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In this paper, we study the Stratonovich stochastic differential equation dX = |X|α ◦ dB, α ∈ (−1,1),
which has been introduced by Cherstvy et al. (New J. Phys. 15 (2013) 083039) in the context of analysis
of anomalous diffusions in heterogeneous media. We determine its weak and strong solutions, which are
homogeneous strong Markov processes spending zero time at 0: for α ∈ (0,1), these solutions have the
form

Xθ
t = (

(1 − α)Bθ
t

)1/(1−α)
,

where Bθ is the θ -skew Brownian motion driven by B and starting at 1
1−α

(X0)1−α , θ ∈ [−1,1], and
(x)γ = |x|γ signx; for α ∈ (−1,0], only the case θ = 0 is possible. The central part of the paper consists in
the proof of the existence of a quadratic covariation [f (Bθ ),B] for a locally square integrable function f

and is based on the time-reversion technique for Markovian diffusions.

Keywords: generalized Itô’s formula; Girsanov’s example; heterogeneous diffusion process; local time;
non-uniqueness; singular stochastic differential equation; skew Brownian motion; Stratonovich integral;
time reversion

1. Introduction

Girsanov [16] considered the Itô stochastic differential equation

Yt = Y0 +
∫ t

0
|Ys |α dBs, t ≥ 0, (1.1)

driven by a standard Brownian motion B as an example of an SDE with non-unique solution.
In particular, it was shown that for α ∈ (0,1/2), equation (1.1) has infinitely many continuous
strong Markov (weak) solutions as well as non-homogeneous Markov solutions; non-Markovian
solutions can also be constructed.

Since then, equation (1.1) serves as a benchmark example of various peculiar effects which
come to light when one weakens the standard regularity assumptions on the coefficients of an
SDE.
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The proof of weak uniqueness for α ≥ 1/2 and non-uniqueness for α ∈ (0,1/2) with the
help of random time change was given by McKean [23], §3.10b, whereas a construction of an
uncountable set of weak solutions can be found in Engelbert and Schmidt [11], Example 3.3. The
existence and uniqueness of a strong solution for α ∈ [1/2,1] was established by Zvonkin [32],
Theorem 4.

Furthermore for α ∈ (0,1/2), it was shown in Engelbert and Schmidt [11], Theorem 5.2, that
for every initial value Y0 ∈ R, there is a weak solution to (1.1) that spends zero time at 0 (the
so-called fundamental solution) and the law of such a solution is unique. Path-wise uniqueness
among those solutions to (1.1) that spend zero time at 0, and existence of a strong solution was
proven by Bass et al. [4], Theorem 1.2.

An analogue of (1.1) with the Stratonovich integral

Xt = X0 +
∫ t

0
|Xs |α ◦ dBs (1.2)

was recently introduced in the physical literature by Cherstvy et al. [8] under the name het-
erogeneous diffusion process. The authors studied the autocorrelation function of this process
analytically and investigated its sub- and super-diffusive behaviour with the help of numerical
simulations. A similar system with an additional linear drift was considered earlier by Denisov
and Horsthemke [9].

In this paper, we will further investigate equation (1.2) with α ∈ (−1,1). It turns out that
equation (1.2) has properties quite different from its Itô counterpart. Let us first make some
observations about it. The only problematic point of the diffusion coefficient σ(x) = |x|α is
x = 0. For α ∈ (0,1), the Lipschitz continuity fails at this point, and for α ∈ (−1,0) even the
continuity and boundedness. However, one can easily solve (1.2) locally for initial points X0 �= 0.

Indeed, assume for definiteness that X0 > 0. For any ε > 0, using the properties of the
Stratonovich integral, we see that the process given by

X0
t = (

(1 − α)Bt + X1−α
0

) 1
1−α . (1.3)

solves equation (1.2) until the time τε = inf{t ≥ 0 : Xt = ε}. Moreover, the solution is unique
until τε . Consequently, the formula (1.3) defines a unique strong solution until the time τ0 =
inf{t ≥ 0 : X0

t = 0} when the process first hits zero. It is clear that extending the solution by zero
value beyond τ0 gives a strong solution. However, the uniqueness fails: as it is shown in Section 3,
the formula (1.3) defines a strong solution (called a benchmark solution), if we understand the
right-hand side as a signed power function, i.e. (x)

1
1−α = |x| 1

1−α signx. In Section 3, we also
construct some non-Markov solutions of (1.2).

The next question is whether, as for the Itô equation, uniqueness holds within the class of
solutions spending zero time at 0; this question is addressed in Section 4. For α ∈ (0,1), this
question is answered negatively: in Theorem 4.5 we show that equation (1.2) has also ‘skew’
solutions

Xθ
t = ∣∣(1 − α)Bθ

t

∣∣ 1
1−α · sign

(
(1 − α)Bθ

t

)
,

where for θ ∈ [−1,1], Bθ is the skew Brownian motion, which solves the stochastic differential
equation Bθ

t = 1
1−α

(X0)
1−α + Bt + θLt (B

θ ), L being the symmetric local time at 0. Moreover,
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we show all solutions, which are homogeneous strong Markov processes and which spend zero
time at 0, have this form.

In Section 5, we propose an explanation for a diversity of strong solutions to (1.2) and discuss
further questions regarding the equation. Sections 6 and 7 contain the proofs of results concern-
ing weak solutions to equation (1.2), Section 8 contains the proof of existence of the bracket
[f (Bθ ),B], and Section 9 is devoted to the proof of the main result concerning strong solutions.

Several proofs are either repetitions of known ideas or routine calculations, so they are omitted
from the article and given in detail in supplemental article (Pavlyukevich and Shevchenko [24]).

2. Preliminaries and conventions

Throughout the article, we work on a stochastic basis (�,F ,F,P), that is, a complete probability
space with a filtration F = (Ft )t≥0 satisfying the standard assumptions. The process B = (Bt )t≥0

is a standard continuous Brownian motion on this stochastic basis.
First, we briefly recall definitions related to stochastic integration. More details may be found

in Protter [26].
The main mode of convergence considered here is the uniform convergence on compacts in

probability (the u.c.p. convergence for short): a sequence Xn = (Xn
t )t≥0, n ≥ 1, of stochastic

processes converges to X = (Xt )t≥0 in u.c.p. if for any t ≥ 0

sup
s∈[0,t]

∣∣Xn
s − Xs

∣∣ P−→ 0, n → ∞.

Let a sequence of partitions Dn = {0 = tn0 < tn1 < tn2 < · · · } = {0 = t0 < t1 < t2 < · · · } of
[0,∞) be such that for each t ≥ 0 the number of points in each interval [0, t] is finite, and
‖Dn‖ := supk≥1 |tnk − tnk−1| → 0 as n → ∞. A continuous process X has quadratic variation [X]
if the limit

[X]t := lim
n→∞

∑
tk∈Dn,tk<t

(Xtk+1 − Xtk )
2

exists in the u.c.p. sense. Similarly, the quadratic covariation [X,Y ] of two continuous processes
X and Y is defined as a limit in u.c.p.

[X,Y ]t := lim
n→∞

∑
tk∈Dn,tk<t

(Xtk+1 − Xtk )(Ytk+1 − Ytk ).

When X and Y are semimartingales, the quadratic variations [X], [Y ] and the quadratic covaria-
tion [X,Y ] exist, moreover, they have bounded variation on any finite interval.

Further, we define the Itô (forward) integral as a limit in u.c.p.∫ t

0
Xs dYs = lim

n→∞
∑

tk∈Dn,tk<t

Xtk (Ytk+1 − Ytk )
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and the Stratonovich (symmetric) integral as limit in u.c.p.∫ t

0
Xs ◦ dYs =

∫ t

0
Xs dYs + 1

2
[X,Y ]t

= lim
n→∞

∑
tk∈Dn,tk<t

1

2
(Xtk+1 + Xtk )(Ytk+1 − Ytk ),

provided that both the Itô integral and the quadratic variation exist. Again, when both X and Y are
continuous semimartingales, both integrals exists, and the convergence holds in u.c.p. There is an
alternative approach to Stratonovich stochastic integration, developed in Russo and Vallois [27–
29], which allows integration with respect to non-semimartingales and non-Markov processes
like fractional Brownian motion.

