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This work deals with a system of interacting reinforced stochastic processes, where each process Xj =
(Xn,j )n is located at a vertex j of a finite weighted directed graph, and it can be interpreted as the sequence
of “actions” adopted by an agent j of the network. The interaction among the dynamics of these processes
depends on the weighted adjacency matrix W associated to the underlying graph: indeed, the probability
that an agent j chooses a certain action depends on its personal “inclination” Zn,j and on the inclinations
Zn,h, with h �= j , of the other agents according to the entries of W . The best known example of reinforced
stochastic process is the Pólya urn.

The present paper focuses on the weighted empirical means Nn,j = ∑n
k=1 qn,kXk,j , since, for exam-

ple, the current experience is more important than the past one in reinforced learning. Their almost sure
synchronization and some central limit theorems in the sense of stable convergence are proven. The new
approach with weighted means highlights the key points in proving some recent results for the personal

inclinations Zj = (Zn,j )n and for the empirical means X
j = (

∑n
k=1 Xk,j /n)n given in recent papers (e.g.

Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic
Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered pro-
cesses, we can understand how the different convergence rates of the involved stochastic processes combine.
From an application point of view, we provide confidence intervals for the common limit inclination of the
agents and a test statistics to make inference on the matrix W , based on the weighted empirical means. In
particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019).

Keywords: asymptotic normality; complex networks; interacting random systems; reinforced learning;
reinforced stochastic processes; synchronization; urn models; weighted empirical means

1. Framework, model and motivations

The stochastic evolution of systems composed by elements which interact among each other
has always been of great interest in several scientific fields. For example, economic and social
sciences deal with agents that take decisions under the influence of other agents. In social life,
preferences and beliefs are partly transmitted by means of various forms of social interaction and
opinions are driven by the tendency of individuals to become more similar when they interact.
Hence, a collective phenomenon, that we call “synchronization”, reflects the result of the inter-
actions among different individuals. The underlying idea is that individuals have opinions that
change according to the influence of other individuals giving rise to a sort of collective behavior.
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In particular, there exists a growing interest in systems of interacting urn models (see, e.g.,
Aletti and Ghiglietti [4], Benaïm et al. [7], Chen and Lucas [10], Cirillo, Gallegati and Hüsler
[12], Crimaldi, Dai Pra and Minelli [18], Crimaldi et al. [21], Fortini, Petrone and Sporysheva
[23], Hayhoe, Alajaji and Gharesifard [27], Lima [29], Paganoni and Secchi [32]) and their vari-
ants and generalizations (see, e.g., Aletti, Crimaldi and Ghiglietti [1,2], Crimaldi et al. [17]).
Our work is placed in the stream of this scientific literature. Specifically, it deals with the class
of the so-called interacting reinforced stochastic processes considered in Aletti, Crimaldi and
Ghiglietti [2], Aletti, Crimaldi and Ghiglietti [1] with a general network-based interaction and
in Crimaldi et al. [17] with a mean-field interaction. Generally speaking, by reinforcement in a
stochastic dynamics we mean any mechanism for which the probability that a given event occurs
has an increasing dependence on the number of times that the same event occurred in the past.
This “reinforcement mechanism”, also known as “preferential attachment rule” or “Rich get
richer rule” or “Matthew effect”, is a key feature governing the dynamics of many biological,
economic and social systems (see, e.g., Pemantle [33]). The best known example of reinforced
stochastic process is the standard Eggenberger–Pólya urn (see Eggenberger and Pólya [22], Mah-
moud [30]), which has been widely studied and generalized (some recent variants can be found
in Aletti, Ghiglietti and Rosenberger [5], Aletti, Ghiglietti and Vidyashankar [6], Berti et al.
[9], Chen and Kuba [11], Collevecchio, Cotar and LiCalzi [13], Crimaldi [15], Ghiglietti and
Paganoni [24], Ghiglietti, Vidyashankar and Rosenberger [25], Laruelle and Pagès [28]).

A Reinforced Stochastic Process (RSP) can be defined as a stochastic process in which, along
the time-steps, an agent performs an action chosen in the set {0,1} in such a way that the proba-
bility of adopting “action 1” at a certain time-step has an increasing dependence on the number
of times that the agent adopted “action 1” in the previous actions. Formally, we define it as a
stochastic process X = {Xn : n ≥ 1} taking values in {0,1} and such that

P(Xn+1 = 1|Z0,X1, . . . ,Xn) = Zn, (1.1)

with

Zn = (1 − rn−1)Zn−1 + rn−1Xn, (1.2)

where Z0 is a random variable with values in [0,1] and (rn)n≥0 is a sequence of real numbers in
(0,1). We will focus on the case when

lim
n

nγ rn = c > 0 with 1/2 < γ ≤ 1. (1.3)

(We refer to Crimaldi et al. [17] for a discussion on the case 0 < γ ≤ 1/2, for which there is
a different asymptotic behavior of the model that is out of the scope of this research work.)
The process X describes the sequence of actions along the time-steps and, if at time-step n,
the “action 1” has taken place, that is Xn = 1, then for “action 1” the probability of occurrence
at time-step (n + 1) increases. Therefore, the larger Zn−1, the higher the probability of having
Xn = 1 and so the higher the probability of having Zn greater than Zn−1. As a consequence, the
larger the number of times in which Xk = 1 with 1 ≤ k ≤ n, the higher the probability Zn of
observing Xn+1 = 1.
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As told before, the best known example of reinforced stochastic process is the standard
Eggenberger–Pólya urn, where an urn contains a red and b white balls and, at each discrete
time, a ball is drawn out from the urn and then it is put again inside the urn together with one

additional ball of the same color. In this case, we have Z0 = a
a+b

and Zn = a+∑n
k=1 Xk

a+b+n
for n ≥ 1

and it is immediate to verify that Zn+1 = (1 − rn)Zn + rnXn+1 with rn = (a + b + n + 1)−1 and
so γ = c = 1.

In the present work, we are interested in the analysis of a system of N ≥ 2 interacting re-
inforced stochastic processes {Xj = (Xn,j )n≥1 : 1 ≤ j ≤ N} positioned at the vertices of a
weighted directed graph G = (V ,E,W), where V := {1, . . . ,N} denotes the set of vertices,
E ⊆ V × V the set of edges and W = [wh,j ]h,j∈V ×V the weighted adjacency matrix with
wh,j ≥ 0 for each pair of vertices. The presence of the edge (h, j) ∈ E indicates a “direct influ-
ence” that the vertex h has on the vertex j and it corresponds to a strictly positive element wh,j

of W , that represents a weight quantifying this influence. We assume the weights to be normal-
ized so that

∑N
h=1 wh,j = 1 for each j ∈ V . The interaction between the processes {Xj : j ∈ V }

is explicitly inserted in Equation (1.1) and it is modeled as follows: for any n ≥ 0, the random
variables {Xn+1,j : j ∈ V } are conditionally independent given Fn with

P(Xn+1,j = 1|Fn) =
N∑

h=1

wh,jZn,h = wjjZn,j +
∑
h�=j

wh,jZn,h, (1.4)

where Fn := σ(Z0,h : h ∈ V ) ∨ σ(Xk,j : 1 ≤ k ≤ n, j ∈ V ) and, for each h ∈ V , the evolution
dynamics of the single process (Zn,h)n≥0 is the same as in (1.2), that is

Zn,h = (1 − rn−1)Zn−1,h + rn−1Xn,h, (1.5)

with Z0,h a random variable taking values in [0,1] and (rn)n≥0 a sequence of real numbers in
(0,1) such that condition (1.3) holds true.

