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Statistical estimation of ergodic Markov chain
kernel over discrete state space
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We investigate the statistical complexity of estimating the parameters of a discrete-state Markov chain kernel from
a single long sequence of state observations. In the finite case, we characterize (modulo logarithmic factors) the
minimax sample complexity of estimation with respect to the operator infinity norm, while in the countably infinite
case, we analyze the problem with respect to a natural entry-wise norm derived from total variation. We show that
in both cases, the sample complexity is governed by the mixing properties of the unknown chain, for which, in the
finite-state case, there are known finite-sample estimators with fully empirical confidence intervals.
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1. Introduction

Approximately recovering the parameters of a discrete distribution is a classical problem in computer
science and statistics (see, e.g., Han et al. [9], Kamath et al. [13], Orlitsky and Suresh [21] and the
references therein). Total variation (TV) is a natural and well-motivated choice of approximation metric
(Devroye and Lugosi [7]), and the two metrics we use throughout the paper will be derived from TV.
The minimax sample complexity for obtaining an ε-approximation to the unknown distribution in TV
(but see Waggoner [27] for results on other �p norms) is well known to be of the order of d/ε2, where
d is the support size (see, e.g., Anthony and Bartlett [1], Kontorovich and Pinelis [16]).

This paper deals with estimating the transition probability kernel of a discrete state time-
homogeneous Markov chain in the minimax setting. The Markov case is much less well-understood
than the i.i.d. one. The main additional complexity introduced by the Markov case on top of the i.i.d.
one is that the sample complexity involves not only the number of states and the precision parameter
ε, but also the chain’s mixing properties.

Our contributions

In the finite-state case, we compute, up to logarithmic factors, (apparently the first, in any metric) high-
probability minimax sample complexity for the estimation problem in the Markovian setting, which
seeks to recover, from a single long run of an unknown Markov chain, the values of its transition
matrix up to a tolerance of ε in the ‖ · ‖∞ operator norm. We obtain upper and lower bounds on the
sample complexity (sequence length) in terms of ε, the number of states, the stationary distribution,
and mixing time of the Markov chain.

In the countably infinite case, for a natural class of chains and with respect to an entry-wise metric
derived from TV, we derive an upper bound on the sample complexity that depends in a delicate way
on some measure of complexity of the kernel, precision ε and mixing time, and provide sufficient
conditions on the kernel and initial distribution to obtain convergence guarantees.
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2. Definitions and notation

We denote by � the state space of the Markov chain and by m the size of the sample received by the
estimation procedure. The simplex of all distributions over � will be denoted by ��, and the set of
all Markov kernels by M�. For |�| < ∞, we put d := |�| and [d] = � = {1,2, . . . , d}. For μ ∈ ��,
we will write either μ(i) or μi , as dictated by esthetics and convenience. All vectors are rows unless
indicated otherwise. We use the standard total variation norm, which, up to a convention-dependent
factor of 2, corresponds to the �1 norm: 2‖x‖TV = ‖x‖1 =∑i∈� |xi |. We assume familiarity with basic
Markov chain concepts (see, e.g., Kemeny and Snell [15], Levin et al. [19]). A time-homogeneous
Markov chain (M,μ) on state space � is specified by an initial distribution μ ∈ �� and a kernel
M ∈M� in the usual way: (X1, . . . ,Xm) ∼ (M,μ) means that

P
(
(X1, . . . ,Xm) = (x1, . . . , xm)

)= μ(x1)

m−1∏
t=1

M(xt , xt+1).

We write PM,μ(·) to denote probabilities over sequences induced by the Markov chain (M,μ), and
omit one or both subscripts when clear from context. We say that π is a stationary distribution for M
if πM = π , and that the Markov chain (M,μ) is stationary if μ = π . We will assume the chain to be
irreducible and positive recurrent. Namely, M consists of a single communicating class, and defining
the return time of state i as Ti = min{t ≥ 0 : Xt = i}, we have that for any state i ∈ �, E[Ti] < ∞.
This is sufficient to guarantee existence of a stationary π . We will further restrict our analysis to
geometrically ergodic Markov chains to enable spectral methods.

Definition 2.1 (Geometric ergodicity, Roberts et al. [23]). The chain (M,μ) with stationary distri-
bution π is geometrically ergodic if there is a ρ ∈ (0,1) and for all i ∈ � there is a Ci ∈ R+ such
that ∥∥M t (i, ·) − π

∥∥
TV ≤ Ciρ

t , t ∈ N.

Any chain that satisfies all the above properties will henceforth simply be called ergodic, and all
chains mentioned in this work will be assumed ergodic unless stated otherwise. If M is ergodic with
stationary distribution π , then π is necessarily unique. To any Markov chain (M,μ), we associate the
following measure of non-stationarity

‖μ/π‖2
2,π

.=
∑
i∈�

μ(i)2/π(i) ∈ [1,∞], (2.1)

where the ‖ · ‖2,π norm is induced by the inner product in the Hilbert space �2(π) (Levin et al. [19],
Chapter 12). When |�| < ∞, we can define the minimum stationary probability by

π�
.= min

i∈�
π(i). (2.2)

In this case, by ergodicity π� > 0 and ‖μ/π‖2
2,π ≤ 1

π�
< ∞. The mixing time of an ergodic M is

defined by

tmix
.= inf

{
t ≥ 1 : sup

μ∈��

∥∥μM t − π
∥∥

TV <
1

4

}
. (2.3)

We define Q
.= diag(π)M as the matrix Q(i, j) = Pπ (Xt = i,Xt+1 = j). A chain M ∈ M� is said

to be reversible if Qᵀ = Q. The eigenvalues of an ergodic and reversible M lie in (−1,1], and thus
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may be ordered (counting multiplicities): 1 = λ1 > λ2 ≥ · · · ≥ λd > −1. The spectral gap and absolute
spectral gap of a reversible chain are defined, respectively, by

γ
.= 1 − λ2 and γ�

.= 1 − max
{
λ2, |λd |}. (2.4)

Paulin [22] generalizes the multiplicative reversiblization approach of Fill [8] by defining the pseudo-
spectral gap

γps
.= max

k≥1

{
γ
((

M†)kMk
)
/k
}
, (2.5)

where M† is the time reversal of M – the adjoint of M under �2(π) – given by M†(i, j)
.=

π(j)M(j, i)/π(i).
For a linear operator A : � → �,

‖A‖∞ = sup
i∈�

∑
j∈�

∣∣A(i, j)
∣∣ (2.6)

is the operator norm induced by �∞ (Horn and Johnson [11]). We also define the following entry-wise
norm

|||A||| .=
∑

(i,j)∈�2

∣∣A(i, j)
∣∣. (2.7)

The norms in (2.6) and (2.7) induce our two notions of distance between Markov kernels M , M ′ with
respective stationary distributions π and π ′:∥∥M − M ′∥∥∞ and

∣∣∣∣∣∣Q − Q′∣∣∣∣∣∣.
For any M ∈M�, define its Dobrushin contraction coefficient

κ(M)
.= max

(i,j)∈�2

∥∥M(i, ·) − M(j, ·)∥∥TV; (2.8)

this quantity is also associated with Döblin’s name. The term “contraction” refers to the property∥∥(μ − μ′)M∥∥TV ≤ κ(M)
∥∥μ − μ′∥∥

TV,
(
μ,μ′) ∈ �2

�, (2.9)

which was observed by Markov [20], §5 (see Kontorovich and Ramanan [18], Lemma A.2, for an
elementary proof).

3. Main results

In Section 3.1, we formally state the minimax results for the finite state setting, and then exhibit our
results for the countably infinite case in Section 3.2.

3.1. Estimation with respect to ‖ ·‖∞ for finite �

Theorem 3.1 (Sample complexity upper bound w.r.t ‖ · ‖∞ when |�| < ∞). Let ε ∈ (0,2),
δ ∈ (0,1), and let X = (X1, . . . ,Xm) ∼ (M,μ), M ergodic with stationary distribution π . Then an



Estimation of ergodic Markov chain kernel 535

estimator M̂ : �m → M� exists such that whenever

m ≥ c max

{
1

ε2π�

max

{
d, ln

1

εδ

}
,

1

γpsπ�

ln
d‖μ/π‖2,π

δ

}
we have, with probability at least 1 − δ,

‖M − M̂‖∞ < ε,

where c is a universal constant, d = |�|, γps is the pseudo-spectral gap (2.5), π� the minimum station-
ary probability (2.2), and ‖μ/π‖2

2,π ≤ 1/π� is defined in (2.1).