For a process X, by Lt(X) we denote the symmetric local time at zero defined as the limit in
probability

Lt(X) = lim
ε↓0

1

2ε

∫ t

0
I[−ε,ε](Xs)ds. (2.1)

In this paper, we define

signx =

⎧⎪⎨⎪⎩
−1, x < 0,

0, x = 0,

1, x > 0,

and for any α ∈R we set

|x|α =
{

|x|α, x �= 0,

0, x = 0.

With this notation, for example, for α = 0 we have |x|0 = I(x �= 0). We also denote

(x)α = |x|α signx.

Throughout the article, C will be used to denote a generic constant, whose value is not important
and may change between lines.

3. Benchmark solution

Now we turn to equation (1.2). The concept of strong solution is defined in a standard manner.

Definition 3.1. A strong solution to (1.2) is a continuous stochastic process X such that

1. X is adapted to the augmented natural filtration of B;
2. for any t ≥ 0, the Itô integral

∫ t

0 |Xs |α dBs and the quadratic covariation [|X|α,B]t exist;
3. for any t ≥ 0, equation (1.2) holds P-a.s.
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Define the benchmark solution to equation (1.2) by

X0
t = (

(1 − α)Bt + (X0)
1−α

) 1
1−α . (3.1)

The following change of variable result is crucial for proving that it solves equation (1.2).

Theorem 3.2 (Föllmer et al. [14], Theorem 4.1). Let F be absolutely continuous with locally
square integrable derivative f . Then

F(Bt ) = F(B0) +
∫ t

0
f (Bs)dBs + 1

2

[
f (B),B

]
t
.

Theorem 3.3. For α ∈ (−1,1) and X0 ∈R, the process X0 given by (3.1) is a strong solution to
(1.2).

Proof. For each X0 ∈R, we note that the function

F(x) = (
(1 − α)x − (X0)

1−α
) 1

1−α

is absolutely continuous for α ∈ (−1,1) and its derivative

f (x) = ∣∣(1 − α)x − (X0)
1−α

∣∣ α
1−α = ∣∣F(x)

∣∣α
is locally square integrable, so by Theorem 3.2 the process X0 = F(B) satisfies (1.2). �

As explained in the introduction, the benchmark solution is a unique strong solution until the
time

τ0 = inf
{
t ≥ 0 : X0

t = 0
} = inf

t≥0

{
t ≥ 0 : Bt = − (X0)

1−α

1 − α

}
, (3.2)

when it first hits 0. However, the uniqueness fails after this time. Namely, with the help of The-
orem 3.2 one can easily construct other strong solutions; the proofs are the same as for X0 and
therefore omitted. One example is the solution stopped at 0.

Theorem 3.4. For α ∈ (−1,1) and X0 ∈ R, the process

X′
t = (

(1 − α)Bt + (X0)
1−α

) 1
1−α It≤τ0 ,

where τ0 is given by (3.2), is a strong solution to (1.2).

Both X0 and X′ possess the strong Markov property, thanks to that of B . One can also con-
struct an uncountable family of non-Markov solutions. Namely, for any A,B > 0, set

FA,B(x) =

⎧⎪⎨⎪⎩
−|x + A| 1

1−α , x < −A,

0, −A ≤ x ≤ B,

|x − B| 1
1−α , x > B,
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and

X
A,B
t = FA,B

(
(1 − α)Bt + (X0)

1−α
)

which equals to zero as long as (1 − α)Bt + (X0)
1−α ∈ [−A,B].

Theorem 3.5. For α ∈ (−1,1) and X0 ∈R, the process XA,B is a strong solution to (1.2).

4. Solutions spending zero time at 0

The property of spending zero time at 0 is known to be crucial to guarantee uniqueness, see, for
example, Beck [5] for the deterministic differential equations and Bass et al. [4], Aryasova and
Pilipenko [2] for the stochastic case. We will need also a concept of a weak solution to (1.2).

Definition 4.1. A weak solution of (1.2) is a pair (X̃, B̃) of adapted continuous processes on a
stochastic basis (�̃, F̃ , F̃, P̃) such that

1. B̃ is a standard Brownian motion on (�̃, F̃ , F̃, P̃);
2. for any t ≥ 0, the Itô integral

∫ t

0 |X̃s |α dB̃s and the quadratic covariation [|X̃|α, B̃]t exist;
3. for any t ≥ 0,

X̃t = X0 +
∫ t

0
|X̃s |α ◦ dB̃s

holds P-a.s.

Definition 4.2. A process X is said to spend zero time at 0 if for each t ≥ 0∫ t

0
I{0}(Xs)ds = 0 P-a.s.

In order to define solutions to (1.2), different from the benchmark solution (3.1) and spending
zero time at 0, recall the notion of skew Brownian motion.

For θ ∈ [−1,1], the skew Brownian motion Bθ = Bθ(x) starting at x ∈ R is the unique solu-
tion of the SDE

Bθ
t = x + Bt + θLt

(
Bθ

)
, (4.1)

where L(Bθ) is the symmetric local time of Bθ at 0; see Harrison and Shepp [17] and Lejay
[21], Section 5.

Roughly speaking, the process Bθ behaves like a standard Brownian motion outside of zero.
At zero its decides to evolve in the positive or negative directions independently of the past (the
strong Markov property) with the “flipping” probabilities β± = 1±θ

2 . For the initial value x = 0
and θ = 0, B0 ≡ B , and for θ = ±1, the solution to the equation (4.1) is a reflected Brownian
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motion starting at zero and can be written explicitly, namely

B1 =
(
B1

t = Bt − min
s≤t

Bs

)
t≥0

d= (|Bt |
)
t≥0,

B−1 =
(
B−1

t = Bt − max
s≤t

Bs

)
t≥0

d= (−|Bt |
)
t≥0.

A complete account on the properties of the skew Brownian motion can be found in Lejay
[21].

First, we describe the law of the absolute value of a weak solution that spends zero time at 0.

Theorem 4.3. Let α ∈ (−1,1), and let X be a weak solution of (1.2) started at X0 such that X

spends zero time at 0. Then the law of the process Z = ( 1
1−α

|Xt |1−α)t≥0 coincides with the law
of a reflected Brownian motion started at 1

1−α
|X0|1−α .

Having the law of |X| in hand, we will describe all possible laws of the solution X itself.
Essentially, we look for a process which behaves as a Brownian motion outside of 0 and spends
zero time at 0. It is the skew Brownian motion Bθ which comes to mind first as an example of a
process different from B and |B| which satisfies these conditions.

The skew Brownian motion is a homogeneous strong Markov process however it is not the
unique process whose absolute value is distributed like a reflected Brownian motion.

Indeed, one can construct the so-called variably skewed Brownian motion with a variable
skewness parameter θ : R→ (−1,1) as a solution to the SDE

B

t = x + Bt + 


(
Lt

(
B


))
, t ≥ 0, x ∈R,

where 
(x) = ∫ x

0 θ(y)dy. This process with |B
| d= |B| (see Barlow et al. [3], Lemma 2.1);
however, if θ is non-constant, B
 is not Markov as the skewness parameter depends on the value
of local time.

On the other hand, Étoré and Martinez [13] showed that the inhomogeneous skew Brownian
motion which is a unique strong solution of the SDE

B
β
t = x + Bt +

∫ t

0
β(s)dLs

(
Bβ

)
, t ≥ 0,

with a deterministic Borel function β : [0,∞) → [−1,1], is an inhomogeneous strong Markov

process, and |Bβ | d= |B| for x = 0 (see also Weinryb [31]).
To exclude these processes, we restrict ourselves to the case of homogeneous strong Markov

solutions.

Theorem 4.4. Let α ∈ (−1,1), and let (X̃, B̃) be a weak solution of (1.2) such that X̃ is a
homogeneous strong Markov process spending zero time at 0. Then there exists θ ∈ [−1,1] such
that

X̃ = (
(1 − α)B̃θ

) 1
1−α (4.2)
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with a θ -skew Brownian motion B̃θ , which solves

B̃θ
t = 1

1 − α
(X0)

1−α + B̃t + θLt

(
B̃θ

)
, t ≥ 0. (4.3)

Moreover, X̃ is also a strong solution to

dX̃t = |X̃t |α ◦ dB̃t , t ≥ 0. (4.4)

For θ = 1, the skew Brownian motion B1 is a non-negative reflected Brownian motion.
Aryasova and Pilipenko [2] studied non-negative solutions of a singular SDE written in the weak
form. By Aryasova and Pilipenko [2], Theorem 1, there exists a strong solution to equation (1.2)
(in the weak form) with initial condition X0 ≥ 0 spending zero time at the point 0 and the strong
uniqueness holds in the class of solutions spending zero time at 0. Of course it is equal to the
solution X1 which can be determined explicitly as

X1
t =

(
(1 − α)Bt + X1−α

0 +
(
(1 − α)min

s≤t
Bs + X1−α

0

)
−

) 1
1−α

, t ≥ 0,

where x− = −min(x,0) denotes the negative part of x.
Finally, we show the existence of strong solutions different from the benchmark solution (3.1)

and characterize all solutions which are homogeneous strong Markov processes spending zero
time at 0.

