
Bernoulli 26(2), 2020, 1139–1170
https://doi.org/10.3150/19-BEJ1144

Robust regression via mutivariate regression
depth
CHAO GAO

Department of Statistics, University of Chicago, Chicago, IL 60637, USA.
E-mail: chaogao@galton.uchicago.edu

This paper studies robust regression in the settings of Huber’s ε-contamination models. We consider estima-
tors that are maximizers of multivariate regression depth functions. These estimators are shown to achieve
minimax rates in the settings of ε-contamination models for various regression problems including nonpara-
metric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion
of depth function for linear operators that has potential applications in robust functional linear regression.
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1. Introduction

Regression is probably one of the most important subjects in statistics. The goal is to learn the
conditional mean or median of a response Y ∈ R

m given a covariate X ∈ R
p . Its form ranges

from classical low-dimensional linear regression to modern nonparametric and high-dimensional
models. In this paper, we study robust regression in the setting of Huber’s ε-contamination model
(Huber [15]). Namely, consider i.i.d. observations

(X1, Y1), . . . , (Xn,Yn) ∼ (1 − ε)PB + εQ. (1)

The distribution PB models the relation between X and Y via the regression parameter B , and Q

is an unknown contamination distribution. We need to learn the regression parameter B . In this
setting, there are approximately εn observations sampled from Q that do not carry any informa-
tion about B . Since we do not know which observation is contaminated or not, a procedure to
recover B must be robust. To be specific, this paper covers the following list of robust regression
problems:

1. Nonparametric regression. The relation between x and y is characterized by y|x ∼
N(f (x),1) with some nonparametric function f . The goal is to estimate f using data
sampled from (1 − ε)Pf + εQ.

2. Sparse linear regression. For a scalar response y and a vector covariate X, a linear model
is specified by y|X ∼ N(βT X,σ 2), with some regression vector β assumed to be sparse.
The goal is to estimate β with samples from (1 − ε)Pβ + εQ.

3. Gaussian graphical model. In this setting, we observe i.i.d. samples from (1 − ε)N(0,

�−1) + εQ. The goal is to estimate the sparse precision matrix �. The sparsity pattern of
� characterizes the graphical model of conditional dependence. The Gaussian graphical
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model is closely related and can be solved by sparse linear regression (Meinshausen and
Bühlmann [25]).

4. Low-rank trace regression. For a scalar response y and a matrix covariate X, a linear model
is specified by y|X ∼ N(Tr(BT X),σ 2). The regression matrix B is assumed to be low-rank,
and the goal is to estimate it with samples from (1 − ε)PB + εQ.

5. Multivariate linear regression. In this setting, the response is also multivariate. The linear
model is specified by Y |X ∼ N(BT X,σ 2Im). The problem is also termed as multi-task
learning. We will show that even there is no relation between the m univariate linear models,
estimation of the m columns of B must be done in a joint fashion once the samples are from
(1 − ε)PB + εQ.

6. Multivariate linear regression with group sparsity. We consider the same model in the last
item, and assume that only a subset of the rows of the regression matrix B are nonzero.

7. Reduced rank regression. In the same setting of multivariate linear regression, we further
assume the regression matrix B is low-rank.

Though the seven problems listed are very different, and the regression parameter we want
to recover can be a vector, a matrix or even a function, we consider a unified robust estimation
procedure in this paper. In the setting of multivariate linear regression, we use P to denote the
joint distribution of X ∈ R

p and Y ∈ R
m. The multivariate regression depth of B ∈ R

p×m is
defined as

DU (B,P) = inf
U∈U

P
{〈

UT X,Y − BT X
〉 ≥ 0

}
, (2)

for some subset U ⊂ R
p×m\{0}. The definition of multivariate regression depth in the form of

(2) first appeared in Mizera [26]. A very similar but earlier definition was proposed in Bern and
Eppstein [3]. When m = 1, this is reduced to the univariate regression depth in Rousseeuw and
Hubert [30]. When observations are sampled from (1), a robust estimator for B is defined as
the maximizer of the empirical depth function. That is, B̂ = argmaxB∈BDU (B,Pn), where Pn

is the empirical measure of (1). With various choices of B and U , we are able to estimate the
regression parameters of all the seven problems listed above. The error rates are proved to be
minimax optimal under the ε-contamination model.

The ε-contamination model was first proposed by Peter Huber [15]. Its properties have been
studied by Huber [16], Huber and Strassen [18], Bickel [4], Donoho and Montanari [13] among
others. Most early works studied Q with some assumptions. Some recent papers considered the
ε-contamination model with Q allowed to be any distribution. To be specific, Chen et al. [7,8]
showed that the minimax rate of recovering a parameter under the ε-contamination model takes
a unified formula R(ε) �R(0) ∨ ω(ε,�,L). In other words, the minimax rate is determined by
two terms. The first term R(0) is the minimax rate without contamination, and ω(ε,�,L) is an
extra term caused by contamination, where ε is the contamination proportion, � is the parameter
space, and L is the loss function of the problem. Despite the progress of fundamental limits,
efficient algorithms of estimation in ε-contamination models are usually very hard to find. Two
recent papers Lai et al. [21], Diakonikolas et al. [10] proposed efficient algorithms based on the
idea of “higher moment certificate” for robust mean estimation. The idea was later extended by
Diakonikolas et al. [11], Balakrishnan et al. [2] for robust regression. These results can achieve
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near-optimal minimax rates under the contamination model in some special cases. Given the gen-
eral hardness of computational issues, we will study computationally efficient robust regression
algorithms under ε-contamination models in a separate paper.

Robust regression is a popular subject in statistics. However, most papers studied robust re-
gression without considering an ε fraction of contamination (Huber [17], Siegel [32], Rousseeuw
and Yohai [29], Leroy and Rousseeuw [31], Fan et al. [37]). The paper Loh and Tan [22] consid-
ered contamination, but in a different form from (1). Thus, the performance of many proposed
procedures in the literature have not been tested under (1). An example in Chen et al. [8] shows
that even procedures with high breakdown points may not achieve the optimal rate of the ε-
contamination model. Conversely, Chen et al. [8] also shows that a good performance under the
ε-contamination model must imply a high breakdown point. This serves as the main motivation
to study robust regression using ε-contamination models. Though sparse linear regression and
low-rank trace regression have already been studied in Chen et al. [7] under the ε-contamination
model, the proposed procedure of Chen et al. [7] is based on robust testing and thus requires the
assumption that the regression vector or matrix must have bounded �2 or Frobenius norm. In con-
trast, the estimator obtained by maximizing the regression depth does not require this assumption
to achieve rate-optimality.

The rest of the paper is organized as follows. Section 2 reviews the definition and properties
of the multivariate regression depth function. The applications in robust regression with one
response variable are studied in Section 3. The applications in multivariate robust regression are
studied in Section 4. Section 5 discusses some extensions of the results for elliptical distributions.
A general notion of regression depth for learning linear operators is also discussed in that section.
All technical proofs are given in Section 6.

We close this section by introducing the notation used in the paper. For a, b ∈ R, let a ∨ b =
max(a, b) and a ∧ b = min(a, b). For an integer m, [m] denotes the set {1,2, . . . ,m}. Given a
set S, |S| denotes its cardinality, and IS is the associated indicator function. For two positive
sequences {an} and {bn}, the relation an � bn means that an ≤ Cbn for some constant C > 0,
and an � bn if both an � bn and bn � an hold. For a vector v ∈ R

p , ‖v‖ denotes the �2 norm,
‖v‖1 the �1 norm and supp(v) = {j ∈ [p] : vj �= 0} is its support. For a matrix A ∈ R

d1×d2 ,
rank(A) denotes its rank, vec(A) is its vectorization, ‖A‖F = ‖vec(A)‖ is the matrix Frobenius
norm, ‖A‖�1 = max1≤j≤d2

∑d1
i=1 |Aij | is the matrix �1 norm, and the nuclear norm ‖A‖N is its

largest singular value. When A is an squared matrix, Tr(A) denotes its trace. For two matrices
A,B ∈ R

d1×d2 , their trace inner product is 〈A,B〉 = Tr(ABT ). For two probability distributions
P1 and P2, their total variation distance is TV(P1,P2) = supB |P1(B) − P2(B)|. We use P and
E to denote generic probability and expectation whose distribution is determined from the con-
text.

