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We consider the challenging problem of statistical inference for exponential-family random graph models
based on a single observation of a random graph with complex dependence. To facilitate statistical infer-
ence, we consider random graphs with additional structure in the form of block structure. We have shown
elsewhere that when the block structure is known, it facilitates consistency results for M-estimators of
canonical and curved exponential-family random graph models with complex dependence, such as tran-
sitivity. In practice, the block structure is known in some applications (e.g., multilevel networks), but is
unknown in others. When the block structure is unknown, the first and foremost question is whether it can
be recovered with high probability based on a single observation of a random graph with complex depen-
dence. The main consistency results of the paper show that it is possible to do so under weak dependence
and smoothness conditions. These results confirm that exponential-family random graph models with block
structure constitute a promising direction of statistical network analysis.
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1. Introduction

Exponential-family random graph models [19,30,35,63,69] are models of network data, such as
disease transmission networks, insurgent and terrorist networks, social networks, and the World
Wide Web [42]. Such models can be viewed as generalizations of Bernoulli random graphs with
independent edges [18,22] to random graphs with dependent edges. Exponential-family random
graph models are popular among network scientists [42], because network data are dependent
data and exponential-family random graph models enable network scientists to model a wide
range of dependencies found in network data.

Exponential-family random graph models of dependent network data were pioneered by [19].
The models of [19] and more general models [30,35,63,69] are discrete exponential families
of densities with countable support X – the set of possible graphs with n nodes and binary or
non-binary, count-valued edges – of the form

pη(x) = exp
(〈
η, s(x)

〉 − ψ(η)
)
, x ∈ X, (1.1)
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where 〈η, s(x)〉 denotes the inner product of a vector of natural parameters η ∈ {η ∈ R
dim(η) :

ψ(η) < ∞} and a vector of sufficient statistics s : X �→ R
dim(η) and ψ(η) ensures that∑

x′∈X pη(x
′) = 1.

In general, statistical inference for exponential-family random graph models is challenging
[6,13,23,54,60], because exponential-family random graph models induce complex dependence
(e.g., transitivity, [42]) and many network data sets either consist of a single observation of a
population graph or subgraphs sampled from a population graph. For example, epidemiologists
studying the spread of infectious diseases (e.g., HIV, Ebola) may be able to observe whether
population members were in contact during an epidemic, but may not be able to obtain indepen-
dent or repeated observations of contacts over time. As a result, the epidemiologists may have to
be content with a single observation of the population contact network of interest or subgraphs
sampled from the population contact network. The fact that many network data sets consist of
a single observation of a population graph or sampled subgraphs means that concentration and
consistency results cannot be obtained along the lines of classical and high-dimensional statistics,
which rely on independent observations from the same source (in a well-defined sense). In addi-
tion, the complex dependence induced by these models implies that establishing concentration,
consistency, and weak convergence results for estimators requires concentration-of-measure re-
sults for dependent random variables, which are more challenging than concentration-of-measure
results for independent random variables (e.g., [34]).

1.1. Advantages of block structure

While statistical inference for exponential-family random graph models is challenging, statistical
inference for models with additional structure has advantages.

To demonstrate the advantages of additional structure, we consider a natural form of addi-
tional structure known as block structure. Block structure is popular in the large and growing
body of literature on stochastic block models (e.g., [1,3,7–9,12,15,21,32,39,44,45,52,53,74,75]).
We focus here on exponential-family random graph models with block structure, which allow
edges within blocks to be dependent [56]. Such models are less restrictive than stochastic block
models [45], which assume that edges within blocks are independent Bernoulli random variables.
Indeed, sensible specifications of exponential-family random graph models can capture excesses
in transitivity and many other interesting features of random graphs that induce complex depen-
dence among edges within blocks [56]. We have shown elsewhere that when the block structure
is known, exponential-family random graph models with block structure have important advan-
tages:

• If edges depend on other edges within the same block but do not depend on edges outside of
the block, models induce local dependence within blocks. Local dependence makes sense
in applications, because network data are dependent data but network dependence is more
local than global [46,56].

• Models with block structure are weakly projective in the sense that the probability mass
function of a random graph with block structure is consistent with the probability mass
function of a larger random graph with more blocks [56,59], whereas many models without
block structure are not projective [16,37,60,62].
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• Local dependence induces weak dependence as long as the blocks are not too large. Weak
dependence facilitates concentration and consistency results for M-estimators, including
maximum likelihood estimators [59]. These results are of fundamental importance, because
they are the first consistency results for models with transitivity and other interesting fea-
tures of random graphs that induce complex dependence. Transitivity is interesting in prac-
tice [68], but is challenging from a theoretical point of view (e.g., [13,60]), and indeed no
other consistency results exist for transitivity.

In other words, block structure is not only useful for community detection in social networks, for
which stochastic block models can be used, but also facilitates statistical inference for random
graphs with complex dependence induced by transitivity and many other interesting features of
random graphs.

1.2. Recovery of unknown block structure

In some applications, the block structure is known. An example is multilevel networks, which are
popular in network science (e.g., [26,27,41,61,66,73]): for example, the blocks may correspond
to school classes in schools, units of armed forces, and departments in universities.

While the block structure is known in some applications, it is unknown in others. When the
block structure is unknown, the first and foremost question is whether it can be recovered with
high probability. A large and growing body of consistency results for stochastic block models
shows that it is possible to recover the block structure of stochastic block models with high
probability (e.g., [1,3,7–9,12,15,21,32,39,44,45,52,53,74,75]). While it is encouraging that the
block structure of stochastic block models can be recovered with high probability, these results
are restricted to models with independent edges within and between blocks. It is not at all obvious
whether the block structure of the more complex exponential-family random graph models can
be recovered with high probability.

We show that consistent recovery of block structure is not limited to stochastic block mod-
els, but is possible for the more complex exponential-family random graph models. The main
consistency results of the paper show that it is possible to recover the block structure with high
probability under weak dependence and smoothness conditions. Among other things, these con-
sistency results demonstrate that the conditional independence assumptions underlying stochastic
block models are not necessary for consistent recovery of block structure. In other words, these
results suggest that it is possible to obtain consistency results for many interesting models with
block structure, both stochastic block models with independent edges within blocks and richer
models with dependent edges within blocks, such as the models and methods proposed by [56]
and [67]. An indepth investigation of all of these models and methods is beyond the scope of a
single paper: each of them is challenging, owing to the complex dependence within blocks and
the wide range of model terms and canonical and curved exponential-family parameterizations.
However, the main consistency results reported here suggest that statistical inference for these
models and methods is possible and worth exploring in more depth.

The paper is structured as follows. Section 2 introduces exponential-family random graph
models with additional structure in the form of block structure. Section 3 discusses the main
consistency results. Section 4 presents simulation results. Section 5 proves the main consistency
results.
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1.3. Other, related literature

It is worth noting that two broad classes of exponential-family random graph models can be dis-
tinguished based on the underlying dependence assumptions: one class of models assumes that
edges or pairs of directed edges are independent (e.g., the β-model and the p1-model, [14,25,
51,70–72]), while the other class of models allows edges or pairs of directed edges to be de-
pendent [19,30,63]. The independence assumptions of the first class of models are restrictive,
because it is known that edges in real-world networks tend to depend on other edges [24]. The
dependence assumptions of the second class of models are problematic, because some of these
models allow edges to depend on many other edges: e.g., the conditional independence assump-
tions of [19] allow the conditional distribution of each edge variable to depend on 2(n − 2) other
edge variables. Some – but not all – of these models induce strong dependence in large random
graphs and therefore have undesirable properties, such as model near-degeneracy [6,13,16,23,54,
60]. Exponential-family random graph models with block structure strike a middle ground be-
tween models with independence assumptions and models with strong dependence assumptions,
because sensible specifications of these models induce weak dependence. As a consequence,
sensible specifications of these models have desirable properties, as explained above.

2. Exponential-family random graph models with additional
structure

In general, statistical inference for exponential-family random graph models is challenging, as
discussed in Section 1. We facilitate statistical inference by endowing exponential-family ran-
dom graph models with additional structure that induces weak dependence and hence facilitates
consistency results.

Throughout, we consider random graphs with a set of nodes A = {1, . . . , n} and a set of edges
E ⊆A×A, where edges between pairs of nodes (i, j) ∈ A×A are regarded as random variables
Xi,j with countable sample spaces Xi,j . We focus on undirected graphs without self-edges – that
is, Xi,i = 0 and Xi,j = Xj,i with probability 1 – but extensions to directed random graphs are
straightforward. We write X = (Xi,j )

n
i<j and X= Śn

i<j Xi,j .
To facilitate statistical inference, we assume that the random graph is endowed with additional

structure in the form of a partition of the set of nodes A into K ≥ 2 subsets of nodes A1, . . . ,AK ,
called blocks. To obtain concentration and consistency results, it is important that the additional
structure induces weak dependence, because strong dependence can make concentration results
impossible (e.g., [34]). We induce weak dependence by restricting dependence to within-block
subgraphs Xk,k = (Xi,j )i<j : i∈Ak,j∈Ak

(k = 1, . . . ,K). The resulting exponential families induce
a form of local dependence defined as follows [56].

