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We present results on the concentration properties of the spectral norm ‖Ap‖ of the adjacency matrix Ap

of an Erdős–Rényi random graph G(n,p). First, we consider the Erdős–Rényi random graph process and
prove that ‖Ap‖ is uniformly concentrated over the range p ∈ [C logn/n,1]. The analysis is based on de-
localization arguments, uniform laws of large numbers, together with the entropy method to prove concen-
tration inequalities. As an application of our techniques, we prove sharp sub-Gaussian moment inequalities
for ‖Ap‖ for all p ∈ [c log3 n/n,1] that improve the general bounds of Alon, Krivelevich, and Vu (Israel
J. Math. 131 (2002) 259–267) and some of the more recent results of Erdős et al. (Ann. Probab. 41 (2013)
2279–2375). Both results are consistent with the asymptotic result of Füredi and Komlós (Combinatorica 1
(1981) 233–241) that holds for fixed p as n → ∞.
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1. Introduction

An Erdős–Rényi random graph G(n,p), named after the authors of the pioneering work [11], is
a graph defined on the vertex set [n] = {1, . . . , n} in which any two vertices i, j ∈ [n], i �= j , are
connected by an edge independently, with probability p. Such a random graph is represented by
its adjacency matrix Ap . Ap is a symmetric matrix whose entries are

A
(p)
i,j =

⎧⎨
⎩

0 if i = j,

1Ui,j <p if 1 ≤ i < j ≤ n,

1Uj,i<p if 1 ≤ j < i ≤ n,

(1.1)

where (Ui,j )1≤i<j≤n are independent random variables, uniformly distributed on [0,1] and 1
stands for the indicator function. We call the family of random matrices (Ap)p∈[0,1] the Erdős–
Rényi random graph process.

Spectral properties of adjacency matrices of random graphs have received considerable atten-
tion, see Füredi and Komlós [12], Krivelevich and Sudakov [14], Vu [20], Erdős, Knowles, Yau,
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and Yin [10], Benaych-Georges, Bordenave, and Knowles [3,4], Jung and Lee [13], Tran, Vu,
and Wang [18], among many other papers.

In this paper, we are primarily concerned with concentration properties of the spectral norm
‖Ap‖ of the adjacency matrix. It follows from a general concentration inequality of Alon, Kriv-
elevich, and Vu [1] for the largest eigenvalue of symmetric random matrices with bounded inde-
pendent entries that for all n ≥ 1, p ∈ [0,1], and t > 0,

P
{∣∣‖Ap‖ −E‖Ap‖∣∣ > t

} ≤ 4e−t2/32. (1.2)

In particular, Var(‖Ap‖) ≤ C for a universal constant C. (One may take C = 16, see [8], Exam-
ple 3.14.) Krivelevich and Sudakov [14] who studied the asymptotic value of E‖Ap‖ raised the
question whether it is possible to improve (1.2). As an application of our techniques, we settle
this question for non-sparse graphs. Moreover, we strengthen (1.2) in two different ways.

Our main result concerns the uniform concentration of the spectral norm. In particular, first we
prove that there exists a universal constant C such that

E sup
p≥C logn/n

∣∣‖Ap‖ −E‖Ap‖∣∣ ≤ C

(see Theorem 1 below). Informally, this result means that as we add new edges in the Erdős–
Rényi graph process, the value |‖Ap‖ − E‖Ap‖| is never greater (up to an absolute constant
factor) than the same value calculated for just one concrete random graph G(n, 1

2 ). The proof
of this result is based on an extension of the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality
(we refer to [16] for the state-of-the-art form) for particular functions of independent random
variables. For the entire range p ∈ [0,1], we are able to prove a simple but slightly weaker
inequality

E sup
p∈[0,1]

∣∣‖Ap‖ −E‖Ap‖∣∣ ≤ C
√

log logn

for a constant C (Proposition 1). We also prove the tail bound of the form

P

{
sup

p≥C logn/n

∣∣‖Ap‖ −E‖Ap‖∣∣ > t
}

≤ e−t2/C, (1.3)

which is a uniform version of the sub-Gaussian inequality (1.2) and has the same form up to
absolute constant factors. We leave open the question whether the restriction to the range p ∈
[C logn

n
,1] is necessary for uniform concentration. However, we also discuss very sparse regimes

(i.e., when p 	 1
n

).
Note that it follows from the Perron–Frobenius theorem that the spectral norm of Ap equals

the largest eigenvalue of Ap , that is, ‖Ap‖ = λp . We use both interchangeably throughout the
paper, depending on the particular interpretation that is convenient.

Our proofs hinge crucially on the so-called delocalization property of the eigenvector corre-
sponding to the largest eigenvalue (see Erdős, Knowles, Yau, and Yin [10], Mitra [17]), that is, the
fact that the normalized eigenvector corresponding to the largest eigenvalue is close, in a certain
sense, to the vector (1/

√
n, . . . ,1/

√
n). We provide delocalization bounds for the top eigenvec-

tor of Ap tailored to our needs (Lemma 3) and a uniform delocalization inequality (Lemma 4).
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An important fact is that some known delocalization bounds hold with probability 1 − C
nα (as in

[17]) or with quasi-polynomial probability 1−C exp(−c(logn)β) (see, e.g., [18] or Theorem 2.6
in [10] ), where any choice of the parameter β greater than zero is responsible for extra logarith-
mic factors, making these results not applicable in our case. So, to obtain tight concentration
results we prove delocalization bounds which hold with the exponential probability of the form
1 − C exp(−cnp) (up to logarithmic factors), which is significantly better in the regime when
p � logn

n
.

As an application of our techniques, we prove sub-Gaussian inequalities for moments of ‖Ap‖
of higher order (up to order approximately np). The precise statement is given in Theorem 2 in
Section 2.2 below. In particular, we show that, for small values of p, ‖Ap‖ is significantly more
concentrated than what the general bound (1.2) suggests. This technique implies, in particular,
that there exists a universal constant C such that

Var
(‖Ap‖) ≤ Cp (1.4)

for all n and p ≥ C log3 n/n. The rest of the paper is organized as follows. In Section 2, we
formalize and discuss the results of the paper. The proofs are presented in Section 3.

2. Results

2.1. Uniform concentration for the Erdős–Rényi random graph process

Next, we state our inequalities for the uniform concentration of the spectral norm ‖Ap‖ – or,
equivalently, for the largest eigenvalue λp of the adjacency matrix Ap defined by (1.1). Our first
result shows the following theorem.