2. The multivariate regression depth

For a joint probability distribution P of X ∈ R
p and Y ∈ R

m, the multivariate regression depth
of B ∈ R

p×m is defined in (2). Even for m independent univariate regression problems, the
multivariate regression depth treats the m regression problems in a joint way. Later, we will see
this is essential to achieve optimal rates in Huber’s ε-contamination models.
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The multivariate regression depth function is a special case of tangent depth defined by Mizera
[26]. A very closely related definition was considered in Bern and Eppstein [3]. Many important
properties of the multivariate regression depth are discussed in Mizera [26]. For example, it is
invariant with respect to linear transformations when U = R

p×m\{0} in the sense that for any
invertible G ∈R

p×p and H ∈R
m×m,

DU
(
B,L(X,Y )

) = DU
(
G−1BHT ,L(GX,HY)

)
,

where L(·) denotes the law. We refer the readers to Mizera [26], Bern and Eppstein [3],
Rousseeuw and Hubert [30], Struyf and Rousseeuw [33], Amenta et al. [1] for other important
properties.

The general multivariate regression depth function covers some important cases. When m = 1,
it is Rousseeuw and Hubert’s univariate regression depth (Rousseeuw and Hubert [30]),

DU (β,P) = inf
u∈U

P
{
uT X

(
y − XT β

) ≥ 0
}
. (3)

When p = 1 and the covariate is 1, it is Tukey’s half-space depth (Tukey [35]) for multivariate
location estimation,

DU (θ,P) = inf
u∈U

P
{
uT (Y − θ) ≥ 0

}
. (4)

The error rate of maximizing Tukey’s depth under the ε-contamination model was studied by
Chen et al. [7]. Our main results for multivariate regression not only cover univariate regression
depth, but also reproduce the result of Chen et al. [7] for Tukey’s depth.

Section 3 and Section 4 study the error rates of the estimator

B̂ = argmax
B∈B

DU (B,Pn) (5)

for univariate and multivariate regression, respectively. To benchmark our main results, we need
to introduce the general minimax lower bound for ε-contamination models obtained by Chen
et al. [8].

Theorem 2.1 (Chen et al. [8]). Given a statistical experiment {Pθ : θ ∈ �} and a loss function
L(·, ·), define

ω(ε,�,L) = sup
{
L(θ1, θ2) : TV(Pθ1 ,Pθ2) ≤ ε/(1 − ε); θ1, θ2 ∈ �

}
.

Suppose there is some R(0) such that

inf
θ̂

sup
θ∈�,Q

P(ε,θ,Q)

{
L(θ̂, θ) ≥R(ε)

} ≥ c (6)

holds for ε = 0. Then, (6) also holds for any ε ∈ (0,1) with R(ε) �R(0)∨ω(ε,�). The notation
P(ε,θ,Q) stands for (1 − ε)Pθ + εQ.
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Theorem 2.1 gives a general minimax lower bound for parameter estimation in the settings of
ε-contamination models. The quantity ω(ε,�,L) is called modulus of continuity (Donoho and
Liu [12]), which characterizes the ability of a loss function L(·, ·) to distinguish between two
parameters whose corresponding probability distributions are ε/(1 − ε) close in total variation
distance. The rate R(ε) � R(0) ∨ ω(ε,�,L) is the best possible one that can be achieved by
any procedure. For many loss functions, ω(ε,�,L) is at the order of ε2. We will show that the
estimator induced by the multivariate depth function is able to achieve the rate R(ε) � R(0) ∨
ω(ε,�,L) for all the seven regression problems considered in the paper.

3. Applications of regression depth

3.1. Nonparametric regression

Consider the nonparametric regression model y = f (x) + z. To be specific, we use the dis-
tribution Pf to denote the sampling process that first sample x ∼ Unif[0,1] and then sample
y|x ∼ N(f (x),1). The regression function admits the expansion f (x) = ∑∞

j=1 βjφj (x), where

{φj }∞j=1 is the Fourier basis on L2[0,1]. We assume the true regression function belongs to the
following Sobolev ball:

Sα(M) =
{

f =
∞∑

j=1

βjφj :
∞∑

j=1

j2αβ2
j ≤ M2

}
.

The smoothness parameter α > 0 and radius M > 0 are assumed as constants throughout the
section.

Define the vector of infinite size X = {φj (x)}j∈[∞] ∈ R
∞. Then, the model becomes y =

βT X + z. Recovery of f is equivalent to recovery of β ∈R
∞. Define

Uk = {
u ∈ R

∞\{0} : uj = 0 for all j > k
}
.

We use the univariate regression depth (3) to estimate the Fourier coefficients β by

β̂ = argmax
β∈Uk

DUk

(
β,

{
(Xi, yi)

}n

i=1

)
. (7)

To be specific, the empirical regression depth for this problem is

DUk

(
β,

{
(Xi, yi)

}n

i=1

) = inf
u∈Uk

1

n

n∑
i=1

I

{( ∞∑
j=1

ujφj (xi)

)(
yi −

∞∑
j=1

βjφj (xi)

)
≥ 0

}
.

Since the regression function is in the space Sα(M), we expect that βj ’s are negligible for high
frequencies, and thus the regression depth does not need to involve frequencies after some level k.

We first give a result for the uniform convergence of the empirical regression depth.
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Proposition 3.1. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
β∈Uk

∣∣DUk
(β,Pn) −DUk

(β,P)
∣∣ ≤ C

√
k

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.

Using this result, we can study the convergence rate of the estimator (7) in the setting of the
ε-contamination model. Namely, consider i.i.d. observations from P(ε,f,Q) = (1 − ε)Pf + εQ.

Theorem 3.1. Consider the estimator f̂ = ∑
j β̂j φj with k = �n 1

2α+1 �. Assume that ε2 +n− 2α
2α+1

is sufficiently small. Then, we have

‖f̂ − f ‖2 =
∫ 1

0

(
f̂ (x) − f (x)

)2
dx ≤ C

(
n− 2α

2α+1 ∨ ε2),
with P(ε,f,Q)-probability at least 1 − exp(−C′(n

1
2α+1 + nε2)) uniformly over all Q and f ∈

Sα(M), where C, C′ are some absolute constants.

The rate consists of two terms. The first term n− 2α
2α+1 is the classical minimax rate for nonpara-

metric function estimation in the space Sα(M). See Tsybakov [34], Johnstone [19] for details.
The second term ε2 characterizes the influence of contamination. It is not hard to check that the
modulus of continuity for the loss ‖ · ‖2 is of order ε2. Thus, the rate n− 2α

2α+1 ∨ ε2 is minimax
optimal by Theorem 2.1.

Given that the minimax rate is n− 2α
2α+1 ∨ ε2, a necessary and sufficient condition to achieve the

rate n− 2α
2α+1 as if there is no contamination is ε � n− α

2α+1 . Hence, in order to achieve the minimax

rate for ε = 0, a rate-optimal robust estimator can tolerate at most nε � n
α+1
2α+1 contaminated

observations. The number n− α
2α+1 can be interpreted as the order of the minimax-rate breakdown

point, because the minimax rate will change from n− 2α
2α+1 to ε2 as soon as ε � n− α

2α+1 . It is
interesting to note that a larger α implies a smaller order of n− α

2α+1 .

3.2. Sparse linear regression

Consider the sparse linear regression model, where the response and covariate are linked by the
equation y = βT X + σz. The regression vector β is assumed to belong to the sparse set:

�s =
{

β ∈R
p\{0} :

p∑
j=1

I{βj �= 0} ≤ s

}
. (8)

The joint distribution (X,y) ∼ Pβ is specified by the sampling process X ∼ N(0,
) and y|X ∼
N(βT X,σ 2). For simplicity of notation, we suppress the dependence on 
 and σ 2 for Pβ .
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Using the univariate regression depth function (3), we define a sparse estimator by

β̂ = argmax
β∈�s

D�2s

(
β,

{
(Xi, yi)

}n

i=1

)
. (9)

We take advantage of the sparsity of the problem by setting U = �2s and B = �s in (5). For this
sparse regression depth, its uniform convergence property is given by the following proposition.

Proposition 3.2. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
β∈�s

∣∣D�2s
(β,Pn) −D�2s

(β,P)
∣∣ ≤ C

√
s log(

ep
s

)

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.

Before giving the convergence rate of (9), we need to define the following quantity:

κ = inf| supp(v)|=2s

‖
1/2v‖
‖v‖ .

This is called restricted eigenvalue in sparse linear regression literature. Now we are ready for
the main results. Consider i.i.d. observations from P(ε,β,Q) = (1 − ε)Pβ + εQ.