As an example, we can imagine that G = (V ,E) represents a network of N individuals that
at each time-step have to make a choice between two possible actions {0,1}. For any n ≥ 1, the
random variables {Xn,j : j ∈ V } take values in {0,1} and they describe the actions adopted by
the agents of the network along the time-steps; while each random variable Zn,h takes values
in [0,1] and it can be interpreted as the “personal inclination” of the agent h of adopting “ac-
tion 1”. Thus, the probability that the agent j adopts “action 1” at time-step (n + 1) is given by
a convex combination of j ’s own inclination and the inclination of the other agents at time-step
n, according to the “influence-weights” wh,j as in (1.4). Note that, from a mathematical point of
view, we can have wjj �= 0 or wjj = 0. In both cases, we have a reinforcement mechanism for
the personal inclinations of the agents: indeed, by (1.5), whenever Xn,h = 1, we have a positive
increment in the personal inclination of the agent h, that is Zn,h ≥ Zn−1,h. However, only in the
case wjj > 0, this fact results in a greater probability of having Xn+1,j = 1 according to (1.4).
Therefore, if wjj > 0, then we have a “true self-reinforcing” mechanism; while, in the opposite
case, we have a reinforcement property only in the own inclination of the single agent, but this
does not affect the probability (1.4).

The literature Aletti, Crimaldi and Ghiglietti [1], Crimaldi et al. [17], Crimaldi, Dai Pra and
Minelli [18], Crimaldi et al. [21] focus on the asymptotic behavior of the stochastic processes
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of the personal inclinations {Zj = (Zn,j )n : j ∈ V } of the agents; while Aletti, Crimaldi and
Ghiglietti [2] studies the average of times in which the agents adopt “action 1”, that is, the

stochastic processes of the empirical means {Xj

n = ( 1
n

∑n
k=1 Xk,j )n : j ∈ V }. The results given

in Aletti, Crimaldi and Ghiglietti [2], together with the resulting statistical tools, represent a
great improvement in any area of application, since the personal inclinations Zn,j of the agents

are usually latent variables, while the empirical means X
j

n of the actions adopted by the agents
are likely to be observed.

In the present paper, we continue in this direction: indeed, motivated, for instance, by the
fact that the current experience is more important than the past one in reinforced learning, we
here study the asymptotic behaviors of the “weighted” empirical means. Moreover, using a more
sophisticated decomposition of the involved processes, we can handle here also the case γ < 1,
which was in part left open, and we solve a research question posed in Aletti, Crimaldi and
Ghiglietti [2]. Consequently, we succeed in constructing a test statistics to make inference on the
weighted adjacency matrix W of the network for all values of the model parameters (not only
in the case γ = 1, see Remark 4.2 for the details). More precisely, in this paper we focus on the
weighted average of times in which the agents adopt “action 1”, that is, we study the stochastic
processes of the weighted empirical means {Nj = (Nn,j )n : j ∈ V } defined, for each j ∈ V , as

N
j

0 := 0 and, for any n ≥ 1,

Nn,j :=
n∑

k=1

qn,kXk,j , where qn,k := ak∑n
l=1 al

, (1.6)

with (ak)k≥1 a suitable sequence of strictly positive real numbers. (In particular, if, according to
the principle of reinforced learning, we want to give more “weight” to the current, or more recent,
experience, we can choose (ak)k≥1 increasing.) Since

∑n
k=1 qn,k = 1, we have the relation

n−1∑
k=1

qn,kXk,j =
∑n−1

l=1 al∑n
l=1 al

(
n−1∑
k=1

qn−1,kXk,j

)
= (1 − qn,n)Nn−1,j

and so we get

Nn,j = (1 − qn,n)Nn−1,j + qn,nXn,j . (1.7)

The above dynamics (1.4), (1.5) and (1.7) can be expressed in a compact form, using the
random vectors Xn := (Xn,1, . . . ,Xn,N )� for n ≥ 1, Nn := (Nn,1, . . . ,Nn,N )� and Zn :=
(Zn,1, . . . ,Zn,N )� for n ≥ 0, as

E[Xn+1|Fn] = W�Zn, (1.8)

where W�1 = 1 by the normalization of the weights, and{
Zn = (1 − rn−1)Zn−1 + rn−1Xn,

Nn = (1 − qn,n)Nn−1 + qn,nXn.
(1.9)



1102 G. Aletti, I. Crimaldi and A. Ghiglietti

Under suitable assumptions, we prove the almost sure synchronization of the stochastic processes
Nj = (Nn,j )n, with j ∈ V , toward the same limit random variable Z∞, which is also the common
limit random variable of the stochastic processes Zj = (Zn,j )n, and we provide some CLTs in
the sense of stable convergence. In particular, we assume

lim
n

nνqn,n = q > 0 with 1/2 < ν ≤ 1 (1.10)

and the asymptotic covariances in the provided CLTs depend on the random variable Z∞, on the
eigen-structure of the weighted adjacency matrix W and on the parameters γ , c and ν, q gov-
erning the asymptotic behavior of the sequence (rn)n and (qn,n)n, respectively. We also discuss
the possible statistical applications of these convergence results: asymptotic confidence intervals
for the common limit random variable Z∞ and test statistics to make inference on the weighted
adjacency matrix W of the network. In particular, as said before, we obtain a statistical test on
the matrix W for all values of the model parameters. Moreover, our results give a hint regarding a
possible “optimal choice” of ν and q and so point out the advantages of employing the weighted
empirical means with ν < 1, instead of the simple empirical means.

Finally, we point out that the existence of joint central limit theorems for the pair (Zn,Nn) is
not obvious because the “discount factors” in the dynamics of the increments (Zn − Zn−1)n and
(Nn − Nn−1)n are generally different. Indeed, as shown in (1.9), these two stochastic processes
follow the dynamics {

Zn − Zn−1 = rn−1(Xn − Zn−1),

Nn − Nn−1 = qn,n(Xn − Nn−1),
(1.11)

and so, when we assume ν �= γ , it could be surprising that in some cases there exists a com-
mon convergence rate for the pair (Zn,Nn). It is worthwhile to note that dynamics similar to
(1.11) have already been considered in the Stochastic Approximation literature. Specifically, in
Mokkadem and Pelletier [31] the authors established a CLT for a pair of recursive procedures
having two different step-sizes. However, this result does not apply to our situation. Indeed, the
covariance matrices �μ and �θ in their main result (Theorem 1) are deterministic, while the
asymptotic covariance matrices in our CLTs are random (as said before, they depend on the ran-
dom variable Z∞). This is why we do not use the simple convergence in distribution, but we
employ the notion of stable convergence, which is, among other things, essential for the con-
sidered statistical applications. Moreover in Mokkadem and Pelletier [31], the authors find two
different convergence rates, depending on the two different step-sizes, while, as already said, we
find a common convergence rate also in some cases with ν �= γ .

Summing up, this work shows convergence results for the stochastic processes of the personal
inclinations Zj = (Zn,j )n and of the weighted empirical means Nj = (Nn,j )n. As a byproduct,
we are able to complete some convergence results obtained in Aletti, Crimaldi and Ghiglietti [2],
Aletti, Crimaldi and Ghiglietti [1], where the sole personal inclinations or the empirical means

X
j = (Xn,j )n were considered. The main focus here concerns the new decomposition employed

for the analysis of the asymptotic behavior of the pair (Zn,Nn), that, among other things, allows
us to solve the research question arisen in Aletti, Crimaldi and Ghiglietti [2] regarding the statis-
tical test on W in the case γ < 1. Thus, in what follows, we will go fast on the points in common
with Aletti, Crimaldi and Ghiglietti [1,2], while we will concentrate on the novelties.
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The rest of the paper is organized as follows. In Section 2, we describe the notation and
the assumptions used along the paper. In Section 3 and Section 4, we illustrate our main re-
sults and we discuss some possible statistical applications. An interesting example of interact-
ing system is also provided in order to clarify the statement of the theorems and the related
comments. Section 5 and Section 6 contain the proofs or the main steps of the proofs of our
results, while the technical details have been gathered in the supplementary material (Aletti,
Crimaldi and Ghiglietti [3]). In particular, Section 5.2 contains the main ingredient of the proofs
of the CLTs, that is a suitable decomposition of the joint stochastic process (Zn,Nn). Finally,
for the reader’s convenience, the appendix supplies a brief review on the notion of stable con-
vergence and its variants (see, e.g., Crimaldi [14,16], Crimaldi, Letta and Pratelli [19], Hall
and Heyde [26], Zhang [34]) and the statements of some technical lemmas quoted in the pa-
per.