Theorem 1. There exists a constant C such that, for all n,

E sup
p∈[ 64 logn

n
,1]

|λp −Eλp| ≤ C.

Moreover, for all t ≥ 2C,

P

{
sup

p∈[ 64 logn
n

,1]
|λp −Eλp| ≥ t

}
≤ exp

(−t2/128
)
.

For the numerical constant, our proof provides the (surely suboptimal) value C = 109. Our
proof is based on the fact that the normalized eigenvector corresponding to the largest eigenvalue
of Ap stays close to the vector (1/

√
n, . . . ,1/

√
n). In Lemma 4, we prove an �2 bound that

holds uniformly over intervals of the form [q,2q] when q ∈ [4 logn/n,1/2]. It is because of
the restriction of the range of q in the uniform delocalization lemma that we need to impose
p ≥ 64 logn/n in Theorem 1. We do not know whether this uniform concentration bound holds
over the entire interval p ∈ [0,1]. However, we are able to prove the following, only slightly
weaker bound.
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Proposition 1. There exists a constant C′ such that, for all n,

E sup
p∈[0,1]

|λp −Eλp| ≤ C′√log logn.

The proof of Proposition 1 uses direct approximation arguments to handle the interval p ∈
[0,64 logn/n]. In particular, we show that

E sup
p∈[0,64 logn/n]

|λp −Eλp| ≤ 5
√

16 + 2 log logn,

which, combined with Theorem 1 implies Proposition 1. As a second extension, we consider the
sparse regime when p 	 1

n
.

Proposition 2. Fix k ∈ N, k ≥ 2. There is a constant Ck (its value may be extracted from the
proof), which depends only on k such that

E sup
p∈[0,n−k/(k−1)]

|λp −Eλp| ≤ Ck.

Remark. A simple inspection of the proof of the concentration result of Theorem 1 shows
that a tail inequality similar to the second inequality of Theorem 1 holds also for the range
p ∈ [0, n−k/(k−1)]. In this case, the constant factors may depend on the choice of k. Similarly,
Proposition 1 may be used to prove that the concentration result of Theorem 1 holds for all
p ∈ [0,1], but only in the regime t ≥ 2C′√log logn.

2.2. Moment inequalities for the spectral norm

As an application of our techniques, we show that typical deviations of ‖Ap‖ from its expected
value are of the order of

√
p. This is in accordance with the asymptotic normality theorem of

Füredi and Komlós [12]. However, while the result of [12] holds for fixed p as n → ∞, the
theorem below is non-asymptotic. In particular, it holds for p = o(1) as long as np is at least of
the order of log3(n). Note that the general non-asymptotic concentration inequality of [1] only
implies that typical deviations are O(1) and the question of possible improvements was raised in
[14].

Theorem 2. There exist constants c,C such that for every

k ∈
(

2,
c(

log(np)
logn

)2p(n − 1) − log(24(n − 1))

log( 1
p
) + log(115/4)

]
,

it holds [
E

(‖Ap‖ −E‖Ap‖)k

+
]1/k ≤ (Ckp)

1
2
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and [
E

(‖Ap‖ −E‖Ap‖)k

−
]1/k ≤ (

C′kp
) 1

2 .

In particular, for some absolute constant κ > 0 it holds for all n and p ≥ κ log3(n)/n,

Var
(‖Ap‖) ≤ Cp.

It is natural to ask whether the condition p ≥ κ log3 n/n1 is necessary. Although we believe
that log3 n instead of the lower powers of logn is only an artifact of our technique, the fact
that the inequality Var(‖Ap‖) ≤ Cp cannot hold for all values of p is easily seen by taking
p = c/n2 for a positive constant c. In this case, the probability that the graph G(n,p) is empty
is bounded away from zero. In that case, ‖Ap‖ = 0. On the other hand, with probability bounded
away from zero, the graph G(n,p) contains a single edge, in which case ‖Ap‖ = 1. Thus, for
p = c/n2, Var(‖Ap‖) = �(1), showing that the bound (1.2) is sharp in this range. Understanding
the concentration properties of ‖Ap‖ in the range n−2 	 p 	 log3(n)/n is an intriguing open
question.2

The proof of Theorem 2 is presented in Section 3.2. The proof reveals that for the values of the
constants one may take κ = 2×8352, C = 966,306, C′ = 1,339,945, and c = 1/9408. However,
these values have not been optimized. In the rest of this discussion, we assume these numerical
values.

Using the moment bound with k = t2/(2Cp), Markov’s inequality implies that for all 0 < t ≤
2
√

Ccp
√

n − 1 log(np)/(logn log(1/p)),

P
{∣∣‖Ap‖ −E‖Ap‖∣∣ ≥ t

} ≤ 2−t2/(2Cp). (2.1)

This result improves (1.2) in the regime when t 	 p
√

n with some extra logarithmic factors and
may be complemented by (1.2) for the remaining values of t . Moreover, a simple inspection of the
proof of Theorem 2 shows that it may be extended in a way such that it is always not worse than
the tail of (1.2) for all t ≥ 0. The proof of this theorem is based on general moment inequalities
of Boucheron, Bousquet, Lugosi, and Massart [7] (see also [8], Theorems 15.5 and 15.7) that
state that if Z = f (X1, . . . ,Xn) is a real random variable that is a function of the independent
random variables X1, . . . ,Xn, then for all k ≥ 2,

[
E(Z −EZ)k+

]1/k ≤ √
3k

(
E

[
V+k/2])1/k (2.2)

and [
E(Z −EZ)k−

]1/k ≤ √
4.16k

((
E

[
V+k/2])1/k ∨ √

k
(
E

[
Mk

])1/k)
, (2.3)

1Our analysis implies in fact a slightly better factor log3 n

n(log logn)2 instead of log3 n
n .

2We refer to the work of Lei [15] for some recent progress in this problem.
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where ∨ denotes the maximum and the random variable V+ is defined as

V+ = E
′

n∑
i=1

(
Z − Z′

i

)2
+.

Here Z′
i = f (X1, . . . ,Xi−1,X

′
i ,Xi+1, . . . ,Xn) with X′

1, . . . ,X
′
n being independent copies of

X1, . . . ,Xn and E
′ denotes expectation with respect to X′

1, . . . ,X
′
n. Moreover,

M = max
i

(
Z − Z′

i

)
+.