Theorem 3.2. Consider the estimator β̂ . Assume that ε2 + s log(
ep
s

)

n
is sufficiently small. Then,

we have

‖β̂ − β‖2

 = ∥∥
1/2(β̂ − β)

∥∥2 ≤ Cσ 2
(

s log(
ep
s

)

n
∨ ε2

)
, (10)

‖β̂ − β‖2 ≤ C
σ 2

κ2

(
s log(

ep
s

)

n
∨ ε2

)
, (11)

‖β̂ − β‖2
1 ≤ C

σ 2

κ2

(
s2 log(

ep
s

)

n
∨ sε2

)
, (12)

with P(ε,β,Q)-probability at least 1 − exp(−C′(s log(
ep
s

) + nε2)) uniformly over all Q and β ∈
�s , where C, C′ are some absolute constants.

The rates are given in prediction loss, squared �2 loss and squared �1 loss, respectively. The
rate for the prediction loss does not depend on the covariance of the covariates 
. On the other
hand, the rates for the squared �2 loss and the squared �1 loss depend on 
 through a κ−2 factor.

These rates were also obtained by Chen et al. [7] under the ε-contamination model with a
testing-based estimator. However, their results only hold for a subset of �s . In particular, they
need to further impose two extra assumptions that ‖β‖ is bounded by the order of σ/κ and the
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largest 2s-sparse eigenvalue of 
 is at the order of κ . In contrast, Theorem 3.2 removes these
two assumptions and the convergence rates hold uniformly for all β ∈ �s .

When ε = 0, the rates obtained in Theorem 3.2 are all minimax optimal by Ye and Zhang [40],
Raskutti et al. [27], Verzelen [36]. Though most lower bound results in the literature for sparse
linear regression are for fixed design. They can be easily modified into the random design setting
considered here. The details are referred to the related discussion in Raskutti et al. [27], Chen
et al. [7].

For a general ε > 0, it is direct to check that

ω
(
ε,�s,‖ · ‖2




) � σ 2ε2,

ω
(
ε,�s,‖ · ‖2) � σ 2ε2

κ2
,

ω
(
ε,�s,‖ · ‖2

1

) � sσ 2ε2

κ2
.

Thus, by Theorem 2.1, the rates are also minimax optimal for ε > 0.
Theorem 3.2 and the minimax lower bound of the problem shows that the minimax rates are

determined by the trade-off between
s log(

ep
s

)

n
and ε2. When ε2 � s log(

ep
s

)

n
, the term

s log(
ep
s

)

n
dom-

inates, and the minimax rates are the same as those for ε = 0. In this regime, the contamination

has no effect on the minimax rates. Note that ε � s log(
ep
s

)

n
means that a rate-optimal estimator

is able to tolerate at most nε �
√

ns log(
ep
s

) contaminated observations before the minimax rate

is changed. It is interesting that
√

ns log(
ep
s

) is an increasing function of the sparsity level s.

Similar remarks also apply to the other regression problems considered in the paper.

3.3. Gaussian graphical model

In this section, we consider the Gaussian graphical model P� = N(0,�−1). The precision matrix
� belongs to the following sparse class:

Fs(M) =
{

� = �T ∈ R
p×p : M−1 ≤ λmin(�) ≤ λmax(�) ≤ M, max

1≤i≤p

p∑
j=1

I{�ij �= 0} ≤ s

}
.

The notation λmin(·) and λmax(·) stand for the smallest and the largest eigenvalues. This class
was previously considered in Ren et al. [28]. We assume the number M is a constant throughout
this section.

For a random vector X ∼ N(0,�−1), the sparsity pattern of � characterizes the graphical
model of conditional dependence. In particular, �ij = 0 if and only if Xi is independent of Xj

given all remaining variables.
Moreover, there is simple linear model that links Xj and X−j , where we use X−j to denote

the (p − 1)-dimensional subvector of X excluding the j th variable. Define β(j) = −�−1
jj �−j,j ,
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then

Xj = βT
(j)X−j + ξj , (13)

where the noise has distribution ξj ∼ N(0,�−1
jj ) and is independent of X−j . Methods based on

(13) are proposed in the literature to estimate �. See Meinshausen and Bühlmann [25], Yuan
[41] for some examples.

With i.i.d. observations from P(ε,�,Q), we discuss how to explore the linear model (13) to
estimate the precision matrix � in a robust way. For each j ∈ [n], we need to estimate β(j) and
the variance of ξj , which is �−1

jj , respectively. Without loss of generality, assume the sample size
n is even. We split the data into two halves. We use the first half to estimate β(j) by

β̂(j) = argmax
β∈�s

D�2s

(
β,

{
(X−j,i ,Xji)

}n/2
i=1

)
.

The set �s is defined in (8) with the dimension p replaced by p−1. The convergence rate of β̂(j)

is given by Theorem 3.2. We then use the second half of the data together with β̂(j) to estimate
the variance of ξj . For each i = n/2 + 1, . . . , n, define the residue

wji = (
Xji − β̂T

(j)X−j,i

)2
.

Then, we estimate �−1
jj by median absolute deviation,

�̂−1
jj = Median({wji}ni=n/2+1)

[�−1(3/4)]2
,

where �(·) is the cumulative distribution function of N(0,1). The convergence rate of �̂−1
jj is

given by Chen et al. [8].
Now we are ready to define the estimator of the precision matrix � by assembling all pieces.

For the j th column, its j th entry is estimated by �̂jj . The remaining entries are estimated by
�̂−j,j = −�̂jj β̂(j). The convergence rate of the estimator �̂ is given by the following theorem.

Theorem 3.3. Consider the estimator �̂. Assume that ε2 + s log(
ep
s

)

n
is sufficiently small. Then,

we have

‖�̂ − �‖2
�1

≤ C

(
s2 log(

ep
s

)

n
∨ sε2

)
,

with P(ε,�,Q)-probability at least 1 − exp(−C′(s log(
ep
s

) + nε2)) uniformly over all Q and � ∈
Fs(M), where C, C′ are some absolute constants.

Theorem 3.3 gives the error rate of �̂ in terms of squared matrix �1 norm. Note that the
estimator �̂ may not be positive semidefinite. A simple projection step discussed in Yuan [41]
leads to a positive semidefinite estimator with the same error rate.

The minimax lower bound of the problem is given by the following theorem.



1148 C. Gao

Theorem 3.4. Assume p > c1n
β for some constants β > 1 and c1 > 0, and s2(logp)3

n
is suffi-

ciently small. Then,

inf
�̂

sup
�∈Fs (M),Q

P(ε,�,Q)

{
‖�̂ − �‖2

�1
> C

(
s2 logp

n
∨ sε2

)}
≥ c,

for some constants C,c > 0.

Proof. By Theorem 2.1, the minimax lower is in the form of R(0) ∨ ω(ε,Fs(M),‖ · ‖2
�1

). The

first term R(0) has order s2 logp
n

, which was proved in Cai et al. [6]. Direct calculation gives the
order of the second term ω(ε,Fs(M),‖ · ‖2

�1
) � sε2. �

Combining the conclusions of Theorem 3.3 and Theorem 3.4, we conclude that the minimax
rate for estimating � under the squared matrix �1 norm in the setting of ε-contamination model is
s2 logp

n
∨sε2. Moreover, the estimator �̂ based on regression depth is able to achieve the minimax

rate.

3.4. Low-rank trace regression

The goal of trace regression is to recover a low-rank matrix B ∈ R
p1×p2 from noisy linear ob-

servations specified by the model y = Tr(XT B) + σz. We denote by PB the joint distribution of
X ∈ R

p1×p2 and y ∈ R that follows vec(X) ∼ N(0,
) and y|X ∼ N(Tr(XT B),σ 2). Again, the
dependence on 
 and σ 2 is suppressed for the notation PB . The matrix B is assumed to belong
to the following set:

Ar = {
B ∈ R

p1×p2\{0} : rank(B) ≤ r
}
. (14)

The univariate regression depth (3) can be easily adapted to the trace regression problem. That
is,

DU (B,P) = inf
U∈U

P
{〈U,X〉(y − 〈B,X〉) ≥ 0

}
,

where U ⊂R
p1×p2 . We take advantage of the low-rank assumption, and define the estimator by

B̂ = argmax
B∈Ar

DA2r

(
B, {Xi, yi}ni=1

)
. (15)

We first present a uniform convergence result for regression depth with a low-rank structure.

Proposition 3.3. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
B∈Ar

∣∣DA2r
(B,Pn) −DA2r

(B,P)
∣∣ ≤ C

√
r(p1 + p2)

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.
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With the uniform convergence of empirical depth, we can determine the convergence rate of
the estimator (15). To facilitate the presentation, we define the following quantity:

κ = inf
rank(A)=2r

‖
1/2 vec(A)‖
‖A‖F

.