Definition (Exponential families with local dependence). An exponential family of densities
of the form (1.1) with countable support X satisfies local dependence as long as its densities
satisfy

pη(x) =
K∏

k=1

pη(xk,k)

k−1∏
l=1

∏
i∈Ak,j∈Al

pη(xi,j ) for all x ∈X. (2.1)
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We give examples of canonical and curved exponential families with local dependence in
Sections 2.1 and 2.2, respectively. We discuss the well known, but restrictive special case of
stochastic block models in Section 2.3 and demonstrate the added value of exponential families
with local dependence relative to stochastic block models in Section 2.4.

2.1. Example: Canonical exponential families with local dependence

An example of canonical exponential families with local dependence and support X = {0,1}
(
n
2

)
is given by exponential families with block-dependent edge and transitive edge terms of the form

pη(x) ∝ exp

(
K∑

k≤l

η1,k,l

∑
i∈Ak,j∈Al

xi,j +
K∑

k=1

η2,k,k sk,k(x)

)
, (2.2)

where

sk,k(x) =
∑

i<j : i∈Ak,j∈Ak

xi,j 1i,j (x). (2.3)

Here, 1i,j (x) = 1 if the number of shared partners of nodes i ∈ Ak and j ∈ Ak in block Ak sat-
isfies

∑
h∈Ak,h
=i,j xh,i xh,j > 0 and 1i,j (x) = 0 otherwise. If xi,j 1i,j (x) = 1, the edge between

nodes i and j is called transitive. We note that in recent work [31,35,36,59] transitive edge terms
have turned out to be attractive alternatives to the triangle terms, which have been used since the
classic work of [19] but which possess undesirable properties [13,23,54].

2.2. Example: Curved exponential families with local dependence

An example of curved exponential families with local dependence and support X = {0,1}
(
n
2

)
is

given by exponential families with block-dependent edge and geometrically weighted edgewise
shared partner terms of the form

pη(x) ∝ exp

(
K∑

k≤l

η1,k,l

∑
i∈Ak,j∈Al

xi,j +
K∑

k=1

|Ak |−2∑
t=1

η2,k,k,t sk,k,t (x)

)
, (2.4)

where

sk,k,t (x) =
∑

i<j : i∈Ak,j∈Ak

xi,j 1i,j,t (x). (2.5)

Here, 1i,j,t (x) = 1 if the number of shared partners of nodes i ∈ Ak and j ∈ Ak in block Ak

satisfies
∑

h∈Ak,h
=i,j xh,i xh,j = t and 1i,j,t (x) = 0 otherwise. A curved exponential-family pa-
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rameterization is given by

η1,k,l(θ) = θ1,k,l ,

η2,k,k,t (θ) = θ2,k

{
θ3,k

[
1 −

(
1 − 1

θ3,k

)t]}
, θ3,k >

1

2
.

(2.6)

Such terms are called geometrically weighted edgewise shared partner terms [29,30], because the
natural parameters η2,k,k,t (θ) are based on the geometric sequence (1 − 1/θ3,k)

t , t = 1,2, . . . . It
is worth noting that the corresponding geometric series converges as long as θ3,k > 1/2 and that
θ3,k ≤ 1/2 is problematic on probabilistic and statistical grounds [54,59]. The parameterization is
called a curved exponential-family parameterization, because the natural parameter vector η(θ)

is a non-affine function of a lower-dimensional parameter vector θ ; see Remark 5 in Section 3.2.
Last, but not least, note that in the special case θ3,k = 1 (k = 1, . . . ,K) the curved exponential
family reduces to the canonical exponential family described in Section 2.1.

2.3. Example: Stochastic block models

A well-known, but restrictive special case of exponential families with local dependence and

support X = {0,1}
(
n
2

)
are stochastic block models [45]. Stochastic block models assume that all

edge variables Xi,j are independent given the block structure, which implies that pη(x) can be
written as

pη(x) ∝ exp

(
K∑

k≤l

η1,k,l

∑
i∈Ak,j∈Al

xi,j

)
, (2.7)

where η1,k,l is the log odds of the probability of an edge between nodes in blocks Ak and Al .

2.4. Added value of exponential families with local dependence

Exponential families with local dependence can capture many features of random graphs within
blocks, in contrast to stochastic block models, and can therefore be worth the additional costs in
terms of model complexity.

To demonstrate the added value of exponential families with local dependence compared with
stochastic block models, first note that many network data sets show evidence of systematic devi-
ations from models which assume that edges are independent, as has been well-documented since
the 1970s (see, e.g., [24,48,49]). Stochastic block models assume that edges are independent
within and between blocks and cannot capture such systematic deviations from independence.
For example, suppose that x ∈X is observed and the block structure is known, and let s1,k,k(x) be
the observed number of edges and s2,k,k(x) be the observed number of transitive edges in block
Ak (k = 1, . . . ,K). A helpful observation for comparing exponential families with local depen-
dence and stochastic block models is that stochastic block models are special cases of exponential
families with local dependence and natural parameter vectors ηk,k = (η1,k,k, η2,k,k) = (η1,k,k,0)
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as described in Section 2.1, where η1,k,k and η2,k,k are the natural edge and transitive edge pa-
rameter of block Ak , respectively. If the natural parameter vector ηk,k = (η1,k,k,0) of block Ak is
estimated by the maximum likelihood estimator η̂k,k = (̂η1,k,k,0) under stochastic block models
with known block structure, then the maximum likelihood estimator solves

Eη̂1,k,k,η2,k,k=0 s1,k,k(X) = s1,k,k(x), k = 1, . . . ,K, (2.8)

provided the maximum likelihood estimator exists [23,50]. However, network data sets may have
many more transitive edges within blocks than expected under stochastic block models. In other
words, we may observe that

s2,k,k(x) � Eη̂2,k,k,η2,k,k=0 s2,k,k(X) for some or all k ∈ {1, . . . ,K}. (2.9)

To capture such systematic deviations from stochastic block models, exponential families with
local dependence can be useful. To see that, note that classic exponential-family theory ([11],
Corollary 2.5, page 37) implies that, for any η2,k,k > 0,

Eη1,k,k,η2,k,k>0 s2,k,k(X) > Eη1,k,k,η2,k,k=0 s2,k,k(X), k = 1, . . . ,K. (2.10)

In other words, the expected number of transitive edges in block Ak is greater under exponen-
tial families with local dependence with η2,k,k > 0 than under stochastic block models with
η2,k,k = 0, assuming that both have the same edge parameters η1,k,k (k = 1, . . . ,K). As a con-
sequence, exponential families with local dependence can capture an excess in the expected
number of transitive edges within blocks, relative to stochastic block models. In fact, the max-
imum likelihood estimator η̂k,k = (̂η1,k,k, η̂2,k,k) of block Ak under exponential families with
local dependence and known block structure solves

Eη̂1,k,k ,̂η2,k,k
s1,k,k(X) = s1,k,k(x), k = 1, . . . ,K,

Eη̂1,k,k ,̂η2,k,k
s2,k,k(X) = s2,k,k(x), k = 1, . . . ,K,

(2.11)

provided the maximum likelihood estimator exists [23,50]. Thus, exponential families with local
dependence can match both the observed number of edges and transitive edges within blocks,
in contrast to stochastic block models. As a consequence, exponential families with local depen-
dence can outperform stochastic block models in terms of transitivity (see, e.g., the empirical
results of [65], where the blocks are known and correspond to school classes in schools).

More generally, exponential families with local dependence can capture many features of ran-
dom graphs that induce dependence among edges within blocks, including – but not limited
to – transitivity. The flexibility of the exponential-family framework and its ability to capture
many features of random graphs within blocks is one of its greatest advantages. However, it
is worth noting that not all specifications of exponential-family models with local dependence
are equally useful: for example, it is well known that exponential-family models with k-star
and triangle terms can induce undesirable behavior in large random graphs, such as model near-
degeneracy [13,23,33,54]. Thus, within-block k-star and triangle terms can be used as long as the
blocks are not too large, but should not be used when the blocks are large. Other specifications of
exponential-family models are more appropriate for large blocks, for example, the specifications
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described in Sections 2.1 and 2.2: each of them implies that the value added by additional trian-
gles to the log odds of the conditional probability of an edge, given all other edges, decays (see,
e.g., [28,30,57,63]). By contrast, models with triangle terms make the implicit assumption that
the added value of additional triangles does not decay, which can lead to undesirable behavior in
large random graphs and hence large within-block subgraphs [13,23,33,54]. However, note that
the restriction that blocks cannot be too large – which we discuss in Remark 3 in Section 3 – en-
sures that the effect of less appropriate within-block specifications (such as within-block triangle
or k-star terms) on the random graph remains limited.