Theorem 4.5.

1. Let α ∈ (0,1) and θ ∈ [−1,1]. Let X0 ∈ R and let Bθ be the unique strong solution of the
SDE

Bθ
t = 1

1 − α
(X0)

1−α + Bt + θLt

(
Bθ

)
, t ≥ 0.

Then

Xθ
t = (

(1 − α)Bθ
t

) 1
1−α (4.5)

is a strong solution of (1.2) which is a homogeneous strong Markov process spending zero
time at 0.

Moreover, Xθ is the unique strong solution of (1.2) which is a homogeneous strong
Markov process spending zero time at 0 and such that

P
(
Xθ

t ≥ 0 | X0 = 0
) = β+ = 1 + θ

2
, t > 0.

2. Let α ∈ (−1,0]. Then the benchmark solution X0
t = ((1−α)Bt +(X0)

1−α)
1

1−α is the unique
strong solution of (1.2) which is a homogeneous strong Markov process spending zero time
at 0.

Remark 4.6. By Theorem 4.4, a similar uniqueness result also holds for weak solutions.
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The explicit form of the solutions (4.5) allows to study their long time behaviour easily. Setting
for simplicity X0 = 0, we recall the transition probability density of the skew Brownian motion
(see, e.g., Lejay [21], Eq. (17)) and find the mean square displacement

Var
(
Xθ

t

) = t
1

1−α · (
2(1 − α)2) 1

1−α

[
π− 1

2 �

(
3 − α

2(1 − α)

)
− θ2�

(
2 − α

2(1 − α)

)2]
. (4.6)

Hence, Xθ demonstrates the diffusive behaviour VarXθ
t ∼ t for α = 0, as the diffusion coefficient

is a.e. constant. For α ∈ (0,1), the growing diffusion coefficient leads to the superdiffusion; for
α ∈ (−1,0), the diffusion coefficient decreases to zero at infinity, hence we have a subdiffusion.
Such behaviour was recovered in Cherstvy et al. [8], where one can find a discussion on the
physical interpretation.

The crucial part of the proof of Theorem 4.5 is the existence of the quadratic variation
[|Xθ |α,B] which follows from the following theorem which is interesting on its own.

Theorem 4.7. Let f ∈ L2
loc(R) and let the θ -skew Brownian motion Bθ , θ ∈ (−1,1), be the

unique strong solution of the SDE (4.1). Then the quadratic variation[
f

(
Bθ

)
,B

]
t
= lim

n→∞
∑

tk∈Dn,tk<t

(
f

(
Bθ

tk

) − f
(
Bθ

tk−1

))
(Btk − Btk−1)

exists as a limit in u.c.p. Moreover, let {hm}m≥1 be a sequence of continuous functions such that
for each A > 0

lim
m→∞

∫ A

−A

∣∣hm(x) − f (x)
∣∣2 dx = 0. (4.7)

Then [
hm

(
Bθ

)
,B

]
t
→ [

f
(
Bθ

)
,B

]
t
, m → ∞,

in u.c.p.

The proof of this Theorem uses the approach by [14]. For θ ∈ (−1,1)\ {0} it is combined with
the time reversal technique from [18,19].

5. On the relation between the Stratonovich and Itô equations

Recall that a Stratonovich SDE dX = f (X) ◦ dB with a smooth function f can be rewritten in
the Itô form as dX = f (X)dB + 1

2f (X)f ′(X)dt (see, e.g., Protter [26], Chapter 5). Although
for α ∈ (−1,1) the function x �→ |x|α is not smooth, let us formally write the Stratonovich SDE
(1.2) as an Itô SDE with irregular/singular coefficients

Xt = X0 +
∫ t

0
|Xs |α dBs + α

2

∫ t

0
(Xs)

2α−1 ds. (5.1)

Let us check whether the process Xθ satisfies this equation. For definiteness, we set X0 = 0.
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In order to be able to substitute Xθ into (5.1) we have to guarantee that the both summands of
the SDE (5.1) are well defined. Hence, for the existence of the Itô integral we need∫ t

0

∣∣Xθ
s

∣∣2α ds
d=

∫ t

0
|Bs | 2α

1−α ds < ∞ a.s., (5.2)

and for the existence of the drift term we need∫ t

0

∣∣Xθ
s

∣∣2α−1 ds
d=

∫ t

0
|Bs | 2α−1

1−α ds < ∞ a.s. (5.3)

The Engelbert–Schmidt zero-one law (Engelbert and Schmidt [12], Theorem 1) implies that
for a Borel function 
 : R→ [0,+∞]

P
(∫ t

0

(Bs)ds < ∞,∀t ≥ 0

)
= 1 ⇔ 
 ∈ L1

loc(R),

and hence (5.2) is satisfied for all α > −1, and the drift term (5.3) exists for α > 0. This indicates
that Xθ is a solution of (5.1) for θ ∈ [−1,1] and α ∈ (0,1).

To extend the existence result to α ∈ (−1,0], we will consider the drift term in the principal
value sense:

v.p.
∫ t

0
(Bs)

2α−1
1−α ds := lim

ε↓0

∫ t

0
(Bs)

2α−1
1−α · I(|Bs | > ε

)
ds. (5.4)

The principal value definition is intrinsically based on the symmetry of the Brownian motion and
hence excludes the skew cases θ �= 0. Necessary and sufficient conditions for the existence of
Brownian principal value integrals are given in Cherny [6], Theorem 3.1, page 352. In particular,
the integral (5.4) is finite if and only if α > −1.

This yields that for α ∈ (−1,0], X0 is the solution of the Itô SDE

Xt = X0 +
∫ t

0
|Xs |α dBs + α

2
· v.p.

∫ t

0
(Xs)

2α−1 ds. (5.5)

In their book, Cherny and Engelbert [7] consider singular SDEs in the sense of existence of the
Lebesgue integrals (5.2) and (5.3). It follows from Cherny and Engelbert [7], Chapter 5, that for
α ≤ 0 the SDE (5.1) has a unique solution which sticks to 0 after hitting it. This behaviour seems
to contradict the fact that the benchmark solution X0 is a solution to the Stratonovich equation
which spends zero time at 0 for α ∈ (−1,1) due to Theorem 3.3. This contradiction is resolved
by taking into account the fact that for α ∈ (−1,0] the noise-induced drift has to be understood
in the principal value sense (5.4) and not as a Lebesque integral.

These observations lead to the following theorem.

Theorem 5.1.

1. For α ∈ (0,1) and θ ∈ [−1,1], the process Xθ given by (4.5) is a strong solution of the Itô
SDE (5.1).

2. For α ∈ (−1,0], the process X0 given by (3.1) is a strong solution of the Itô SDE (5.5).
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6. Proof of Theorem 4.3

We use the following characterization of the reflected Brownian motion, see Varadhan [30].

Proposition 6.1. Let (�,F ,F,P) be a filtered probability space. A continuous non-negative
stochastic process Z is a reflected Brownian motion started at x if and only if

1. Z0 = x a.s.;
2. Z behaves locally like a Brownian motion on (0,∞), i.e. for any bounded smooth function

f : [0,∞) → R such that f (x) = 0 for x ∈ [0, δ] for some δ = δ(f ) > 0, the process

f (Zt ) − f (x) − 1

2

∫ t

0
f ′′(Zs)ds

is a martingale;
3. Z spends a zero time at 0, that is,

E
∫ ∞

0
I{0}(Zs)ds = 0.

For the proof of Theorem 4.3, we will need a variant of the change of variables formula for
functions vanishing on a neighborhood of the irregular point of the SDE.

Lemma 6.2. Let ϕ ∈ C1(R\{0}) and let (X̃, B̃) be a weak solution of the SDE

Xt = x +
∫ t

0
ϕ(Xs) ◦ dBs := x +

∫ t

0
ϕ(Xs)dBs + 1

2

[
ϕ(X),B

]
t
.