Now, consider i.i.d. observations from P(ε,B,Q) = (1 − ε)PB + εQ.

Theorem 3.5. Consider the estimator B̂ . Assume that ε2 + r(p1+p2)
n

is sufficiently small. Then,
we have ∥∥
1/2(vec(B̂ − B)

)∥∥2 ≤ Cσ 2
(

r(p1 + p2)

n
∨ ε2

)
,

‖B̂ − B‖2
F ≤ C

σ 2

κ2

(
r(p1 + p2)

n
∨ ε2

)
,

‖B̂ − B‖2
N ≤ C

σ 2

κ2

(
r2(p1 + p2)

n
∨ rε2

)
,

with P(ε,B,Q)-probability at least 1 − exp(−C′(r(p1 + p2) + nε2)) uniformly over all Q and
B ∈ Ar , where C, C′ are some absolute constants.

Similar to Theorem 3.2, Theorem 3.5 gives rates for prediction loss, squared Frobenius loss
and squared nuclear loss, respectively. When ε = 0, the three rates are all minimax optimal by
Koltchinskii et al. [20]. To see the optimality for ε > 0, note that

ω
(
ε,Ar ,‖ · ‖2




) � σ 2ε2,

ω
(
ε,Ar ,‖ · ‖2

F

) � σ 2ε2

κ2
,

ω
(
ε,Ar ,‖ · ‖2

N

) � rσ 2ε2

κ2
.

Thus, by Theorem 2.1, the rates are all minimax optimal.
Results in Chen et al. [7] gave the same rate for trace regression in the setting of ε-

contamination model. However, they required extra assumptions such as the boundedness of
‖B‖F and of ‖
‖op. In contrast, Theorem 3.5 achieves the minimax rate of the problem without
these extra assumptions.

4. Applications of multivariate regression depth

4.1. Multivariate linear regression

Starting from this section, we consider regression problems with multiple responses in the setting
of ε-contamination model. Consider the model Y = BT X + σZ, where B ∈ R

p×m. We use PB
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to denote the joint distribution of X ∈ R
p and Y ∈ R

m specified by X ∼ N(0,
) and Y |X ∼
N(BT X,σ 2Im). Again, the dependence on 
 and σ 2 is suppressed for the notation PB . We use
the multivariate regression depth (2) for estimating B . The estimator is defined as

B̂ = argmax
B∈Rp×m

DRp×m\{0}
(
B, {Xi,Yi}ni=1

)
. (16)

Intuitively, the m univariate regression problems are independent, and one can estimate every
column of B separately. The rates are optimal when there is no contamination. However, we will
show that this strategy does not lead to rate optimality in the setting of ε-contamination model.

The uniform convergence of the multivariate regression depth is given by the following propo-
sition.

Proposition 4.1. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
B∈Rp×m

∣∣DRp×m\{0}(B,Pn) −DRp×m\{0}(B,P)
∣∣ ≤ C

√
pm

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.

Then, define the quantity

κ = inf
v �=0

‖
1/2v‖
‖v‖ . (17)

With Proposition 4.1 and the definition of κ , we are ready to present the main result. Consider
i.i.d. observations from P(ε,B,Q) = (1 − ε)PB + εQ.

Theorem 4.1. Consider the estimator B̂ . Assume that ε2 + pm
n

is sufficiently small. Then, we
have

Tr
(
(B̂ − B)T 
(B̂ − B)

) ≤ Cσ 2
(

pm

n
∨ ε2

)
, (18)

‖B̂ − B‖2
F ≤ C

σ 2

κ2

(
pm

n
∨ ε2

)
, (19)

with P(ε,B,Q)-probability at least 1− exp(−C′(pm+nε2)) uniformly over all Q and B ∈ R
p×m,

where C, C′ are some absolute constants.

We first remark that the rates for both prediction loss and squared Frobenius loss are minimax
optimal. This can be easily seen from Theorem 2.1 and classical multivariate regression results
in the literature.

One can also use univariate regression depth to estimate each column of B separately. This

leads to the rates σ 2(
pm
n

∨ (mε2)) and σ 2

κ2 (
pm
n

∨ (mε2)) for the two loss functions, respectively.
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Both rates are clearly sub-optimal because of the extra factor of m before ε2. Therefore, in
the setting of ε-contamination model, even when there is no structural dependence between the
columns of B , the matrix B needs to be estimated jointly.

When p = 1, the multivariate regression depth is closely related to Tukey’s halfspace depth
(4). The rate of convergence of Tukey’s median was studied by Chen et al. [8] in the setting of
ε-contamination model. Theorem 4.1 can be viewed as an extension of their result for p > 1.

4.2. Multivariate linear regression with group sparsity

We extend the multivariate regression problem Y = BT X + σZ to a group sparse setting. The
regression matrix B is assumed to belong to the following space

�s =
{

B ∈ R
p×m\{0} :

p∑
j=1

I{Bj∗ �= 0} ≤ s

}
.

The notation Bj∗ stands for the j th row of the matrix B . We take advantage of the group sparse
structure and define the estimator by

B̂ = argmax
B∈�s

D�2s

(
B,

{
(Xi, Yi)

}n

i=1

)
.

The uniform convergence of the multivariate regression depth with group sparse structure is
given by the following proposition.

Proposition 4.2. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
B∈�s

∣∣D�2s
(B,Pn) −D�2s

(B,P)
∣∣ ≤ C

√
ms + s log(

ep
s

)

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.

Proposition 4.2 is an extension of both Proposition 3.2 and Proposition 4.1. The rate consists
of two parts. The first part ms

n
is determined by the number of parameters. Since there are only

s nonzero rows of B , the number of parameters is ms. The second part
s log(

ep
s

)

n
is determined

by the model selection complexity. Given the sparsity level s, there are
(
p
s

)
possible models with

different row supports. This contributes to the rate n−1 log
(
p
s

) � s log(
ep
s

)

n
.

Define the quantity

κ = inf| supp(v)|=2s

‖
1/2v‖
‖v‖ . (20)

We are now ready to give the main result. Consider i.i.d. observations from P(ε,B,Q) = (1 −
ε)PB + εQ.
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Theorem 4.2. Consider the estimator B̂ . Assume that ε2 + ms+s log(
ep
s

)

n
is sufficiently small.

Then, we have

Tr
(
(B̂ − B)T 
(B̂ − B)

) ≤ Cσ 2
(

ms + s log(
ep
s

)

n
∨ ε2

)
, (21)

‖B̂ − B‖2
F ≤ C

σ 2

κ2

(
ms + s log(

ep
s

)

n
∨ ε2

)
, (22)

with P(ε,B,Q)-probability at least 1 − exp(−C′(ms + s log(
ep
s

)+nε2)) uniformly over all Q and
B ∈ �s , where C, C′ are some absolute constants.

Theorem 4.2 is an extension of both Theorem 3.2 and Theorem 4.1. When m = 1, the problem
is reduced to sparse linear regression, and B̂ in (20) is the same as β̂ in (9). Thus, the rates given
by Theorem 4.2 recovers those of Theorem 3.2. When s = 1, this is the setting of multivariate
linear regression without the group sparse structure, and the rates of Theorem 4.2 recover those
of Theorem 4.1.

The rates given by Theorem 4.2 are minimax optimal by Theorems 2.1 and Lounici et al. [23].

4.3. Reduced rank regression

The final application is for reduced rank regression. In the multivariate linear regression setting
Y = BT X + σZ, the regression matrix B is assumed to be low-rank. In particular, B ∈ Ar ,
where Ar is defined in (14), except that the dimension p1 × p2 is replaced by p × m. Some
recent progresses on this topic were made by Bunea et al. [5], Ma and Sun [24] and references
therein.

Define the estimator by

B̂ = argmax
B∈Ar

DA2r

(
B,

{
(Xi, Yi)

}n

i=1

)
. (23)

We give the uniform convergence of the empirical depth function.

Proposition 4.3. For any probability measure P and its associated empirical measure Pn, we
have for any δ > 0,

sup
B∈Ar

∣∣DA2r
(B,Pn) −DA2r

(B,P)
∣∣ ≤ C

√
r(p + m)

n
+

√
log(1/δ)

2n
,

with probability at least 1 − 2δ, where C > 0 is some absolute constant.

Note that Proposition 4.3 is an extension of Proposition 4.1. For a full rank matrix, r = p ∧m,
and therefore r(p + m) � pm.
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To present the error rate of (23), define the quantity

κ = inf
v �=0

‖
1/2v‖
‖v‖ .

Consider i.i.d. observations from P(ε,B,Q) = (1 − ε)PB + εQ.