Recall also that, by the Efron-Stein inequality (e.g., [8], Theorem 3.1)

Var(Z) ≤ EV+. (2.4)

The proof of Theorem 2 is based on (2.2), applied for the random variable Z = ‖Ap‖. In or-
der to bound moments of the random variable V+, we use the fact that the eigenvector of Ap

corresponding to the largest eigenvalue is near the vector (1/
√

n, . . . ,1/
√

n). An elegant way of
proving such results appears in Mitra [17]. We follow Mitra’s approach though we need to modify
his arguments in order to achieve stronger probabilistic guarantees for weak �∞ delocalization
bounds. In Lemma 3, we provide the bound we need for the proof of Theorem 2.

3. Proofs

3.1. Proof of Theorem 1

We begin by noting that, if p ≤ q , then Aq is element-wise greater than or equal to Ap and
therefore ‖Ap‖ ≤ ‖Aq‖ whenever p ≤ q . (see Corollary 1.5 in [5]).

We start with a lemma for the expected spectral norm for a sparse Erdős–Rényi graph. Since
the largest eigenvalue of the adjacency matrix is always bounded by the maximum degree of
the graph, E‖A 1

n
‖ is at most of the order logn. The next lemma improves this naive bound to

O(
√

logn). With more work, it is possible to improve the rate to
√

logn
log logn

(see the asymptotic
result in [14]). However, this slightly weaker version is sufficient for our purposes.

Lemma 1. For all n ≥ 3,

E‖A 1
n
‖ ≤ 173

√
logn.

Proof. First, write

E‖A 1
n
‖ ≤ E‖A 1

n
−EA 1

n
‖ + ‖EA 1

n
‖ ≤ E‖A 1

n
−EA 1

n
‖ + 1.

Denote B = A 1
n

−EA 1
n

and let B ′ be an independent copy of B . Denoting by E
′ the expectation

operator with respect to B ′, note that E′B ′ = 0 and therefore, by Jensen’s inequality,

E‖B‖ = E
∥∥B −E

′B ′∥∥ ≤ E
∥∥B − B ′∥∥.
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The matrix B − B ′ is zero mean, its non-diagonal entries have a symmetric distribution with
variance (2/n)(1 − 1/n) and all entries have absolute value bounded by 2. Now, applying Corol-
lary 3.6 of Bandeira and van Handel [2] with α = 3,

E
∥∥B − B ′∥∥ ≤ e

2
3 (2

√
2 + 84

√
logn) ≤ 6 + 166

√
logn.

Thus,

E‖A 1
n
‖ ≤ 7 + 166

√
logn ≤ 173

√
logn. �

The next lemma and the uniform delocalization inequality of Lemma 4 (presented in Sec-
tion 3.3) are the crucial building blocks of the proof of Theorem 1.

Lemma 2. For all n and q ∈ [logn/n, 1
2 ],

P

{
sup

p∈[q,2q]
‖Ap −EAp‖ > 420

√
nq

}
≤ e−nq/64.

Proof. Using the version [8], Example 3.14, of the concentration bound of Alon, Krivelevich
and Vu [1], we have for each fixed p and for all t > 0,

P
{‖Ap −EAp‖ −E‖Ap −EAp‖ > t

} ≤ e−t2/32.

On the other hand, using the same symmetrization trick as in Lemma 1, Corollary 3.6 of Ban-
deira, van Handel [2] implies that for any p ≥ logn/n,

E‖Ap −EAp‖ ≤ e
2
3 (2

√
2np + 84

√
logn) ≤ 170

√
np. (3.1)

These two results imply

P
{‖Ap −EAp‖ > 172

√
np

} ≤ e−np/8.

Let now q ≥ logn/n and for i = 0,1, . . . , �nq�, define pi = q + i/n. Then using the triangle

inequality, combined with Ap − Api

d= Ap−pi
for p > pi and the monotonicity of the operator

norm of the matrix with non-negative entries with respect to each entry,

sup
p∈[pi,pi+1]

(‖Ap −EAp‖ − ‖Api
−EApi

‖)
≤ sup

p∈[pi,pi+1]
(‖Ap − Api

‖ + ‖EAp −EApi
‖)

= sup
p∈[pi,pi+1]

(‖Ap − Api
‖ + ‖EAp−pi

‖)
= ‖Api+1 − Api

‖ + ‖EA1/n‖
≤ ‖Api+1 − Api

‖ + 1
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≤ E‖A1/n‖ + (‖Api+1 − Api
‖ −E‖Api+1 − Api

‖) + 1

≤ 1 + 173
√

logn + √
nq ≤ 176

√
nq,

with probability at least 1 − e−nq/32, where we used Lemma 1 and (1.2). Thus, by the union
bound, with probability at least 1 − nqe−nq/32 − nqe−nq/8 ≥ 1 − e−nq/64,

sup
p∈[q,2q]

‖Ap −EAp‖ ≤ max
i∈{0,...,�nq�}

‖Api
−EApi

‖ + 176
√

nq

≤ 172
√

2nq + 176
√

nq ≤ 420
√

nq.

as desired. �

Proof of Theorem 1. Denote by 1 ∈ R
n the vector whose components are all equal to 1. Let

Bn
2 = {x ∈ R

n : ‖x‖2 ≤ 1} be the unit Euclidean ball. Let vp denote the first unit eigenvector of

Ap . Define the event E1 that vp ∈ 1√
n

+ 2896√
np

Bn
2 for all p ∈ [64 logn/n,1]. By Lemma 4 (see

Section 3.3 below), the vector vp can always be chosen in a way such that for n ≥ 7 ,

P{E1} ≥ 1 − 4
∞∑

j=0

exp
(−2j logn

) ≥ 1 − 4
∞∑

j=0

(
1

n

)2j

≥ 1 − 4

n

∞∑
j=0

(
1

7

)j

= 1 − 32

7n
.

Now define the event E2 that for all p ∈ [ 64 logn
n

,1], ‖Ap − EAp‖ ≤ 420
√

2np. Similarly to the
calculation above, by Lemma 2, P{E2} ≥ 1 − 32

7n
.

Denoting by Sn−1 = {x ∈ R
n : ‖x‖2 = 1} the Euclidean unit sphere in R

n, define

λp = sup
x∈Sn−1

xT Apx1E1∩E2 and Ap = Ap1E2 .