Although the sample complexity depends on the spectral quantity γps, and minimal stationary prob-
ability π� of the unknown chain, these can be efficiently estimated with finite-sample data-dependent
confidence intervals from a single trajectory ([Hsu et al. [12], Wolfer and Kontorovich [31]). Moreover,
even though the upper bound formally depends on the unknown (and, in our one-trajectory setting, im-
possible to estimate) initial distribution μ, we note that (i) this dependence is only logarithmic and
(ii) an upper bound on ‖μ/π‖2

2,π in terms of π� is easily provided.

Remark 3.1. This upper bound is superior to the one given at Wolfer and Kontorovich [30], Theo-
rem 1, shaving a multiplicative factor of lnd off the first term, except in the extremely high precision
regime where ln 1

ε
≥ d lnd .

Theorem 3.2 (Sample complexity lower bound w.r.t ‖·‖∞ when |�| < ∞). For every ε ∈ (0,1/32),
γps ∈ (0,1/8), d = 6k ≥ 12, and every estimation procedure, there exists a d-state Markov chain M

with pseudo-spectral gap γps and stationary distribution π such that the estimation procedure must
require a sequence X = (X1, . . . ,Xm) drawn from the unknown M of length at least

m ≥ c max

{
d

ε2π�

,
d lnd

γps

}
,

where c is a universal constant, to ensure ‖M − M̂‖∞ < ε with probability greater than 9/10, and
where d , γps, π� are as in Theorem 3.1.

The proof of Theorem 3.2 actually yields a bit more than claimed in the statement. For any
π� ∈ (0,1/d], a Markov chain M can be constructed that achieves the d

ε2π�
component of the bound.

Additionally, the d
γps

component is achievable by a class of reversible Markov chains with spectral gap
γ ≤ γps ≤ 2γ , and uniform stationary distribution – for which π� = 1/d – exhibiting tightness of the
obtained bound.

The form of the lower bound indicates that in some regimes, estimating the pseudo-spectral gap up
to constant multiplicative error, which requires d

γps
(Hsu et al. [12], Wolfer and Kontorovich [31]), is

as difficult as estimating the entire transition matrix (for our choice of metric ‖ · ‖∞). We stress that
our procedure and guarantees only require ergodicity (and not, say, reversibility) to work.

3.2. Results for estimation with respect to ||| · |||
Over an infinite space, π� = 0 conveys no information, which motivates an alternative notion of dis-
tance. For a chain M , the kernel of doublet frequencies Q = diag(π)M encodes all information about
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an ergodic chain (Vidyasagar [26]), and for two such operators, Q and Q′ it is the case that

Q = Q′ =⇒ M = M ′.

Further, it is easily verified that ∣∣∣∣∣∣Q − Q′∣∣∣∣∣∣= 2
∥∥Q − Q′∥∥

TV,

where we see Q and Q′ as distributions over � × �.

Remark 3.2. The loss of our estimation problem is distinct from the one considered in Hao et al. [10],
which weights the state-wise expected loss with respect to the stationary distribution of the chain, and
also allows for sample bounds independent of π�.

Theorem 3.3. Let ε ∈ (0,2), δ ∈ (0,1), and X = (X1, . . . ,Xm) ∼ (M,μ), M ergodic with stationary
distribution π , and write Q = diag(π)M . There exists an estimator Q̂ : �m → ��×� such that for

m ≥ c
tmix

ε2
max

{
|||Q|||1/2, ln

(‖μ/π‖2,π

δ

)}
,

we have |||Q̂ − Q||| < ε with probability at least 1 − δ, where

|||Q|||1/2
.=
( ∑

(i,j)∈�2

√
Q(i, j)

)2

,

c is a universal constant, tmix is defined at (2.3), and ‖μ/π‖2,π is defined in (2.1).

Remark 3.3. Necessary conditions for the upper bound to be non-vacuous are that both |||Q|||1/2 < ∞
and ‖μ/π‖2,π < ∞. Importantly, ‖μ/π‖2,π < ∞ implies but is not implied by μ � π ; take, for exam-
ple, μ(i) ∝ 1

i2 and π(i) ∝ 1
i4 . Notice that in the special case where |�| = d < ∞, we have |||Q|||1/2 ≤ d2

and the bound reduces to tmix
d2

ε2 (up to logarithmic factors). The mixing time tmix, unknown a priori,
can be estimated with finite-sample empirical intervals (Wolfer [29]).

4. Overview of techniques

4.1. Estimating with respect to the ‖ ·‖∞ norm when |�| < ∞
The upper bound for the estimation problem in Theorem 3.1 is achieved by a (mildly smoothed) natural
estimator defined at the beginning of Section 6.1. If the stationary distribution is bounded away from 0,
the chain will visit each state a constant fraction of the total sequence length. Exponential concentration
(controlled by the spectral gap) provides high-probability confidence intervals about the expectations.
A technical complication is that the empirical distribution of the transitions out of a state i, conditional
on the number of visits Ni to that state, is not binomial but actually rather complicated – this is due to
the fact that the sequence length is fixed and so a large value of Ni “crowds out” other observations. We
overcome this by simulating a trajectory from the Markov chain with an array of independent random
variables, as described in Billingsley [4], p. 19. The factor ‖μ/π‖2,π in the bounds quantifies the price
one pays for not assuming (as we do not) stationarity of the unknown Markov chain.
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Our chief technical contribution is in establishing the sample complexity lower bounds for the finite
space estimation problem. We do this by constructing two distinct lower bounds.

The lower bound of d lnd
γps

is derived by a covering argument and a classical reduction scheme to a
collection of testing problems using a class of reversible Markov chains we construct, with a carefully
controlled pseudo-spectral gap.1 The latter can be upper and lower bounded up to universal constants
in three key steps. First, we leverage the block structure of the transition matrix of the non-perturbed
member of the family to compute its entire spectrum explicitly (Lemma 6.5), and deduce its absolute
spectral gap. We then extend the bound to other members of the family, using Markov chain comparison
techniques, going through a well known variational definition of the spectral gap. Finally, we conclude
by showing that the pseudo-spectral and spectral gap are within a factor of 2 for our class of symmetric
Markov chains.

The lower bound of d

ε2π�
is based on the observation that estimating the whole kernel is at least

as hard as estimating the conditional distribution a single state. From here, we construct a class of
matrices where one state is both hard to reach and difficult to estimate, by constructing mixture of
indistinguishable distributions for that particular state, indexed by a large subset of the binary hyper-
cube. We express the statistical distance between words of length m distributed according to different
matrices of this class in terms of π� and the KL divergence between the conditional distributions of
the hard-to-reach state, by taking advantage of the structure of the class, and invoke an argument from
Tsybakov to conclude ours.

4.2. Estimating with respect to the ||| · ||| metric

The extension to a countably infinite setting requires an alternative notion of distance between chains.
The proof then introduces the natural counting estimator Q̂(i, j) = Nij

m−1 of transitions from i to j , and
starts by controlling the error in expectation. It reduces the problem to the study of the variance of the
random variable Nij , which is achieved by constructing another Markov chain with approximately the
same mixing time, and invoking known results from Paulin [22] for the variance of sums of functions
under the Markovian setting. The result is then obtained by controlling the fluctuations around this
expectation by a bounded differences argument.

5. Related work

Our Markov chain statistical estimation setup is a natural extension of the PAC distribution learning
model of Kearns et al. [14]. Despite the plethora of literature on estimating Markov transition matrices,
(see, e.g., Billingsley [4], Craig and Sendi [6], Welton and Ades [28]) we were not able to locate any
rigorous finite-sample PAC-type results.