2.5. Notation

Throughout, Ef (X) denotes the expectation of a function f : X �→ R of a random graph with
respect to exponential-family distributions P admitting densities of the form (2.1). We write
P ≡ Pη� and E ≡ Eη� , where η� ∈ � ⊆ int(N) denotes the data-generating natural parameter
vector and � ⊆ int(N) denotes a subset of the interior int(N) of the natural parameter space
N = {η ∈ R

dim(η) : ψ(η) < ∞}. We assume that η : � ×Z �→ � is a function of (θ ,z) ∈ � ×Z,
where

� ×Z = {
(θ ,z) ∈ R

dim(θ) × {1, . . . ,K}n : ψ(
η(θ ,z)

)
< ∞}

. (2.12)

Here, θ is a vector of block-dependent parameters of dimension dim(θ) ≤ dim(η) while z is
a vector of block memberships of nodes. The natural parameter vectors of the canonical and
curved exponential families described in Sections 2.1 and 2.2 can be represented in this form.
The data-generating value of (θ ,z) ∈ �×Z is denoted by (θ�,z�). The �1-, �2-, and �∞-norm of
vectors are denoted by ‖·‖1, ‖·‖2, and ‖·‖∞, respectively. Uppercase letters A,B,C > 0 denote
unspecified constants, which may be recycled from line to line.

3. Consistent estimation of block structure

We present here the first consistency results which show that it is possible to recover the block
structure with high probability under weak dependence and smoothness conditions. These con-
sistency results are non-trivial, because we cover exponential families with (a) countable support;
(b) a wide range of dependencies within blocks; and (c) a wide range of canonical and curved
exponential-family parameterizations.

To recover the block structure along with the parameters given an observation x of X, we
consider the following restricted maximum likelihood estimator:

(̂θ , ẑ) ∈ arg max
(θ ,z)∈�0×Z0

�
(
θ ,z; s(x)

)
, (3.1)

where

�
(
θ,z; s(x)

) = 〈
η(θ ,z), s(x)

〉 − ψ
(
η(θ ,z)

)
(3.2)

denotes the loglikelihood function of (θ ,z) ∈ �0 × Z0 and �0 × Z0 is a subset of � × Z to be
specified. Computational implications are discussed in Section 6. We assume that the number of
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blocks K is known and that both θ and z are parameters, which is commonplace in the special
case of stochastic block models (e.g., [3,7,15]). It is worth noting that the maximum likelihood
estimator (̂θ , ẑ) is not unique, because the likelihood function is invariant to the labeling of
blocks. All following statements are therefore understood as statements about equivalence classes
of block structures.

We call the maximum likelihood estimator (̂θ , ẑ) restricted, because we restrict maximum
likelihood estimation to a subset �0 × Z0 of � × Z. We need to do so, because without ad-
ditional restrictions exponential families with local dependence can induce strong dependence
and smoothness problems. To motivate the restrictions on � × Z, it is instructive to discuss the
following concentration result, which is instrumental to deriving the main consistency results of
the paper.

Lemma 1. Suppose that a random graph is governed by an exponential family with local depen-
dence and countable support X. Let f : X �→ R be Lipschitz with respect to the Hamming metric
d : X×X �→ {0, . . . ,

(
n
2

)} defined by

d(x1,x2) =
n∑

i<j

1x1,i,j 
=x2,i,j
, (x1,x2) ∈X×X, (3.3)

with Lipschitz coefficient ‖f ‖Lip > 0 and expectation E |f (X)| < ∞. Then there exists C > 0
such that, for all n > 0 and all t > 0,

P
(∣∣f (X) −Ef (X)

∣∣ ≥ t
) ≤ 2 exp

(
− t2

Cn2‖A‖4∞‖f ‖2
Lip

)
, (3.4)

where ‖A‖∞ = max1≤k≤K |Ak| > 0 denotes the size of the largest data-generating block.

The proof of Lemma 1 can be found in the supplementary materials. The proof relies on
concentration of measure inequalities for dependent random variables [34] and bounds mixing
coefficients – which quantify the strength of dependence induced by exponential families with
local dependence – in terms of ‖A‖∞.

Lemma 1 demonstrates that the probability mass of a function f (X) of a random graph con-
centrates around the corresponding expectation Ef (X) as long as the data-generating exponen-
tial family induces weak dependence and the function f (X) satisfies smoothness conditions. We
are interested in applying Lemma 1 to concentrate exponential-family loglikelihood functions of
the form �(θ ,z; s(X)) = logpη(θ ,z)(X). To make sure that the probability mass of logpη(θ ,z)(X)

concentrates around the expectation E logpη(θ ,z)(X), we need to impose additional restrictions
on Z for at least two reasons. First of all, large blocks can induce strong dependence, which weak-
ens concentration results – as can be seen from the term ‖A‖∞ in Lemma 1. Second, changes of
edges in large blocks can give rise to large changes of logpη(θ ,z)(x), which weakens concentra-
tion results as well – as can be seen from the Lipschitz coefficient ‖f ‖Lip in Lemma 1. Thus, to
deal with strong dependence and smoothness problems, restrictions need to be imposed on the
sizes of blocks in Z. An additional issue is that the unrestricted maximum likelihood estimator
fails to exist with non-negligible probability [23,50]. These observations motivate the following
assumptions.
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3.1. Assumptions

We assume that the data-generating natural parameter vector η� ∈ � ⊆ int(N) is in the interior
int(N) of the natural parameter space N, which implies that the expectation E s(X) exists and is
finite ([11], Theorem 2.2, pages 34–35) and so does the expectation E�(θ ,z; s(X)), because

E�
(
θ ,z; s(X)

) = 〈
η(θ ,z),E s(X)

〉 − ψ
(
η(θ ,z)

) = �
(
θ ,z;E s(X)

)
. (3.5)

Let μ(η) = Eη s(X) be the mean-value parameter vector of an exponential family with natural
parameter vector η ≡ η(θ ,z) and M = rint(C) be the mean-value parameter space, where rint(C)

is the relative interior of the convex hull C = conv{s(x) : x ∈ X} of the set {s(x) : x ∈ X}. It is
well known that in minimal exponential families the mapping between the relative interior of
the mean-value and natural parameter space is one-to-one ([11], Theorem 3.6, page 74), and
that all non-minimal exponential families can be reduced to minimal exponential families ([11],
Theorem 1.9, page 13). Denote by μ� ≡ μ(η�) the data-generating mean-value parameter vector.
For any α > 0, let

M(α) = {
μ ∈ M : ∣∣�(θ�,z�;μ) − �

(
θ�,z�;μ�

)∣∣ < α
∣∣�(θ�,z�;μ�

)∣∣} (3.6)

be the subset of mean-value parameter vectors μ ∈M that are close to the data-generating mean-
value parameter vector μ� ∈M in the sense that |�(θ�,z�;μ)− �(θ�,z�;μ�)| < α|�(θ�,z�;μ�)|.
The advantage of introducing the subset M(α) of M is that the main assumptions stated below
can be weakened, because some of them need to hold on M(α), but need not hold on M \M(α).

The main assumptions can be stated as follows; note that conditions [C.2] and [C.3] are as-
sumed to hold on M(α), but need not hold on M \M(α).

[C.1] For any fixed z ∈ Z, the map η : � ×Z �→ � is one-to-one and continuous on �.
[C.2] For any fixed z ∈ Z and any fixed μ ∈ M(α), the loglikelihood function �(θ ,z;μ) is

upper semicontinuous on �.
[C.3] There exist A1 > 0 and n1 > 0 such that, for all n > n1, all (θ1, θ2) ∈ �×�, all z ∈ Z,

and all μ ∈M(α),∣∣〈η(θ1,z) − η(θ2,z),μ
〉∣∣ ≤ A1‖θ1 − θ2‖2

∣∣�(θ�,z�;μ�
)∣∣. (3.7)

[C.4] There exist A2 > 0 and n2 > 0 such that, for all n > n2, all (θ ,z) ∈ � × Z, and all
(x1,x2) ∈X×X, ∣∣〈η(θ ,z), s(x1) − s(x2)

〉∣∣ ≤ A2 d(x1,x2)L(z), (3.8)

where L(z) is the size of the largest block under z.
[C.5] The data-generating parameter (θ�,z�) is contained in �0 ×Z0 ⊆ � ×Z, where

(a) �0 has dimension dim(θ) ≤ An and can be covered by exp(Cn) closed balls
B(θq,B) with centers θq ∈ � and radius B > 0, i.e., �0 ⊆ ⋃

1≤q≤exp(Cn) B(θq,B),
where A,B,C > 0.