Then we may write the decomposition

λp = sup
x∈ 1√

n
+ 2896√

np
Bn

2

xT Apx = 1
T

√
n
Ap

1√
n

+ 2 sup
z∈ 2896√

np
Bn

2

zT Ap

(
1√
n

+ z

2

)
.

Then

sup
p∈[ 64 logn

n
,1]

|λp −Eλp|1E2

≤ 2 sup
p∈[ 64 logn

n
,1]

∣∣∣∣ sup
z∈ 2896√

np
Bn

2

(
zT Ap

(
1√
n

+ z

2

))
−E sup

z∈ 2896√
np

Bn
2

(
zT Ap

(
1√
n

+ z

2

))∣∣∣∣1E2

+ sup
p∈[ 64 logn

n
,1]

∣∣∣∣ 1√
n

T

Ap

1√
n

−E
1
T

√
n
Ap

1√
n

∣∣∣∣1E2 . (3.2)
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For the second term on the right-hand side of (3.2), since Ap − Ap = Ap1E2
we have

E sup
p∈[ 64 logn

n
,1]

∣∣∣∣ 1√
n

T

Ap

1√
n

−E
1
T

√
n
Ap

1√
n

∣∣∣∣
≤ E sup

p∈[ 64 logn
n

,1]

∣∣∣∣ 1√
n

T

Ap

1√
n

−E
1
T

√
n
Ap

1√
n

∣∣∣∣ + 2nP(E2).

Note that 1√
n

T
Ap

1√
n

= (2/n)
∑

i<j 1Ui,j <p . Thus, the first term on the right-hand side is just the
maximum deviation between the cumulative distribution function of a uniform random variable
and its empirical counterpart based on

(
n
2

)
random samples. This may be bounded by the classical

Dvoretzky-Kiefer-Wolfowitz theorem [9]. Indeed, by Massart’s version [16], we have

E sup
p∈[ 64 logn

n
,1]

∣∣∣∣ 1√
n

T

Ap

1√
n

−E
1
T

√
n
Ap

1√
n

∣∣∣∣ ≤ E sup
p∈[0,1]

∣∣∣∣ 1√
n

T

Ap

1√
n

−E
1
T

√
n

Ap

1√
n

∣∣∣∣
≤ 4

∫ ∞

t=0
exp

(−2t2)dt = √
2π.

Thus, the second term on the right-hand side of (3.2) is bounded in expectation by the absolute
constant

√
2π + 64

7 ≤ 12 since P(E2) ≤ 32
7n

.
In order to bound the first term on the right-hand side of (3.2), we write

sup
p∈[ 64 logn

n
,1]

∣∣∣∣ sup
z∈ 2896√

np
Bn

2

zT Ap

(
1√
n

+ z

2

)
−E sup

z∈ 2896√
np

Bn
2

zT Ap

(
1√
n

+ z

2

)∣∣∣∣1E2

≤ sup
p∈[ 64 logn

n
,1]

sup
z∈ 2896√

np
Bn

2

∣∣∣∣zT Ap

(
1√
n

+ z

2

)
−EzT Ap

(
1√
n

+ z

2

)∣∣∣∣1E2

≤ sup
p∈[ 64 logn

n
,1]

2896√
np

sup
z∈ 2896√

np
Bn

2

∥∥∥∥ 1√
n

+ z

2

∥∥∥∥ · ‖Ap −EAp‖1E2

≤ sup
p∈[ 64 logn

n
,1]

2896 ×
(

594 + 32

7
√

np

)(
1 + 1448√

np

)

≤ 2896 ×
(

594 + 32

7
√

64 log 7

)(
1 + 1448√

64 log(7)

)
≤ 4.5 × 108,

where we used that on the event E2 we have Ap = Ap and

‖Ap −EAp‖ ≤ ‖Ap −EAp‖ +E‖Ap1E2
‖ ≤ 420

√
2np + 32

7
.
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Finally, note that with probability at least 1 − 64
7n

for all p ∈ [ 64 logn
n

,1] we have λp = λp . More-
over, for all p,

E sup
p∈[ 64 logn

n
,1]

|λp − λp| ≤ E sup
p∈[ 64 logn

n
,1]

sup
x∈Sn−1

∣∣xT Apx1E1∪E2

∣∣ ≤ nP(E1 ∪ E2) ≤ 64

7
. (3.3)

Thus, (3.3) and the bound E sup
p∈[ 64 logn

n
,1] |λp −Eλp|1E2

≤ 2nP(E2) imply

E sup
p∈[ 64 logn

n
,1]

|λp −Eλp| ≤ 192

7
+E sup

p∈[ 64 logn
n

,1]
|λp −Eλp|1E2 ≤ 109,

proving the first inequality of the theorem.
To prove the second inequality, we follow the argument of Example 6.8 in [8]. Denote

Z = sup
p∈[ 64 logn

n
,1] |λp − Eλp| and Z′

i,j = sup
p∈[ 64 logn

n
,1] |λ′

p − Eλp| where λ′
p is the largest

eigenvalue of the adjacency matrix A′
p of the random graph that is obtained from Ap by replac-

ing Ui,j by an independent copy. Denoting as before the first unit eigenvector of Ap by vp and the
first unit eigenvector of A′

p by v′
p and the (random) maximizer of sup

p∈[ 64 logn
n

,1] |vT
p Apvp −Eλp|

by p∗, we have

(
Z − Z′

i,j

)
+ ≤

(
sup

p∈[ 64 logn
n

,1]

∣∣vT
p Apvp −Eλp

∣∣ − sup
p∈[ 64 logn

n
,1]

∣∣v′T
p A′

pv′
p −Eλp

∣∣)1Z≥Z′
i,j

≤ ∣∣vT
p∗Ap∗vp∗ −Eλp∗ − v′T

p∗A′
p∗v′

p∗+Eλp∗
∣∣1Z≥Z′

i,j

≤ ∣∣vT
p∗

(
Ap∗ − A′

p∗
)
vp∗

∣∣1Z≥Z′
i,j

≤ 4
∣∣vi

p∗v
j
p∗

∣∣.
This implies

∑
1≤i≤j≤n(Z − Z′

i,j )
2+ ≤ 16. Thus, for any t ≥ 0,

P

{
sup

p∈[ 64 logn
n

,1]

∣∣vT
p Apvp −Eλp

∣∣ −E sup
p∈[ 64 logn

n
,1]

∣∣vT
p Apvp −Eλp

∣∣ ≥ t
}

≤ exp
(−t2/32

)
.