2. Notation and assumptions

Throughout all the paper, we will assume N ≥ 2 and adopt the same notation used in Aletti,
Crimaldi and Ghiglietti [1,2]. In particular, we denote by Re(z), Im(z), z and |z| the real part,
the imaginary part, the conjugate and the modulus of a complex number z. Then, for a matrix A

with complex elements, we let A and A� be its conjugate and its transpose, while we indicate by
|A| the sum of the modulus of its elements. The identity matrix is denoted by I , independently
of its dimension that will be clear from the context. The spectrum of A, that is, the set of all the
eigenvalues of A repeated with their multiplicity, is denoted by Sp(A), while its sub-set contain-
ing the eigenvalues with maximum real part is denoted by λmax(A), i.e. λ∗ ∈ λmax(A) whenever
Re(λ∗) = max{Re(λ) : λ ∈ Sp(A)}. The notation diag(a1, . . . , ad) indicates the diagonal matrix
of dimension d with diagonal elements a1, . . . , ad . Finally, we consider any vector v as a matrix
with only one column (so that all the above notations apply to v) and we indicate by ‖v‖ its
norm, that is, ‖v‖2 = v�v. The vectors and the matrices whose elements are all ones or zeros are
denoted by 1 and 0, respectively, independently of their dimension that will be clear from the
context.

For the matrix W , we make the following assumption:

Assumption 2.1. The weighted adjacency matrix W is irreducible and diagonalizable.

The irreducibility of W reflects a situation in which all the vertices are connected among each
others and hence there are no sub-systems with independent dynamics (see Aletti, Crimaldi and
Ghiglietti [1], Aletti and Ghiglietti [4] for further details). The diagonalizability of W allows
us to find a non-singular matrix Ũ such that Ũ�W(Ũ�)−1 is diagonal with complex elements
λj ∈ Sp(W). Notice that each column uj of Ũ is a left eigenvector of W associated to the eigen-
value λj . Without loss of generality, we take ‖uj‖ = 1. Moreover, when the multiplicity of some
λj is bigger than one, we set the corresponding eigenvectors to be orthogonal. Then, if we define
Ṽ = (Ũ�)−1, we have that each column vj of Ṽ is a right eigenvector of W associated to the
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eigenvalue λj such that

u�
j vj = 1, and u�

h vj = 0, ∀h �= j. (2.1)

These constraints combined with the above assumptions on W (precisely, wh,j ≥ 0, W�1 = 1
and the irreducibility) imply, by Frobenius–Perron theorem, that λ1 := 1 is an eigenvalue of W

with multiplicity one, λmax(W) = {1} and

u1 = N−1/21, N−1/21�v1 = 1 and ∀1 ≤ j ≤ N v1,j := [v1]j > 0. (2.2)

Moreover, we recall the relation

N∑
j=1

uj v�
j = I. (2.3)

Finally, we set αj := 1 − λj ∈ C for each j ≥ 2, i.e. for each λj belonging to Sp(W) \ {1}, and
we denote by λ∗ an eigenvalue belonging to Sp(W) \ {1} such that Re(λ∗) = max{Re(λj ) : λj ∈
Sp(W) \ {1}}.

Throughout all the paper, we assume that the two sequences (rn)n≥0 and (qn,n)n≥1, which
appear in (1.9), satisfy the following assumption:

Assumption 2.2. There exist real constants γ, ν ∈ (1/2,1] and c, q > 0 such that

rn−1 = c

nγ
+ O

(
1

n2γ

)
and qn,n = q

nν
+ O

(
1

n2ν

)
. (2.4)

In particular, it follows limn nγ rn = c > 0 and limn nνqn,n = q > 0. The following remark will
be useful for a certain proof in the sequel.

Remark 2.1. Recalling that qn,n = an/
∑n

l=1 al , the second relation in (2.4) implies that∑+∞
n=1 an = +∞. Indeed, that relation together with

∑+∞
n=1 an = 	 < +∞ entails an = q	n−ν +

O(n−2ν) and so, since ν ≤ 1,
∑+∞

n=1 an = +∞, which is a contradiction.

In the special case of an = 1 for each n, the random variables Nn,j correspond to the simple
empirical means and we have ν = 1 and q = 1. Other possible choices are the following:

• ∑n
l=1 al = nδ with δ > 0, which brings to an = nδ − (n − 1)δ and

qn,n = 1 −
∑n−1

l=1 al∑n
l=1 al

= 1 −
(

1 − 1

n

)δ

= δn−1 + O
(
n−2),

so that we have ν = 1 and q = δ > 0;
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• ∑n
l=1 al = exp(bnδ) with b > 0 and δ ∈ (0,1/2), which brings to an = exp(bnδ) −

exp(b(n − 1)δ) and

qn,n = 1 −
∑n−1

l=1 al∑n
l=1 al

= 1 − exp
[
b
(
(n − 1)δ − nδ

)]
= bnδ

(
1 − (

1 − n−1)δ)+ O
(
n2δ

(
1 − (

1 − n−1)δ)2)
= bnδ

(
δn−1 + O

(
n−2))+ O

(
n−(2−2δ)

)
= bδn−(1−δ) + O

(
n−(2−δ)

)+ O
(
n−(2−2δ)

)
= bδn−(1−δ) + O

(
n−2(1−δ)

)
,

so that ν = (1 − δ) ∈ (1/2,1) and q = bδ > 0.

To ease the notation, we set r̂n−1 := cn−γ and q̂n,n := qn−ν , so that condition (2.4) can be
rewritten as

rn−1 = r̂n−1 + O

(
1

n2γ

)
and qn,n = q̂n,n + O

(
1

n2ν

)
.

For the CLTs provided in the sequel, we make also the following assumption:

Assumption 2.3. When γ = 1, we assume the condition c > 1/[2(1 −Re(λ∗))], i.e. Re(λ∗) <

1 − (2c)−1. When ν = 1, we assume q > 1/2.

Note that in Assumption 2.2 condition (2.4) for the sequence (rn)n is slightly more restric-
tive than the one assumed in Aletti, Crimaldi and Ghiglietti [1,2]. However, it is always verified
in the applicative contexts we have in mind. The reason behind this choice is that we want to
avoid some technical complications in order to focus on the differences brought by the use of the
weighted empirical means, specially on the relationship between the pair (γ, ν) and the asymp-
totic behaviors of the considered stochastic processes. For the same reason, in the CLTs for the
case ν = γ , we add also the following assumption:

∀j ≥ 2 q �= cαj . (2.5)

We think that this condition is not necessary. Indeed, if there exists j ≥ 2 such that q = cαj ,
we conjecture that our proofs still work (but using in the proof of Lemma 5.1 the appropriate
asymptotic expression of a certain quantity, called Gk+1,n−1(x, q), whose asymptotic behavior
is completely described in the supplementary material (Aletti, Crimaldi and Ghiglietti [3], Sec-
tion A.3)) and they lead to exactly the same asymptotic covariances provided in the CLTs under
the above condition (2.5). Our conjecture is motivated by the fact that this is what happens in
Aletti, Crimaldi and Ghiglietti [2] for the simple empirical means. Moreover, the expressions
obtained for the asymptotic covariances in the following CLTs do not require condition (2.5).
However, as told before, we do not want to make the following proofs even heavier and so, when
ν = γ , we will work under condition (2.5).
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3. Main results on the joint stochastic process

The first achievement concerns the almost sure synchronization of all the involved stochastic
processes, that is

Yn :=
(

Zn

Nn

)
a.s.−→ Z∞1, (3.1)

where Z∞ is a random variable with values in [0,1]. This fact means that all the stochastic
processes Zj = (Zn,j )n and Nj = (Nn,j )n positioned at different vertices j ∈ V of the graph
converge almost surely to the same random variable Z∞.

The synchronization for the first component of Yn, that is

[Yn]1 = Zn
a.s.−→ Z∞1, (3.2)

is the result contained in Aletti, Crimaldi and Ghiglietti [1], Theorem 3.1, while for the second
component, we prove in the present work the following result.

Theorem 3.1. Under Assumptions 2.1 and 2.2, we have

[Yn]2 = Nn
a.s.−→ Z∞1. (3.3)

Regarding the distribution of Z∞, we recall that Aletti, Crimaldi and Ghiglietti ([1], Theo-
rems 3.5 and 3.6) state the following two properties:

(i) P(Z∞ = z) = 0 for any z ∈ (0,1).
(ii) If we have P(

⋂N
j=1{Z0,j = 0}) + P(

⋂N
j=1{Z0,j = 1}) < 1, then P(0 < Z∞ < 1) > 0.