(b) Z0 consists of all block structures for which the size of each of the K blocks is
bounded above by L, where K and L can increase as a function of the number of
nodes n.
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Corollaries 1 and 2 in Section 3.2 show that conditions [C.1]–[C.4] are satisfied by a wide range
of canonical and curved exponential families with local dependence. Condition [C.1] along with
the assumption that the exponential family is minimal ensures that Pη(θ1,z) 
= Pη(θ2,z) for all
θ1 
= θ2, for any fixed z ∈ Z. Conditions [C.2]–[C.4] are smoothness conditions. Condition [C.2]
is a weak assumption: it is well known that canonical exponential-family loglikelihood functions
are upper semicontinuous ([11], Lemma 5.3, page 146), and it turns out that the most interesting
curved exponential-family loglikelihood functions are upper semicontinuous as well, which is
verified by Corollaries 1 and 2 in Section 3.2. Condition [C.3] imposes restrictions on how much
logpη(θ ,z)(x) can change as a function of η(θ ,z), whereas condition [C.4] imposes restrictions
on how much logpη(θ ,z)(x) can change as a function of x. Condition [C.3] is stated in terms
of |�(θ�,z�;μ�)| to accommodate both sparse and dense random graphs; we discuss the notion
of sparse and dense random graphs in Remark 2 in Section 3.2. Condition [C.5](a) allows the
dimension dim(θ) of the parameter space �0 to increase as a function of the number of nodes n

and hence allows the model to be flexible while ensuring that �0 cannot be too large. We need
these conditions, because we have a single observation of a random graph and therefore cannot
use conventional arguments to prove that estimators fall with high probability into compact sub-
sets of the parameter space when the number of observations N is large (e.g., [5]). Condition
[C.5](b) complements condition [C.4] and helps ensure that logpη(θ ,z)(x) is not too sensitive to
changes of x by restricting the set of block structures to blocks whose size is bounded above
by L. The main consistency results of the paper, Proposition 1 and Theorem 1 in Section 3.2,
impose restrictions on L.

3.2. Main consistency results

We discuss the main consistency results concerning the recovery of block structure given an
observation of a random graph with complex dependence.

The recovery of block structure is made possible by the following fundamental concentra-
tion result. The concentration result shows that with high probability the distribution param-
eterized by the restricted maximum likelihood estimator (̂θ , ẑ) is close to the distribution pa-
rameterized by the data-generating parameter (θ�,z�) in terms of Kullback–Leibler divergence
KL(θ�,z�; θ̂ , ẑ) = �(θ�,z�;μ�)− �(̂θ , ẑ;μ�) provided that the number of nodes n is sufficiently
large. The result covers a wide range of canonical and curved exponential families with local
dependence.

Proposition 1. Suppose that an observation of a random graph is generated by an exponential
family with local dependence and countable support X satisfying conditions [C.1]–[C.5]. Assume
that, for all C1 > 0, however large, there exists n1 > 0 such that, for all n > n1,∣∣�(θ�,z�;μ�

)∣∣ ≥ C1 n3/2 ‖A‖2∞ L
√

logn, (3.9)

where L = maxz∈Z0 L(z). Then there exist C > 0, C2 > 0, and n2 > 0 such that, for all n > n2,
with at least probability 1 − 2 exp(−α2C2n logn), the restricted maximum likelihood estimator
(̂θ , ẑ) ∈ �0 ×Z0 exists and, for all ε > 0,

P
(
KL

(
θ�,z�; θ̂ , ẑ

)
< ε

∣∣�(θ�,z�;μ�
)∣∣) ≥ 1 − 4 exp

(−min
(
α2, ε2)C n logn

)
, (3.10)
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where α > 0 is identical to the constant α used in the construction of the subset M(α) of the
mean-value parameter space M.

The concentration result in Proposition 1 paves the ground for the main consistency result.
The consistency result is generic and covers a wide range of canonical and curved exponential
families with local dependence. It states that the discrepancy between the estimated and data-
generating block structure is small with high probability provided that the number of nodes n

is sufficiently large. To define the discrepancy between the estimated and data-generating block
structure, let δ : Z × Z �→ [0, n] be a discrepancy measure that is invariant to the labeling of
blocks. An example is given by δ(z�, ẑ) = minπ

∑n
i=1 1z�

i 
=π(̂zi ), the minimum Hamming dis-
tance between z� and ẑ, where the minimum is taken with respect to all possible permutations
π of ẑ. The following consistency result holds for all discrepancy measures δ : Z × Z �→ [0, n]
satisfying assumption (3.11) of the following result.

Theorem 1. Suppose that an observation of a random graph is generated by an exponential
family with local dependence and countable support X satisfying conditions [C.1]–[C.5]. If the
random graph satisfies assumption (3.9) of Proposition 1 and there exist C1 > 0 and n1 > 0 such
that, for all n > n1 and all (θ ,z) ∈ �0 ×Z0,

KL
(
θ�,z�; θ,z

) ≥ δ(z�,z)C1 |�(θ�,z�;μ�)|
n

, (3.11)

then there exist C > 0, C2 > 0, and n2 > 0 such that, for all n > n2, with at least probability
1 − 2 exp(−α2C2n logn), the restricted maximum likelihood estimator (̂θ , ẑ) ∈ �0 × Z0 exists
and, for all ε > 0,

P

(
δ(z�, ẑ)

n
< ε

)
≥ 1 − 4 exp

(−min
(
α2, ε2)C n logn

)
, (3.12)

where α > 0 is identical to the constant α used in the construction of the subset M(α) of the
mean-value parameter space M.

We discuss implications of Proposition 1 and Theorem 1, starting with a short comparison
with stochastic block models (Remark 1) and then discussing assumption (3.9) (Remark 2) and
its implications in terms of the sizes of blocks (Remark 3) and the number of blocks (Remark 4).
We then proceed with a discussion of conditions [C.1]–[C.4] (Remark 5) and assumption (3.11)
(Remark 6) and conclude with some comments on parameter estimation (Remark 7). Last, but
not least, we discuss the sharpness of the results (Remark 8).

Remark 1 (Comparison with stochastic block models). There is a large and growing body of
consistency results on stochastic block models (e.g., [3,7,8,12,15,21,39,52,53]). In the language
of stochastic block models, the consistency result in Theorem 1 is a weak consistency result
in the sense that the discrepancy between the estimated and data-generating block structure is
small with high probability. In contrast to stochastic block models, we cover exponential families
with (a) countable support; (b) a wide range of dependencies within blocks; and (c) a wide
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range of canonical and curved exponential-family parameterizations. These dependencies and
parameterizations make theoretical results more challenging from a statistical point of view, but
more relevant from a scientific point of view. However, these results come at a cost: in contrast
to stochastic block models, we need to restrict the sizes of blocks from above to deal with strong
dependence and smoothness problems, as we pointed out in the discussion of Lemma 1. The
restrictions on the sizes of blocks are detailed in Remark 3.

Remark 2 (Assumption (3.9): Sparse and dense random graphs). Assumption (3.9) of Propo-
sition 1 and Theorem 1 is stated in terms of the absolute value of the expected loglikelihood
function |E�(θ�,z�; s(X))| = |�(θ�,z�;μ�)| to accommodate sparse and dense random graphs.
We first explain why |�(θ�,z�;μ�)| may be interpreted as the level of sparsity of a random graph,
and then return to assumption (3.9).

To demonstrate that |�(θ�,z�;μ�)| may be interpreted as the level of sparsity of a random
graph, consider the classic Bernoulli(ω) random graphs, under which edges Xi,j are inde-
pendent Bernoulli(ω) random variables [17,18]. It is natural, and conventional, to use the ex-
pected number of edges E

∑n
i<j Xi,j to quantify the sparsity of Bernoulli(ω) random graphs,

because
∑n

i<j Xi,j is a sufficient statistic for the natural parameter θ = logit(ω) of the canonical
exponential-family representation of Bernoulli(ω) random graphs. If an exponential family con-
tains more than one natural parameter and one sufficient statistic, it makes sense to quantify the
sparsity of a random graph based on all sufficient statistics: in fact, in many applications, the suffi-
cient statistics are of substantive interest, because researchers specify exponential-family models
of random graphs by specifying sufficient statistics that capture features of random graphs con-
sidered relevant (e.g., the number of edges and transitive edges, see Section 2.4). The question,
then, is how the sparsity of a random graph can be quantified based on all sufficient statistics,
that is, all relevant features of the random graph. The absolute value of the expected loglikeli-
hood function |�(θ�,z�;μ�)| is a simple choice, because it is a function of all sufficient statistics
and the key to likelihood-based inference. In the special case of Bernoulli(ω) random graphs,
|�(θ�,z�;μ�)| agrees with E

∑n
i<j Xi,j on the level of sparsity (ignoring logarithmic factors).