Using the bound E sup
p∈[ 64 logn

n
,1] |vT

p Apvp −Eλp| ≤ 109, we have for t ′ = t + 109

P

{
sup

p∈[ 64 logn
n

,1]

∣∣vT
p Apvp −Eλp

∣∣ ≥ t ′
}

≤ exp
(−(

t ′ − 109)2
/32

)
.

For t ′ ≥ 2×109 the claim follows. �
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3.2. Proof of Theorem 2

Let vp denote an eigenvector corresponding to the largest eigenvalue of Ap such that ‖vp‖ = 1.
Recall that κ = 2 × 8352 and c = 1/9408. One of the key elements of the proof is the following
new variant of a delocalization inequality of Mitra [17].

Lemma 3. Let n ≥ 7 and p ≥ κ log3(n)/n. Let vp denote an eigenvector corresponding to the
largest eigenvalue λp of Ap with ‖vp‖2 = 1. Then, with probability at least

1 − 12(n − 1) exp

(
−2c

(
log(np)

logn

)2

(n − 1)p

)
,

‖vp‖∞ ≤ 11√
n
.

The lemma is proved in Section 3.3 below. Based on this lemma, we may prove Theorem 2.

Proof of Theorem 2. We apply (2.2) for the random variable Z = ‖Ap‖, as a function of the(
n
2

)
independent Bernoulli random variables Ai,j = A

(p)
i,j , 1 ≤ i < j ≤ n. Let E1 denote the event

‖vp‖∞ ≤ 11/
√

n. By Lemma 3,

P{E1} ≥ 1 − 12(n − 1) exp

(
− 1

4704

(
log(np)

logn

)2

(n − 1)p

)
.

For 1 ≤ i < j ≤ n, denote by λ′
i,j the largest eigenvalue of the adjacency matrix obtained by

replacing Ai,j (and Aj,i ) by an independent copy A′
i,j and keeping all other entries unchanged. If

the components of the unit eigenvector vp (corresponding to the eigenvalue λp) are (v1
p, . . . , v

j
p),

then

V+ = E
′

n∑
i<j

(
λp − λ′

i,j

)2
+ ≤ 4

n∑
i<j

E
′[(vi

p

)2(
v

j
p

)2(
Ai,j − A′

i,j

)2]

= 4
n∑

i<j

(
vi
p

)2(
v

j
p

)2(
p + (1 − 2p)Ai,j

)
+.

Since (Ai,j − A′
i,j )

2 ≤ 1 and
∑n

i (v
i
p)2 = 1, we always have V+ ≤ 4. On the event E1, we have

a better control:

V+1E1 ≤ 4 · 114

n2

((
n

2

)
p + (1 − 2p)

∑
i<j

Ai,j

)
.

Let E2 denote the event that
∑n

i<j Ai,j ≤ 2E
∑n

i<j Ai,j ≤ pn(n − 1). By Bernstein’s inequality,

P{E2} ≥ 1 − exp(− 3pn(n−1)
8 ). Then

V+1E1∩E2 ≤ 115p.
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Thus,

E
[
(V+)

k
2
] = E

[
(V+)

k
2 1E1∩E2

] +E
[
(V+)

k
2 (1E1

+ 1E2
)
]

≤ (
115p

)k/2 + 4k/2(
P{E1} + P{E2}

)
≤ 2

(
115p

)k/2
,

whenever P{E1} + P{E2} ≤ (115p/4)k/2. This holds whenever

24(n − 1) exp

(
− 1

4704

(
log(np)

logn

)2

(n − 1)p

)
≤ (

115p/4
)k/2

,

guaranteed by our assumption on k. The proof of the bound for the upper tail follows from (2.2).
The bound for the variance follows from the Efron-Stein inequality (2.4).

For the bound for the lower tail, we use (2.3). Note that

max
i<j

(
λp − λ′

i,j

)
+1E1 ≤ 2 max

i<j

(
vi
pv

j
p

(
Ai,j − A′

i,j

))
+1E1 ≤ 242

n
,

and therefore

Emax
i<j

(
vi
pv

j
p

(
Ai,j − A′

i,j

))k

+1E1 ≤
(

242

n

)k

.

Moreover,

Emax
i<j

(
2vi

pv
j
p

(
Ai,j − A′

i,j

))k

+1E1

≤ 2k
P{E1} ≤ 3×2k+2(n − 1) exp

(
− 1

4704

(
log(np)

log(n)

)2

(n − 1)p

)
.

We require (
242

n

)k

≥ 3×2k+2(n − 1) exp

(
− 1

4704

(
log(np)

log(n)

)2

(n − 1)p

)
which holds whenever

k ≤
1

4704 (
log(np)
log(n)

)2(n − 1)p − log(12(n − 1))

log( n
121 )

.

Under this condition (
Emax

i<j

(
vi
pv

j
p

(
Ai,j − A′

i,j

))k

+
) 1

k ≤ 484

n
.

Under our conditions for k and p, we have k(484/n)2 ≤ 2 · 115p and therefore (2.3) implies the
last inequality of Theorem 2. �
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Remark. It is tempting to understand if different approaches may lead to a simplified proof of
Theorem 2 with the weaker condition of p ≥ logn

n
. Perturbation theory based approach has been

used by [10] for the analysis of concentration of ‖Ap‖ around its expectation. To compare with
this paper, in this remark we assume that Ap is the adjacency matrix of an Erdős–Rényi random
graph with loops, that is, all vertices link to themselves, each with probability p. Our results may
be adapted to this case in a straightforward manner via minor changes in the constant factors. It
can be shown (see formula in (6.17) in Section 6 of [10]) that when ‖Ap −EAp‖ < ‖Ap‖,

‖Ap‖ =
∞∑

j=0

p1
T
(

Ap −EAp

λp

)j

1, (3.4)

where 1 ∈ R
n is the vector whose components are all equal to 1. Theorem 6.2 in [10] (which is

based on a thorough analysis of the sum (3.4)) shows that, for any ξ ∈ [2,A0 log log(n)], provided
that pn

1−p
≥ C2

0 log4ξ (n), we have, with probability at least 1 − exp(−ν logξ (n)),

‖Ap‖ = E‖Ap‖ + 1
T
(Ap −EAp)1

n
+ O

(
log2ξ (n)

(1 − p)
√

n

)
, (3.5)

where the constant factors in the O-notation may depend on ξ , and ν,A0 ≥ 10 are absolute
constants. It can be easily seen that, up to an absolute constant factor, this bound implies the

variance bound (1.4) but only in the regime p ≥ c0 log8(n)
n

, where c0 is an absolute constant.
Moreover, it appears that the probability with which (3.5) holds is not sufficient to recover Theo-
rem 2 in a straightforward manner. Indeed, we know that (3.5) does not hold on the event E with
P{E} ≤ exp(−ν logξ (n)). Let us consider the moments of ‖Ap‖ when E holds. It can be shown
using (1.2) that for some absolute C > 0

E
(‖Ap‖ −E‖Ap‖)k1E ≤

√
E

(‖Ap‖ −E‖Ap‖)2k
P{E} ≤ (Ck)

k
2 exp

(−ν logξ (n)/2
)
.