The minimax problem has recently received some attention, and Hao et al. [10] have, in parallel to
us, shown the first minimax bounds, in expectation, for the problem of estimating the transition ma-
trix M of a Markov chain under a certain class of divergences. The authors consider the case where
mini,j M(i, j) ≥ α > 0, essentially showing that for some family of smooth f -divergences, the ex-

pected risk is of the order of df ′′(1)
mπ�

. The metric used in this paper is based on TV, which corresponds to

the f -divergence induced by f (t) = 1
2 |t − 1|, which is not differentiable at t = 1. The results of Hao

1The family of chains used in the lower bound of Hsu et al. [12] does not suffice for our purposes; a considerably richer family
is needed (see Remark 6.3).
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et al. and the present paper are complementary and not directly comparable. We do note that (i) their
guarantees are in expectation rather than with high-confidence, (ii) our TV-based metric is not cov-
ered by their smooth f -divergence family, and most important (iii) their notion of mixing is related to
contraction as opposed to the spectral gap. In particular the α-minoration assumption implies (but is
not implied by) a bound of κ ≤ 1 − dα on the Dobrushin contraction coefficient (defined in (2.8); see
Kontorovich [17], Lemma 2.2.2, for the latter claim). Thus, the family of α-minorized Markov chains
is strictly contained in the family of contracting chains, which in turn is a strict subset of the ergodic
chains we consider.

This paper is based on the conference version of Wolfer and Kontorovich [30] together with an
extension to countably infinite spaces at Section 3.2. Another key improvement over the extended
abstract is in the proof of Theorem 3.2. While the series of lemmas Wolfer and Kontorovich [30],
Lemma 8, Lemma 9, Lemma 11, showed that it is possible to control the pseudo-spectral gap of our
special family of chains via Cheeger’s inequality combined with a contraction-based argument, this
technique relied on heavy computations to bound the Dobrushin coefficient of the two-step transition
matrix. Moreover, the proof for the extension to all members of the class was only sketched in Wolfer
and Kontorovich [30], Lemma 9. In the present manuscript, we switch technique, compute the full
spectrum of the unperturbed transition matrix instead, and fully flesh out the proof for the extension to
perturbed chains using comparison techniques. Finally, the upper bound at Theorem 3.1 also improves
upon Wolfer and Kontorovich [30], Theorem 1, by relying on a simulation scheme from Billingsley,
instead of martingale techniques.

6. Proofs

6.1. Proof of Theorem 3.1

Remark 6.1. We thank an anonymous referee for the suggestion (and technique) to improve the loga-
rithmic gap between the upper and lower bounds.

Let ε ∈ (0,2), δ ∈ (0,1), let M be a d-state ergodic Markov kernel with stationary distribution π ,
and first consider the stationary case X1, . . . ,Xm ∼ (M,π). We define the natural counting random
variables

Ni
.=

m−1∑
t=1

1{Xt = i}, Nij
.=

m−1∑
t=1

1{Xt = i,Xt+1 = j}

and the estimator of the kernel will be M̂(i, j)
.= Nij

Ni
when Ni = 0 and 1/d when Ni = 0. We decom-

pose the error probability of the estimation procedure, while choosing an arbitrary value ni ∈N for the
desired number of visits to each state i ∈ [d],

Pπ

(‖M − M̂‖∞ > ε
)≤ d∑

i=1

3ni∑
n=ni

Pπ

(∥∥M̂(i, ·) − M(i, ·)∥∥1 > ε and Ni = n
)

+ Pπ

({∃i ∈ [d] : Ni /∈ [ni,3ni]
})

. (6.1)
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We simulate a trajectory from M with a collection of independent samples using the scheme described
in (Billingsley [4], p.19), where we define the following infinite array of random variables,

X1,1 X1,2 · · · X1,t · · ·
X2,1 X2,2 · · · X2,t · · ·
· · · · · · · · · · · · · · ·
Xd,1 Xd,2 · · · Xd,t · · ·

such that ∀(i, j, t) ∈ [d]2 ×N, P(Xi,t = j) = M(i, j), and the sampling procedure is as follows. Start
by drawing X̃1 ∼ π . X̃2 is then defined to be X

X̃1,1
, the first element of the X̃1th row. The process then

continues inductively recording random variables from left to right in their corresponding rows, such
that if X̃1, X̃2, . . . , X̃t have been defined, then X̃t+1

.= X
X̃t ,Ñ

(t)

X̃t
+1

where Ñ
(t)
i

.=∑t
s=1 1{X̃s = i}, and

for convenience, Ñi
.= Ñ

(m−1)
i . Observe that X1,X2, . . . , and X̃1, X̃2, . . . are identically distributed.

Then, writing

M̃(i, ·) .= 1

Ñi

d∑
j=1

m−1∑
t=1

1{X̃t = i, X̃t+1 = j}ej ,

we have

Pπ

(∥∥M̂(i, ·) − M(i, ·)∥∥1 > ε and Ni = n
)

= P
(∥∥M̃(i, ·) − M(i, ·)∥∥1 > ε and Ñi = n

)
.

In the event where Ñi = n,

M̃(i, ·) = 1

n

d∑
j=1

m−1∑
t=1

1{X̃t = i,X
X̃t ,Ñ

(t)

X̃t
+1

= j}ej

= 1

n

d∑
j=1

n∑
t=1

1{Xi,t = j}ej

.= M̃n(i, ·),

where by definition, Xi,1,Xi,2, . . . ,Xi,n ∼ M(i, ·)⊗n, and the problem is reduced to learning a distri-

bution out of n independent samples. Since E‖M̃n(i, ·) − M(i, ·)‖1 ≤
√

d
n

, (see, for example, Berend

and Kontorovich [3]) and the function Xi,1,Xi,2, . . . ,Xi,n �→ ‖M̃n(i, ·)−M(i, ·)‖1 is (2/n)-Lipschitz,
an application of McDiarmid’s inequality yields that

P
(∥∥M̃(i, ·) − M(i, ·)∥∥1 > ε and Ñi = n

)
≤ P

(∥∥M̃n(i, ·) − M(i, ·)∥∥1 > ε
)

≤ exp

(
−n

2
max

{
0, ε −

√
d

n

}2)
.
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It follows that

3ni∑
n=ni

Pπ

(∥∥M̂(i, ·) − M(i, ·)∥∥1 > ε and Ni = n
)

(i)≤ (2ni + 1) exp

(
−ni

2
max

{
0, ε −

√
d

ni

}2)
(ii)≤ (mπi + 1) exp

(−cmπiε
2),

where c = (1−1/
√

2)2

4 , (i) stems from a monotonicity argument, and (ii) is by setting ni = mπi

2 , and as
long as m ≥ 4d

ε2π�
. We start by handling the first term of (6.1),

d∑
i=1

(mπi + 1) exp
(−cmπiε

2)≤ d∑
i=1

1

cε2
exp
(−cmπiε

2/2
)+ d∑

i=1

exp
(−cmπiε

2)

≤
d∑

i=1

2

cε2
exp
(−cmπiε

2/2
)

≤ 2d

cε2
exp
(−cmπ�ε

2/2
)
,

(6.2)

where we used the fact that x > 0 =⇒ x exp(−x) ≤ exp(−x/2), and which is smaller than δ/2 as
long as m ≥ 2

cε2π�
ln 4d

cδε2 . It remains to control the probability of the bad event where the states are not
visited a reasonable amount of time. Invoking Paulin [22], Theorem 3.10,

Pπ

(
Ni /∈

[
1

2
mπi,

3

2
mπi

])
≤ exp

(
− γps(

1
2mπi)

2

8(m + 1/γps)πi(1 − πi) + 20 1
2mπi

)
. (6.3)

Quantifying the price for non-stationarity using Paulin [22], Proposition 3.14,

Pμ

(‖M̂ − M‖∞ > ε
)≤ ‖μ/π‖2,π

√
Pπ

(‖M̂ − M‖∞ > ε
)
,

and combining with (6.3) yields the upper bound. �

Remark 6.2. Note that one can derive an upper bound of 1
π�

max{1/ε2,1/γps} (up to logarithmic fac-

tors) for the problem with respect to the max norm ‖M − M̂‖MAX = max(i,j)∈[d]2 |M(i, j) − M̂(i, j)|.
Similarly, for p ∈ [1,2), we can derive the more general upper bound (up to logarithmic factors)

1

π�

max

{
d2/p−1

ε2
,

1

γps

}

for the problem with respect to the norm ‖M − M̂‖∞,p
.= maxi∈[d] ‖M(i, ·) − M̂(i, ·)‖p .
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6.2. Proof of Theorem 3.3

Sample X1, . . . ,Xm ∼ (M,μ) where M is ergodic with stationary distribution π . We define the es-
timator Q̂

.= 1
m−1Nij with Nij

.=∑m−1
t=1 1{Xt = i,Xt+1 = j}. We first focus on the stationary case

where μ = π .