If a Bernoulli(ω) random graph is dense in the sense that ω does not depend on n, then both
E

∑n
i<j Xi,j and |�(θ�,z�;μ�)| are of order n2 and hence agree on the level of sparsity. If a

Bernoulli(ωn) random graph is sparse in the sense that ωn → 0 as n → ∞, then both quantities
are smaller: for example, if ωn = logn/n (the threshold for connectivity of Bernoulli random
graphs, [10]), then E

∑n
i<j Xi,j and |�(θ�,z�;μ�)| are of order n logn and n(logn)2, respec-

tively, so both quantities agree on the level of sparsity up to a logarithmic factor. We therefore
interpret |�(θ�,z�;μ�)| as the level of sparsity of a random graph, but note that the mathematical
results in Proposition 1 and Theorem 1 hold regardless of how |�(θ�,z�;μ�)| is interpreted.

To return to assumption (3.9), the above considerations suggest that the random graph can
be sparse, but cannot be too sparse in the sense that |�(θ�,z�;μ�)| cannot be too small. If, for
example, ‖A‖∞ and L grow as fast as (logn)γ1 (γ1 > 0) and (logn)γ2 (γ2 > 0), respectively,
then |�(θ�,z�;μ�)| must grow faster than n3/2(logn)2γ1+γ2+1/2.

Remark 3 (Sizes of blocks). The sizes of blocks in Z0 cannot be too large, because changes of
edges in large blocks can give rise to large changes of �(θ ,z; s(x)) = logpη(θ ,z)(x), which weak-
ens concentration results, as we pointed out in the discussion of Lemma 1. In fact, assumption
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(3.9) implies that the size L of the largest possible block in Z0 must satisfy

L ≤ |�(θ�,z�;μ�)|
C1 n3/2 ‖A‖2∞

√
logn

. (3.13)

Thus, in the best-case scenario when ‖A‖∞ is small in the sense that ‖A‖∞ grows at most as fast
as (logn)γ (γ > 0), L can grow at most as fast as n1/2/(logn)2γ+1/2, assuming that the random
graph is dense. In the worst-case scenario when ‖A‖∞ grows as fast as L, L can grow at most
as fast as (n/ logn)1/6.

Remark 4 (Number of blocks). The fact that the sizes of blocks in Z0 are bounded above
by L implies that the number of blocks K is bounded below by K ≥ n/L. If, e.g., L ≤
n1/2/(logn)2γ+1/2 (γ > 0), then K ≥ n1/2(logn)2γ+1/2. Compared with stochastic block mod-
els, the number of blocks K needs to grow at least as fast as in the high-dimensional stochastic
block models of Choi et al. [15] (ignoring polylogarithmic terms), where the rate of growth of K

is n1/2 [15], but K needs not grow as fast as in the highest-dimensional stochastic block models
of Rohe et al. [53], where the rate of growth of K is as high as n (ignoring polylogarithmic terms)
[53]. It is worth noting that allowing K to increase as a function of n makes sense in applica-
tions: Leskovec et al. [40] and others have observed that many real-world networks have small
communities, which suggests that K should increase as a function of n, as Rohe, Chatterjee, and
Yu ([52], page 1883) and others have pointed out.

Remark 5 (Conditions [C.1]–[C.4]). We show that conditions [C.1]–[C.4] are satisfied by a
wide range of canonical and curved exponential families with local dependence. To ease the
presentation, we consider dense random graphs, but the following results can be extended to
sparse random graphs as long as the random graphs are not too sparse; see Remark 2.

We assume here that η : � ×Z �→ � is separable in the sense that η(θ ,z) = A(z)b(θ), where
A : Z �→ Rdim(η)×dim(b) and b : � �→ Rdim(b); note that, for example, the curved exponential-
family parameterization described in Section 2.2 is separable, and so are many other canonical
and curved exponential-family parameterizations. Since η : � × Z �→ � is separable, A(z) can
be absorbed into the sufficient statistics vector, so that η : � �→ � can be considered as a function
of θ and s : X × Z �→ R

dim(η) can be considered as a function of x and z. As a result, we can
write 〈

η(θ ,z),μ
〉 = 〈

η(θ),μ(z)
〉 = K∑

k≤l

〈
ηk,l(θ),μk,l(z)

〉
,

〈
η(θ ,z), s(x)

〉 = 〈
η(θ), s(x,z)

〉 = K∑
k≤l

〈
ηk,l(θ), sk,l(x,z)

〉
,

(3.14)

where – in an abuse of notation – we write μ(z) = A(z)�μ (μ ∈ M(α)) and s(x,z) = A(z)�s(x)

(s(x) ∈ M(α)). If, in addition, b(θ) is an affine function of θ , then η(θ) can be reduced to η(θ) =
θ and ηk,l(θ) can be reduced to ηk,l(θ) = θk,l (k ≤ l = 1, . . . ,K), in which case we call the
exponential family canonical, otherwise we call the exponential family curved. In the following,
we denote by Lk(z) the number of nodes in block k under block structure z ∈ Z0.
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The following result shows that conditions [C.1]–[C.4] are satisfied by all canonical exponen-
tial families with local dependence satisfying reasonable scaling and smoothness conditions.

Corollary 1. Consider canonical exponential families with local dependence and countable sup-
port X. Assume that η : � × Z �→ � is separable with dim(θk,l) < ∞ (k ≤ l = 1, . . . ,K) and
that the random graph is dense. If there exist C1 > 0, C2 > 0, and n0 ≥ 1 such that, for all
n > n0,

[C.3�] ‖μk,l(z)‖∞ ≤ C1Lk(z)Ll(z) for all z ∈ Z0 and all μ ∈ M(α) (k ≤ l = 1, . . . ,K);

[C.4�]
∑K

k≤l‖sk,l(x1,z) − sk,l(x2,z)‖∞ ≤ C2d(x1,x2)L(z) for all (x1,x2) ∈X×X and all
z ∈ Z0;

then conditions [C.1]–[C.4] are satisfied. If conditions [C.5] and (3.11) are satisfied as well, then
the conclusions of Theorem 1 hold.

Condition [C.3�] is satisfied by all between- and within-block sufficient statistics for which
the absolute value of the expectation is bounded above by a constant multiple of the number of
pairs of nodes between blocks and within blocks, respectively: for example, the number of edges
and transitive edges within blocks satisfy condition [C.3�] and so do all other sufficient statistics
that count the number of pairs of nodes within blocks having specified properties or being related
to other nodes in the same block in some specified form. Condition [C.4�] is satisfied by most
sufficient statistics, including the number of edges and transitive edges.

We turn to curved exponential families with local dependence. We consider curved exponential
families of densities of the form

pη(θ ,z)(x) ∝ exp
(〈
η(θ), s(x,z)

〉)
, (3.15)

where

〈
η(θ), s(x,z)

〉 = K∑
k≤l

η1,k,l(θ)
∑

i,j :zi=k,zj =l

xi,j +
K∑

k=1

Tk∑
t=1

η2,k,k,t (θ)sk,k,t (x,z), (3.16)

where sk,k,t (x,z) are sufficient statistics that induce dependence within blocks (e.g., in case

X = {0,1}
(
n
2

)
, sk,k,t (x,z) may be the number of pairs of nodes with t edgewise shared partners

in block k). Here, the natural parameters are given by

η1,k,l(θ) = θ1,k,l ,

η2,k,k,t (θ) = θ2,k

{
θ3,k

[
1 −

(
1 − 1

θ3,k

)t]}
, θ3,k >

1

2
, Tk ≥ 2.