Then for any g ∈ C2(R) which vanishes on a neighborhood of zero we have

g(X̃t ) = g(X0) +
∫ t

0
g′(X̃s)ϕ(X̃s)dB̃s

+ 1

2

∫ t

0
ϕ(X̃s)

(
g′′(X̃s)ϕ(X̃s) + g′(X̃s)ϕ

′(X̃s)
)

ds. (6.1)

The proof of this lemma essentially follows the lines of the proof of the classical Itô formula
for Itô processes and is given in Pavlyukevich and Shevchenko [24], Section A.

Eventually, we prove Theorem 4.3. Let (X̃, B̃) be a weak solution of the SDE (1.2) spending
zero time at 0. We consider the process

Zt = 1

1 − α
|X̃t |1−α, t ≥ 0,

which starts at Z0 = 1
1−α

|X0|1−α and also spends zero time at 0.
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Let f ∈ C2
b(R+) be zero on a neighborhood of 0. The function g(x) = f ( 1

1−α
|x|1−α) is also

twice continuously differentiable, bounded, and is zero on a neighborhood of 0, and

g′(x) = f ′(z)(x)−α,

g′′(x) = f ′′(z)|x|−2α − αf ′(z)|x|−α−1, z = 1

1 − α
|x|1−α.

Then Lemma 6.2 immediately yields

f (Zt ) = g(X̃t )

= g(X0) +
∫ t

0
g′(X̃s)|X̃s |α dB̃s

+ 1

2

∫ t

0

(
g′′(X̃s)|X̃s |2α + αg′(X̃s)(X̃s)

2α−1)
ds

= f (Z0) +
∫ t

0
f ′(Zs) sign X̃s dB̃s + 1

2

∫ t

0
f ′′(Zs)ds,

so that the process

t �→ f (Zt ) − f (Z0) − 1

2

∫ t

0
f ′′(Zs)ds (6.2)

is a martingale.

7. Proof of the Theorem 4.4

Let (X̃, B̃) be a weak solution of the SDE (1.2) spending zero time at 0. Then, by Theorem 4.3,

1

1 − α
|X̃t |1−α d=

∣∣∣∣W − X0

1 − α

∣∣∣∣
for some standard Brownian motion W , that is, is a reflected Brownian motion starting at |X0|

1−α
.

We first establish (4.2).

Proposition 7.1. Let Y be a continuous homogeneous strong Markov process starting at y ∈ R

such that |Y | d= |W − y|, W being a standard Brownian motion. Then there is θ ∈ [−1,1] such

that Y
d= Bθ , where Bθ is the θ -skew Brownian motion starting at y.

Proof. Since for any θ ∈ [−1,1], Y
d= W + y

d= Bθ before the first hitting time of 0, it is suffi-
cient to consider the case of the initial starting point y = 0.

Denote for a < 0 < b

τ(a,b) = inf
{
t ≥ 0 : Yt /∈ (a, b)

}
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and show that the probability

p+(ε) = P(Yτ(−ε,ε)
= ε | Y0 = 0), ε > 0,

does not depend on ε.
Indeed, if p+(ε) = 0 or p+(ε) = 1 for all ε > 0, then the statement holds true.
Assume that there is ε > 0 such that p+(ε) = β+ ∈ (0,1).
Let 0 < ε < ε′, then

p+
(
ε′) = P

(
Yτ(−ε′,ε′) = ε′ | Yτ(−ε,ε)

= ε,Y0 = 0
)
p+(ε)

+ P
(
Yτ(−ε′,ε′) = ε′ | Yτ(−ε,ε)

= −ε,Y0 = 0
)(

1 − p+(ε)
)

= P
(
Yτ(−ε′,ε′) = ε′ | Y0 = ε

)
p+(ε) + P

(
Yτ(−ε′,ε) = ε′ | Y0 = −ε

)(
1 − p+(ε)

)
.

Since Law(Yt ;0 ≤ t ≤ τ(0, ε′) | Y0 = ε) = Law(Bt ;0 ≤ t ≤ τ(0, ε′) | B0 = ε) we get by virtue
of the gambler ruin problem for Brownian motion that

P
(
Yτ(0,ε′) = ε′ | Y0 = ε

) = P
(
Bτ(0,ε′) = ε′ | B0 = ε

) = ε

ε′ ,

P(Yτ(0,ε′) = 0 | Y0 = ε) = P(Bτ(0,ε′) = 0 | B0 = ε) = 1 − ε

ε′ ,

and hence

P
(
Yτ(−ε′,ε′) = ε′ | Y0 = ε

) = P
(
Yτ(0,ε′) = ε′ | Y0 = ε

) + P(Yτ(0,ε′) = 0 | Y0 = ε)p+
(
ε′)

= ε

ε′ +
(

1 − ε

ε′

)
p+

(
ε′).

Analogously

P
(
Yτ(−ε′,ε′) = ε′ | Y0 = −ε

) = P(Yτ(−ε′,0)
= 0 | Y0 = −ε)p+

(
ε′) =

(
1 − ε

ε′

)
p+

(
ε′).

Hence, we obtain that

p+
(
ε′) = ε

ε′ p+(ε) +
(

1 − ε

ε′

)
p+

(
ε′)p+(ε) +

(
1 − ε

ε′

)
p+

(
ε′)(

1 − p+(ε)
) = p+(ε) = β+.

Let now 0 < ε′ < ε. Due to the continuity of the paths of Y , p+(ε′) > 0, so repeating the previous
argument with ε and ε′ interchanged we eventually obtain that p+(ε) = β+ for all ε > 0.

Since Y is a continuous strong Markov process its law is uniquely determined by the Dynkin
characteristic operator

Af (x) := lim
U↓x

Exf (Yτ(U)) − f (x)

Exτ (U)
,

where U is a bounded open interval containing x, see Dynkin [10], Chapter 5 §3.
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Choosing U = Uε = (x − ε, x + ε), a straightforward calculation yields that for x �= 0 and f

being twice continuously differentiable at x

Af (x) = lim
ε↓0

1
2f (x + ε) + 1

2f (x − ε) − f (x)

ε2
= 1

2
f ′′(x).

For x = 0 the limit

Af (0) = lim
ε↓0

β+f (ε) + (1 − β+)f (−ε) − f (0)

ε2
= 1

2

(
β+f ′′(0+) + (1 − β+)f ′′(0−)

)
exists for any continuous f such that β+f ′(0+) = (1 − β+)f ′(0−) and f ′′(0+) and f ′′(0−)

exist and f ′′(0+) = f ′′(0−).
Hence A coincides with the generator of the θ -skew Brownian motion with θ = 2β+ − 1 (see

Lejay [21]). �

By Proposition 7.1 and Theorem 4.3, the process B̃θ = 1
1−α

(X̃)1−α is a θ -skew Brownian

motion with some θ ∈ [−1,1], starting at Bθ
0 = 1

1−α
(X0)

1−α . Equivalently,

B̂t = 1

1 − α
(X0)

1−α + B̃θ
t − θLt

(
B̃θ

)
(7.1)

is a standard Wiener process. Comparing with (4.3), we need to show that B̂ = B̃ . By the results
of Harrison and Shepp [17], B̃ is adapted to the filtration generated by B̂ . Now we want to show
that B̂ = B̃ a.s. By Lemma 6.2, for any function g ∈ C2(R), vanishing on a neighbourhood of 0,
and for any t > 0 it holds

g(X̃t ) = g(X0) +
∫ t

0
g′(X̃s)|X̃s |α dB̃s

+ 1

2

∫ t

0
|X̃s |α

(
g′′(X̃s)|X̃s |α + αg′(X̃s)|X̃s |α−1)

ds.

A similar formula, but with B̂ in place of B̃ , holds thanks to the equality X̃ = ((1 − α)B̃θ )
1

1−α ,
(7.1) and the usual Itô formula for semimartingales applied to B̃θ . Indeed,

g(X̃t ) = g
((

(1 − α)B̃θ
t

) 1
1−α

)
= g(X0) +

∫ t

0
g′(X̃s)|X̃s |α dB̂s + θ

∫ t

0
g′(X̃s)|X̃s |α dLs

(
B̃θ

)
+ 1

2

∫ t

0
|X̃s |α

(
g′′(X̃s)|X̃s |α + αg′(X̃s)|X̃s |α−1)

ds



Stratonovich SDE with irregular coefficients 1395

= g(X0) +
∫ t

0
g′(X̃s)|X̃s |α dB̂s

+ 1

2

∫ t

0
|X̃s |α

(
g′′(X̃s)|X̃s |α + αg′(X̃s)|X̃s |α−1)

ds.