Bounding the distance in expectation

From Jensen’s inequality and stationarity,

Eπ |||Q̂ − Q||| =
∑

(i,j)∈�2

Eπ

∣∣∣∣ Nij

m − 1
− π(i)M(i, j)

∣∣∣∣
≤ 1

m − 1

∑
(i,j)∈�2

√
Eπ

[(
Nij − (m − 1)π(i)M(i, j)

)2]
= 1

m − 1

∑
(i,j)∈�2

√
Varπ [Nij ],

and we are left with controlling a variance term. The next lemma defines a new Markov chain from
X1, . . . ,Xm with an approximately similar mixing time.

Lemma 6.1. Let X = (X1, . . . ,Xm) ∼ (M,π) with mixing time tmix and stationary distribution π ,
then Y = ((X1,X2), (X2,X3), . . . , (Xm−1,Xm)) is also a finite state Markov chain with mixing time
at most tmix + 1, with kernel M̃ : �2 × �2 → [0,1] and stationary distribution π̃ , such that for all
(i, j, k, �) ∈ �4,

M̃
(
(i, j), (k, �)

)= 1{k = j}M(k, �)

π̃
(
(i, j)

)= Q(i, j).

Proof. Let X = (X1, . . . ,Xm) ∼ (M,π) with mixing time tmix and stationary distribution π , we first
show that Y = ((X1,X2), (X2,X3), . . . , (Xm−1,Xm)) is also a finite state Markov chain. For all t ∈N

and y = (y1, . . . , yt−1) with ys = (xs, xs+1) for s ∈ [t − 2], and whenever defined,

P
(
Yt = (i, j) | Y1 = y1, . . . , Yt−1 = yt−1

)
= P

(
(Xt ,Xt+1) = (i, j) | X1 = x1, . . . ,Xt−1 = xt−1,Xt = xt

)
= 1{i = xt }P(Xt+1 = j | Xt = xt ) = 1{i = xt }M(i, j)

= P
(
Yt = (i, j) | Yt−1 = yt−1

)
,

which confirms the Markov property. Additionally, setting π̃((i, j)) = Q(i, j),∑
(i,j)∈�2

π̃
(
(i, j)

)
M̃
(
(i, j), (k, �)

)= ∑
(i,j)∈�2

π̃
(
(i, j)

)
1{k = j}M(k, �) = M(k, �)

∑
i∈�

π̃
(
(i, k)

)
= M(k, �)

∑
i∈�

π(i)M(i, k) = M(k, �)π(k) = π̃
(
(k, �)

)
.
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This entails that Y is a Markov chain (π̃ ,M̃) over the state space �×�, and stationary distribution π̃ .
Let t ≥ tmix + 1, and δ̃(i1,j1) the distribution on � × � that puts mass 1 at (i1, j1) and 0 everywhere
else, then ∥∥δ̃(i1,j1)M̃

t − π̃
∥∥

TV =
∑

(i,j)∈�2

∣∣δ̃(i1,j1)M̃
t
(i, j) − π̃(i, j)

∣∣.
One one hand,

δ̃(i1,j1)M̃
t
(i, j) = P

(
Yt+1 = (i, j) | Y1 = (i1, j1)

)
= P

(
(Xt+1,Xt+2) = (i, j) | (X1,X2) = (i1, j1)

)
= P(Xt+2 = j | Xt+1 = i)P(Xt+1 = i | X2 = j1)

= M(i, j)M t−1(j1, i),

so that ∥∥δ̃(i1,j1)M̃
t − π̃

∥∥
TV = 1

2

∑
(i,j)∈�2

∣∣M(i, j)M t−1(j1, i) − M(i, j)π(i)
∣∣

= 1

2

∑
i∈�

∣∣M t−1(j1, i) − π(i)
∣∣= ∥∥δj1M

t−1 − π
∥∥

TV ≤ 1/4,

by definition of tmix, and by the condition on t . �

Corollary 6.1. Let X1, . . . ,Xm ∼ (M,π) and define the chain Y ∼ (M̃, π̃) from Lemma 6.1, then by
Paulin [22], Theorem 3.2, Proposition 3.4, for φ : �2 →R+,

Varπ̃

[
m−1∑
t=1

φ(Yt )

]
≤ 4m

γps
Varπ̃ [φ] ≤ 8mtmixVarπ̃ [φ],

and from the fact that

Varπ

[
1{Xt = i,Xt+1 = j}]= π(i)M(i, j)

(
1 − π(i)M(i, j)

)
,

we get the following control on the variance term:

Varπ [Nij ] ≤ 8mtmixπ(i)M(i, j)
(
1 − π(i)M(i, j)

)
.

As a consequence of Corollary 6.1,

Eπ |||Q̂ − Q||| ≤ 2

√
tmix + 1

m − 1
|||Q|||1/2, where |||Q|||1/2

.=
( ∑

(i,j)∈�2

√
Q(i, j)

)2

and

m ≥ 64
|||Q|||1/2tmix

ε2
=⇒ Eπ |||Q̂ − Q||| ≤ ε/2.



Estimation of ergodic Markov chain kernel 543

Bounding the fluctuations around the expectation

The strategy is to show that the loss is (4/(m−1))-Lipschitz, and simply invoke McDiarmid’s inequal-
ity for Markov chains (Paulin [22], Corollary 2.10).

For x = (x1, . . . , xm) ∈Rm, let x(k) = (x1, . . . , xk−1, x
′
k, xk+1, . . . , xm), with k ∈ [m],∣∣∣∣∣∣∣∣Q̂(x) − Q

∣∣∣∣∣∣− ∣∣∣∣∣∣Q̂(x′)− Q
∣∣∣∣∣∣∣∣

= 1

m − 1

∣∣∣∣ ∑
(i,j)∈�2

(∣∣nij − (m − 1)Q(i, j)
∣∣− ∣∣n(k)

ij − (m − 1)Q(i, j)
∣∣)∣∣∣∣

≤ 1

m − 1

∑
(i,j)∈�2

||nij − (m − 1)Q(i, j)| − |n(k)
ij − (m − 1)Q(i, j)||

≤ 1

m − 1

∑
(i,j)∈�2

∣∣nij − n
(k)
ij

∣∣,
where we successively invoked the forward and reverse triangle inequality. We then compute∑

(i,j)∈�2

∣∣nij − n
(k)
ij

∣∣= ∑
(i,j)∈�2

∣∣1{xk = i, xk+1 = j} − 1
{
x

(k)
k = i, x

(k)
k+1 = j

}
+ 1{xk−1 = i, xk = j} − 1

{
x

(k)
k−1 = i, x

(k)
k = j

}∣∣
≤

∑
(i,j)∈�2

(
1{xk = i, xk+1 = j} + 1

{
x′
k = i, xk+1 = j

}
+ 1{xk−1 = i, xk = j} + 1

{
xk−1 = i, x′

k = j
})≤ 4,

so that ||||Q̂(x)−Q|||− |||Q̂(x′)−Q|||| ≤ 4
m−1 , and it is then a consequence of McDiarmid’s inequality

for Markov chains (Paulin [22], Corollary 2.10) that

Pπ

(∣∣∣∣∣∣∣∣Q̂(X) − Q
∣∣∣∣∣∣−Eπ

∣∣∣∣∣∣Q̂(X) − Q
∣∣∣∣∣∣∣∣> ε/2

)≤ 2 exp

(
− mε2

ctmix

)
, c ∈ R+

and m ≥ ctmix
ε2 ln( 2

δ
) =⇒ Pπ (||||Q̂ − Q||| − π |||Q̂(x) − Q|||| > ε/2) ≤ δ. Finally, we extend the study

to non-stationary chains in a straightforward way as for the proof of Theorem 6.1, with Paulin [22],
Proposition 3.10, which yields the final theorem. �

6.3. Proof of Theorem 3.2 (part 1): d
ε2π�

Recall the definition of KL divergence between two distributions (ν, θ) ∈ �2
�, such that ν � θ ,

DKL(ν‖θ)
.=
∑
i∈�

ν(i) ln
ν(i)

θ(i)
.