Theorem 4.3. Consider the estimator B̂ . Assume that ε2 + r(p+m)
n

is sufficiently small. Then,
we have

Tr
(
(B̂ − B)T 
(B̂ − B)

) ≤ Cσ 2
(

r(p + m)

n
∨ ε2

)
,

‖B̂ − B‖2
F ≤ C

σ 2

κ2

(
r(p + m)

n
∨ ε2

)
,

‖B̂ − B‖2
N ≤ C

σ 2

κ2

(
r2(p + m)

n
∨ rε2

)
,

with P(ε,B,Q)-probability at least 1 − exp(−C′(r(p + m) + nε2)) uniformly over all Q and
B ∈ Ar , where C, C′ are some absolute constants.

Theorem 4.3 gives rates in terms of prediction loss, squared Frobenius loss and squared nuclear
loss. The rates are identical to those of Theorem 3.5 for low-rank trace regression, with p + m

corresponding to p1 + p2 in Theorem 3.5. This is due to the similarity of the two problems. In
both problems, the regression matrix B is assumed to belong to the low-rank set Ar . The only
difference is that for trace regression, the response is univariate and the covariate is a matrix, and
for reduced rank regression, the response is multivariate and the covariate is a vector.

Applying the minimax lower bounds in Ma and Sun [24], we find that the rates given by
Theorem 4.3 are optimal when ε = 0. Though the lower bounds in Ma and Sun [24] are for
a fixed design setting and they did not give explicit dependence on κ , the results can be easily
modified to the random design setting considered here. The dependence on κ can be made explicit
as well. We refer the readers to the discussion in Raskutti et al. [27], Chen et al. [7] for details. In
addition, Theorem 2.1 and similar calculations of modulus of continuity as in Section 3.4 imply
that the rates given by Theorem 4.3 are also optimal when ε > 0.

5. Discussion

5.1. Extension to general error distributions

The error distributions we consider in Section 3 and Section 4 are all Gaussian. This assumption
can be greatly relaxed. In this section, we consider error distributions that have elliptical shapes.

Definition 5.1. A random vector W ∼ EC(0,�,F ) is distributed according to a centered contin-
uous elliptical distribution with a scatter matrix � ∈ R

d×d and a marginal cumulative distribution
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function F if and only if W = �1/2E, and F(t) = P(uT E ≤ t‖u‖) does not depend on u ∈ R
d .

Moreover, there is a density function f , such that f (0) = 1 and F(t) = ∫ t

−∞ f (s) ds.

A more general definition of elliptical distributions is referred to Fang et al. [14]. Here, we only
consider those that have marginal densities. Without loss of generality, we impose the constraint
that f (0) = 1. Otherwise, the scatter matrix � would only be defined up to a multiplicative factor.
When the dimension is 1, the definition covers all random variables with symmetric density
functions centered at zero.

Consider the setting of multivariate linear regression in Section 4.1. The regression model PB

for X ∈R
p and Y ∈R

m is specified by the sampling process X ∼ N(0,
) and (Y − BT X)|X ∼
EC(0,�,F ). The dependence on 
, �, F are suppressed in the notation of PB . For i.i.d. obser-
vations generated by P(ε,B,Q) = (1 − ε)PB + εQ, the results of Theorem 4.1 are extended to the
following theorem.

Theorem 5.1. Consider the estimator B̂ defined in (16). Assume that ε2 + pm
n

is sufficiently
small. Moreover, there are some positive constants c1 and c2 such that min|t |≤c1 f (t) ≥ c2. Then,
we have

Tr
(
(B̂ − B)T 
(B̂ − B)

) ≤ Cσ 2
(

pm

n
∨ ε2

)
, (24)

‖B̂ − B‖2
F ≤ C

σ 2

κ2

(
pm

n
∨ ε2

)
, (25)

with P(ε,B,Q)-probability at least 1− exp(−C′(pm+nε2)) uniformly over all Q and B ∈ R
p×m,

where κ is defined in (17), σ 2 = ‖�‖op and C, C′ are some absolute constants.

In addition to Theorem 4.1, all the other results (except those of Gaussian graphical model)
in Section 3 and Section 4 can be extended to the setting of general elliptical error distributions.
The results are the same and thus the details are omitted. Theorem 5.1 implies that the regres-
sion depth maximizer is not only robust to contamination, but is also robust to general error
distributions.

The results can also be extended to error distributions that are not symmetric. For a univariate
error distribution, this corresponds to robust median regression under the contamination model.
However, the results would be less interpretable for a multivariate asymmetric error distribution.

Besides the error distribution, the Gaussian assumption for the covariates can also be extended
similarly. This requires significantly more technical details and there are more than one way to
do it. We therefore do not explore all the possibilities here.

5.2. A general notion of depth for linear operators

Consider a general covariate space X and a general response space Y . We assume the response
space Y is a Hilbert space equipped with an inner product 〈·, ·〉. Let �(X ,Y) be a class of linear
operators f :X → Y . The inner product structure on the response space allows us to define a gen-
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Table 1. Examples of Depth Functions

X Y

Tukey’s depth (Tukey [35]) {1} R
m

regression depth (Rousseeuw and Hubert [30]) R
p

R

multivariate regression depth (Bern and Eppstein [3], Mizera [26]) R
p

R
m

depth for functional linear regression C[0,1] R

depth for multivariate functional linear regression C[0,1] R
m

eral depth function for a linear operator f ∈ �(X ,Y). Given a probability distribution (X,Y ) ∼ P

on X ×Y , the depth of an f ∈ �(X ,Y) is defined as

DG(f,P) = inf
g∈G

P
{〈

g(X),Y − f (X)
〉 ≥ 0

}
,

where G is a subset of �(X ,Y).
This general definition not only covers the multivariate regression depth studied in this paper,

but also allows the covariate to be a function. Some special cases are listed in Table 1. When
X ×Y takes {1}×R

m, Rp ×R and R
p ×R

m, respectively, we recover Tukey’s depth, regression
depth and multivariate regression depth. Moreover, when X takes the class of all continuous
functions on the unit interval C[0,1], the depth function can be used for robust functional linear
regression. This application will be considered in future projects.

6. Proofs

This section collects the proofs of the results presented in the paper. Section 6.1 proves uniform
convergence of all the empirical depth functions used in the paper. This includes the proofs of
Propositions 3.1, 3.2, 3.3, 4.1, 4.2 and 4.3. Section 6.2 establishes the curvature of the population
depth functions. Finally, in Section 6.3, we prove all the theorems in the paper.

6.1. Uniform convergence of the empirical depth functions

To establish uniform convergence of the empirical depth functions, it is essential to bound
supA∈A |Pn(A) − P(A)| over a collection A. The first step is to use McDiarmid’s bounded dif-
ference inequality. The following version can be found in Chapter 3.1 of Devroye and Lugosi
[9].

Lemma 6.1. For any probability measure P and its associated empirical measure Pn, we have
for any t > 0,

sup
A∈A

∣∣Pn(A) − P(A)
∣∣ ≤ E

{
sup
A∈A

∣∣Pn(A) − P(A)
∣∣} + t,

with probability at least 1 − 2e−2nt2
.
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By Lemma 6.1, it is sufficient to bound the expectation E{supA∈A |Pn(A) − P(A)|}. This
quantity can be controlled by the VC dimension of A. The following lemma can be found in
Chapter 4.3 of Devroye and Lugosi [9].

Lemma 6.2. For any class A with VC dimension V ,

E

{
sup
A∈A

∣∣Pn(A) − P(A)
∣∣} ≤ C

√
V

n
,

where C > 0 is a universal constant.

Lemma 6.2 suggests that we need to give an upper bound for the VC dimension of the class
A. For the depth functions considered in the paper, the relevant class is

A = {{
Z ∈R

d1×d2 : Tr
(
WZT

) ≥ 0
} : W ∈R

d1×d2, rank(W) ≤ r
}
. (26)

Intuitively, the matrix W in A defined above has at most r(d1 + d2) degrees of freedom, which
suggests a VC dimension bound r(d1 + d2). It was shown by Wolf et al. [39] that the VC dimen-
sion of A is bounded by r(d1 + d2) log(r(d1 + d2)). Using a slightly modified proof, we obtain
a bound with the rate r(d1 + d2) at the cost of a larger constant.

Lemma 6.3. The VC dimension of (26) is bounded by 8r(d1 + d2).

