
� �� �

� 1� 1

n

� �ð
A

jj(ø)j2 dø

þ 1

n
E p

ð
A

(1� h)2 j�n(ø)j2 � 1
� �

dø


 �
þ 2ffiffiffi

n
p Re E p

ð
A

(1� h)2j(ø)�n(ø)dø


 �
:

(6:7)

Lemma 6.4. The Stein estimator on a Borel subset A of R satisfies the inequality

RA
n ĵjº�A , j
� 	

< RA
n ĵjºoracleA

, j
� 	

þ 1

n

ð
A

jj(ø)j2 dø

þ 2

n
E p

ð
A

t�A j�n(ø)j2 � E pj�n(ø)j2
� �

døþ 2ffiffiffi
n

p Re E p

ð
A

(t�A � 1)j(ø)�n(ø)dø


 �
:

(6:8)

The proof of Lemma 6.4 is straightforward in view of the definitions of t�A and toracleA and can

be found in Rigollet (2004).

In view of Lemma 6.4, to prove Theorem 2.1, it is sufficient to bound from above the

last two summands on the right-hand side of (6.8), that is,

E p

ð
A

t�A j�n(ø)j2 � E pj�n(ø)j2
� �

dø and E p

ð
A

(t�A � 1)j(ø)�n(ø)dø:

For this purpose, we will use Lemmas 6.1 and 6.2 with the additional assumption that A is

symmetric about 0 as in Section 2.

Set n > 1 and let jAj > 1 be the length of A. Let us now cover the interval [0, 1] by

N ¼ bnjAjc þ 1 < 2njAj disjoint intervals, ˜1, . . . , ˜N , with centres t1, . . . , tN and lengths

1=(njAj). Here bxc denotes the integer part of x. Let ~ttA be the projection of t�A on

ft1, . . . , tNg, that is,
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~ttA ¼ arg min
t2f t1,..., t Ng

jt � t�Aj:

Thus j~ttA � t�Aj < 1=njAj and we have����E p

ð
A

(t�A � 1)j(ø)�n(ø)dø

���� <
����E p

ð
A

(~ttA � 1)j(ø)�n(ø)dø

����þ
����E p

ð
A

(t�A � ~ttA)j(ø)�n(ø)dø

����:
Next, we have����E p

ð
A

(t�A � ~ttA)j(ø)�n(ø)dø

���� < 1

njAj

ð
A

E pjj(ø)j j�n(ø)jdø

<
1

2njAj

ð
A

E p jj(ø)j2 þ j�n(ø)j2
� �

dø ¼ 1

2n
:

By the same argument,����E p

ð
A

(t�A � ~ttA) j�n(ø)j2 � E pj�n(ø)j2
� �

dø

���� < 2

n
:

Note now that bRe
j (ø) ¼˜ (t j � 1)Re j(ø)

� �
1fø2Ag satisfies (6.1), for jAj < 4n and

j ¼ 1, . . . , N . Indeed, by the Cauchy–Schwarz inequality,ð
R

jbRe
j (ø)jdø ¼

ð
R

j(t j � 1)Re j(ø)ð Þ1fø2Agjdø

< (1� t j)
ffiffiffiffiffiffi
jAj

p ð
A

jRe j(ø)ð Þj2 dø
� �1=2

< 2
ffiffiffi
n

p
(1� t j)

ð
A

jRe j(ø)ð Þj2 dø
� �1=2

and

kbRe
j k ¼

ð
R

j(1� t j)Re j(ø)ð Þ1fø2Agj2 dø
� �1=2

¼ (1� t j)

ð
A

jRe j(ø)ð Þj2 dø
� �1=2

,

hence ð
R

jbRe
j (ø)jdø < 2

ffiffiffi
n

p
kbRe

j k:

In the same manner, bIm
j (ø) ¼˜ (t j � 1)Im j(ø)

� �
1fø2Ag satisfies (6.1).

Moreover, b9j(ø) ¼˜ t j1fø2Ag satisfies (6.1) and (6.3) for 1 < jAj < 4n and j ¼ 1, . . . , N .