To get the same bound as in Theorem 2, we need (Ck)
k
2 exp(−ν logξ (n)/2) ≤ (C′kp)

k
2 , which

holds when

k ≤ 2ν logξ (n)

log( C
C′p )

.

The last inequality is more restrictive than what is required in Theorem 2 when p ≥ cν logξ+2(n)

n log2(np)

for some absolute constant c > 0. To sum up, compared to (3.5) our Theorem 2 has a different
proof and provides tighter results in some natural situations.

3.3. Delocalization bounds

In this section, we prove the “delocalization” inequalities that state that the eigenvector vp corre-
sponding to the largest eigenvalue of Ap is close to the “uniform” vector n−1/21. The following
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lemma is crucial in the proof of Theorem 1. This proof is based on an argument of Mitra [17].
However, we need to modify it to get uniformity and also significantly better concentration guar-
antees.

Lemma 4. Let n ≥ 7 and q ∈ [ 4 logn
n

, 1
2 ]. Then, with probability 1 − 4 exp(−nq/64),

sup
p∈[q,2q]

∥∥∥∥vp − 1√
n

∥∥∥∥
2
≤ 2896√

nq
.

Proof. Since the graph with adjacency matrix Aq is connected with probability at least 1 −
(n − 1) exp(−nq/2) (see, e.g., [19], Section 5.3.3), by monotonicity of the property of connect-
edness, the same holds simultaneously for all graphs Ap for p ∈ [q,2q]. Also, by the Perron–
Frobenius theorem, if the graph is connected, the direction of vp can be chosen in a way such
that the components of vp are all nonnegative for all p ∈ [q,2q]. Moreover, the corresponding
eigenvalue λp has multiplicity one as well as the corresponding eigenspace is one dimensional.
For the remainder of the proof, we work on the event that corresponding graphs are connected.

Note that there exists a unique vector v⊥
p with (v⊥

p , vp) = 0 and ‖v⊥
p ‖2 = 1 such that

1/
√

n = αvp + βv⊥
p (3.6)

for some α,β ∈ R. By Lemma 2, we have with probability at least 1 − exp(−nq/64) −
(n − 1) exp(−nq/2),

sup
p∈[q,2q]

‖Ap −EAp‖ ≤ 420
√

nq.

Notice that EAp = pn 1√
n

1
T

√
n

− pIn, where In is an identity n × n matrix. Using that α =
( 1√

n
, vp),

(Ap −EAp)vp = λpvp − pn
1√
n

1
T

√
n
vp + pvp

= λpvp − pnα
1√
n

+ pvp

= λpvp − pnα
(
αvp + βv⊥

p

) + pvp

= (
λp + p − pnα2)vp − pnαβv⊥

p .

This leads to (
λp + p − pnα2)2 ≤ 4202nq. (3.7)

Since α ∈ [0,1], this implies that, with probability at least 1 − exp(−nq/64) − (n − 1)×
exp(−nq/2), simultaneously for all p ∈ [q,2q]

λp ≤ p(n − 1) + 420
√

nq. (3.8)
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We may get a lower bound for λp by noting that

λp ≥ 1

n
1
T
Ap1 = 2

n

n∑
i<j

1Uij <p.

Applying Massart’s version of the Dvoretzky-Kiefer-Wolfowitz theorem [16], we have, for all
t ≥ 0,

P

{
sup

p∈[0,1]

∣∣∣∣∣2

n

n∑
i<j

1Uij <p − (n − 1)p

∣∣∣∣∣ ≥ (n − 1)t

}
≤ 2 exp

(−n(n − 1)t2).
Choosing t =

√
nq

n−1 , we have, with probability at least 1 − 2 exp(−nq/2), simultaneously for all
p ∈ [q,2q],

λp ≥ p(n − 1) − √
nq. (3.9)

This lower bound, together with (3.7) gives

α ≥ α2 ≥ λp + p

pn
− 420

√
nq

pn
≥ 1 − 421√

nq
(3.10)

with probability at least 1 − exp(−nq/64) − (n − 1) exp(−nq/2) − 2 exp(−nq/2) ≥ 1 −
4(n − 1) exp(−nq/64). For the rest of the proof, we denote this event by E.

Next, write ∥∥∥∥ 1√
n

− vp

∥∥∥∥
2
≤

∥∥∥∥Ap

λp

1√
n

− vp

∥∥∥∥
2
+

∥∥∥∥Ap

λp

1√
n

− 1√
n

∥∥∥∥
2
. (3.11)

We analyze both terms on the right-hand side. Observe that EAp
1√
n

= (n−1)p1√
n

. The second term
on the right-hand side of (3.11) may be bounded on the event E, for all p ∈ [q,2q], as

∥∥∥∥Ap

λp

1√
n

− 1√
n

∥∥∥∥
2
≤ 1

λp

∥∥∥∥Ap

1√
n

− (n − 1)p1√
n

∥∥∥∥
2
+ 1

λp

∥∥∥∥ ((n − 1)p − λp)1√
n

∥∥∥∥
2

= 1

λp

∥∥∥∥Ap

1√
n

−EAp

1√
n

∥∥∥∥
2
+ |(n − 1)p − λp|

λp

≤ ‖Ap −EAp‖ + |(n − 1)p − λp|
λp

≤ 420
√

nq + 420
√

nq

p(n − 1) − √
nq

≤ 1640√
nq

.
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Thus, on the event E, for all p ∈ [q,2q],
∥∥∥∥ 1√

n
− vp

∥∥∥∥
2
≤

∥∥∥∥Ap

λp

1√
n

− vp

∥∥∥∥
2
+ 1640√

nq
.