Consequently, ∫ t

0
g′(X̃s)|X̃s |α dB̃s =

∫ t

0
g′(X̃s)|X̃s |α dB̂s .

Now taking a sequence of non-negative functions gn ∈ C2(R), n ≥ 1, vanishing in some neigh-
borhood of 0 and such that gn ≥ 0 g′

n(x)|x|α ↑ 1, x �= 0, n → ∞, we get∫ t

0
IX̃t �=0 dB̃t =

∫ t

0
IX̃t �=0 dB̂t

a.s. Since IX̃t �=0 = 1 a.e. by assumption, it follows that B̃t = B̂t a.s. As a result, B̃θ is adapted to

the augmented filtration of B̃ , so in view of (4.2), the same is true for X̃. Since X̃ also satisfies
(4.4) by definition, it is a strong solution.

8. Proof of Theorem 4.7

Let θ ∈ (−1,1) \ {0}; the case of θ = 0 is covered by [14]. Define

σ(x) = 2

1 + θ signx
and β(x) = 1

σ(x)
.

Let Y θ be the unique strong solution of the SDE

Y θ
t = u +

∫ t

0
σ

(
Y θ

s

)
dBs, u ∈R, (8.1)

and consider the two-dimensional Markov process (Y θ ,B) with the law

Pu,w := Law
((

Y θ ,B
) | Y θ

0 = u,B0 = w
)
.

The process Y θ is called an oscillating Brownian motion, see e.g. Keilson and Wellner [20],
Lejay and Pigato [22].

The skew Brownian motion with parameter θ , starting from w0 ∈ R and driven by a Brownian
motion B is the unique strong solution to the following stochastic differential equation

Bθ
t = w0 + (Bt − w) + θLt

(
Bθ

)
. (8.2)
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Further, define the functions

r(x) = x

σ(x)
= xβ(x) =

⎧⎪⎨⎪⎩
1 + θ

2
x, x ≥ 0,

1 − θ

2
x, x < 0,

s(x) = xσ(x) = x

β(x)
,

then s(r(x)) ≡ x. The application of the Itô–Tanaka formula (compare with Lejay [21], Sec-
tion 5.2) yields

r
(
Y θ

t

) = r(u) + Bt − w + θ

2
Lt

(
Y θ

t

)
= r(u) + Bt − w + θLt

(
Bθ

) = r(u) − w0 + Bθ
t . (8.3)

In the following lemma, we will use the functional dependence (8.3) of the processes (Y θ ,B)

and (Bθ ,L(Bθ )) to determine the marginal density of the pair (Y θ
t ,Bt ).

Lemma 8.1. For θ ∈ (−1,1) \ {0}, t > 0, the joint distribution of Y θ
t and Bt given Y θ

0 = u,
B0 = w is

Pu,w

(
Y θ

t ∈ dy,Bt ∈ dz
) = 2β2(y)

θ2
√

2πt3

(
2yβ2(y) − κu − z + w

)
× exp

(
− 1

2θ2t

(
2yβ2(y) − κu − z + w

)2
)

dz dy, (8.4)

where κ = 1
2 (1 − θ2), if θ−1(r(y) − r(u) − z + w) > 0, and

Pu,w

(
Y θ

t ∈ dy,Bt = w + r(y) − r(u)
)

= β(u)

|θ |√2πt

(
e− (r(y)−r(u))2

2t − e− (r(y)+r(u))2

2t
) · Iuy>0 dy. (8.5)

In particular, the joint density of (Y θ
t ,Bt ) provided that Y0 = u = 0, B0 = w = 0 is

p(t, y, z) = 2β2(y)

θ2
√

2πt3

(
2yβ2(y) − z

)
exp

(
− 1

2θ2t

(
2yβ2(y) − z

)2
)

· Iθ−1(r(y)−z)>0. (8.6)

Proof. The joint distribution of Bθ
t and Lt(B

θ ), t > 0, is well known and can be found, for
example, in Appuhamillage et al. [1], Étoré and Martinez [13], Gairat and Shcherbakov [15]:

P
(
Bθ

t ∈ db,Lt

(
Bθ

) ∈ dl | Bθ
0 = w0

)
= 2β+ · Ib≥0

l + |w0| + |b|√
2πt3

e− (l+|w0|+|b|)2
2t db dl
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+ 2β− · Ib<0
l + |w0| + |b|√

2πt3
e− (l+|w0|+|b|)2

2t db dl

= 2β(b) · l + |w0| + |b|√
2πt3

e− (l+|w0|+|b|)2
2t db dl, b ∈R, l > 0, (8.7)

where in the last equality we redefined the value of the density at b = 0 for convenience.
Recall now that

Bθ
t = r

(
Y θ

t

) − r(u) + w0,

Lt

(
Bθ

) = 1

θ

(
r
(
Y θ

t

) − r(u) − Bt + w
)
.

The initial condition of u = Y θ
0 given, let us fix w0 = r(u), so that Bθ

t = r(Y θ
t ) for t ≥ 0. Then

the change of variables b = b(y, z), l = l(y, z),

b = r(y), l = 1

θ

(
r(y) − r(u) − z + w

)
, (8.8)

yields

l + |w0| + |b| = 1

θ

(
r(y) − r(u) − z + w

) + ∣∣r(u)
∣∣ + ∣∣r(y)

∣∣
= r(y) + θ |r(y)| − r(u) + θ |r(u)| − z + w

θ

= r(y)(1 + θ signy) − r(u)(1 − θ signu) − z + w

θ

= 2yβ2(y)

θ
− u(1 − θ2)

2θ
− z − w

θ
, (8.9)

where we made use of the relation |r(y)| = r(y) signy. For y,u �= 0, the Jacobian for the change
of variables (y, z) → (b, l) is given by (8.8) and its determinant equal

J =
⎛⎝β(y) 0

β(y)

θ
−1

θ

⎞⎠ , |detJ | = β(y)

|θ | ,

whence, noting that σ(b) = σ(y), we get (8.4). Similarly, we have (8.5). The remaining formula
(8.6) follows by plugging in w = 0. �

From now on, we assume without loss of generality that θ ∈ (0,1). Let all the processes under
consideration will be started at zero, u = w = w0 = 0, so that Y θ = Bθ/β(Bθ ).

Note that for any t > 0

r
(
Y θ

t

) − Bt = Bθ
t − Bt = θLt

(
Bθ

)
> 0,

2Y θ
t β2(

Y θ
t

) − Bt = 2β
(
Bθ

t

)
Bθ

t − Bt = (
1 + θ signBθ

t

)
Bθ

t − Bt

= Bθ
t − Bt + θBθ

t signBθ
t = θLt

(
Bθ

) + θ
∣∣Bθ

t

∣∣ > 0. (8.10)
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Our aim now is to prove a generalized Itô formula for Bθ , in the spirit of Föllmer et al. [14].
Towards this end, on a fixed time interval [0, T ] we first establish a stochastic differential equa-
tion for the time-reversed pair (Ȳ θ

t , B̄t ) = (Y θ
T −t ,BT −t ), which is interesting by its own. We

follow the method developed by Haussmann and Pardoux [18,19] for Markovian diffusions. For
y �= 0 and z < r(y), s ∈ [0, T ) define the functions

b̄y(s, y, z) = 1

p(T − s, y, z)

(
σ 2(y) · ∂p

∂y
(T − s, y, z) + σ(y) · ∂p

∂z
(T − s, y, z)

)
,

b̄z(s, y, z) = 1

p(T − s, y, z)

(
σ(y) · ∂p

∂y
(T − s, y, z) + ∂p

∂z
(T − s, y, z)

)
= b̄y(s, y, z)

σ (y)
,

and set b̄y(s,0, z) = b̄z(s,0, z) = b̄y(T , y, z) = b̄z(T , y, z) = 0. Noting that

∂p

∂z
(T − s, y, z) = 2β2(y)

θ2
√

2π(T − s)3
exp

(
− (2yβ2(y) − z)2

2θ2(T − s)

)(
−1 + (2yβ2(y) − z)2

θ2(T − s)

)
,

z < r(y),

and ∂p
∂z

(T − s, y, z) = −2β2(y)
∂p
∂y

(T − s, y, z), we get

b̄y(s, y, z) = 2β(y) − 1

β(y)

(
1

2yβ2(y) − z
− 2yβ2(y) − z

θ2(T − s)

)
= θ signy

β(y)
·
(

1

2yβ2(y) − z
− 2yβ2(y) − z

θ2(T − s)

)
, z < r(y). (8.11)

Proposition 8.2. Let for θ ∈ (−1,1) \ {0}, Bθ be a solution of (8.2) started at 0. Then for any
T > 0, (Ȳ θ

t , B̄t ) = (Y θ
T −t ,BT −t ) is a weak solution to the stochastic differential equation

Ȳ θ
t = Y θ

T +
∫ t

0
b̄y

(
s, Ȳ θ

s , B̄s

)
ds +

∫ t

0
σ

(
Ȳ θ

s

)
dW̄s,

B̄t = BT +
∫ t

0
b̄z

(
s, Ȳ θ

s , B̄s

)
ds + W̄t , t ∈ [0, T ],

(8.12)

W̄ being a standard Brownian motion.