Indeed, ð
R

jb9j(ø)jdø ¼
ð
R

jt j1fø2Agjdø ¼ t jjAj < 2
ffiffiffi
n

p
t j

ffiffiffiffiffiffi
jAj

p
and
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kb9jk ¼
ð
R

jt j1fø2Agj2 dø
� �1=2

¼ t j

ffiffiffiffiffiffi
jAj

p
,

hence ð
R

jb9j(ø)jdø < 2
ffiffiffi
n

p
kb9jk:

Therefore b9j(ø) ¼ t j1fø2Ag satisfies (6.1). On the other hand,

kb9jk ¼ t j

ffiffiffiffiffiffi
jAj

p
and

ð
R

jb9j(ø)j ldø ¼ (t j)
ljAj:

Therefore, for all l > 2, and for jAj > 1,

kb9jk� l

ð
R

jb9j(ø)j ldø ¼ jAj1� l=2 < 1:

Thus, b9j(ø) ¼ t j1fø2Ag satisfies (6.3). By Lemma 6.1 for any integer k > 1, any

j ¼ 1, . . . , N and any A such that 1 < jAj < 4n, we have the following upper bounds:

E p

����
ð

A

(~ttA � 1)j(ø)�n(ø)dø

����
2k

< Ckð Þ4k
(1� t j)

2

ð
A

jj(ø)j2 dø
� �k

(6:9)

and

E p

ð
A

t j j�n(ø)j2 � E pj�n(ø)j2
� �

dø

� �2k

< C9kð Þ4k
t j

ffiffiffiffiffiffi
jAj

p� 	2k

: (6:10)

By (6.9) and (6.10), Lemma 6.2 can be applied to processes 	(ø) ¼ �n(ø) and

	(ø) ¼ j�n(ø)j2 � E pj�n(ø)j2. We obtain the inequalities

E p

����
ð

A

(~ttA � 1)j(ø)�n(ø)dø

���� < C log Nð Þ2 E p (1� ~ttA)
2

� �ð
A

jj(ø)j2 dø
� �1=2

(6:11)

and

E p

����
ð

A

~ttA j�n(ø)j2 � E pj�n(ø)j2
� �

dø

���� < C9 log Nð Þ2 E p ~tt 2
A

� �
jAj

� �1=2
: (6:12)

Furthermore, for jAj > 1 and any �n . 0,

2ffiffiffi
n

p E p (1� ~ttA)
2

� �ð
A

jj(ø)j2 dø
� �1=2

<
(log n)2�n

n
þ 1

(log n)2�n

E p (1� ~ttA)
2

� �ð
A

jj(ø)j2 dø

< C
(log n)2�n

n
þ 1

(log n)2�n

E p (1� t�A)2
� �ð

A

jj(ø)j2 dø:

And, by the same argument
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2

n
E p ~tt 2

A

� �
jAj

� �1=2
< C9

(log n)2�n

n
þ 1

n(log n)2�n

E p (t�A)2
� �ð

A

1� jj(ø)j2
� �

dø

þ 1

n(log n)2�n

ð
A

jj(ø)j2 dø:

Therefore, using the two preceding inequalities, Lemma 6.4, (6.11), (6.12) and the

residuals of order 1=n due to discretization, one obtains, for strictly positive constants

C1, C2 and C3,

RA
n ĵjº�A , j
� 	

< RA
n ĵjºoracleA

, j
� 	

þ 1

n

ð
A

jj(ø)j2 døþ 1

n log nð Þ2�n

ð
A

jj(ø)j2 dø

þ C1

log Nð Þ2

log nð Þ2�n

RA
n ĵjº�A , j
� 	

þ C2

log Nð Þ2 log nð Þ2�n

n
þ C3

n
:

Then, noting that

log N < log(2jAjn) < log(8n2) < 5 log n, for n > 2,

we find a positive constant C4 such that,

1� C3

1

�n

� �
RA

n ĵjº�A , j
� 	

< RA
n ĵjºoracleA

, j
� 	

þ 2

n

ð
A

jj(ø)j2 døþ C4

log nð Þ4�n

n
: (6:13)

and Theorem 2.1 is proved.
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