In particular, these facts entail that the asymptotic covariances in the following CLTs are “truly”
random. Indeed, their random part Z∞(1 − Z∞) is different from zero with probability greater
than zero and almost surely different from a constant in (0,1).

Furthermore, it is interesting to note that the almost sure synchronization holds true without
any assumptions on the initial configuration Z0 and for any choice of the weighted adjacency
matrix W with the required assumptions. Finally, note that the synchronization is induced along
time independently of the fixed size N of the network, and so it does not require a large-scale limit
(i.e., the limit for N → +∞), which is usual in statistical mechanics for the study of interacting
particle systems.

Regarding the convergence rate and the second-order asymptotic distribution of (Yn − Z∞1),
setting for each γ ∈ (1/2,1]

γ0 := max

{
1

2
,2γ − 1

}
∈ [1/2,1], (3.4)

�̃γ := σ̃ 2
γ 11� with σ̃ 2

γ := ‖v1‖2c2

N(2γ − 1)
(3.5)
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and

Ũ = (
u1 u2 . . . uN

)= (
N−1/21 U

)
with U := (

u2 . . . uN

)
, (3.6)

we obtain the following result.

Theorem 3.2. Under all the assumptions stated in Section 2, the following statements hold true:

(a) If 1/2 < ν < γ0, then

nν/2(Yn − Z∞1) −→N
(

0,Z∞(1 − Z∞)

(
0 0
0 ŨS(q)Ũ�

))
stably, (3.7)

where, for 1 ≤ j1, j2 ≤ N , [
S(q)

]
j1j2

:= q

2
v�
j1

vj2 . (3.8)

(b) If γ0 < ν < 1, then

nγ− 1
2 (Yn − Z∞1) −→N

(
0,Z∞(1 − Z∞)�̃γ

)
stably. (3.9)

(c) If ν = γ0 < 1, then

nγ− 1
2 (Yn − Z∞1)

−→N
(

0,Z∞(1 − Z∞)

(
�̃γ +

(
0 0
0 ŨS(q)Ũ�

)))
stably, (3.10)

where S(q) is the same matrix defined in (a) by (3.8).
(d) If ν = γ0 = 1 (that is ν = γ = 1), then

√
n(Yn − Z∞1)

−→N
(

0,Z∞(1 − Z∞)

(
�̃1 +

(
ŨS11Ũ� ŨS12Ũ�
ŨS21Ũ� ŨS22Ũ�

)))
stably, (3.11)

where S21 = (S12)� and, for 2 ≤ j1, j2, j ≤ N ,

[
S11]

11 = [
S11]

j11 = [
S11]

1j2
:= 0,

[
S11]

j1j2
:= c2

c(αj1 + αj2) − 1
v�
j1

vj2,

[
S12]

11 = [
S12]

1j2
:= 0,

[
S12]

j11 := c(q − c)

cαj1 + q − 1
v�
j1

v1,

[
S12]

j1j2
:= cq(cαj1 + c − 1)

(cαj1 + cαj2 − 1)(cαj1 + q − 1)
v�
j1

vj2,

[
S22]

11 := (q − c)2

2q − 1
‖v1‖2,

[
S22]

j1 = [
S22]

1j
:= q(q − c)(c + q − 1)

(cαj + q − 1)(2q − 1)
v�
j v1,
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[
S22]

j1j2
:= q2 c3(αj1 + αj2) + 2c2q(αj1αj2 + 1) − c2(αj1αj2 + αj1 + αj2 + 2)

(2q − 1)(c(αj1 + αj2) − 1)(cαj1 + q − 1)(cαj2 + q − 1)
v�
j1

vj2

+ q2 c(q − 1)2(αj1 + αj2) − (2c + q − 1)(q − 1)

(2q − 1)(c(αj1 + αj2) − 1)(cαj1 + q − 1)(cαj2 + q − 1)
v�
j1

vj2 .

(e) If γ0 < ν = 1, then

nγ− 1
2 (Yn − Z∞1)

−→ N
(

0,Z∞(1 − Z∞)

(
�̃γ + ‖v1‖2c2

N [2q − (2γ − 1)]
(

0 0
0 11�

)))
stably. (3.12)

Remark 3.1. Looking at the asymptotic covariance matrices in the different cases of the above
theorem, note that in case (a) the convergence rate of the first component is bigger than the one
of the second component. Indeed, from our previous work Aletti, Crimaldi and Ghiglietti [1],
we know that it is nγ0/2. On the other hand, there are cases (see (b), (c) and (e)) in which the
convergence rates of the two components are the same, although the discount factors rn ∼ cn−γ

and qn,n ∼ qn−ν in (1.9) have different convergence rates.

Remark 3.2. Recall that we have 1 ≤ 1 + ‖v1 − u1‖2 = ‖v1‖2 ≤ N . Therefore we obtain the
following lower and upper bounds (that do not depend on W ) for σ̃ 2

γ and for the second term in
the asymptotic covariance of relation (3.12):

c2

N(2γ − 1)
≤ σ̃ 2

γ ≤ c2

2γ − 1
and

c2

N [2q − (2γ − 1)] ≤ ‖v1‖2c2

N [2q − (2γ − 1)] ≤ c2

2q − (2γ − 1)
.

Notice that the lower bound is achieved when v1 = u1 = N−1/21, that is, when W is doubly
stochastic, which means W1 = W�1 = 1.

Remark 3.3. The main goal of this work is to provide results for a system of N ≥ 2 interacting
reinforced stochastic processes. However, it is worth to note that Theorem 3.1, and the conse-
quent limit (3.1), hold true also for N = 1. Moreover, statements (d) and (e) of Theorem 3.2 with
N = 1 are true. Finally, statements (a), (b) and (c) of Theorem 3.2 with N = 1 (and so without
the condition on λ∗) can be proven with the same proof provided in the sequel (see the following
Remark 5.2).

We conclude this section with the example of the “mean-field” interaction, which is a simple,
but widely used in applications (for instance, in Game Theory), type of interacting mechanism.
Other examples of interaction can be found in Aletti, Crimaldi and Ghiglietti [1]: precisely, the
case of a “cycle-interaction”, where the vertex form a circle because each vertex h, with h =
1, . . . ,N − 1 influences only the vertex h + 1 and the vertex N influences only the vertex 1, and
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the case in which there exists a “special vertex” whose influence on the vertices of the graph is
different with respect to the one of all the others.

Example 3.1. The mean-field interaction can be expressed in terms of a particular weighted
adjacency matrix W as follows: for any 1 ≤ j1, j2 ≤ N

wj1,j2 = α

N
+ (1 − α)δj1,j2 with α ∈ [0,1], (3.13)

where δj1,j2 is equal to 1 when j1 = j2 and to 0 otherwise. Note that W in (3.13) is irreducible
for α > 0 and so we are going to consider this case. Since W is doubly stochastic, we have
v1 = u1 = N−1/21. Moreover, since W is also symmetric, we have Ũ = Ṽ and so Ũ Ũ� = I and
Ṽ �Ṽ = I . Finally, we have λj = 1 − α for all j ≥ 2 and, consequently, we obtain

S(q) = q

2
I,

{[
S11]

j1j2
: 2 ≤ j1, j2 ≤ N

}= c2

2cα − 1
I,

[
S12]

j11 = 0 for 2 ≤ j1 ≤ N,
{[

S12]
j1j2

: 2 ≤ j1, j2 ≤ N
}= qc(cα + c − 1)

(2cα − 1)(cα + q − 1)
I,

[
S22]

11 = (q − c)2

2q − 1
,

[
S22]

j1 = [
S22

1j

]= 0 for 2 ≤ j ≤ N,

{[
S22]

j1j2
: 2 ≤ j1, j2 ≤ N

}
= (qc)2[(α2 + 1)(2q − 1) + 2α(c − 1) − 1 + (2α − c−1)(q − 1)2 − 2c−1(q − 1)]

(2q − 1)(2cα − 1)(cα + q − 1)2
I,

and the condition Re(λ∗) < 1 − (2c)−1 when γ = 1 becomes 2cα > 1.