Remark 8.3.

(a) Thanks to (8.10), the coefficients of (8.12) are well defined.
(b) Equation (8.12) is very degenerate, and Ȳ θ and B̄ evolve proportionally whenever Ȳ θ

t �= 0.
This, however, will not hinder our analysis.
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Proof. As above, we continue to assume without loss of generality that θ ∈ (0,1) and T = 1.
We need to show that (Ȳ θ , B̄) is a solution to the martingale problem with the generator

L̄t f (y, z) =
(

b̄y(t, y, z) · ∂

∂y
+ b̄y(t, y, z) · ∂

∂y

+ σ(y)2

2
· ∂2

∂y2
+ σ(y) · ∂2

∂y∂z
+ 1

2
· ∂2

∂z2

)
f (y, z).

Thanks to (8.10), it is enough to establish

E
[(

f
(
Ȳ θ

t , B̄t

) − f
(
Ȳ θ

s , B̄s

) −
∫ t

s

L̄uf
(
Ȳ θ

u , B̄u

)
du

)
· g(

Ȳ θ
s , B̄s

)]
= 0

for any 0 ≤ s < t < 1 and functions f,g ∈ C∞(R2) having compact support inside the domain
D := {(y, z) ∈R

2 : r(y) − z > 0}. Equivalently,

E
[(

f
(
Y θ

t ,Bt

) − f
(
Y θ

s ,Bs

) +
∫ t

s

L̄T −uf
(
Y θ

u ,Bu

)
du

)
· g(

Y θ
t ,Bt

)]
= 0

for any fixed 0 < s < t ≤ 1. Define for (y, z) ∈ R
2

v(s, y, z) = E
[
g

(
Y θ

t ,Bt

) | (
Y θ

s ,Bs

) = (y, z)
]
.

It is proved in Pavlyukevich and Shevchenko [24], Section B, that v solves the partial differential
equation (

∂

∂s
+L

)
v(s, y, z) = 0,

where

Lf (y, z) =
(

σ(y)2

2
· ∂2

∂y2
+ σ(y) · ∂2

∂y∂z
+ 1

2
· ∂2

∂z2

)
f (y, z). (8.13)

Denote by 〈·, ·〉 the scalar product in L2(R2). Write

E
[
f

(
Y θ

t ,Bt

)
g

(
Y θ

t ,Bt

)] − E
[
f

(
Y θ

s ,Bs

)
g

(
Y θ

t ,Bt

)]
= E

[
f

(
Y θ

t ,Bt

)
v

(
t, Y θ

t ,Bt

)] − E
[
f

(
Y θ

s ,Bs

)
v

(
s, Y θ

s ,Bs

)]
= 〈

fp(t), v(t)
〉 − 〈

fp(s), v(s)
〉

=
∫ t

s

〈
f

∂

∂u
p(u), v(u)

〉
du +

∫ t

s

〈
fp(u),

∂

∂u
v(u)

〉
du

=
∫ t

s

〈
f

∂

∂u
p(u), v(u)

〉
du −

∫ t

s

〈
fp(u),Lv(u)

〉
du.
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Using Pavlyukevich and Shevchenko [24], (B.2), we get〈
fp(u),Lv(u)

〉 = 〈
v(u),L

(
fp(u)

)〉
.

Write

p(u,y, z) = 2β2(y)

θ
ϕ′

u

(
z − 2yβ2(y)

θ

)
Iz<r(y), (8.14)

where ϕt (x) = 1√
2πt

e− x2
2t is the standard Gaussian density. Now we have

L
(
fp(u)

)
(y, z) = f (y, z) ·Lp(u,y, z) + p(u,y, z) ·Lf (y, z)

+
(

σ(y) · ∂

∂y
f (y, z) + ∂

∂z
f (y, z)

)(
σ(y) · ∂

∂y
p(u, y, z) + ∂

∂z
p(u, y, z)

)
.

From (8.14), for y �= 0, z < r(y),

Lp(u,y, z) =
(

4β4(y)

θ3
− 4β3(y)

θ3
+ β2(y)

θ3

)
· ϕ′′′

u

(
z − 2yβ2(y)

θ

)
= β2(y)

θ3
· (

2β(y) − 1
)2 · ϕ′′′

u

(
z − 2yβ2(y)

θ

)
= β2(y)

θ
· ϕ′′′

u

(
z − 2yβ2(y)

θ

)
.

On the other hand, since ∂
∂t

ϕ′
t = 1

2ϕ′′′
t , we get

Lp(u,y, z) = ∂

∂u
p(u, y, z).

Further, denote

h(u, y, z) = σ(y) · ∂

∂y
p(u, y, z) + ∂

∂z
p(u, y, z).

Then we have

〈
v(u),L

(
fp(u)

)〉 = 〈
v(u), f

∂

∂u
p(u)

〉
+ 〈

v(u),p(u)Lf
〉 + 〈

v(u),h(u)

(
σ(y) · ∂

∂y
f + ∂

∂z
f

)〉
.

Observe that

〈
v(u),p(u)Lf

〉 = ∫ ∞

−∞

∫ ∞

−∞
v(u, y, z)p(u, y, z)Lf (y, z)dz dy

= E
[
v

(
u,Y θ

u ,Bu

)
Lf

(
Y θ

u ,Bu

)] = E
[
E

[
g

(
Y θ

t ,Bt

) | Y θ
u ,Bu

]
Lf

(
Y θ

u ,Bu

)]
= E

[
g

(
Y θ

t ,Bt

)
Lf

(
Y θ

u ,Bu

)]
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and similarly〈
v(u),h(u) ·

(
σ(y) · ∂

∂y
f + ∂

∂z
f

)〉
=

〈
v(u),p(u) · h(u)

p(u)
·
(

σ(y) · ∂

∂y
f + ∂

∂z
f

)〉
=

〈
v(u),p(u)

(
b̄y(T − u)

∂

∂y
f + b̄z(T − u)

∂

∂z
f

)〉
= E

[
g

(
Y θ

t ,Bt

)(
b̄y(T − u,Yu,Bu)

∂

∂y
f

(
Y θ

u ,Bu

) + b̄z(T − u,Yu,Bu)
∂

∂z
f

(
Y θ

u ,Bu

))]
.

Collecting everything,

E
[
f

(
Y θ

t ,Bt

)
g

(
Y θ

t ,Bt

)] − E
[
f

(
Y θ

s ,Bs

)
g

(
Y θ

t ,Bt

)]
= −E

[
g

(
Y θ

t ,Bt

) ∫ t

s

Lf
(
Y θ

u ,Bu

)]
− E

[
g

(
Y θ

t ,Bt

) ∫ t

s

(
b̄y

(
T − u,Y θ

u ,Bu

) ∂

∂y
f

(
Y θ

u ,Bu

)
+ b̄z

(
T − u,Y θ

u ,Bu

) ∂

∂z
f

(
Y θ

u ,Bu

))
du

]
= −E

[
g

(
Y θ

t ,Bt

) ∫ t

s

L̄T −uf
(
Y θ

u ,Bu

)
du

]
,

as required. �

Consider a sequence of partitions Dn of the form 0 = tn0 < tn1 < · · · < tnn = T with |Dn| =
max1≤k≤n |tnk − tnk−1| → 0, n → ∞ (we will often omit the superscript n).