For each p, we may write v⊥
p = ∑n

i=2 γiv
i
p , where vi

p is the ith orthonormal eigenvector of Ap .
Then

Ap

λp

1√
n

= αvp + β

n∑
i=2

γiλiv
i
p

λp

,

where λi is ith eigenvalue of Ap . By the Perron–Frobenius theorem, we have |λi | ≤ λp for all
i = 2, . . . , n. Moreover, from Füredi and Komlós [12], Lemmas 1 and 2, for all t ∈ R we have

that |λi | ≤ ‖Ap − t 1√
n

1
T

√
n
‖ for i ≥ 2. Choosing t = np, we obtain |λi | ≤ ‖Ap −EAp‖+p‖In‖ ≤

420
√

nq + p ≤ 422
√

nq . Thus, using (3.10), on the event E,

∥∥∥∥ 1√
n

− vp

∥∥∥∥
2
≤ 1 − α + β max

i≥2

|λi |
λp

+ 1640√
nq

≤ 2061√
nq

+ 422
√

nq

(n − 1)p − √
nq

≤ 2896√
nq

,

as desired. �

We close this section by proving the “weak” delocalization bound of Lemma 3.

Proof of Lemma 3. We use the notation introduced in the proof of Lemma 4. Here we fix
p ≥ κ log3 n/n. Fix � ∈ N and write

‖vp‖∞ ≤
∥∥∥∥
(

Ap

λp

)� 1√
n

− vp

∥∥∥∥∞
+

∥∥∥∥
(

Ap

λp

)� 1√
n

∥∥∥∥∞
. (3.12)

We bound both terms on the right-hand side. We start with the second term and rewrite it as

∥∥∥∥
(

Ap

λp

)� 1√
n

∥∥∥∥∞
= 1√

n

∣∣∣∣ (n − 1)p

λp

∣∣∣∣
�∥∥∥∥

(
Ap

(n − 1)p

)�

1

∥∥∥∥∞
.

Denote by Di = ∑n
j=1 Ai,j the degree of vertex i. By standard tail bounds for the binomial

distribution we have, for a fixed i and 0 ≤ � ≤ 1,

P
{
Di < p(n − 1) − p(n − 1)�

} ≤ exp

(−�2p(n − 1)

2

)

and

P
{
Di > p(n − 1) + p(n − 1)�

} ≤ exp

(
−3�2p(n − 1)

8

)
.
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Using the union bound, we have

P

{
max

i

∣∣Di − p(n − 1)
∣∣ > p(n − 1)�

}
≤ 2(n − 1) exp

(
−3�2p(n − 1)

8

)
.

We denote the event

max
i

∣∣Di − p(n − 1)
∣∣ ≤ p(n − 1)�

by E1. Observe that when E1 holds we have Di ≤ p(n − 1)(1 + �) and Di ≥ p(n − 1)(1 − �)

for all i.
Assume that u ∈ R

n is such that

‖u − 1‖∞ ≤ 2t� (3.13)

for some t ≤ �. In what follows we choose � = � 21 logn
log(np)

� and � = log(np)
42 logn

. Observe that �� ≤
1
2 . Since t�2 ≤ ��2 ≤ 1

2�, we have � + 2t�2 ≤ 2�. Thus, on the event E1, using the last
inequality together with (3.13),(

Ap

(n − 1)p
u

)
i

≤ p(n − 1)(1 + �)(1 + 2t�)

(n − 1)p
= 1 +�+ 2t�+ 2t�2 ≤ 1 + 2(t + 1)�. (3.14)

Now consider the term | (n−1)p
λp

|�. Using (3.9) we have, with probability at least 1−2 exp(−np/2)

(denote the corresponding event by E2),∣∣∣∣ (n − 1)p

λp

∣∣∣∣
�

≤
(

1 − 1√
p(n − 1)

)−�

.

Since � ≤ √
p(n − 1), we obtain | (n−1)p

λp
|� ≤ e. Thus, applying (3.14) � times for vectors satis-

fying (3.13), on the event E1 ∩ E2, we have, for all i,((
Ap

λp

)�

1

)
i

=
∣∣∣∣ (n − 1)p

λp

∣∣∣∣
�((

Ap

(n − 1)p

)�

1

)
i

≤ e(1 + 2��) ≤ 2e.

We may similarly derive a lower bound since, for any vector satisfying (3.13),(
Ap

(n − 1)p
u

)
i

≥ p(n − 1)(1 − �)(1 − 2t�)

(n − 1)p
= 1 −�− 2t�+ 2t�2 ≥ 1 − 2(t + 1)�. (3.15)

Analogously, applying (3.15) � times, on the event E1 ∩ E2, we have((
Ap

λp

)�

1

)
i

=
∣∣∣∣ (n − 1)p

λp

∣∣∣∣
�((

Ap

(n − 1)p

)�

1

)
i

≥
∣∣∣∣ (n − 1)p

λp

∣∣∣∣
�

(1 − 2��) ≥ 0.

Hence, on the event E1 ∩ E2, ∥∥∥∥
(

Ap

λp

)� 1√
n

∥∥∥∥∞
≤ 2e√

n
. (3.16)
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Next, we bound the first term on the right-hand side of (3.12). Recall that for the decomposi-
tion 1/

√
n = αvp + βv⊥

p from (3.10) we have α ≥ 1 − 421√
np

on an event E3 of probability at

least 1 − 4(n − 1) exp(−np/64). As before, we may write v⊥
p = ∑n

i=2 γiv
i
p , where vi

p is the ith

orthonormal eigenvector of Ap . Using 1/
√

n = αvp + βv⊥
p , we have

(
Ap

λp

)� 1√
n

= αvp + β

n∑
i=2

γiv
i
p

(
λi

λp

)�

,

where λi is ith eigenvalue of Ap . Using Füredi and Komlós [12], Lemmas 1 and 2, once again,

for all t ∈ R we have that |λi | ≤ ‖Ap − t 1√
n

1
T

√
n
‖ for i ≥ 2. Choosing t = np we obtain |λi | ≤

‖Ap − EAp‖ + p‖In‖ ≤ 420
√

np + p ≤ 422
√

np on an event E4 of probability at least 1 −
4(n − 1) exp(−np/64). Thus, on E4 we have |λi |