Proof. For a matrix with rank at most r , it has decomposition W = ∑r
l=1 ulv

T
l . Thus,

Tr(WZT ) = ∑r
l=1 uT

l Zvl = ∑r
l=1

∑d1
i=1

∑d2
j=1 Zijulivlj is a polynomial of degree 2 in r(d1 +

d2) variables. According to Warren [38], Wolf et al. [39], if there is some x ≥ r(d1 + d2), such
that (

8ex

r(d1 + d2)

)r(d1+d2)

≤ 2x (27)

holds, then the VC dimension is bounded by x. It is easy to check that x = 8r(d1 + d2) satisfies
(27), and thus is an upper bound for the VC dimension. �

Now we are ready to give proofs for all the uniform convergence results of the empirical depth
functions.

Proof of Proposition 3.1. For a general multi-task regression depth function, we have

sup
B∈B

∣∣DU (B,P) −DU (B,Pn)
∣∣

≤ sup
B∈B

sup
U∈U

∣∣Pn

{〈
UT X,Y − BT X

〉 ≥ 0
}

− P
{〈

UT X,Y − BT X
〉 ≥ 0

}∣∣.
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Since 〈
UT X,Y − BT X

〉
= Tr

(
UYXT

) − Tr
(
UBT XXT

)
= Tr

(
WZT

)
,

where

W = W(U,B) =
(

U 0
0 UBT

)
and ZT =

(
YXT 0

0 −XXT

)
, (28)

we have

sup
B∈B

∣∣DU (B,P) −DU (B,Pn)
∣∣ ≤ sup

A∈A

∣∣Pn(A) − P(A)
∣∣. (29)

We use P to denote the distribution of Z with slight abuse of notation. The set A is defined as

A= {{
Z ∈ R

2p×(p+m) : Tr
(
WZT

) ≥ 0
} : W = W(U,B),U ∈ U ,B ∈ B

}
. (30)

In the setting of Proposition 3.1, we have p = m = k, and

W =
(

u 0
0 uβT

)
, (31)

for any u ∈ R
k and β ∈ R

k . Hence, W is of rank at most 2. By Lemma 6.1, Lemma 6.2 and
Lemma 6.3, we obtain the desired result. �

Proof of Proposition 3.2. The same argument that leads to (29) gives the bound

sup
β∈�s

∣∣D�2s
(β,Pn) −D�2s

(β,P)
∣∣ ≤ max

S1∈{S⊂[p]:|S|=s},S2∈{S⊂[p]:|S|=2s}
sup

A∈AS1,S2

∣∣Pn(A) − P(A)
∣∣,

where

AS1,S2 = {{
Z ∈ R

2p×(p+1) : Tr
(
WZT

) ≥ 0
} : W = W(u,β),u ∈ �S2, β ∈ �S1

}
,

and W(u,β) is in the form (31). For any subset S ⊂ [p], �S is defined as

�S = {
u ∈R

p : uj = 0 for all j ∈ Sc
}
.

By Lemma 6.1 and a union bound argument, we have

sup
β∈�s

∣∣D�2s
(β,Pn) −D�2s

(β,P)
∣∣

≤ max
S1∈{S⊂[p]:|S|=s},S2∈{S⊂[p]:|S|=2s}

E

{
sup

A∈AS1,S2

∣∣Pn(A) − P(A)
∣∣} + t,
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with probability at least 1 − 2e−2nt2+4s log(
ep
s

). Finally, in view of Lemma 6.2, it is sufficient to
upper bound the VC dimension of AS1,S2 . Note that AS1,S2 contains matrices of the form (31)
with u ∈ �S2 and β ∈ �S1 , the VC dimension is bounded by 16(5s + 1) according to Lemma
6.3. Hence, we have

sup
β∈�s

∣∣D�2s
(β,Pn) −D�2s

(β,P)
∣∣ ≤ C

√
s

n
+ t,

with probability at least 1 − 2e−2nt2+4s log(
ep
s

) for some universal constant C > 0. The desired

result follows by setting t2 = 4s log(
ep
s

)+log(1/δ)

2n
. �

Proof of Proposition 3.3. For the trace regression depth function, we have

sup
B∈Ar

∣∣DA2r
(B,Pn) −DA2r

(B,P)
∣∣

≤ sup
B∈Ar

sup
U∈A2r

∣∣Pn

{〈U,X〉(y − 〈B,X〉) ≥ 0
} − P

{〈U,X〉(y − 〈B,X〉) ≥ 0
}∣∣.

Since

〈U,X〉(y − 〈B,X〉)
= UT Xy − Tr

(
BUT XXT

)
= Tr

(
WZT

)
,

where

W = W(U,B) =
(

UT 0
0 BUT

)
and ZT =

(
Xy 0
0 −XXT

)
,

and we thus have

sup
B∈Ar

∣∣DA2r
(B,Pn) −DA2r

(B,P)
∣∣ ≤ sup

A∈A

∣∣Pn(A) − P(A)
∣∣.

We use P to denote the distribution of Z with slight abuse of notation. The set A is defined as

A= {{
Z ∈R

(p1+p2)×2p1 : Tr
(
WZT

) ≥ 0
} : W = W(U,B),U ∈ U ,B ∈ B

}
.

By Lemma 6.3, the VC dimension of A is bounded by 16r(3p1 +p2). Together with Lemma 6.1
and Lemma 6.2, we obtain the desired result. �

Proof of Proposition 4.1. Using the argument that leads to (29), we have

sup
B∈Rp×m

∣∣DRp×m\{0}(B,P) −DRp×m\{0}(B,Pn)
∣∣ ≤ sup

A∈A

∣∣Pn(A) − P(A)
∣∣,
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where A is defined in (30), which involves matrices W of dimension 2p × (p + m) with rank at
most p ∧ m. According to Lemma 6.3, its VC dimension is bounded by 8(p ∧ m)(3p + m) ≤
32pm. Together with Lemma 6.1 and Lemma 6.2, we obtain the desired result. �

Proof of Proposition 4.2. The same argument that leads to (29) gives the bound

sup
B∈�s

∣∣D�2s
(B,Pn) −D�2s

(B,P)
∣∣ ≤ max

S1∈{S⊂[p]:|S|=s},S2∈{S⊂[p]:|S|=2s}
sup

A∈AS1,S2

∣∣Pn(A) − P(A)
∣∣,

where

AS1,S2 = {{
Z ∈R

2p×(p+m) : Tr
(
WZT

) ≥ 0
} : W = W(U,B),U ∈ �S2 ,B ∈ �S1

}
,

and W(U,B) is defined in (28). For any subset S ⊂ [p], �S is defined as

�S = {
U ∈ R

p×m : Uj∗ = 0 for all j ∈ Sc
}
.

By Lemma 6.1 and a union bound argument, we have

sup
B∈�s

∣∣D�2s
(B,Pn) −D�2s

(B,P)
∣∣

≤ max
S1∈{S⊂[p]:|S|=s},S2∈{S⊂[p]:|S|=2s}

E

{
sup

A∈AS1,S2

∣∣Pn(A) − P(A)
∣∣} + t,

with probability at least 1 − 2e−2nt2+4s log(
ep
s

). Finally, in view of Lemma 6.2, it is sufficient
to upper bound the VC dimension of AS1,S2 . Note that AS1,S2 contains matrices of the form
(28) with U ∈ �S2 and B ∈ �S1 , the VC dimension is bounded by 8(2s ∧ m)(5s + m) ≤ 64ms

according to Lemma 6.3. Hence, we have

sup
B∈�s

∣∣D�2s
(B,Pn) −D�2s

(B,P)
∣∣ ≤ C

√
ms

n
+ t,

with probability at least 1 − 2e−2nt2+4s log(
ep
s

) for some universal constant C > 0. The desired

result follows by setting t2 = 4s log(
ep
s

)+log(1/δ)

2n
. �

Proof of Proposition 4.3. Using the argument that leads to (29), we have

sup
B∈Ar

∣∣DA2r
(B,Pn) −DA2r

(B,P)
∣∣ ≤ sup

A∈A

∣∣Pn(A) − P(A)
∣∣,

where A is defined in (30), which involves matrices W of dimension 2p × (p + m) with rank at
most 2r . According to Lemma 6.3, its VC dimension is bounded by 16r(3p +m). Together with
Lemma 6.1 and Lemma 6.2, we obtain the desired result. �
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6.2. Curvature of the populational depth functions

In addition to the uniform convergence results, another key ingredient we need is the curva-
ture of the population depth function. They are characterized for both univariate regression and
multivariate regression by the following two lemmas, respectively.