Proof of Theorem 4.7. Note that f (Bθ
t ) = f (r(Y θ

t )) = g(Y θ
t ) with g ∈ L2

loc(R), so it suffices
to establish a similar statement for Y θ . The rest of proof goes similarly to Föllmer et al. [14].

First note that by usual localization argument, we can assume that g ∈ L2(R). Also for a
continuous function h, the quadratic variation[

h
(
Y θ

)
,B

]
t
= lim

n→∞
∑

tk∈Dn,tk<t

(
h

(
Y θ

tk

) − h
(
Y θ

tk−1

))
(Btk − Btk−1)

exists as a limit in u.c.p. Indeed, since B is a semimartingale, and h(Y θ ) is an adapted continuous
process, then by Protter [26], Theorem 21, page 64,

lim
n→∞

∑
tk∈Dn,tk<t

h
(
Y θ

tk−1

)
(Btk − Btk−1) =

∫ t

0
h

(
Y θ

s

)
dBs
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in u.c.p. The time-reversed process is also a semimartingale, so arguing as in Föllmer et al. [14],
we have the convergence to the backward integral

lim
n→∞

∑
tk∈Dn,tk<t

h
(
Y θ

tk

)
(Btk − Btk−1) =

∫ t

0
h

(
Y θ

s

)
d∗Bs

in u.c.p. Therefore, we obtain

[
h

(
Y θ

)
,B

]
t
=

∫ t

0
h

(
Y θ

s

)
d∗Bs −

∫ t

0
h

(
Y θ

s

)
dBs.

Fix some T > 0 and let now {hm}m≥1 be a sequence of continuous functions, such that hm → g

in L2(R) as m → ∞. Denote

Im(t) :=
∫ t

0

(
hm

(
Y θ

s

) − g
(
Y θ

s

))
dBs,

Sn,m(t) :=
∑

tk∈Dn,tk≤t

(
hm

(
Y θ

tk−1

) − g
(
Y θ

tk−1

))
(Btk − Btk−1).

Since Bθ is a skew Brownian motion starting from 0, its density is P(Bθ
t ∈ db) = β(b)√

2πt
e− b2

2t db,

b ∈ R. Then the density of Y θ
t satisfies p(t, y) = β2(y)√

2πt
e− r2(y)

2t ≤ 1√
t
, so we can estimate, using

the Doob inequality that

E sup
t∈[0,T ]

I 2
m(t) ≤ 4

∫ T

0
E

[(
hm

(
Y θ

t

) − g
(
Y θ

t

))2]
dt

= 4
∫ T

0

∫ ∞

−∞
(
hm(y) − g(y)

)2
p(t, y)dy dt

≤ 4‖hm − g‖2
L2(R)

·
∫ T

0

dt√
t

≤ C‖hm − g‖2
L2(R)

.

Similarly,

E sup
t∈[0,T ]

S2
n,m(t) = E

∑
tk∈Dn

(
hm

(
Y θ

tk−1

) − g
(
Y θ

tk−1

))2
(tk − tk−1)

≤ C
∑

tk∈Dn,k>1

tk − tk−1√
tk−1

‖hm − g‖2
L2(R)

,

whence

lim sup
n→∞

E sup
t∈[0,T ]

S2
n,m(t) ≤ C‖hm − g‖2

L2(R)
.



Stratonovich SDE with irregular coefficients 1403

As a result, we get supt∈[0,T ] |Im(t)| P−→ 0, m → ∞, and for any ε > 0

lim
m→∞ lim sup

n→∞
P

(
sup

t∈[0,T ]
∣∣Sn,m(t)

∣∣ > ε
)

= 0.

Hence, using that

∑
tk∈Dn,tk<t

hm

(
Y θ

tk−1

)
(Btk − Btk−1) →

∫ t

0
hm

(
Y θ

s

)
dBs, n → ∞,

uniformly on [0, T ] in probability, we get that

∑
tk∈Dn,tk<t

g
(
Y θ

tk−1

)
(Btk − Btk−1) →

∫ t

0
g

(
Y θ

s

)
dBs, n → ∞,

uniformly on [0, T ] in probability.
Further, recall that the time-reversed process (Ȳ θ

t , B̄t ) = (Y θ
T −t ,BT −t ) satisfies (8.12) in the

weak sense. As far as the convergence in probability is concerned, we can safely assume that
(Ȳ θ , B̄) satisfies (8.12) with the same Brownian motion W̄ . Then we can write∫ t

0
g

(
Y θ

s

)
d∗Bs =

∫ T

T −t

g
(
Ȳ θ

s

)
dB̄s =

∫ T

T −t

g
(
Ȳ θ

s

)
dW̄s +

∫ T

T −t

g
(
Ȳ θ

s

)
b̄y

(
s, Ȳ θ

s , B̄s

)
ds.

Arguing as above, we have∑
tk∈Dn,tk<t

g
(
Y θ

tk

)
(W̄T −tk − W̄T −tk−1)

=
∑

tk∈Dn,tk<t

g
(
Ȳ θ

T −tk

)
(W̄T −tk − W̄T −tk−1) →

∫ T

T −t

g
(
Ȳ θ

s

)
dW̄s, n → ∞,

uniformly on [0, T ] in probability. It remains to show that

∑
tk∈Dn,tk<t

g
(
Y θ

tk

) ∫ tk

tk−1

by
(
T − s, Y θ

s ,Bs

)
ds

=
∑

tk∈Dn,tk<t

g
(
Ȳ θ

T −tk

) ∫ T −tk

T −tk−1

by
(
s, Ȳ θ

s , B̄s

)
ds

→
∫ T

T −t

g
(
Ȳ θ

T −s

)
by

(
s, Ȳ θ

s , B̄s

)
ds =

∫ t

0
g

(
Y θ

s

)
by

(
T − s, Y θ

s ,Bs

)
ds, n → ∞, (8.15)

uniformly on [0, T ] in probability.
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We will first establish an estimate for
∫ T

0 |g(Y θ
s )by(T − s, Y θ

s ,Bs)|ds with g ∈ L2(R). From
(8.11), using the Cauchy–Schwarz inequality, we have

∫ T

0
E

∣∣g(
Y θ

s

)
by

(
T − s, Y θ

s ,Bs

)∣∣ ds

≤ C

∫ T

0
E

∣∣g(
Y θ

s

)∣∣( 1

2Y θ
s β2(Y θ

s ) − Bs

+ 2Y θ
s β2(Y θ

s ) − Bs

s

)
ds

≤ C

∫ T

0

[
E

∣∣g(
Y θ

s

)∣∣2 · E
(

1

(2Y θ
s β2(Y θ

s ) − Bs)2
+ (2Y θ

s β2(Y θ
s ) − Bs)

2

s2

)] 1
2

ds.

As before, from the estimate p(s,Y θ
s ) ≤ C√

s
it follows that

E
∣∣g(

Y θ
s

)∣∣2 ≤ C√
s
‖g‖2

L2(R)
.

Further, using (8.10) and (8.7) with w0 = 0, we get

E
1

(2Y θ
s β2(Y θ

s ) − Bs)2
= E

1

θ2(Bθ
s + Ls(Bθ ))2

= 1√
2πs3

∫ ∞

0

∫ ∞

−∞
β(b)

l + |b|e− (l+|b|)2
2s db dl

≤ C√
s3

∫ ∞

0

∫ ∞

0

1

l + b
e− (l+b)2

2s db dl

≤ C√
s3

∫ ∞

0
e− z2

2s dz ≤ C

s
.

Similarly,

E
(
2Y θ

s β2(
Y θ

s

) − Bs

)2 ≤ C√
s3

∫ ∞

0

∫ ∞

0
(l + b)3e− (l+b)2

2s dl db ≤ C√
s3

∫ ∞

0
z4e− z2

2s dz ≤ Cs.