Let ε ∈ (0,1/32), and Md,γps,π� be the collection of all d-state Markov chains whose stationary distri-
bution is minorized by π� and whose pseudo-spectral gap is at least γps. The quantity we wish to lower
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bound is the minimax risk for the estimation problem:

Rm = inf
M̂

sup
M

PM

(‖M − M̂‖∞ > ε
)
, (6.4)

where the inf is taken over all estimation procedures M̂ : [d]m → Md , X �→ M̂(X) and the sup over
Md,γps,π� . Suppose for simplicity of the analysis that we consider Markov chains of d + 1 states
instead of d , and that d is even. A slight modification of the proofs covers the odd case. We define the
following class of Markov chains parametrized by a given distribution p ∈ �d+1, where the conditional
distribution defined at each state of the chain is always p with pd+1 = p� and pk = 1−p�

d
for k ∈ [d],

with p� < 1
d+2 , except for state d + 1, where it is only required that it has a loop of probability p� to

itself.

Gp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩Mη =

⎛⎜⎜⎜⎝
p1 . . . pd p�

...
...

...
...

p1 . . . pd p�

η1 . . . ηd p�

⎞⎟⎟⎟⎠ : η = (η1, . . . , ηd,p�) ∈ �d+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.5)

Remark: a family of Markov chains very similar to Gp was independently considered by Hao et al. [10]
for proving their lower bound.

It is easy to see that the stationary distribution π of an element of Gp indexed by η is

πk = (1 − p�)
2

d
+ ηkp�, for k ∈ [d], πd+1 = p�.

For m ≥ 4, η = (η1, . . . , ηd,p�) ∈ �d+1 and (X1, . . . ,Xm) ∼ (Mη,p), set Ni =∑m
t=1 1{Xt = i} the

number of visits to the ith state. Focusing on the (d + 1)th state, since for i ∈ [d + 1], we have
Mη(i, d + 1) = p�, it is immediate that Nd+1 ∼ Binomial(m,p�). Introduce the subset of Markov
chains in Gp such that

η(σ ) =
(

1 − p� + 16σ1ε

d
,

1 − p� − 16σ1ε

d
, . . . ,

1 − p� + 16σd
2
ε

d
,

1 − p� − 16σd
2
ε

d
,p�

)
,

where σ = (σ1, . . . , σ d
2
) ∈ {−1,1} d

2 . Also define M0 with η0 = (
1−p�

d
, . . . ,

1−p�

d
,p�). We start by

showing that for any chain of this family, γps is bounded from below by a universal constant. The
Dobrushin coefficient κ [defined at (2.8)] verifies

κ(Mσ ) = ∥∥η(σ ) − η0

∥∥
TV = 8ε ≤ 1/2.

From the Bubley-Dyer path coupling method (Bubley and Dyer [5]), tmix ≤ ln 1/4
ln (1−κ)

≤ 2, such that

combining with Paulin [22], Proposition 3.4, γps ≥ 1
2tmix

≥ 1
4 . A direct computation yields that for

σ = σ ′, ‖Mσ − Mσ ′‖1 = 32ε
d

dH (σ ,σ ′), where dH is the Hamming distance. From the Varshamov-
Gilbert lemma, we know that there is a � ⊂ {−1,1}d/2, |�| ≥ 2d/16, such that for (σ ,σ ′) ∈ � with
σ = σ ′, we have dH (σ ,σ ′) ≥ d

16 . Restricting our problem to this set �, and finally noticing that for
σ ∈ � we have ‖Mσ −M0‖1 = 16ε > 2ε, applying Tsybakov’s method (Tsybakov [25], Theorem 2.5)
to our problem, we obtain

Rm ≥ 1

2

(
1 −

4

2
d
16

∑
σ∈� Dm

ln 2
d
16

)
,
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where Dm denotes the KL divergence between the two distributions of words of length m (see formal
definition at Lemma 6.2) from each of the Markov chains indexed by η(σ ) and η0. Leveraging the
chain rule for the KL divergence, and as by construction, the only discrepancy occurs when visiting
the (d + 1)th state, Lemma 6.2 shows the following tensorization property,

Dm ≤ p�mDKL
(
η(σ )‖η0

)
, (6.6)

following up with a straightforward computation,

DKL
(
η(σ )‖η0

)= ∑
s∈{−1,+1}

d

2

(
1 − p� + 16sε

d

)
ln

( 1−p�+16sε
d

1−p�

d

)
≤ 128ε2, (6.7)

and finally combining (6.4), (6.6) and (6.7), we get Rm ≥ 1
2 (1− 512ε2mp�

d
16 ln 2

). Further noticing that for the

considered range of ε and for p� < 1
d+2 , it is always the case that π� = p�, so that for m ≤ d(1−2δ) ln 2

8192ε2π�
,

Rm ≥ δ.

Lemma 6.2. For two Markov chains M1 and M2 of the class Gp defined at (6.5) indexed respectively
by η1 and η2, denote respectively by L1(X

m
1 ) and L2(X

m
2 ) the distributions of words of length m, and

write for simplicity Dt = DKL(L1(X
t
1)‖L2(X

t
2)) the KL divergence between the processes up to time

t . Then it is a fact that

Dm = (m − 1)p�DKL(η1‖η2).

Proof. From an application of the chain rule for the KL divergence, followed by the Markov property,

Dm =Dm−1 + Em,

where

Em
.= E

Xm−1
1 ∼L1

[Dm|m−1],
Dm|m−1

.= DKL
(
L1(Xm | Xm−1)‖L2(Xm | Xm−1)

)
.

In the event where Xm−1 = d + 1, Dm|m−1 = 0, such that from the law of total expectation,

Em = E
Xm−2

1 ∼L1

[
E[Dm|m−1 | Xm−1 = d + 1]L1

(
Xm−1 = d + 1 | Xm−2

1

)]
. (6.8)

From a second application of the Markov property, and by structural property of the chain,

L1
(
Xm−1 = d + 1 | Xm−2

1

)= L1(Xm−1 = d + 1 | Xm−2) = M1(Xm−2, d + 1) = p�, (6.9)

while in the event where Xm−1 = d + 1,

Dm|m−1 = DKL(η1‖η2). (6.10)

Combining (6.8) with (6.9) and (6.10) yields,

Em = p�DKL(η1‖η2).

From an inductive argument, and the base case D1 = 0,

Dm = (m − 1)p�DKL(η1‖η2). �
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6.4. Proof of Theorem 3.2 (part 2): d lnd
γps

We treat ε ∈ (0,1/8) and d = 6k, k ≥ 2 as fixed. For η ∈ (0,1/48) and τ ∈ {0,1}d/3, define the block
matrix

Mη,τ =
(

Cη Rτ

Rᵀ
τ Lτ

)
,

where Cη ∈ Rd/3×d/3, Lτ ∈ R2d/3×2d/3, and Rτ ∈ Rd/3×2d/3 are given by

Lτ = 1

8
diag(7 − 4τ1ε,7 + 4τ1ε, . . . ,7 − 4τd/3ε,7 + 4τd/3ε),

Cη =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

4
− η

η

d/3 − 1
. . .

η

d/3 − 1
η

d/3 − 1

3

4
− η

. . .
...

...
. . .

. . .
η

d/3 − 1
η

d/3 − 1
. . .

η

d/3 − 1

3

4
− η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Rτ = 1

8

⎛⎜⎜⎜⎝
1 + 4τ1ε 1 − 4τ1ε 0 . . . . . . . . . 0

0 0 1 + 4τ2ε 1 − 4τ2ε 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 1 + 4τd/3ε 1 − 4τd/3ε

⎞⎟⎟⎟⎠ .

Holding η fixed, define the collection

Hη = {Mη,τ : τ ∈ {0,1}d/3} (6.11)

of Markov matrices. Denote by Mη,0 ∈ Hη the element corresponding to τ = 0. Note that every M ∈
Hη is ergodic and reversible, and its unique stationary distribution is uniform. A graphical illustration
of this class of Markov chains is provided in Figure 1; in particular, every M ∈ Hη consists of an
“inner clique” (i.e., the states indexed by {1, . . . , d/3}) and “outer rim” (i.e., the states indexed by
{d/3 + 1, . . . , d}).