Lemma 6.4. Let Pβ denote the joint distribution of (X,y) ∈ R
p ×R specified by X ∼ N(0,
)

and y|X ∼ N(βT X,σ 2). For any α ∈ R
p such that α − β ∈ U , as long as DU (α,Pβ) ≥ 1

2 − η

for some η < 5
12 , we have ∥∥
1/2(α − β)

∥∥ ≤ Cση,

where C > 0 is some universal constant.

Proof. By the definition of the depth function, we have

DU (α,Pβ) = 1 − sup
u∈U

E�

(
uT XXT (α − β)

σ |uT X|
)

,

where �(·) is the cumulative distribution function of N(0,1). Together with the condition
DU (α,Pβ) ≥ 1

2 − η, we obtain

sup
u∈U

E�

(
uT XXT (α − β)

σ |uT X|
)

− �(0) ≤ η.

Since α − β ∈ U , we have

E�

( |XT (α − β)|
σ

)
− �(0) ≤ η.

For Z ∼ N(0,1), consider the function g(t) = E�(t |Z|). It is easy to check that g(t) is increas-
ing in t . Since g(4) > 11/12, the fact that g(t) ≤ 1/2 + η for some η < 5/12 implies that t ≤ 4.
The definition of g(t) implies that

g(t) − 1

2
= E�

(
t |Z|) − �(0) ≥ φ(t)Emin

{
t, t |Z|} ≥ tφ(4)Emin

{
1, |Z|},

where φ(·) is the density function of N(0,1). Therefore,

E�

( |XT (α − β)|
σ

)
− �(0) = g

(‖
1/2(α − β)‖
σ

)
− 1

2
≥ c

‖
1/2(α − β)‖
σ

,

where c = φ(4)Emin{1, |Z|}. This leads to the conclusion∥∥
1/2(α − β)
∥∥ ≤ c−1ση.

Thus, the proof is complete. �
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Lemma 6.5. Let PB denote the joint distribution of (X,Y ) ∈R
p ×R

m specified by X ∼ N(0,
)

and Y |X ∼ N(BT X,σ 2Im). For any A ∈ R
p×m such that A − B ∈ U , as long as DU (A,PB) ≥

1
2 − η for some η < 3

20 , we have√
Tr

(
(A − B)T 
(A − B)

) ≤ Cση,

where C > 0 is some universal constant.

Proof. By the definition of the depth function, we have

DU (A,PB) = 1 − sup
U∈U

E�

(
σ−1

〈
UT X

‖UT X‖ , (A − B)T X

〉)
,

where �(·) is the cumulative distribution function of N(0,1). Together with the condition
DU (A,PB) ≥ 1

2 − η, we obtain

sup
U∈U

E�

(
σ−1

〈
UT X

‖UT X‖ , (A − B)T X

〉)
− �(0) ≤ η.

Sime A − B ∈ U , we have

E�

(‖(A − B)T X‖
σ

)
− �(0) ≤ η. (32)

Consider the random variable Y = ‖(A−B)T X‖2

Tr((A−B)T 
(A−B))
. We need a lower bound for the probability

P(Y > c). By Cauchy–Schwarz inequality, we have

EY ≤ c +EY I{Y > c} ≤ c +
√
EY 2

√
P(Y > c).

This leads to the inequality √
P(Y > c) ≥ EY − c√

EY 2
. (33)

Thus, we need a lower bound for EY and an upper bound for EY 2. It is easy to see that EY = 1.
To bound EY 2, we write

∥∥(A − B)T X
∥∥2 = ∥∥(A − B)T 
1/2Z

∥∥2 =
m∑

j=1

∣∣KT
j Z

∣∣2
,

where KT
j is the j th row of (A − B)T 
1/2, and Z ∼ N(0, Ip). Thus,

Tr
(
(A − B)T 
(A − B)

) =
m∑

j=1

‖Kj‖2.
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Therefore,

E
∥∥(A − B)T X

∥∥4 =
m∑

j=1

m∑
l=1

E
∣∣KT

j Z
∣∣2∣∣KT

l Z
∣∣2

=
m∑

j=1

m∑
l=1

‖Kj‖2‖Kl‖2
E

|KT
j Z|2

‖Kj‖2

|KT
l Z|2

‖Kl‖2

≤ 3
m∑

j=1

m∑
l=1

‖Kj‖2‖Kl‖2

= 3

(
m∑

j=1

‖Kj‖2

)2

.

Hence,

EY 2 = E‖(A − B)T X‖4

(
∑m

j=1 ‖Kj‖2)2
≤ 3.

The inequality (33) leads to

P

(
Y >

1

4

)
≥ 3

16
.

Now we define the function

g(t) = E�

(
t

‖(A − B)T X‖√
Tr((A − B)T 
(A − B))

)
= E�(t

√
Y ).

It is easy to check that g(t) is increasing in t . Moreover,

g(4) = E�(4
√

Y )

= E�(4
√

Y )I

{
Y >

1

4

}
+E�(4

√
Y)I

{
Y ≤ 1

4

}
≥ �(2)P

(
Y >

1

4

)
+ �(0)P

(
Y ≤ 1

4

)
= (

�(2) − �(0)
)
P

(
Y >

1

4

)
+ 1

2

≥ 1

2
+ 3

20
.
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Therefore, g(t) ≤ 1
2 + η for some η < 3

20 implies that t ≤ 4. The definition of g(t) implies that

g(t) − 1

2
= E

∫ t
√

Y

0
φ(x)dx

≥ E

∫ min(t
√

Y ,t)

0
φ(x)dx

≥ Eφ(t)min(t
√

Y , t)

≥ tφ(4)Emin{1,
√

Y },
where φ(·) is the density function of N(0,1). Finally, we need to lower bound Emin{1,

√
Y }.

We have

Emin{1,
√

Y } ≥ 1

2
P

(
min{1,

√
Y } >

1

2

)
≥ 1

2
P

(
Y >

1

4

)
≥ 3

32
.

Hence,

E�

(‖(A − B)T X‖
σ

)
− �(0) = g

(√
Tr((A − B)T 
(A − B))

σ

)
− 1

2

≥ c

√
Tr((A − B)T 
(A − B))

σ
,

where c = 3φ(4)
32 . Using (32), we obtain the desired conclusion, and the proof is complete. �

6.3. Proofs of main results

This section gives proofs of Theorems 3.1, 3.2, 3.3, 3.5, 4.1, 4.2 and 4.3 as well as Theorem 5.1.
For i.i.d. data {(Xi, Yi)}ni=1 from a contaminated distribution (1 − ε)P + εQ, it can be written

as {(XP
i , YP

i )}n1
i=1 ∪ {(XQ

i ,Y
Q
i )}n2

i=1. Marginally, we have n2 ∼ Binomial(n, ε) and n1 = n − n2.

Conditioning on n1 and n2, {(XP
i , YP

i )}n1
i=1 are i.i.d. from P and {(XQ

i ,Y
Q
i )}n2

i=1 are i.i.d. from
Q. The following lemma (Lemma 7.1 in Chen et al. [8]) controls the ratio n2/n1.

Lemma 6.6. Assume ε < 1/2. For any δ > 0 satisfying n−1 log(1/δ) < c for some sufficiently
small constant c, we have

n2

n1
≤ ε

1 − ε
+ C

√
log(1/δ)

n
, (34)

with probability at least 1 − δ, where C > 0 is a universal constant.
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Now we are ready to prove the main results.

Proof of Theorem 3.1. By Lemma 6.6, we decompose the data {(Xi, yi)}ni=1 = {(XP
i , yP

i )}n1
i=1 ∪

{(XQ
i , y

Q
i )}n2

i=1. The following analysis is on the intersection of the events of (34) and Proposition
3.1 that holds with probability at least 1 − 2δ. For any f = ∑∞

j=1 βjφj ∈ Sα(M), there exists
some β[k] ∈ Uk , such that for the corresponding f[k],

‖f[k] − f ‖2 = ‖β[k] − β‖2 ≤ C1k
−2α, (35)

for some constant C1 > 0 that only depends on α and M . Recall the notation Pf . By the definition
of the depth function and Proposition 3.1, we have

DUk
(β̂,Pf ) ≥ DUk

(
β̂,

{(
XP

i , yP
i

)}n1
i=1

) − C

√
k

n1
−

√
log(1/δ)

2n1
(36)

≥ n

n1
DUk

(
β̂,

{
(Xi, yi)

}n

i=1

) − n2

n1
− C

√
k

n1
−

√
log(1/δ)

2n1
(37)

≥ n

n1
DUk

(
β[k],

{
(Xi, yi)

}n

i=1

) − n2

n1
− C

√
k

n1
−

√
log(1/δ)

2n1
(38)