Therefore, ∫ T

0
E

∣∣g(
Y θ

s

)
by

(
T − s, Y θ

s ,Bs

)∣∣ ds

≤ C‖g‖L2(R)

∫ T

0
s− 3

4 ds ≤ C‖g‖L2(R). (8.16)
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Using similar estimates, we get∑
tk∈Dn,tk<t

∫ tk

tk−1

E
∣∣g(

Y θ
tk

)
by

(
T − s, Y θ

s ,Bs

)∣∣ ds

≤
∑

tk∈Dn,tk<t

∫ tk

tk−1

(
E

∣∣g(
Y θ

tk

)∣∣2 · E
∣∣by

(
T − s, Y θ

s ,Bs

)∣∣2) 1
2 ds

≤ C‖g‖L2(R)

∑
tk∈Dn,tk<t

∫ tk

tk−1

t
−1/4
k s−1/2 ds

≤ C‖g‖L2(R)

∫ T

0
s−3/4 ds ≤ C‖g‖L2(R). (8.17)

If h ∈ C(R), then

δn = max
tk∈Dn

sup
s∈[tk−1,tk]

∣∣h(
Y θ

tk

) − h
(
Y θ

s

)∣∣ → 0, n → ∞,

almost surely, and we can estimate∣∣∣∣ ∑
tk∈Dn,tk<t

h
(
Y θ

tk

) ∫ tk

tk−1

by
(
T − s, Y θ

s ,Bs

)
ds −

∫ t

0
h

(
Y θ

s

)
by

(
T − s, Y θ

s ,Bs

)
ds

∣∣∣∣
≤ δn

∫ T

0

∣∣by
(
T − s, Y θ

s ,Bs

)∣∣ ds.

Similarly to the calculations above,∫ T

0
E

∣∣by
(
T − s, Y θ

s ,Bs

)∣∣ ds ≤
∫ T

0

(
E

∣∣by
(
T − s, Y θ

s ,Bs

)∣∣2) 1
2 ds ≤ C

∫ T

0
s− 1

2 ds ≤ C,

so that
∫ T

0 |by(T − s, Y θ
s ,Bs)|ds is bounded in probability. Therefore, for h ∈ C(R),

∑
tk∈Dn,tk<t

h
(
Y θ

tk

) ∫ tk

tk−1

by
(
T − s, Y θ

s ,Bs

)
ds →

∫ t

0
h

(
Y θ

s

)
by

(
T − s, Y θ

s ,Bs

)
ds, n → ∞,

uniformly on [0, T ] in probability. Hence, taking, as before, a sequence hm ∈ C(R) converging
to g in L2(R) and using (8.16) and (8.17), we arrive at (8.15). Combined with our previous
findings, this leads to∑

tk∈Dn,tk<t

(
f

(
Bθ

tk

) − f
(
Bθ

tk−1

))
(Btk − Btk−1) →

∫ t

0
f

(
Bθ

s

)
dBs −

∫ t

0
f

(
Bθ

s

)
d∗Bs, n → ∞,

uniformly on [0, T ] in probability. Since T > 0 is arbitrary, this means precisely that the desired
u.c.p. convergence holds. �
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9. Proof of Theorem 4.5

For definiteness, we set X0 = 0. Let us first show that Xθ is a strong solution to (1.2). For θ = 0
and α ∈ (−1,1), the statement follows directly from the Itô formula proven in Föllmer et al.
[14]. Let θ ∈ (−1,1) \ {0} and α ∈ (0,1). If h ∈ C1(R), h(0) = 0, H(x) = ∫ x

0 h(y)dy, then by
the usual Itô formula for semimartingales (see, e.g., Protter [26], Theorem II.32), we have

H
(
Bθ

t

) = H(0) +
∫ t

0
h

(
Bθ

s

)
dBs + θ

∫ t

0
h

(
Bθ

s

)
dL

(
Bθ

)
+ 1

2

[
h

(
Bθ

)
,B

]
t
+ θ

2

[
h

(
Bθ

)
,L

(
Bθ

)]
t
,

where the decomposition of quadratic variation into the sum holds true since both [h(Bθ ),Bθ ]
and [h(Bθ ),B] exist as u.c.p. limits. Furthermore since h(0) = 0, the quadratic variation
[h(Bθ ),L(Bθ )] and the integral w.r.t. L(Bθ ) vanish a.s., so that we obtain the equality

H
(
Bθ

t

) = H(0) +
∫ t

0
h

(
Bθ

s

)
dBs + 1

2

[
h

(
Bθ

)
,B

]
t
.

Taking a sequence {hm} of C1-functions such that, hm(0) = 0, hm(x) = |(1 − α)x|α for |x| ≥ 1
and supx∈[0,1] |hm(x) − (1 − α)|x|α| → 0, m → ∞, we utilize the Itô isometry and Theorem 4.7
to get the desired result.

For θ = ±1 and α ∈ (0,1), the proof goes similarly with the help of [24], Proposition C.2,
which uses the results of [25].

Concerning the uniqueness, by Theorem 4.4, any strong solution must be given by (4.5) with
some θ ∈ [−1,1]. So it remains to show that for θ �= 0 and α ∈ (−1,0], Xθ is not a solution of
the SDE.

Let α = 0. Clearly, ∫ t

0
I
(
Bθ

s �= 0
)

dBs = Bt a.s.

However [
I
(
Bθ· �= 0

)
,B

] ≡ 0 a.s.

since h(x) = I(x �= 0) can be approximated by hm(x) ≡ 1 in L2(R), and [1,B] ≡ 0. Hence,∫ t

0
I
(
Bθ

s �= 0
) ◦ dBs = Bt �= Xθ

t = Bt + θLt

(
Bθ

)
.

For α ∈ (−1,0) and θ ∈ (−1,1) \ {0}, the Stratonovich integral w.r.t. B is well defined as the
sum ∫ t

0

∣∣Bθ
s

∣∣ α
1−α ◦ dBs =

∫ t

0

∣∣Bθ
s

∣∣ α
1−α dBs + 1

2

[∣∣Bθ
∣∣ α

1−α ,B
]
t
.
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Choosing again a sequence of C1-functions {hn} such that

hm(x) ≡ ∣∣(1 − α)x
∣∣ α

1−α , |x| ≥ 1,∥∥hm(·) − ∣∣(1 − α)(·)∣∣ α
1−α

∥∥
L2(R)

→ 0,

we obtain that

Hm(x) =
∫ x

0
hm(y)dy → H(x) = (

(1 − α)x
) 1

1−α

uniformly on R, so that we can apply the standard Itô formula to obtain

Hm

(
Bθ

t

) = Hm(0) +
∫ t

0
hm

(
Bθ

s

)
dBθ

s + 1

2

[
hm

(
Bθ

)
,Bθ

]
t

= Hm(0) +
∫ t

0
hm

(
Bθ

s

) ◦ dBs + θ

∫ t

0
hm

(
Bθ

s

) ◦ dLs

(
Bθ

)
.

Passing to the limit as m → ∞, we observe that Hm(Bθ
t ) → H(Bθ

t ) = Xθ
t as well as∫ t

0
hm

(
Bθ

s

) ◦ dBs =
∫ t

0
hm

(
Bθ

s

)
dBs + 1

2

[
hm

(
Bθ

)
,B

]
t

→
∫ t

0
h

(
Bθ

s

)
dBs + 1

2

[
h

(
Bθ

)
,B

]
t
=

∫ t

0
h

(
Bθ

s

) ◦ dBs =
∫ t

0

∣∣Xθ
s

∣∣α ◦ dBs

by the Itô isometry and Theorem 4.7. However it is easy to see, for example, by the monotone
convergence (if we choose hn monotonically increasing) that∫ t

0
h

(
Bθ

s

) ◦ dLs = lim
m→∞

∫ t

0
hm

(
Bθ

s

) ◦ dLs

= (1 − α)
α

1−α lim
m→∞ lim

n→∞
∑
tk<t

hm(Bθ
tk
) + hm(Bθ

tk−1
)

2
(Ltk − Ltk−1) = +∞,

so that the SDE (1.2) is not satisfied unless θ = 0.
Note that the Riemann-Stieltjes integral w.r.t. L does not exist since the points of increase of

L coincide with the points of discontinuity of |Bθ | α
1−α .

For α ∈ (−1,0) and θ = ±1, the quadratic variation [|Bθ | α
1−α ,B], and hence the Stratonovich

integral w.r.t. B , is not well defined in view of [24], Proposition C.2.

Acknowledgements

The authors are sincerely grateful to both anonymous referees and the managing editor for their
careful reading of the manuscript and useful suggestions which helped to improve the paper. The
second named author thanks the Institute of Mathematics of the Friedrich Schiller University
Jena for its hospitality.



1408 I. Pavlyukevich and G. Shevchenko

Supplementary Material

Supplement: Additional derivations (DOI: 10.3150/19-BEJ1161SUPP; .pdf). We provide tech-
nical proofs omitted from the main body of the article.
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