4. Useful results for statistical applications

The first convergence result provided in this section can be used for the construction of asymp-
totic confidence intervals for the limit random variable Z∞, that requires the observation of the
actions Xn,j adopted by the agents and the knowledge of the following parameters:

• N : the number of agents in the network;
• v1: the right eigenvector of W associated to λ1 = 1 (note that it is not required to know

the whole weighted adjacency matrix W , for example, we have v1 = u1 = N−1/21 for any
doubly stochastic matrix);

• γ and c: the parameters that describe the first-order asymptotic approximation of the se-
quence (rn)n;

• ν and q: the parameters that describe the first-order asymptotic approximation of the se-
quence (qn,n)n (recall that the weights qn,k are chosen and so ν and q are always known
and, sometimes, they can be optimally chosen).
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We point out that it is not required the observation of the random variables Zn,j , nor the knowl-
edge of the initial random variables {Z0,j : j ∈ V } and nor of the exact expression of the sequence
(rn)n.

The second result stated in this section can be employed for the construction of asymptotic
critical regions for statistical tests on the weighted adjacency matrix W based on the weighted
empirical means of the agents’ actions (given the values of γ , ν, c, q and N ). See Remark 4.2 for
the details. In particular, we point out that in our previous work Aletti, Crimaldi and Ghiglietti
[2] we succeeded to provide a testing procedure based on the standard empirical means only for
the case γ = 1; while we announced further future investigation for the case 1/2 < γ < 1. In
the present work, we face and solve this issue, providing a test statistics for all the values of the
parameters. Indeed the following Theorem 4.2 covers all the cases for the pair (γ, ν).

Let us consider the decomposition Nn = 1Ñn + N′
n, where

1Ñn := u1v�
1 Nn = N−1/21v�

1 Nn and N′
n := Nn − 1Ñn = (

I − u1v�
1

)
Nn. (4.1)

Concerning the first term, by (2.2) and the almost sure synchronization (3.1), we immediately
obtain Ñn

a.s.−→ Z∞. Moreover, under all the assumptions stated in Section 2, setting

σ̃ 2 := ‖v1‖2

N
×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q

2
if ν < γ0 or ν = γ0 < 1,

(q − c)2

2q − 1
if ν = γ0 = 1 (that is ν = γ = 1),

c2

2q − (2γ − 1)
if γ0 < ν = 1,

(4.2)

where γ0 and σ̃ 2
γ are defined in (3.4) and in (3.5), respectively, we have the following result:

Theorem 4.1. Under all the assumptions stated in Section 2, the following statements hold true:

(a) If ν < γ0, then

nν/2(Ñn − Z∞) −→ N
(
0,Z∞(1 − Z∞)̃σ 2) stably.

(b) If γ0 < ν < 1, then

nγ− 1
2 (Ñn − Z∞) −→N

(
0,Z∞(1 − Z∞)̃σ 2

γ

)
stably.

(c) If ν = γ0 or ν = 1 (i.e. ν = γ0 < 1 or ν = γ0 = 1 or γ0 < ν = 1), then

nγ− 1
2 (Ñn − Z∞) −→ N

(
0,Z∞(1 − Z∞)

(
σ̃ 2

γ + σ̃ 2)) stably.

Note that σ̃ 2 has not been defined in the case γ0 < ν < 1, i.e. in the case (b) of the above result,
because in this case it does not appear in the asymptotic covariance matrix. In the following
remark, we briefly describe how to construct asymptotic confidence intervals for Z∞ based on the
random variable Ñn and we point out the advantages of employing the weighted empirical means
with ν < 1, instead of the simple empirical means (for which we have ν = q = 1), providing a
short discussion on the possible “optimal choice” of ν and q:
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Remark 4.1. If we define v2 equal to σ̃ 2, or σ̃ 2
γ , or (̃σ 2

γ + σ̃ 2) and e equal to ν/2 or γ − 1
2 ,

according to the values of the pair (γ, ν), so that, by Theorem 4.1, we have the stable convergence
of ne(Ñn −Z∞) to N (0,Z∞(1−Z∞)v2), then, employing Ñn as a strong consistent estimator of
Z∞, we get (since, as recalled in Appendix A, stable convergence and convergence in probability
combine well) ne(Ñn −Z∞)/

√
v2Ñn(1 − Ñn) convergent to N (0,1). Hence, if zθ is the quantile

of the standard normal distribution of order 1 − θ/2, then CI1−θ (Z∞) = Ñn ± zθ

ne v
√

Ñn(1 − Ñn)

provides an asymptotic confidence interval for Z∞, with (approximate) level (1 − θ).
The convergence rates and the asymptotic variances expressed in the cases of Theorem 4.1

allows us to make some considerations on the existence of an “optimal” choice of the parameters
ν and q in order to “maximize the convergence” of Ñn towards the random limit Z∞. Indeed,
first note that the convergence rate in case (a) is slower than the rates of the other two cases,
and, moreover, the asymptotic variance in case (c) is strictly larger than the variance in case
(b). Hence, the interval γ0 < ν < 1 in case (b) provides an “optimal” range of values where the
parameter ν should be chosen. In addition, looking into the proof of Theorem 4.1, it is possi-
ble to investigate more deeply into the behavior of Ñn and so derive more accurate optimality
conditions on the values of ν and q (see the following Remark 6.2).

Analogously, concerning the term N′
n = (I − u1v�

1 )Nn, from (2.2) and the almost sure syn-

chronization (3.1), we obtain N′
n

a.s.→ 0. Moreover, setting

Ũ−1 := (
0 u2 . . . uN

)= (
0 U

)
, (4.3)

we get the following theorem.

Theorem 4.2. Under all the assumptions stated in Section 2, the following statements hold true:

(a) If ν < γ , then

n
ν
2 N′

n −→ N
(
0,Z∞(1 − Z∞)Ũ−1S

(q)Ũ�−1

)
stably,

where S(q) is defined in (3.8).
(b) If ν = γ , then

n
ν
2 N′

n −→N
(
0,Z∞(1 − Z∞)Ũ−1S

22
γ Ũ�−1

)
stably,

where, for any 2 ≤ j1, j2 ≤ N , we have that [S22
γ ]11, [S22

γ ]1j2 and [S22
γ ]j11 are not needed

to be defined since the first column of Ũ−1 is 0, while the remaining elements [S22
γ ]j1j2 are

defined as

q2 c3(αj1 + αj2) + 2c2q(αj1αj2 + 1) − 1{γ=1}c2(αj1αj2 + αj1 + αj2 + 2)

(2q − 1{γ=1})(c(αj1 + αj2) − 1{γ=1})(cαj1 + q − 1{γ=1})(cαj2 + q − 1{γ=1})
v�
j1

vj2

+ q2 c(q − 1{γ=1})2(αj1 + αj2) − 1{γ=1}(2c + q − 1)(q − 1)

(2q − 1{γ=1})(c(αj1 + αj2) − 1{γ=1})(cαj1 + q − 1{γ=1})(cαj2 + q − 1{γ=1})

× v�
j1

vj2 .
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(c) If γ < ν, then

n
ν
2 N′

n −→ N
(
0,Z∞(1 − Z∞)Ũ−1SŨ�−1

)
stably,

where, for any 2 ≤ j1, j2 ≤ N , we have that [S]11, [S]1j2 and [S]j11 are not needed to be
defined since the first column of Ũ−1 is 0, while the remaining elements [S]j1j2 are defined
as

q2
((

λj1λj2

αj1αj2

)
1

2q − 1{ν=1}(2γ − 1)
+
(

λj1

αj1

+ λj2

αj2

)
1

2q − 1{ν=1}γ
+ 1

2q − 1{ν=1}

)
× v�

j1
vj2 .

Note that the convergence rate for (N′
n) is always nν/2. In the following remark, we briefly

describe how to use Ñn and N′
n in order to perform a test on the matrix W (for any values of γ

and ν).