(3.17)

The following result shows that as long as the underlying geometric series converges, that is,
as long as θ3,k > 1/2 (k = 1, . . . ,K), conditions [C.1]–[C.4] are satisfied. The result can be
extended to other model terms, for example, covariate terms.
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Corollary 2. Consider curved exponential families of the form (3.15) with local dependence and
countable support X. Assume that η : �×Z �→ � is separable and that there exists B > 1/2 such
that 1/2 < θ3,k < B (k = 1, . . . ,K) and that the random graph is dense. If there exist C1 > 0,
C2 > 0, and n0 ≥ 1 such that, for all n > n0,

[C.3��]
∑Tk

t=1 |μk,k,t (z)| ≤ C1
(
Lk(z)

2

)
for all z ∈ Z0, where μk,k,t (z) = E sk,k,t (X,z);

[C.4��] |∑Tk

t=1 sk,k,t (x1,z) − ∑Tk

t=1 sk,k,t (x2,z)| ≤ C2d(x1,k,k,x2,k,k)L(z) for all (x1,k,k,

x2,k,k) ∈ Xk,k(z) ×Xk,k(z) and all z ∈ Z0, where Xk,k(z) denotes the set of all possi-
ble within-block subgraphs of block k under z ∈ Z0 (k = 1, . . . ,K);

then conditions [C.1]–[C.4] are satisfied. If conditions [C.5] and (3.11) are satisfied as well, then
the conclusions of Theorem 1 hold.

The most popular curved exponential families with geometrically weighted terms [29,30,
63] satisfy conditions [C.3��] and [C.4��] of Corollary 2. Consider, for example, geometrically
weighted edgewise shared partner terms. In the case of geometrically weighted edgewise shared
partner terms, Tk = Lk(z) − 2 and

∑Tk

t=1 sk,k,t (x,z) is the number of transitive edges in block k,
hence conditions [C.3��] and [C.4��] are satisfied.

Remark 6 (Assumption (3.11)). Assumption (3.11) of Theorem 1 states that the Kullback–
Leibler divergence of the distribution parameterized by (θ ,z) from the distribution parame-
terized by (θ�,z�) must increase with the discrepancy measure δ(z�,z). In the special case of
stochastic block models, [15] and [53] verified identifiability assumption (3.11) using the num-
ber of misclassified nodes – as defined by [15] – as a discrepancy measure, where the number
of blocks can grow as fast as n1/2 [15] and as fast as n (ignoring polylogarithmic terms) [53],
respectively. In general, an application of the mean-value theorem to the expected loglikelihood
function �(η�;μ�) = 〈η�,μ�〉 − ψ(η�) shows that, for all η ∈ � ⊆ int(N),

KL
(
η�;η) = �

(
η�;μ�

) − �
(
η;μ�

) = 〈
η� − η,μ

(
η�

) − μ(η̇)
〉
, (3.18)

where η̇ = λη� + (1 − λ)η (0 ≤ λ ≤ 1); note that η̇ ∈ int(N) since η� ∈ int(N) and η ∈ int(N)

and the natural parameter space N is convex. Therefore, assumption (3.11) is satisfied as long as
changes of blocks give rise to large enough changes of mean-value and natural parameter vectors.

Remark 7 (Estimation of parameters). The restricted maximum likelihood estimator, as de-
fined in (3.1), estimates the parameter vector θ along with the block structure z. We leave the
study of theoretical properties of estimators of θ to future research, but it is worth noting the fol-
lowing. If the blocks are known (e.g., in multilevel networks, [38]), M-estimators of canonical
and curved exponential-family random graph models with local dependence are consistent under
weak conditions [59]. If the blocks are unknown, M-estimators may not be consistent estimators
of the data-generating parameters. Indeed, it is not too hard to see that, for any z 
= z� (where
z ∈ Z0 may be an estimate of z� ∈ Z0), the estimator

θ̂(z) = arg max
θ∈�0

[
�
(
θ ,z; s(x)

) − �
(
θ�,z�; s(x)

)]
(3.19)
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estimates

θ̇(z) = arg max
θ∈�0

[
�
(
θ ,z;μ�

) − �
(
θ�,z�;μ�

)]
, (3.20)

which is equivalent to minimizing the Kullback–Leibler divergence KL(θ�,z�; θ ,z) = �(θ�,z�;
μ�) − �(θ ,z;μ�) with respect to θ , for fixed z ∈ Z0. In other words, θ̂(z) is an estimator of the
parameter vector θ̇(z) that is as close as possible to the data-generating parameter vector θ� in
terms of Kullback–Leibler divergence, for fixed z ∈ Z0. These considerations suggest that θ̂(z)
may be a consistent estimator of θ̇(z), but in general θ̂(z) is not a consistent estimator of θ�,
unless z = z� [59].

Remark 8 (Sharpness). The results in Proposition 1 and Theorem 1 are not, and cannot be
expected to be as sharp as results based on stochastic block models (e.g., [3,7–9,12,15,21,32,39,
44,47,52,53,74,75]), for at least three reasons:

• Dependence. We are concerned with random graphs with dependent edges within blocks,
and concentration results for dependent random variables tend to be weaker than concentra-
tion results for independent random variables.

• The results cover many models with many possible forms of dependence. One of the great-
est advantages of exponential-family models of random graphs – which can be viewed as
generalizations of Erdős and Rényi random graphs, GLMs, and Markov random fields for
dependent network data – is the flexibility of the exponential-family framework and its abil-
ity to model many dependencies within blocks. As a consequence, we do not focus on sharp
results in special cases, but on results that cover many models with many possible forms of
dependence. Indeed, our concentration results are worst-case results and therefore are not,
and cannot be expected to be sharp in special cases.

• The combination of dependence and sparsity. Many papers concerned with stochastic block
models focus on sparse random graphs for which the expected number of edges grows
slower than the number of possible edges

(
n
2

)
. While studying random graphs under spar-

sity assumptions makes sense and has a long tradition in classic random graph theory (e.g.,
[2,20,43]), it requires sharp concentration results for sparse random graphs. Such results
are available for sparse random graphs with independent edges based on, for example,
clever applications of Bernstein’s and Talagrand’s concentration inequalities [2,20,43]: e.g.,
Choi et al. [15] used Bernstein’s concentration inequality to obtain concentration results for
sparse random graphs with independent edges and the expected number of edges growing
faster than n(logn)3+β (β > 0). But Bernstein’s and Talagrand’s concentration inequalities
are limited to random graphs with independent edges. To the best of our knowledge, no
sharp concentration results have been developed for sparse random graphs with dependence
among edges induced by transitivity or other network phenomena. While developing sharp
concentration results for sparse random graphs with dependent edges would doubtless be an
important contribution to the literature, it is beyond the scope of our paper.

In short, the sharpest results can be obtained when edges within and between blocks are inde-
pendent (e.g., [3,7–9,12,15,21,32,39,44,47,52,53,74,75]), but those results come at a cost: the
assumption that edges are independent within and between blocks may be violated in applica-
tions, because network data are dependent data (e.g., [24,42,68]). We remove the assumption that
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edges are independent within blocks. It comes at the cost of less sharp results, but the benefit is
that exponential families with local dependence can capture many features of random graphs that
induce dependence among edges within blocks, including – but not limited to – transitivity, as
explained in Section 2.4.

4. Simulation results

To demonstrate that the block structure can be recovered in practice, we simulate data from
exponential families with block-dependent edge and transitive edge terms as described in Sec-
tion 2.1. To estimate the block structure, note that (restricted) maximum likelihood estimators
are intractable, because maximization over (as many as) exp(n logK) possible partitions of a set
of n nodes into K blocks is infeasible unless n is small. The same issue arises in stochastic block
models, despite the simplifying assumption that edges are independent conditional on the block
structure: see, e.g., Choi et al. [15] and Rohe et al. [53]. Both of these papers are concerned with
theoretical results for (restricted) maximum likelihood estimators, but base simulation results
on approximate methods, because (restricted) maximum likelihood estimators are intractable:
Choi et al. [15] use Markov chain Monte Carlo methods, whereas Rohe et al. [53] use pseu-
dolikelihood methods. We likewise have to resort to approximate methods, and use Bayesian
auxiliary-variable methods for exponential families with local dependence [56], as implemented
in R package hergm [58].

We consider networks with n = 50, n = 75, and n = 100 nodes and K = 5 blocks A1, . . . ,AK

of equal size. The data-generating natural parameters are given by

η1,k,l = − log

(
n − min(Ak,Al )

3
− 1

)
, k < l = 1, . . . ,K,

η1,k,k = −1, η2,k,k = 1, k = 1, . . . ,K,

(4.1)

where the between-block natural parameters η1,k,l have been chosen to ensure that, for each node,
the expected number of edges between blocks is 3. To deal with the so-called label-switching
problem of Bayesian Markov chain Monte Carlo methods – which arises from the invariance of
the likelihood function to the labeling of blocks – we follow the Bayesian decision-theoretic
approach of [64] and estimate block memberships by assigning each node to its maximum-
posterior-probability block [56,58].