≥ DUk

(
β[k],

{(
XP

i , yP
i

)}n1
i=1

) − n2

n1
− C

√
k

n1
−

√
log(1/δ)

2n1
(39)

≥ DUk
(β[k],Pf ) − n2

n1
− 2C

√
k

n1
− 2

√
log(1/δ)

2n1
. (40)

The inequalities (36) and (40) are by Proposition 3.1. The inequalities (37) and (39) are due to
the property of depth function that

n1DUk

(
β, {Yi}n1

i=1

) ≥ nDUk

(
β, {Xi}ni=1

) − n2 ≥ n1DUk

(
β, {Yi}n1

i=1

) − n2,

for any β ∈ Uk . The inequality (38) is by the definition of β̂ . Moreover,∣∣DUk
(β[k],Pf ) −DUk

(β,Pf )
∣∣

≤ sup
u∈Uk

∣∣Pf

(
uT X

(
y − XT β

) ≥ 0
) − Pf

(
uT X

(
y − XT β[k]

) ≥ 0
)∣∣

= sup
u∈Uk

∣∣∣∣E�

(
uT XXT (β[k] − β)

|uT X|
)

− �(0)

∣∣∣∣ (41)

≤
√

1

2π
E

∣∣XT (β[k] − β)
∣∣
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≤
√

1

2π

√
E

(
f[k](x) − f (x)

)2 (42)

=
√

1

2π
‖f[k] − f ‖

≤ C
1/2
1

√
1

2π
k−α, (43)

where �(·) is the cumulative distribution function of N(0,1) in (41) and x ∼ Unif[0,1] in (42).
The inequality (43) is due to (35). Therefore,

DUk
(β[k],Pf ) ≥ 1

2
− C

1/2
1

√
1

2π
k−α.

Together with the inequality (40) and Lemma 6.6, we have

DUk
(β̂,Pf ) ≥ 1

2
− ε

1 − ε
− C2

(√
k

n
+ k−α +

√
log(1/δ)

n

)
, (44)

with probability at least 1−2δ. At this point, we cannot directly use Lemma 6.4, because β̂ −β /∈
Uk . A slightly different argument is needed. Starting from (44), we have

sup
u∈Uk

E�

(
uT XXT (β̂ − β)

|uT X|
)

− �(0) ≤ ε

1 − ε
+ C2

(√
k

n
+ k−α +

√
log(1/δ)

n

)
,

where the expectation is only taken over X. The same argument that leads to (43) gives

sup
u∈Uk

E�

(
uT XXT (β̂ − β[k])

|uT X|
)

− �(0) ≤ ε

1 − ε
+ C3

(√
k

n
+ k−α +

√
log(1/δ)

n

)
.

Now, since β̂ − β[k] ∈ Uk , by the same argument in the proof of Lemma 6.4, we have

‖f̂ − f[k]‖ ≤ C4

(
ε +

√
k

n
+ k−α +

√
log(1/δ)

n

)
.

Using (35) again, we have

‖f̂ − f ‖ ≤ C5

(
ε +

√
k

n
+ k−α +

√
log(1/δ)

n

)
.

The choice k = �n 1
2α+1 � completes the proof. �

Proofs of Theorem 3.2 and Theorem 3.5. We first give the proof of Theorem 3.2. By Lemma
6.6, we decompose the data {(Xi, yi)}ni=1 = {(XP

i , yP
i )}n1

i=1 ∪{(XQ
i , y

Q
i )}n2

i=1. The following anal-
ysis is on the intersection of the events of (34) and Proposition 3.2 that holds with probability at
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least 1 − 2δ. Recall the notation Pβ . Using the same arguments as in (36)–(40), we get

D�2s
(β̂,Pβ) ≥ 1

2
− n2

n1
− 2C

√
s log(

ep
s

)

n1
− 2

√
log(1/δ)

2n1
.

Lemma 6.6 implies that

D�2s
(β̂,Pβ) ≥ 1

2
− ε

1 − ε
− C1

(√
s log(

ep
s

)

n
+

√
log(1/δ)

2n

)
, (45)

with probability at least 1 − 2δ. Since β̂ − β ∈ �2s , we use Lemma 6.4 to deduce (10). The
bounds (11) and (12) are direct implications of (10) by the definition of κ . Thus, the proof of
Theorem 3.2 is complete. The proof of Theorem 3.5 follows the same argument, and we do not
repeat the details. �

Proof of Theorem 3.3. We use D1 to denote the first half of the data and D2 to denote the second
half. The model Xj = βT

(j)X−j +ξj is an instance of sparse linear regression in Section 3.2. Thus,
the result of Theorem 3.2 implies that

∥∥

1/2
−j,−j (β(j) − β̂(j))

∥∥2 ≤ C

(
s log(

ep
s

)

n
∨ ε2 + log(1/δ)

n

)
,

and

‖β̂(j) − β(j)‖2
1 ≤ C

(
s2 log(

ep
s

)

n
∨ sε2 + s log(1/δ)

n

)
,

with probability at least 1 − 2δ. The matrix 
−j,−j is the covariance of X−j . Now we study the
error of �̂−1

jj . Conditioning on D1,

Xj − β̂T
(j)X−j = (β(j) − β̂(j))

T X−j + ξj

∼ (1 − ε)N
(
0,

∥∥

1/2
−j,−j (β(j) − β̂(j))

∥∥2 + �−1
jj

) + εQ.

Theorem 3.1 of Chen et al. [8] implies that

∣∣�̂−1
jj − �−1

jj

∣∣2 ≤ 2
∥∥


1/2
−j,−j (β(j) − β̂(j))

∥∥4 + C1

(
ε2 + log(1/δ)

n

)
,

with probability at least 1 − 2δ. Therefore,

∣∣�̂−1
jj − �−1

jj

∣∣2 ≤ C2

(
ε2 +

(
s log(

ep
s

)

n

)2

+ log(1/δ)

n

)
,
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with probability at least 1 − 4δ. Combing the bounds above, we have

‖�̂−j,j − �−j,j‖2
1 = ‖�̂jj β̂(j) − �jjβ(j)‖2

1

≤ 2|�̂jj |2‖β̂(j) − β(j)‖2
1 + 2‖β(j)‖2

1|�̂jj − �jj |2

≤ C3

(
s2 log(

ep
s

)

n
∨ sε2 + s log(1/δ)

n

)
,

with probability at least 1 − 4δ. Therefore,

‖�̂∗j − �∗j‖2
1 ≤ C4

(
s2 log(

ep
s

)

n
∨ sε2 + s log(1/δ)

n

)
,

with probability at least 1 − 4δ. Finally, a union bound argument gives

‖�̂ − �‖2
�1

= max
1≤j≤p

‖�̂∗j − �∗j‖2
1 ≤ C4

(
s2 log(

ep
s

)

n
∨ sε2 + s log(1/δ)

n

)
,

with probability at least 1 − 4pδ. Choose δ = exp(−C5(nε2 + s log(ep/s))), and the proof is
complete. �

Proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3. We first state the proof of Theorem
4.2. Recall the notation PB . The same argument that leads to (45) gives

D�2s
(B̂,PB) ≥ 1

2
− ε

1 − ε
− C1

(√
ms + s log(

ep
s

)

n
+

√
log(1/δ)

2n

)
.

Since B̂ − B ∈ �2s , we use Lemma 6.5 to deduce (21). The bound (22) is a direct implication
of (21) by the definition of κ . This completes the proof of Theorem 4.2. Setting s = p gives the
proof of Theorem 4.1. The proof of Theorem 4.3 follows the same argument, and we omit the
details. �

Proof of Theorem 5.1. The proof is the same as that of Theorem 4.1, except that we need
to establish a similar curvature result as Lemma 6.5 for the elliptical distribution. The same
argument that leads to (32) gives

EF

( ‖(A − B)T X‖
‖�1/2(A − B)T X‖

∥∥(A − B)T X
∥∥)

− F(0) ≤ η.

By the definition σ 2 = ‖�‖op, we have

EF

(
1

σ

∥∥(A − B)T X
∥∥)

− F(0) ≤ η.
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Following the proof of Lemma 6.5, it is sufficient to show that g(t) − 1/2 ≥ CtE{1,
√

Y } for
some constant C > 0, where g(t) = EF(t

√
Y ). We outline the main step without repeating all

the details that have already been used in the proof of Lemma 6.5. The fact that g(t) ≤ 1
2 + η for

a sufficiently small η implies that t ≤ c1. Then,

g(t) − 1

2
≥ t min|t |≤c1

f (t)Emin{1,
√

Y }.

Under the assumption that min|t |≤c1 f (t) ≥ c2, the proof is complete. �
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