Remark 4.2. Theorem 4.2 can be used for testing the hypothesis that the network is character-
ized by a given weighted adjacency matrix W0, that is, H0 : W = W0, using the random variables
N′

n and Ñn, observed at the vertices (the parameters γ , ν, c, q and N are supposed known).
Indeed, fixed the weighted adjacency matrix assumed under H0, that is, W0, we can compute for
it the vectors un, vn and the eigenvalues λj , and hence Ñn and N′

n, and, according to the value of

ν and γ , the matrix, say M , specified in Theorem 4.2 so that n
ν
2 N′

n

d∼ N (0,Z∞(1 − Z∞)M). If
L is such that LML� = I and we employ Ñn as a strong consistent estimator of Z∞, then, under
H0, we get (since, as recalled in Appendix A, stable convergence and convergence in probability

combine well) n
ν
2√

Ñn(1−Ñn)
LN′

n

d∼ N (0, I ) and so nν

Ñn(1−Ñn)
(N′

n)
�L�LN′

n

d∼ χ2
N−1. We may use

this asymptotic distribution in order to construct asymptotic critical regions for testing H0. The
performance in terms of power of this testing procedure is strongly related to the considered ad-
jacency matrix W1 belonging to the alternative hypothesis H1. See Aletti, Crimaldi and Ghiglietti
[1,2] for a discussion of this issue.

In the following example we go on with the analysis of the mean-field interaction, providing a
simple application of the general testing procedure described in Remark 4.2.

Example 4.1. If we consider again the mean-field interaction (see (3.13)), we have N′
n = (I −

N−111�)Nn (because v1 = u1 = N−1/21). Moreover, since Ũ = Ṽ and so Ṽ �Ṽ = I , we find
S(q) = q

2 I , {[
S22

γ

]
j1j2

: 2 ≤ j1, j2 ≤ N
}= s22

γ I

with

s22
γ := (

q2[c2(α2 + 1
)
(2q − 1{γ=1}) + 2c2α(c − 1{γ=1}) − 1{γ=1}c2

+ 2αc(q − 1{γ=1})2 − 1{γ=1}(2c + q − 1)(q − 1)
])

/
(
(2q − 1{γ=1})(2cα − 1{γ=1})(cα + q − 1{γ=1})2)
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and

S = sI with

s := q2
((

1 − α

α

)2 1

2q − 1{ν=1}(2γ − 1)
+ 2

(1 − α)

α

1

2q − 1{ν=1}γ
+ 1

2q − 1{ν=1}

)
.

Hence, since Ũ−1I Ũ�−1 = UU� = I − N−111�, we get that

nν/2(I − N−111�)Nn −→ N
(
0,Z∞(1 − Z∞)s∗(I − N−111�)) stably,

where s∗ is equal to q/2 or s22
γ or s, according to the values of ν and γ . Finally, using the relations

U�U = I and UU� = I − N−111� and employing Ñn as a strong consistent estimator of Z∞,
we get (write N′

n as UU�Nn and take M = s∗(I − N−111�) = s∗UU� and L = U�/
√

s∗ in
the general procedure described in Remark 4.2)

nν/2√
Ñn(1 − Ñn)s∗ U�Nn

d∼N (0, I ) and
nν

Ñn(1 − Ñn)s∗ N�
n

(
I − N−111�)Nn

d∼ χ2
N−1.

Given the values of γ , ν, c, q and N , this last asymptotic distribution can be used in order to
perform a statistical test on the parameter α in the definition of W (see (3.13)), that is with
H0 : W = W0, where W0 is the matrix corresponding to a certain value of α.

5. Proof of the results on the joint stochastic process

Here we prove the convergence results stated in Section 3.

5.1. Proof of Theorem 3.1

As already recalled (see (3.2)), we have Zn
a.s.→ Z∞. Hence, since the condition W�1 = 1 and

the equality (1.8), we get E[Xn|Fn−1] a.s.→ Z∞1. Therefore, the convergence Nn
a.s.→ Z∞1 fol-

lows from (Aletti, Crimaldi and Ghiglietti [2], Lemma B.1) with ck = kν , vn,k = ckqn,k and
η = 1. Note that the assumptions on the weights qn,k = ak/

∑n
l=1 al , easily implies that ck

and vn,k satisfy the conditions required in the employed lemma: indeed, by definition, we have∑n
k=1 qn,k = 1 and from the second relation in (2.4) we get

∑+∞
n=1 an = +∞ and

nνan = q

n∑
l=1

al + O

(
n−ν

n∑
l=1

al

)
= q

n∑
l=1

al + O
(
an

(
nνqn,n

)−1)= q

n∑
l=1

al + O(an),



1114 G. Aletti, I. Crimaldi and A. Ghiglietti

and so we obtain

lim
n

vn,k = ckak lim
n

1∑n
l=1 al

= 0,

lim
n

vn,n = lim
n

cnqn,n = q,

lim
n

n∑
k=1

vn,k

ck

= lim
n

n∑
k=1

qn,k = 1

and

n∑
k=1

|vn,k − vn,k−1| = 1∑n
l=1 al

n∑
k=1

kνak − (k − 1)νak−1

= 1∑n
l=1 al

[
n∑

k=1

q

(
k∑

l=1

al −
k−1∑
l=1

al

)
+ O

(
n∑

k=1

ak

)]

= q

∑n
k=1 ak∑n
l=1 al

+ O(1) = O(1).

5.2. Decomposition of the joint stochastic process

In this section, we describe the main tool used in the following proofs, that is a suitable decompo-
sition of the joint stochastic process Y := (Yn)n. Indeed, in order to determine the convergence
rate and the second-order asymptotic distribution of (Yn − Z∞1) for any values of the parame-
ters, we need to decompose Y into a sum of “primitive” stochastic processes, and then establish
the asymptotic behavior for each one of them. As we will see, they converge at different rates.

Let us express the dynamics (1.9) of the stochastic processes (Zn)n and (Nn)n as follows:{
Zn − Zn−1 = −r̂n−1

(
I − W�)Zn−1 + r̂n−1
Mn + 
RZ,n,

Nn − Nn−1 = −q̂n,n

(
Nn−1 − W�Zn−1

)+ q̂n,n
Mn + 
RN,n,
(5.1)

where 
Mn := (Xn − W�Zn−1) is a martingale increment with respect to the filtration F :=
(Fn)n, while 
RZ,n := (rn−1 − r̂n−1)(Xn − Zn−1) and 
RN,n := (qn,n − q̂n,n)(Xn − Zn−1) are
two remainder terms. Hence, by means of (5.1), the dynamics of the stochastic process Y can be
expressed as

Yn = (I − Qn)Yn−1 + Rn
MY,n + 
RY,n, (5.2)

where 
MY,n := (
Mn,
Mn)
�, 
RY,n := (
RZ,n,
RN,n)

�,

Qn :=
(̂

rn−1
(
I − W�) 0

−q̂n,nW
� q̂n,nI

)
and Rn :=

(̂
rn−1I 0

0 q̂n,nI

)
. (5.3)
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Now, we want to decompose the stochastic process Y in a sum of stochastic processes, whose dy-
namics are of the same types of (5.2), but more tractable. To this purpose, we define, for each j =
1, . . . ,N , two vectors uj (1) and uj (2) of dimension 2N as follows. We set Uj := (uj (1),uj (2)),
that is the matrix of dimension 2N × 2 having uj (1) and uj (2) as columns, and we impose the
following relations:

Uj = U∗
j Pj with U∗

j :=
(

uj 0
0 uj

)
and Pj :=

(
1 0

g(λj ) 1

)
, (5.4)

and, for any n ≥ 1,

QnUj = UjDQ,j,n, where DQ,j,n :=
(̂

rn−1(1 − λj ) 0
−λjhn(λj ) q̂n,n

)
. (5.5)

We recall that λj and uj denote the eigenvalues and the left eigenvectors of W , respectively. The
above functions g and hn will be suitable defined later on. In particular, we will define hn in such
a way that the sequence (hn(λj ))n converges to zero at the biggest possible rate. In order to solve
the above system of equations, we firstly observe that, by (5.4), we have

uj (1) =
(

uj

g(λj )uj

)
, uj (2) =

(
0

uj

)
, (5.6)