Figure 1 shows the fraction of misclassified nodes in terms of the normalized minimum
Hamming distance δ(z�, ẑ)/n = minπ

∑n
i=1 1z�

i 
=π(ẑi )/n based on 100 simulated data sets with
n = 50, n = 75, and n = 100 nodes and K = 5 blocks of equal size; note that Bayesian methods
are too time-consuming to be applied to more than 100 simulated data sets. Figure 1 suggests
that the fraction of misclassified nodes is small in most data sets and decreases as the number of
nodes increases from n = 50 to n = 100 and hence the sizes of the blocks increase from 10 to 20.
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Figure 1. Fraction of misclassified nodes based on 100 simulated data sets with n = 50, n = 75, and
n = 100 nodes and K = 5 blocks of equal size, where the model is estimated by Bayesian methods.

5. Proofs of main consistency results

We prove the main consistency results, Proposition 1 and Theorem 1. To prove them, we need
two additional lemmas, Lemmas 2 and 3. The proofs of Lemmas 1, 2, and 3 are delegated to the
supplementary materials along with the proofs of Corollaries 1 and 2.

To state Lemmas 2 and 3, note that the data-generating natural parameter vector η� ∈ � ⊆
int(N) is in the interior int(N) of the natural parameter space N. Therefore, the expectation
E s(X) exists and is finite ([11], Theorem 2.2, pages 34–35) and so does the expectation
E�(θ ,z; s(X)) = �(θ ,z;E s(X)). Let

X(α) = {
x ∈ X : ∣∣�(θ�,z�; s(x)

) − �
(
θ�,z�;μ�

)∣∣ < α
∣∣�(θ�,z�;μ�

)∣∣} (5.1)

be the subset of x ∈ X such that s(x) ∈ M(α), where α > 0 is identical to the constant α used in
the construction of the subset M(α) of the mean-value parameter space M.

Lemma 2 shows that the event X ∈ X(α) occurs with high probability provided that the num-
ber of nodes n is sufficiently large and hence all probability statements in Proposition 1 and
Theorem 1 can be restricted to the high-probability subset X(α) of X.

Lemma 2. Suppose that an observation of a random graph is generated by an exponential family
with local dependence and countable support X satisfying condition [C.4] along with assumption
(3.9). Then there exist C > 0 and n0 > 0 such that, for all n > n0,

P
(
X ∈X(α)

) ≥ 1 − 2 exp
(−α2Cn logn

)
, (5.2)

where α > 0 is identical to the constant α used in the construction of the subset M(α) of the
mean-value parameter space M.
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Lemma 3 shows that in the event X ∈ X(α) the restricted maximum likelihood estimator (̂θ , ẑ)

exists, which implies that the restricted maximum likelihood estimator (̂θ , ẑ) exists with high
probability by Lemma 2.

Lemma 3. Suppose that an observation of a random graph is generated by an exponential family
with local dependence and countable support X satisfying conditions [C.2] and [C.4] along with
assumption (3.9). Then the following statements hold:

(a) For all x ∈X(α), the restricted maximum likelihood estimator (̂θ , ẑ) exists;
(b) There exist C > 0 and n0 > 0 such that, for all n > n0, the restricted maximum likelihood

estimator (̂θ , ẑ) exists with at least probability 1 − 2 exp(−α2Cn logn);

where α > 0 is identical to the constant α used in the construction of the subset M(α) of the
mean-value parameter space M.

Armed with Lemmas 2 and 3, we can prove Proposition 1 and Theorem 1.

Proof of Proposition 1. Throughout, to ease the presentation, we use the short-hand expression

u(n) = ∣∣�(θ�,z�;μ�
)∣∣. (5.3)

By Lemma 2, there exist C0 > 0 and n0 > 0 such that, for all n > n0,

P
(
X \X(α)

) ≤ 2 exp
(−α2C0 n logn

)
. (5.4)

Thus, all following arguments can be restricted to the high-probability subset X(α) of X. It is
therefore convenient to bound the probability of the event KL(θ�,z�; θ̂, ẑ) ≥ εu(n) by using a
divide- and conquer strategy based on the inequality

P
(
KL

(
θ�,z�; θ̂ , ẑ

) ≥ εu(n)
)

≤ P
(
KL

(
θ�,z�; θ̂, ẑ

) ≥ εu(n) ∩X(α)
) + P

(
X \X(α)

)
. (5.5)

The advantage of doing so is that we can confine attention to observations s(x) ∈ M(α) that
fall into well-behaved subsets M(α) of the mean-value parameter space M satisfying conditions
[C.2] and [C.3]. Observe that conditions [C.2] and [C.3] are assumed to hold on M(α), but need
not hold on M \M(α).

To bound the probability of event KL(θ�,z�; θ̂ , ẑ) ≥ εu(n)∩X(α), note that, for any x ∈X(α),
the restricted maximum likelihood estimator (̂θ , ẑ) exists by Lemma 3 and

KL
(
θ�,z�; θ̂, ẑ

) = �
(
θ�,z�;μ�

) − �
(̂
θ , ẑ;μ�

) ≥ 0. (5.6)

Since (̂θ , ẑ) ∈ �0 ×Z0 maximizes �(θ ,z; s(x)) and (θ�,z�) ∈ �0 ×Z0, we have

�
(
θ�,z�;μ�

) + [
�
(
θ�,z�; s(x)

) − �
(
θ�,z�;μ�

)]
≤ �

(̂
θ , ẑ;μ�

) + [
�
(̂
θ , ẑ; s(x)

) − �
(̂
θ , ẑ;μ�

)]
(5.7)
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and hence KL(θ�,z�; θ̂ , ẑ) can be bounded above as follows:

�
(
θ�,z�;μ�

) − �
(̂
θ , ẑ;μ�

) ≤ 2 max
z∈Z0

sup
θ∈�0

∣∣�(θ ,z; s(x)
) − �

(
θ,z;μ�

)∣∣. (5.8)

Choose any ρ > 0 satisfying 0 < ρ < ε/(12A1), where A1 > 0 is equal to the constant A1 >

0 in condition [C.3]. By condition [C.5], there exist A,B,C > 0 such that the dim(θ) ≤ An-
dimensional parameter space �0 ⊆ � can be covered by exp(Cn) closed balls with centers
θ ∈ � and radius B > 0. Each of the exp(Cn) balls with radius B > 0 can be covered by(

4B + ρ

ρ

)dim(θ)

(5.9)

balls B(θ , ρ) with centers θ ∈ � and radius ρ > 0. Therefore, �0 ⊆ ⋃
1≤q≤Q B(θq, ρ) can be

covered by Q balls B(θq, ρ) with centers θq ∈ � and radius ρ > 0, where Q is bounded above
by

Q ≤ exp

(
A log

(
4B + ρ

ρ

)
n + Cn

)
. (5.10)

As a result, we can write

�
(
θ�,z�;μ�

) − �
(̂
θ, ẑ;μ�

) ≤ 2 max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣�(θ ,z; s(x)
) − �

(
θ ,z;μ�

)∣∣. (5.11)

Collecting terms shows that

P
(
KL

(
θ�,z�; θ̂, ẑ

) ≥ εu(n) ∩X(α)
)

= P
(
�
(
θ�,z�;μ�

) − �
(̂
θ , ẑ;μ�

) ≥ εu(n) ∩X(α)
)

≤ P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣�(θ ,z; s(X)
) − �

(
θ ,z;μ�

)∣∣ ≥ εu(n)

2
∩X(α)

)
. (5.12)

To bound the probability of the max-sup of deviations of the form |�(θ ,z; s(X)) − �(θ ,z;μ�)|,
observe that, for any x ∈X(α), the deviation reduces to∣∣�(θ,z; s(x)

) − �
(
θ ,z;μ�

)∣∣ = ∣∣〈η(θ ,z), s(x)
〉 − 〈

η(θ ,z),μ�
〉∣∣, (5.13)

because ψ(η(θ ,z)) cancels. Consider any z ∈ Z0 and any of the Q balls B(θq, ρ) that make up
the cover

⋃
1≤q≤Q B(θq, ρ) of �0. Let

θ̇q(z) = arg max
θ∈clB(θq ,ρ)

�
(
θ ,z;μ�

)
, (5.14)

where the subscript q is added to indicate the closed ball clB(θq, ρ) that contains θ̇q(z). Observe
that, for any z ∈ Z0, �(θ ,z;μ�) is upper semicontinuous on clB(θq, ρ) by condition [C.2] and
hence assumes a maximum on clB(θq, ρ). Thus, for any z ∈ Z0, the maximizer θ̇q(z) exists and



1226 M. Schweinberger

is unique by condition [C.1] and the assumption that the exponential family is minimal, which
can be assumed without loss ([11], Theorem 1.9, page 13). The triangle inequality shows that,
for any x ∈X(α), any z ∈ Z0, any θ ∈ clB(θq, ρ), and any θ̇q(z) ∈ clB(θq, ρ),∣∣�(θ ,z; s(x)