λp
≤ 835√

np
for i ≥ 2, and therefore

∥∥∥∥
(

Ap

λp

)� 1√
n

− vp

∥∥∥∥∞
≤ (1 − α)‖vp‖∞ + β max

i≥2

( |λi |
λp

)�

. (3.17)

Define κ1 = log(835)

log(2×8352)
. Observe that κ1 < 1

2 . Using np ≥ 2 × 8352 = κ ,

β max
i≥2

( |λi |
λp

)�

≤ β

(
835√
np

)�

≤
(

835

(np)κ1

)�

exp

((
1

2
− κ1

)
log

(
1

np

)
21 logn

log(np)

)

≤ exp

(
−21

(
1

2
− κ1

)
logn

)
≤ 1√

n
,

where we used ( 835
(np)κ1 )� ≤ 1 and the inequality 21( 1

2 − κ1) > 1
2 . Finally, on the event E1 ∩ E2 ∩

E3 ∩ E4 of probability at least

1 − 2(n − 1) exp

(
−3�2p(n − 1)

8

)
− 2 exp(−np/2) − 8(n − 1) exp(−np/64)

≥ 1 − 12(n − 1) exp

(
−3�2p(n − 1)

8

)
,

we have, using the decomposition (3.12) combined with (3.16) and (3.17), that

‖vp‖∞ ≤ 1

α

(
1 + 2e√

n

)
≤ 1

1 − 421√
np

(
1 + 2e√

n

)
≤ 11√

n
.

�
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3.4. Proof of Proposition 1

It suffices to prove that

E sup
p∈[0,

64 logn
n

]
|λp −Eλp| ≤ 5

√
16 + 2 log logn.

Observe that

E sup
p∈[0,1]

|λp −Eλp| ≤ E sup
p∈[0,

64 logn
n

]
|λp −Eλp| +E sup

p∈[ 64 logn
n

,1]
|λp −Eλp|.

Let p0,p1, . . . , pM be such that 0 = p0 ≤ p1 ≤ · · · ≤ pM = 64 logn
n

and E(λpj
− λpj−1) = ε for

some ε > 0 to be specified later. Such a choice is possible since λp is nondecreasing in p. We
have

εM = EλpM
≤ E‖ApM

−EApM
‖ + ‖EApM

‖ ≤ 170
√

npM + npM ≤ 1424 logn. (3.18)

Denote for p ∈ [0,pM ] the value π+[p] = min{q ∈ {p0,p1, . . . , pM}|q ≥ p} and π−[p] =
max{q ∈ {p0,p1, . . . , pM}|p ≥ q}. We have

E sup
p∈[0,

64 logn
n

]
|λp −Eλp|

= E sup
p∈[0,

64 logn
n

]
max{λp −Eλp,Eλp − λp}

≤ E sup
p∈[0,

64 logn
n

]
max{λπ+[p] −Eλπ+[p] + ε,Eλπ−[p] − λπ−[p] + ε}

= ε +E sup
p∈[0,

64 logn
n

]
max{λπ+[p] −Eλπ+[p],Eλπ−[p] − λπ−[p]}

≤ ε +E sup
q∈{p0,...,pM }

|λq −Eλq |.

Since for each pi , the random variable |λq − Eλq | has sub-Gaussian tails by (1.2), for their
maximum we obtain the bound

E sup
q∈{p0,...,pM }

|λq −Eλq | ≤ 4
√

2 log 2M.

Finally, using (3.18)

E sup
p∈[0,

64 logn
n

]
|λp −Eλp| ≤ inf

ε>0

(
ε + 4

√
2 log(2848 logn/ε)

) ≤ 5
√

2 log(2848 logn),

as desired.
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3.5. Proof of Proposition 2

The proof is based on two standard facts that may be found in [6]. For k ≥ 2, let Tk denote
the number of components in a random graph G(n,p) that are trees on k vertices. By Cayley’s
formula, ETk ≤ (

n
k

)
kk−2pk−1. Now we estimate the probability that there are trees of size at least

k + 1. Although the asymptotic behavior of this quantity is well understood, in what follows
we need a non-asymptotic upper bound. By Markov’s inequality and standard estimates, this
probability is bounded by

P

{ ∞∑
k+1

Tk ≥ 1

}
≤

∞∑
j=k+1

(
n

j

)
jj−2pj−1 ≤

∞∑
j=k+1

(
en

j

)j

j j−2pj−1 =
∞∑

j=k+1

en

j2
(enp)j−1.

At the same time, Theorem 5.7 (i) in [6] states that if p = c
n

for some c ∈ [0,1) then probability

that G(n,p) is not a forest is bounded by
∑∞

k=3 ck = c3

1−c
. Finally, by the version [8], Exam-

ple 3.14, of the concentration bound of Alon, Krivelevich and Vu [1], Lemma 1, and the mono-
tonicty of λp , with probability at least 1 − 2

n
we have λn−k/(k−1)≤ λn−1 ≤ (173 + √

32)
√

logn <

179
√

logn.
Let E1 denote the event that there are no trees of size greater than k + 1, let E2 denote the

event that the graph is a forest, and let E3 denote the event that λn−k/(k−1) < 179
√

logn. Using
Jensen’s inequality and the monotonicity of λp , we have

E sup
p∈[0,n−k/(k−1)]

|λp −Eλp| ≤ 2E sup
p∈[0,n−k/(k−1)]

|λp| = 2Eλn−k/(k−1) .

Since the largest eigenvalue of a forest consisting of trees of size at most k is bounded by
√

k − 1
(see, e.g., [6]), we have, by the estimates above,

Eλn−k/(k−1) ≤ Eλn−k/(k−1)1E1∩E2 +Eλn−k/(k−1)1E3(1E1
+ 1E2

) + 2nP{E3}
≤ Eλn−k/(k−1)1E1∩E2 + 179

√
logn

(
P{E1} + P{E2}

) + 2nP{E3}

≤ √
k − 1 + 179

∞∑
j=k+1

en
√

logn

j2

(
e

n1/(k−1)

)j−1

+ 179
√

logn

(1 − n−1/(k−1))n3/(k−1)
+ 4

≤ √
k − 1 + 4 + 179ek+1

(k + 1)2

( √
logn

n1/(k−1)

)
/

(
1 − e

n1/(k−1)

)

+ 179
√

logn

(1 − n−1/(k−1))n3/(k−1)
.

The claim follows by observing that for k ≥ 2,
√

logn

n3/(k−1) ≤
√

logn

n1/(k−1) ≤ ck , where ck depends only
on k.
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