QnUj = QnU
∗
j Pj

= U∗
j

(̂
rn−1(1 − λj ) 0

−q̂n,nλj q̂n,n

)
Pj

= U∗
j

(
r̂n−1(1 − λj ) 0

−q̂n,nλj + q̂n,ng(λj ) q̂n,n

)
(5.7)

and

UjDQ,j,n = U∗
j PjDQ,j,n = U∗

j

(
r̂n−1(1 − λj ) 0

r̂n−1(1 − λj )g(λj ) − λjhn(λj ) q̂n,n

)
. (5.8)

Then, combining together (5.7) and (5.8) in order to satisfy (5.5), we obtain

−q̂n,nλj + q̂n,ng(λj ) = r̂n−1(1 − λj )g(λj ) − λjhn(λj ),

from which we get the equality

λj

[
q̂n,n − hn(λj )

]= g(λj )
[
q̂n,n − r̂n−1(1 − λj )

]
. (5.9)

Now, for all values of γ , ν and j ∈ {1, . . . ,N}, we want to define g(λj ) and hn(λj ) in such a
way that (5.9) is verified for any n and hn(λj ) vanishes to zero with the biggest possible rate. To
this end, we note that by (5.9) we have the following facts:

• if j = 1, then λ1 = 1, and we can set hn(λ1) = hn(1) = 0 and g(λ1) = g(1) = 1;
• if j ≥ 2 and λj = 0, we can set g(λj ) = g(0) = 0 and hn(λj ) = hn(0) is not relevant;
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• if j ≥ 2 and λj �= 0, we can set g(λj ) = λj and hn(λj ) = r̂n−1(1 − λj ) or we can set
hn(λj ) = q̂n,n and g(λj ) = 0.1

Hence, since r̂n−1 and q̂n,n have convergence rates nγ and nν , respectively, we choose to set

hn(x) :=
{̂

rn−1(1 − x) if ν < γ,

q̂n,n1{x �=1} if ν ≥ γ
(5.10)

and

g(x) :=
{

x if ν < γ,

1{x=1} if ν ≥ γ.
(5.11)

Now, recalling that vj , for j = 1, . . . ,N , denote the right eigenvectors of W , we define,
for each j = 1, . . . ,N , two vectors vj (1) and vj (2) of dimension 2N as follows. We set
Vj := (vj (1),vj (2)), that is the matrix of dimension 2N × 2 having vj (1) and vj (2) as columns,
and we impose the condition

Vj = V ∗
j P −�

j where V ∗
j :=

(
vj 0
0 vj

)
and P −�

j :=
(

1 −g(λj )

0 1

)
,

so that we have

vj (1) =
(

vj

0

)
and vj (2) =

(−g(λj )vj

vj

)
. (5.12)

Note that, we also have

V �
j Qn = DQ,j,nV

�
j . (5.13)

Moreover, by (2.1), we have

u�
j (i)vj (i) = 1, and u�

h(l)vj (i) = 0, ∀h �= j or l �= i. (5.14)

Finally, since {uj (i) : j = 1, . . . ,N; i = 1,2} and {vj (i) : j = 1, . . . ,N; i = 1,2} satisfy, for
any j ∈ {1, . . . ,N}, the relation

UjV
�
j = uj (1)v�

j (1) + uj (2)v�
j (2) =

(
uj v�

j 0
0 uj v�

j

)
(5.15)

and since (2.3), the stochastic process {Yn : n ≥ 1} can be decomposed as

Yn =
N∑

j=1

Yj,n with Yj,n := UjV
�
j Yn. (5.16)

1Note that, when ν = γ , by (2.5) we have q̂n,n �= r̂n−1(1 − λj ) for all j ≥ 2. If there exists j ≥ 2 such that q = cαj =
c(1 − λj ), then we can set hn(λj ) = q̂n,n and g(λj ) is not relevant.
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The dynamics of each term Yj,n can be deduced from (5.2) by multiplying this equation by
UjV

�
j = U∗

j V ∗�
j and using (5.13) and the relation V �

j Yn = V �
j Yj,n. We thus obtain

Yj,n = Uj (I − DQ,j,n)V
�
j Yj,n−1 + U∗

j DR,nV
∗�
j 
MY,n + UjV

�
j 
RY,n, (5.17)

where

DR,n :=
(̂

rn−1 0
0 q̂n,n

)
. (5.18)

For the sequel, it will be useful to decompose Yn further as

Yn =
N∑

j=1

Yj,n =
N∑

j=1

Yj (1),n +
N∑

j=1

Yj (2),n, (5.19)

where, for any j ∈ {1, . . . ,N},

Yj,n = Yj (1),n + Yj (2),n and

Yj (i),n := uj (i)v�
j (i)Yn = uj (i)v�

j (i)Yj,n, for i = 1,2
(5.20)

and set

Ỹn := Y1(1),n = u1(1)v�
1(1)Yn =

(
u1v�

1 Zn

u1v�
1 Zn

)
= Z̃n

(
1
1

)
with Z̃n := N−1/2v�

1 Zn, (5.21)

and

Ŷn := Yn − Ỹn

= Yn − Y1(1),n

=
N∑

j=2

Yj (1),n +
N∑

j=1

Yj (2),n

=
N∑

j=2

Yj (1),n + Y1(2),n +
N∑

j=2

Yj (2),n. (5.22)

It is worthwhile to point out that the decomposition of Ŷn in terms of the stochastic processes
Yj (i),n is a new element with respect to the previous works and, as we will see in the sequel, it will
be the key tool in order to obtain the exact convergence rate of Ŷn. Indeed, the convergence rate
and the second-order asymptotic distribution of Ŷn will be the result of the different asymptotic
behaviors of the three quantities in the last term of (5.22).
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5.3. Central limit theorems for ˜Yn and ̂Yn

The convergence rate and the second-order asymptotic distribution of (Yn − Z∞1) will be ob-
tained by studying separately and then combining together the second-order convergence of
Ỹn to Z∞1 and the second-order convergence of Ŷn to 0. To this regards, we recall that, by
Aletti, Crimaldi and Ghiglietti [1], Theorem 4.2, under Assumptions 2.1 and 2.2, we have for
1/2 < γ ≤ 1 that

nγ− 1
2 (Ỹn − Z∞1) −→N

(
0,Z∞(1 − Z∞)�̃γ

)
stably in the strong sense, (5.23)

where �̃γ is defined in (3.5). In this work we fully describe the second-order convergence of Ŷn,
proving the following theorem.

Theorem 5.1. Under all the assumptions stated in Section 2 and recalling the definition (3.6) of
Ũ , the following statements hold true:

(a) If ν < γ , then

nν/2Ŷn −→ N
(

0,Z∞(1 − Z∞)

(
0 0
0 ŨS(q)Ũ�

))
stably,

where S(q) is defined in (3.8).
(b) If ν = γ , then

nγ/2Ŷn −→ N
(

0,Z∞(1 − Z∞)

(
ŨS11

γ Ũ� ŨS12
γ Ũ�

ŨS21
γ Ũ� ŨS22

γ Ũ�

))
stably,

where S11
γ , S12

γ and S22
γ are known deterministic matrices, whose entries are given in the

supplementary material (Aletti, Crimaldi and Ghiglietti [3], Section B), and S21
γ = (S12

γ )�.
(c) If γ < ν, then

nγ− ν
2 Ŷn −→N

(
0,Z∞(1 − Z∞)

c2

N [2q − 1{ν=1}(2γ − 1)]‖v1‖2
(

0 0
0 11�

))
stably.

Remark 5.1. Note that, when ν �= γ the convergence rates of the first and the second component
of Ŷn are always different: indeed from Aletti, Crimaldi and Ghiglietti [1], we know that, under
our assumptions, the convergence rate of Ẑn is always nγ/2, while the above theorem shows that
the convergence rate of N̂n changes according to the pair (γ, ν).