Lemma 6.3 in the Appendix establishes a key property of the elements of Hη: each M in this class
satisfies

η/4 ≤ γps ≤ η.

Suppose that X = (X1, . . . ,Xm) ∼ (Mη,π), where M ∈ Hη and π is uniform. Define the random
variable TCLIQ, to be the first time all of the states in the inner clique were visited,

TCLIQ = inf
{
t ≥ 1 : ∣∣{X1, . . . ,Xt } ∩ [d/3]∣∣= d/3

}
, (6.12)

Lemma 6.4 in the Appendix gives a lower estimate on this quantity:

m ≤ d

20η
ln

(
d

3

)
=⇒ P(TCLIQ > m) ≥ 1

5
.
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Figure 1. Generic topology of the Hη Markov chain class: every chain consists of an “inner clique” and an “outer
rim”.

Let Md,γps,π� be the collection of all d-state Markov chains whose stationary distribution is minorized
by π� and whose pseudo-spectral gap is at least γps. Writing X = (X1, . . . ,Xm), recall that the quantity
we wish to lower bound is the minimax risk for the statistical estimation problem (it will be convenient
to write ε/2 instead of ε, which only affects the constants):

Rm = inf
M̂

sup
M

PM

(
‖M − M̂‖∞ >

ε

2

)
,

where the inf is taken over all estimation procedures M̂ : �m → Md , X �→ M̂(X), and the sup over
Md,γps,π� . We employ the general reduction scheme of Tsybakov [25], Chapter 2.2. The first step is to
restrict the sup to the finite subset Hη �Md,γps,π� .

Rm ≥ inf
M̂

max
τ

PMη,τ

(
‖Mη,τ − M̂‖∞ >

ε

2

)
.

Define TCLIQ as in (6.12). Then

Rm ≥ inf
M̂

max
τ

PMη,τ

(‖Mη,τ − M̂‖∞ > ε | TCLIQ > m
)
PMη,τ (TCLIQ > m)

and Lemma 6.4 implies that for m < d
20η

ln ( d
3 ),

Rm ≥ 1

5
inf
M̂

max
τ

PMη,τ

(‖Mη,τ − M̂‖∞ > ε | TCLIQ > m
)
.

Observe that all τ = τ ′ ∈ {0,1}d/3 verify ‖Mη,τ − Mη,τ ′ ‖∞ = ε. For any estimate M̂ , define

τ � = argmin
τ

‖M̂ − Mη,τ‖∞.

Then for τ = τ �, we have

ε = ‖Mη,τ − Mη,τ �‖∞ ≤ ‖Mη,τ − M̂‖∞ + ‖M̂ − Mη,τ �‖∞ ≤ 2‖Mη,τ − M̂‖∞,
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whence {τ � = τ } ⊂ {‖Mη,τ − M̂‖∞ > ε/2} and

Rm ≥ 1

5
inf
M̂

max
τ

PMη,τ

(
τ � = τ | TCLIQ > m

)
= 1

5
inf

τ̂ :X �→{0,1}d/3
sup
τ

PMη,τ (τ̂ = τ | TCLIQ > m).

Since TCLIQ > m implies that Ni = 0 for some i ∈ [d/3],

Rm ≥ 1

5
inf
τ̂

sup
τ

PMη,τ (τ̂i = τi | Ni = 0).

There are as many M ∈ Hη with τi = 0 as those with τi = 1, so if M is drawn uniformly at random
and state i has not been visited, one can do no better than to make a random choice of τ̂i (where τ̂
determines M̂). More formally, writing τ (i) = (τ1, . . . , τi−1, τi+1, . . . , τd/3) ∈ {0,1}d/3−1, the τ vector
without its ith coordinate, we can employ an Assouad-type of decomposition (Assouad [2], Yu [32]):

Rm ≥ 1

5
inf
τ̂

21−d/3
∑

τ (i)∈{0,1}d/3−1

[
1

2
Pτi=0(τ̂i = τi | Ni = 0) + 1

2
Pτi=1(τ̂i = τi | Ni = 0)

]

= 21−d/3

10

∑
τ (i)∈{0,1}d/3−1

inf
τ̂

[
Pτi=0(τ̂i = 1 | Ni = 0) + Pτi=1(τ̂i = 0 | Ni = 0)

]

= 21−d/3

10

∑
τ (i)∈{0,1}d/3−1

[
1 − ∥∥Pτi=0(X = · | Ni = 0) + Pτi=1(X = · | Ni = 0)

∥∥
TV

]
= 1

10
.

Combined with Lemma 6.3, and inclusion of events, this implies lower bound of d
γps

lnd for the esti-

mation problem, which is tight for the case π� = 1
d

. �

Remark 6.3. Let us compare construction Hη to the family of Markov chains employed in the lower
bound of Hsu et al. [12]:

M(i, j) =
⎧⎨⎩1 − ηi, i = j,

ηi

d − 1
, else,

where ηi ∈ {η,η′} with η′ ≈ η/2. For our lower bound, H′
η has to be a ε-separated set under ‖ · ‖∞. In

the construction of Hsu et al., the spectral gap γ and the separation distance ε are coupled, and using
their family of Markov chains would lead to a lower bound of order d/γ ≈ d/ε, which is inferior to

d

ε2π�
. The free parameter η was key to our construction, which enabled us to decouple γ from ε.

Lemma 6.3. Let ε ∈ (0,1/32) and η ∈ (0,1/48). For all M ∈ Hη [defined in (6.11)], we have η/4 ≤
γ� ≤ γps ≤ η.

Proof. We focus our proof on the absolute spectral gap, and will later show that the pseudo spectral gap
is of the same order for our class of Markov matrices. A lower bound for γ� of the unperturbed chain
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Mη,0, is given by Lemma 6.5. We now show how to extend to general τ with comparison techniques.
It is well known that (see, for example, Levin et al. [19], Lemma 13.7) that for a reversible chain M ,

γ (M) = min
f :[d]→R

f ⊥π 1,‖f ‖2=1

EM (f ), (6.13)

where

EM(f )
.= 1

2

∑
(i,j)∈[d]2

(
f (i) − f (j)

)2
π(i)M(i, j)

is the Dirichlet form associated to M with stationary distribution π . We now use this variational defi-
nition to control the spectral gap of the perturbed chains Mη,τ in terms of the one of Mη,0, relying on
the fact that for both chains, the stationary distribution is uniform. Comparing transition matrices,

EMη,τ (f ) = 1

2

∑
(i,j)∈[d]2

(
f (i) − f (j)

)2
π(i)Mη,τ (i, j)

≥ 1

2

∑
(i,j)∈[d]2

(
f (i) − f (j)

)2
(1/d)(1 − 4ε)Mη,0(i, j)

= (1 − 4ε)EMη,0(f ),

and by the definition at (6.13), γ (Mη,τ ) ≥ (1 − 4ε)γ (Mη,0).

Extension to γps

Now note that for a symmetric and lazy M , π is the uniform distribution, M† = Mᵀ = M , and γps =
maxk≥1{ γ (M2k)

k
}. Denoting by 1 = λ1 > λ2 ≥ · · · ≥ λd the eigenvalues of M , we have that for all

i ∈ [d] and k ≥ 1, λ2k
i is an eigenvalue for M2k , and furthermore 1 = λ2k

1 > λ2k
2 ≥ · · · ≥ λ2k

d . Then

γps = max
k≥1

1 − λ2k
2

k
= 1 − λ2

2

– that is, the maximum is achieved at k = 1. Indeed, 1 − λ2k
2 = (1 − λ2

2)(
∑k−1

i=0 λ2i
2 ) and the latter sum

is at most k since λ2
2 < λ2 < 1. As a result, γps = 1 − λ2

2 = 1 − (1 − γ )2 = γ (2 − γ ) and

γ ≤ γps ≤ 2γ,

which completes the proof. �

Lemma 6.4 (Cover time). For M ∈ Hη [defined in (6.11)], the random variable TCLIQ [defined in
(6.12)] satisfies

m ≤ d

20η
ln

(
d

3

)
=⇒ P(TCLIQ > m) ≥ 1

5
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Proof. Let M ∈ Hη and MI ∈Md/3 be such that MI consists only in the inner clique of M , and each
outer rim state got absorbed into its unique inner clique neighbor:

MI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − η
η

d/3 − 1
. . .