) − �
(
θ ,z;μ�

)∣∣ = ∣∣〈η(θ ,z), s(x)
〉 − 〈

η(θ ,z),μ�
〉∣∣

≤ ∣∣〈η(θ ,z), s(x)
〉 − 〈

η
(
θ̇q(z),z

)
, s(x)

〉∣∣
+ ∣∣〈η(

θ̇q(z),z
)
, s(x)

〉 − 〈
η
(
θ̇q(z),z

)
,μ�

〉∣∣
+ ∣∣〈η(

θ̇q(z),z
)
,μ�

〉 − 〈
η(θ ,z),μ�

〉∣∣. (5.15)

A union bound over the three terms on the right-hand side of the inequality above shows that

P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣�(θ ,z; s(X)
) − �

(
θ,z;μ�

)∣∣ ≥ εu(n)

2
∩X(α)

)

≤ P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(θ ,z) − η
(
θ̇q(z),z

)
, s(X)

〉∣∣ ≥ εu(n)

6
∩X(α)

)

+ P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6
∩X(α)

)

+ P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

) − η(θ ,z),μ�
〉∣∣ ≥ εu(n)

6
∩X(α)

)
. (5.16)

We bound the last three terms on the right-hand side of the inequality above one by one.
First term. The first term can be bounded by using condition [C.3], which implies that there

exist A1 > 0 and n1 > 0 such that, for any n > n1, any x ∈ X(α), any z ∈ Z0, any θ ∈ clB(θq, ρ),
and any θ̇q(z) ∈ clB(θq, ρ),

∣∣〈η(θ ,z) − η
(
θ̇q(z),z

)
, s(x)

〉∣∣ ≤ A1
∥∥θ − θ̇q(z)

∥∥
2 u(n). (5.17)

Since both θ and θ̇q(z) are contained in the ball clB(θq, ρ), an application of the triangle in-
equality shows that

A1
∥∥θ − θ̇q(z)

∥∥
2 u(n) ≤ A1 2ρ u(n) <

εu(n)

6
, (5.18)

where we used the fact that ρ > 0 satisfies 0 < ρ < ε/(12A1) by construction. As a result, for all
n > n1, we have

P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(θ ,z) − η
(
θ̇q(z),z

)
, s(X)

〉∣∣ ≥ εu(n)

6
∩X(α)

)
= 0. (5.19)
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Second term. We are interested in bounding the probability of deviations of the form
|〈η(θ̇q(z),z), s(X) − μ�〉|. We make two observations. First, observe that, for any x ∈X(α),

max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

)
, s(x) − μ�

〉∣∣
= max

z∈Z0

max
1≤q≤Q

∣∣〈η(
θ̇q(z),z

)
, s(x) − μ�

〉∣∣, (5.20)

which implies that

P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6
∩X(α)

)

= P

(
max
z∈Z0

max
1≤q≤Q

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6
∩X(α)

)
. (5.21)

Second, bounding the probability of deviations of the form |〈η(θ̇q(z),z), s(X) − μ�〉| is equiva-
lent to bounding the probability of deviations of the form |f (X) −Ef (X)|, where

f (X) = 〈
η
(
θ̇q(z),z

)
, s(X)

〉
, Ef (X) = 〈

η
(
θ̇q(z),z

)
,μ�

〉
. (5.22)

Here, f : X �→ R is considered as a function of X for fixed (θ̇q(z),z) ∈ �0 × Z0. To bound
the probability of deviations of the form |f (X) −Ef (X)|, observe that by condition [C.4] there
exist A2 > 0 and n2 > 0 such that, for all n > n2, the Lipschitz coefficient of f (X) satisfies
‖f ‖Lip ≤ A2 L. Thus, by applying Lemma 1 to deviations of size t = εu(n)/6 along with a union
bound over the |Z0| block structures and all Q balls that make up the cover

⋃
1≤q≤Q B(θq, ρ) of

�0, there exists C1 > 0 such that, for all ε > 0 and all n > n2,

P

(
max
z∈Z0

max
1≤q≤Q

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6
∩X(α)

)
≤ P

(
max
z∈Z0

max
1≤q≤Q

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6

)

≤ 2 exp

(
− ε2u(n)2

36C1n2‖A‖4∞L2
+ log |Z0| + logQ

)
. (5.23)

To bound the exponential term, observe that by assumption (3.9) of Proposition 1 there exists,
for all M > 0, however large, n3 > 0 such that, for all n > n3,

u(n) ≥ Mn3/2‖A‖2∞L
√

logn. (5.24)

Therefore, for all n > n3, the three terms in the exponent are bounded above by

− ε2u(n)2

36C1n2‖A‖4∞L2
+ log |Z0| + logQ

≤ − ε2u(n)2

36C1n2‖A‖4∞L2
+

[
1 + A log

(
4B + ρ

ρ

)
+ C

]
n logn, (5.25)
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where we used log |Z0| ≤ n logK and logQ ≤ (A log(4B + ρ)/ρ + C)n by (5.10). Since M > 0
can be chosen as large as desired, we can choose

M >

√
36C1C2

[
1 + A log

(
4B + ρ

ρ

)
+ C

]
, (5.26)

where C2 > 0 is chosen so that C2ε
2 > 1. Hence there exists C3 > 0 such that, for all n > n3,

− ε2u(n)2

36C1n2‖A‖4∞L2
+

[
1 + A log

(
4B + ρ

ρ

)
+ C

]
n logn ≤ −ε2C3 n logn. (5.27)

Collecting terms shows that, for all n > n3,

P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

)
, s(X) − μ�

〉∣∣ ≥ εu(n)

6
∩X(α)

)
≤ 2 exp

(−ε2C3 n logn
)
. (5.28)

Third term. The third term can be bounded along the same lines as the first term, which implies
that there exists n4 > 0 such that, for all n > n4,

P

(
max
z∈Z0

max
1≤q≤Q

sup
θ∈B(θq ,ρ)

∣∣〈η(
θ̇q(z),z

) − η(θ ,z),μ�
〉∣∣ ≥ εu(n)

6
∩X(α)

)
= 0. (5.29)

Conclusion. Using (5.5) and collecting terms shows that there exists C > 0 such that, for all
ε > 0 and all n > max(n0, n1, n2, n3, n4),

P
(
KL

(
θ�,z�; θ̂ , ẑ

) ≥ εu(n)
) ≤ 2 exp

(−α2C0 n logn
) + 2 exp

(−ε2C3 n logn
)

≤ 4 exp
(−min

(
α2, ε2)C n logn

)
. (5.30)

�

Proof of Theorem 1. By assumption (3.11) of Theorem 1, there exist C1 > 0 and n1 > 0 such
that, for all n > n1,

KL
(
θ�,z�; θ̂, ẑ

) ≥ δ(z�, ẑ)C1 |�(θ�,z�;μ�)|
n

(5.31)

provided (̂θ , ẑ) exists. By Proposition 1, there exist C2 > 0 and n2 > 0 such that, for all ε > 0
and all n > n2, the event

KL
(
θ�,z�; θ̂ , ẑ

)
< εC1

∣∣�(θ�,z�;μ�
)∣∣ (5.32)

occurs with at least probability

1 − 4 exp
(−min

(
α2, ε2)C2 n logn

)
. (5.33)
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Therefore, for all ε > 0 and all n > max(n1, n2), with at least probability (5.33), we observe the
event

δ(z�, ẑ)C1 |�(θ�,z�;μ�)|
n

≤ KL
(
θ�,z�; θ̂, ẑ

)
< ε C1

∣∣�(θ�,z�;μ�
)∣∣,

that is, the event δ(z�, ẑ)/n < ε. �

6. Discussion

Here, and elsewhere [59], we have taken first steps to demonstrate that additional structure in
the form of block structure facilitates statistical inference for exponential-family random graph
models. It goes without saying that numerous open problems remain, ranging from probabilistic
problems (e.g., understanding properties of probability models) and statistical problems (e.g., un-
derstanding properties of statistical methods) to computational problems (e.g., the development
of computational methods for large networks).

One important problem is that the restricted maximum likelihood estimator considered here is
even less tractable than (restricted) maximum likelihood estimators for stochastic block models
[15,53]. The intractability stems in part from the fact that the block structure is unknown and
the number of possible block structures is large and in part from the fact that the likelihood
function is intractable even when the block structure is known, owing to the complex dependence
within blocks. There do exist Bayesian auxiliary-variable methods for small networks [56,58] and
promising directions for methods for large networks [4,67]. As pointed out in the introduction, an
in depth investigation of all of these models and methods is beyond the scope of a single paper.
However, the main consistency results reported here suggest that statistical inference for these
models and methods is possible and worth exploring in more depth.
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