η

d/3 − 1
η

d/3 − 1
1 − η

. . .
...

...
. . .

. . .
η

d/3 − 1
η

d/3 − 1
. . .

η

d/3 − 1
1 − η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By construction, it is clear that TCLIQ is almost surely greater than the cover time of MI . The latter

corresponds to a generalized coupon collection time U = 1 +∑d/3−1
i=1 Ui where Ui is the time incre-

ment between the ith and the (i + 1)th unique visited state. Formally, if X is a random walk according
to MI (started from any state), then U1 = min{t > 1 : Xt = X1} and for i > 1,

Ui = min
{
t > 1 : Xt /∈ {X1, . . . ,XUi−1}

}− Ui−1.

The random variables U1,U2, . . . ,Ud/3−1 are independent and

Ui ∼ Geometric

(
η − (i − 1)η

d/3

)
,

whence

E[Ui] = d/3

η(d/3 − i + 1)
, Var[Ui] =

(
1 −

(
η − (i − 1)η

d/3

))(
η − (i − 1)η

d/3

)−2

and

E[U ] ≥ 1 + d/3

η
σd/3−1, Var[U ] ≤ (d/3 − 1)2

η2

π2

6

where σd =∑d
i=1

1
i
, and π = 3.1416 . . . . Invoking the Paley–Zygmund inequality with θ = 1 − 2

√
2/3

σd/3−1

we have

P
(
U > θE[U ])≥ (1 + Var[U ]

(1 − θ)2(E[U ])2

)−1

≥ 1

5
.

Further, σd/3−1 ≥ σ3 = 11/6 implies

θE[U ] ≥ 3

20
· d/3

η
σd/3−1 ≥ d

20η
ln

(
d

3

)
,

and thus for m ≤ d
20η

ln ( d
3 ), we have P(TCLIQ > m) ≥ 1

5 . �

Lemma 6.5 (Spectrum of Mη,0 ∈ Hη). Let d = 6k, k ≥ 2 and 0 < η < 1/48, and write cd
.= d/

(d − 3). The spectrum of Mη,0 is

Spec(Mη,0) = {λ1, λ+, λ,λ,λ−}
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where λ1 = 1 (mult. 1), λ±
.= 1

16 (13 − 8ηcd ±
√

(3 + 8ηcd/3)2 + 512η2c2
d/9) (each mult. d/3 − 1)

, λ = 5/8 (mult. 1) , λ = 7/8 (mult. d/3).
Moreover, λ�

.= maxλ∈Spec(Mη,0){|λ|, λ = 1} = λ+, and η/4 ≤ γ� ≤ η/2.

Proof. By definition, and writing cd
.= d/(d − 3), Mη,0 = ( Cη R0

R
ᵀ
0 L0

)
, where L0 = 7

8I ,

Cη = η

d/3 − 1
1ᵀ · 1 −

(
ηcd − 3

4

)
I and R0 = 1

8

⎛⎜⎜⎜⎝
1 1 0 . . . . . . . . . 0
0 0 1 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 1 1

⎞⎟⎟⎟⎠ .

As Mη,0 is a symmetric matrix, its spectrum is real. Let λ ∈ R, and suppose first that λ = 7/8. In this
case, |L0 − λI | = 0, and leveraging the block-structure of the matrix, it is a classical result (see for
example Silvester [24]) that

|Mη,0 − λI | = |L0 − λI | · ∣∣Cη − λI − R0(L0 − λI )−1R
ᵀ
0

∣∣.
A direct computation shows that

R0(L0 − λI )−1R
ᵀ
0 = 1

4(7 − 8λ)
I ,

such that

Cη − λI − R0(L0 − λI )−1R
ᵀ
0 = η

d/3 − 1
1ᵀ · 1 −

(
ηcd − 3

4
+ λ + 1

4(7 − 8λ)

)
I .

This implies that |Cη − λI − R0(L0 − λI )−1R
ᵀ
0 | = 0 if and only if, ηcd − 3

4 + λ + 1
4(7−8λ)

∈
Spec(η/(d/3 − 1)1ᵀ · 1) = {0, ηcd} where 0 has multiplicity d/3 − 1 and ηcd has multiplicity 1. Let
ξ ≥ 0, then solutions for the equation ξ + λ + 1

4(7−8λ)
= 3

4 are given by

λ±(ξ) = 13 − 8ξ ±√(3 + 8ξ/3)2 + 512ξ2/9

16
.

Setting ξ = 0 yields that λ1 = 1 and λ = 5/8 are eigenvalues both with multiplicity 1, while setting
ξ = ηcd yields that

λ± =
13 − 8ηcd ±

√
(3 + 8ηcd/3)2 + 512η2c2

d/9

16
,

are both eigenvalues with multiplicity d/3 − 1. As the characteristic polynomial of Mη,0 has degree d ,
a natural consequence is that λ = 7/8 is another eigenvalue with multiplicity d/3. It remains to order
λ1, λ−, λ+, λ, λ. Since Mη,0 is lazy, all eigenvalues are positive. Trivially, λ1 is the largest eigenvalue,
λ > λ and always λ− ≤ λ+. Additionally, 512η2c2

d/9 ≥ 0 implies that λ+ ≥ 1 − ηcd/3 ≥ 1 − η/2
for the considered range of d , which is in turn larger than 7/8 for η ≤ 1/4. As a result λ� = λ+ and
γ� ≤ η/2. Furthermore, as one can write λ+ = 1

16 (13 − 8ηcd ±√(3 + 4ηcd/3)2 − 8cdη(1 − 8cdη)),
and since 1 − 8cdη ≥ 0, λ+ ≤ 1 − η/4, whence γ� ≥ η/4. �



552 G. Wolfer and A. Kontorovich

Acknowledgments

We are thankful to John Lafferty for bringing this problem to our attention and numerous insightful
conversations. We also thank the anonymous referees, who made valuable comments and suggestions,
including shaving off a logarithmic factor in Theorem 3.1 and the explicit computation of the eigen-
values in Lemma 6.5. This research was partially supported by the Israel Science Foundation (grant
No. 755/15), Paypal and IBM.

References

[1] Anthony, M. and Bartlett, P.L. (1999). Neural Network Learning: Theoretical Foundations. Cambridge: Cam-
bridge Univ. Press. MR1741038 https://doi.org/10.1017/CBO9780511624216

[2] Assouad, P. (1983). Deux remarques sur l’estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 1021–1024.
MR0777600

[3] Berend, D. and Kontorovich, A. (2013). A sharp estimate of the binomial mean absolute deviation with
applications. Statist. Probab. Lett. 83 1254–1259. MR3041401 https://doi.org/10.1016/j.spl.2013.01.023

[4] Billingsley, P. (1961). Statistical methods in Markov chains. Ann. Math. Stat. 32 12–40. MR0123420
https://doi.org/10.1214/aoms/1177705136

[5] Bubley, R. and Dyer, M. (1997). Path coupling: A technique for proving rapid mixing in Markov chains. In
Proceedings 38th Annual Symposium on Foundations of Computer Science 223–231. IEEE.

[6] Craig, B.A. and Sendi, P.P. (2002). Estimation of the transition matrix of a discrete-time Markov chain.
Health Econ. 11 33–42.

[7] Devroye, L. and Lugosi, G. (2001). Combinatorial Methods in Density Estimation. Springer Series in Statis-
tics. New York: Springer. MR1843146 https://doi.org/10.1007/978-1-4613-0125-7

[8] Fill, J.A. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with
an application to the exclusion process. Ann. Appl. Probab. 1 62–87. MR1097464

[9] Han, Y., Jiao, J. and Weissman, T. (2015). Minimax estimation of discrete distributions under �1 loss. IEEE
Trans. Inf. Theory 61 6343–6354. MR3418968 https://doi.org/10.1109/TIT.2015.2478816

[10] Hao, Y., Orlitsky, A. and Pichapati, V. (2018). On learning Markov chains. In Advances in Neural Information
Processing Systems 646–655.

[11] Horn, R.A. and Johnson, C.R. (1985). Matrix Analysis. Cambridge: Cambridge Univ. Press. MR0832183
https://doi.org/10.1017/CBO9780511810817

[12] Hsu, D., Kontorovich, A., Levin, D.A., Peres, Y., Szepesvári, C. and Wolfer, G. (2019). Mixing time estima-
tion in reversible Markov chains from a single sample path. Ann. Appl. Probab. 29 2439–2480. MR3983341
https://doi.org/10.1214/18-AAP1457

[13] Kamath, S., Orlitsky, A., Pichapati, D. and Suresh, A.T. (2015). On learning distributions from their samples.
In Proceedings of the 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3–6, 2015 1066–
1100. Available at http://jmlr.org/proceedings/papers/v40/Kamath15.html.

[14] Kearns, M.J., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E. and Sellie, L. (1994). On the learnability of
discrete distributions. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing
1994 273–282. Montréal, Québec, Canada. https://doi.org/10.1145/195058.195155

[15] Kemeny, J.G. and Snell, J.L. (1976). Finite Markov Chains. New York: Springer. Reprinting of the 1960
original, Undergraduate Texts in Mathematics. MR0410929

[16] Kontorovich, A. and Pinelis, I. (2019). Exact lower bounds for the agnostic probably-approximately-
correct (PAC) machine learning model. Ann. Statist. 47 2822–2854. MR3988774 https://doi.org/10.1214/
18-AOS1766

[17] Kontorovich, A.L. (2007). Measure Concentration of Strongly Mixing Processes with Applications Ph.D.
thesis, Carnegie Mellon University.

[18] Kontorovich, L. and Ramanan, K. (2008). Concentration inequalities for dependent random variables via the
martingale method. Ann. Probab. 36 2126–2158. MR2478678 https://doi.org/10.1214/07-AOP384

http://www.ams.org/mathscinet-getitem?mr=1741038
https://doi.org/10.1017/CBO9780511624216
http://www.ams.org/mathscinet-getitem?mr=0777600
http://www.ams.org/mathscinet-getitem?mr=3041401
https://doi.org/10.1016/j.spl.2013.01.023
http://www.ams.org/mathscinet-getitem?mr=0123420
https://doi.org/10.1214/aoms/1177705136
http://www.ams.org/mathscinet-getitem?mr=1843146
https://doi.org/10.1007/978-1-4613-0125-7
http://www.ams.org/mathscinet-getitem?mr=1097464
http://www.ams.org/mathscinet-getitem?mr=3418968
https://doi.org/10.1109/TIT.2015.2478816
http://www.ams.org/mathscinet-getitem?mr=0832183
https://doi.org/10.1017/CBO9780511810817
http://www.ams.org/mathscinet-getitem?mr=3983341
https://doi.org/10.1214/18-AAP1457
http://jmlr.org/proceedings/papers/v40/Kamath15.html
https://doi.org/10.1145/195058.195155
http://www.ams.org/mathscinet-getitem?mr=0410929
http://www.ams.org/mathscinet-getitem?mr=3988774
https://doi.org/10.1214/18-AOS1766
http://www.ams.org/mathscinet-getitem?mr=2478678
https://doi.org/10.1214/07-AOP384
https://doi.org/10.1214/18-AOS1766


Estimation of ergodic Markov chain kernel 553

[19] Levin, D.A., Peres, Y. and Wilmer, E.L. (2009). Markov Chains and Mixing Times, 2nd ed. Providence:
American Mathematical Soc.

[20] Markov, A.A. (1906). Extension of the law of large numbers to dependent quantities. Izvestiia Fiz.-Matem.
Obsch. Kazan Univ. 15 135–156.

[21] Orlitsky, A. and Suresh, A.T. (2015). Competitive distribution estimation: Why is good-
Turing good. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2143–2151. Available at http://papers.nips.cc/paper/
5762-competitive-distribution-estimation-why-is-good-turing-good.

[22] Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electron. J. Probab. 20 79. MR3383563 https://doi.org/10.1214/EJP.v20-4039

[23] Roberts, G.O. and Rosenthal, J.S. (1997). Geometric ergodicity and hybrid Markov chains. Electron. Com-
mun. Probab. 2 13–25. MR1448322 https://doi.org/10.1214/ECP.v2-981

[24] Silvester, J.R. (2000). Determinants of block matrices. Math. Gaz. 84 460–467. Available at http://www.
jstor.org/stable/3620776.

[25] Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. New York:
Springer. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats. MR2724359
https://doi.org/10.1007/b13794

[26] Vidyasagar, M. (2014). An elementary derivation of the large deviation rate function for finite state Markov
chains. Asian J. Control 16 1–19. MR3160167 https://doi.org/10.1002/asjc.806

[27] Waggoner, B. (2015). �p testing and learning of discrete distributions. In ITCS’15 – Proceedings of the 6th
Innovations in Theoretical Computer Science 347–356. New York: ACM. MR3419028 https://doi.org/10.
1145/2688073.2688095

[28] Welton, N. and Ades, A.E. (2005). Estimation of Markov chain transition probabilities and rates from fully
and partially observed data: Uncertainty propagation, evidence synthesis, and model calibration. Med. Decis.
Mak. 25 633–645.

[29] Wolfer, G. (2020). Mixing time estimation in ergodic Markov chains from a single trajectory with con-
traction methods. In Proceedings of the 31st International Conference on Algorithmic Learning Theory (A.
Kontorovich and G. Neu, eds.). Proceedings of Machine Learning Research 117 890–905. San Diego, CA,
USA. Available at http://proceedings.mlr.press/v117/wolfer20a.html.

[30] Wolfer, G. and Kontorovich, A. (2019). Minimax learning of ergodic Markov chains. In Proceedings of the
30th International Conference on Algorithmic Learning Theory, Proceedings of Machine Learning Research
98 904–930. Chicago, IL. Available at http://proceedings.mlr.press/v98/wolfer19a.html.

[31] Wolfer, G. and Kontorovich, A. (2019). Estimating the mixing time of ergodic Markov chains. In Proceedings
of the Thirty-Second Conference on Learning Theory. Proceedings of Machine Learning Research 99 3120–
3159. Phoenix, USA. Available at http://proceedings.mlr.press/v99/wolfer19a.html.

[32] Yu, B. (1997). Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam 423–435. New York: Springer.
MR1462963

Received October 2019 and revised June 2020

http://papers.nips.cc/paper/5762-competitive-distribution-estimation-why-is-good-turing-good
http://www.ams.org/mathscinet-getitem?mr=3383563
https://doi.org/10.1214/EJP.v20-4039
http://www.ams.org/mathscinet-getitem?mr=1448322
https://doi.org/10.1214/ECP.v2-981
http://www.jstor.org/stable/3620776
http://www.ams.org/mathscinet-getitem?mr=2724359
https://doi.org/10.1007/b13794
http://www.ams.org/mathscinet-getitem?mr=3160167
https://doi.org/10.1002/asjc.806
http://www.ams.org/mathscinet-getitem?mr=3419028
https://doi.org/10.1145/2688073.2688095
http://proceedings.mlr.press/v117/wolfer20a.html
http://proceedings.mlr.press/v98/wolfer19a.html
http://proceedings.mlr.press/v99/wolfer19a.html
http://www.ams.org/mathscinet-getitem?mr=1462963
http://papers.nips.cc/paper/5762-competitive-distribution-estimation-why-is-good-turing-good
http://www.jstor.org/stable/3620776
https://doi.org/10.1145/2688073.2688095

	Introduction
	Our contributions

	Deﬁnitions and notation
	Main results
	Estimation with respect to the inﬁnity norm for ﬁnite state space
	Results for estimation with respect to |||.|||

	Overview of techniques
	Estimating with respect to the inﬁnity norm when the space is ﬁnite
	Estimating with respect to the |||.||| metric

	Related work
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Bounding the distance in expectation
	Bounding the ﬂuctuations around the expectation

	Proof of Theorem 3.2 (part 1): precision lower bound
	Proof of Theorem 3.2 (part 2): mixing lower bound
	Extension to gammaps


	Acknowledgments
	References