Regarding the proof of Theorem 5.1, we note that, using the definition (5.22) of Ŷn given in
Section 5.2, we can say that this random variable can be decomposed in a sum of suitable random
variables that have the form ∑

j∈J

∑
i∈Ij

Yj (i),n, (5.24)
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where J ⊆ {1, . . . ,N}, Ij ⊆ {1,2} for any j ∈ J and Yj(i),n is defined in (5.20). Hence, in order
to characterize the asymptotic behavior of Ŷn, we first establish the second-order asymptotic
behavior of the above general sum (5.24) under certain specifications of the sets J and Ij (see
Lemma 5.1 below) and then we combine them together appropriately according to their conver-
gence rates.

Lemma 5.1. Under all the assumptions stated in Section 2, consider the general sum (5.24) in
the following cases:

(i) ν < γ , J = {2, . . . ,N} and Ij = {1} for all j ∈ J ;
(ii) ν < γ , J = {1, . . . ,N} and Ij = {2} for all j ∈ J ;

(iii) ν = γ , J = {1, . . . ,N}, I1 = {2} and Ij = {1,2} for all j ∈ J \ {1};
(iv) γ < ν, J = {2, . . . ,N} and Ij = {1} for all j ∈ J ;
(v) γ < ν, J = {1} and I1 = {2};

(vi) γ < ν, J = {2, . . . ,N} and Ij = {2} for all j ∈ J .

Then, in all the above listed cases, we have

tn
(
J (I)

)∑
j∈J

∑
i∈Ij

Yj (i),n

stably−→ N
(

0,Z∞(1 − Z∞)
∑
j1∈J

∑
j2∈J

v�
j1

vj2

∑
i1∈Ij1

∑
i2∈Ij2

dj1(i1),j2(i2)uj1(i1)u
�
j2(i2)

)
, (5.25)

where

tn
(
J (I)

) :=

⎧⎪⎨⎪⎩
nγ/2 for cases (i), (iii) and (iv),

nν/2 for cases (ii) and (vi),

nγ− ν
2 for case (v),

(5.26)

and dj1(i1),j2(i2) are constants corresponding to the result of suitable limits computed in the
supplementary material (Aletti, Crimaldi and Ghiglietti [3], Section A.6).

Proof of Theorem 5.1. From the above lemma, we immediately get the proof of Theorem 5.1.
Indeed, in case (a) we get

nν/2Ŷn = 1

n(γ−ν)/2
nγ/2

N∑
j=2

Yj (1),n + nν/2
N∑

j=1

Yj (2),n

where, considering the cases (i) and (ii) of Lemma 5.1, the first term in the sum converges in
probability to zero, while the second term converges stably to the desired Gaussian kernel, that
is the Gaussian kernel with zero mean and random covariance matrix

Z∞(1 − Z∞)

N∑
j1=1

N∑
j2=1

v�
j1

vj2d
j1(2),j2(2)uj1(2)u�

j2(2),
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where

uj1(2)u�
j2(2) =

(
0 0
0 uj1u�

j2

)
.

By means of the matrix Ũ , defined in (3.6), and the value of dj1(2),j2(2), computed in Aletti,
Crimaldi and Ghiglietti [3], Section A.6, the above covariance matrix can be rewritten as in the
statement (a) of the theorem.

In case (b), we simply have

nγ/2Ŷn = nγ/2

(
N∑

j=2

Yj (1),n +
N∑

j=1

Yj (2),n

)
,

where the right-hand term converges stably to the desired Gaussian kernel (see the case (iii) of
Lemma 5.1), that is the Gaussian kernel with zero mean and random covariance matrix

Z∞(1 − Z∞)

N∑
j1=1

N∑
j2=1

2∑
i1=1

2∑
i2=1

(1 − 1{j1=i1=1}1{j2=i2=1})v�
j1

vj2d
j1(i1),j2(i2)uj1(i1)u

�
j2(i2)

, (5.27)

where

uj1(1)u�
j2(1) =

(
uj1u�

j2
1{j2=1}uj1u�

j2

1{j1=1}uj1u�
j2

1{j1=1}1{j2=1}uj1u�
j2

)
,

uj1(1)u�
j2(2) =

(
0 uj1u�

j2

0 1{j1=1}uj1u�
j2

)
,

uj1(2)u�
j2(1) =

(
0 0

uj1u�
j2

1{j2=1}uj1u�
j2

)
,

uj1(2)u�
j2(2) =

(
0 0
0 uj1u�

j2

)
.

Using the matrix Ũ , defined in (3.6), the values of dj1(i1),j2(i2), computed in Aletti, Crimaldi
and Ghiglietti [3], Section A.6, and the entries of the matrices S11

γ , S12
γ and S22

γ , given in Aletti,
Crimaldi and Ghiglietti [3], Section B, the above covariance matrix can be rewritten as in the
statement (b) of the theorem.

Finally, in case (c), we obtain

nγ− ν
2 Ŷn = 1

n(ν−γ )/2
n

γ
2

N∑
j=2

Yj (1),n + nγ− ν
2 Y1(2),n + 1

n(ν−γ )
n

ν
2

N∑
j=2

Yj (2),n,

where, considering the cases (iv), (v) and (vi) of Lemma 5.1, we have that the first and the third
terms in the sum converge in probability to zero, while the second term converges stably to
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the desired Gaussian kernel, that is the Gaussian kernel with zero mean and random covariance
matrix

Z∞(1 − Z∞)‖v1‖2d1(2),1(2)u1(2)u�
1(2),

where

u1(2)u�
1(2) =

(
0 0
0 u1u�

1

)
= 1

N

(
0 0
0 11�

)
. (5.28)

Using the value of d1(2),1(2), computed in Aletti, Crimaldi and Ghiglietti [3], Section A.6, the
above covariance matrix corresponds to the one given in the statement (c) of the theorem. �

We now go on with the proof of Lemma 5.1.

Proof. Proof of Lemma 5.1 Since this proof is quite long, we split it into various steps and the
technical computations and details are collected in the supplementary material Aletti, Crimaldi
and Ghiglietti [3].

First step: decomposition of the general sum (5.24).
First of all, we observe that, for any set J ⊆ {1, . . . ,N}, the dynamics of

∑
j∈J Yj,n can be

obtained by summing up equation (5.17) for j ∈ J :

∑
j∈J

Yj,n =
(∑

j∈J

Uj (I − DQ,j,n)V
�
j

)∑
j∈J

Yj,n−1 +
(∑

j∈J

U∗
j DR,nV

∗�
j

)

MY,n

+
(∑

j∈J

UjV
�
j

)

RY,n.

Then, recalling that Re(αj ) > 0 for each j ≥ 2 because Re(λj ) < 1 for each j ≥ 2, and taking
an integer m0 ≥ 2 large enough such that for n ≥ m0 we have Re(αj )cn

−γ < 1 for each j ≥ 2
and qn−ν < 1, we can write

∑
j∈J

Yj,n =
(∑

j∈J

UjA
j

m0,n−1V
�
j

)∑
j∈J

Yj,m0

+
n−1∑

k=m0

(∑
j∈J

UjA
j

k+1,n−1V
�
j U∗

j DR,kV
∗�
j

)

MY,k+1

+
n−1∑

k=m0

(∑
j∈J

UjA
j

k+1,n−1V
�
j

)

RY,k+1 for n ≥ m0, (5.29)
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where, for any j ∈ J ,

A
j

k+1,n−1 =

⎧⎪⎪⎨⎪⎪⎩
n−1∏

m=k+1

(I − DQ,j,m) for m0 ≤ k ≤ n − 2,

I for k = n − 1.

(5.30)

Setting for any x = ax + ibx ∈C with ax > 0 and 1/2 < δ ≤ 1,

pδ
k(x) :=

k∏
m=m0

(
1 − x

mδ

)
for k ≥ m0 and

F
γ

k+1,n−1(x) := p
γ

n−1(x)

p
γ

k (x)
for m0 ≤ k ≤ n − 1,

it is easy to see that, for j = 1, we have

A1
k+1,n−1 =

(
1 0
0 Fν

k+1,n−1(q)

)
for m0 ≤ k ≤ n − 1 (5.31)

and, for j ≥ 2, after some calculations reported in the supplementary material Aletti, Crimaldi
and Ghiglietti [3], Section A.2, we obtain

A
j

k+1,n−1 =
(

F
γ

k+1,n−1(cαj ) 0
λjGk+1,n−1(cαj , q) F ν

k+1,n−1(q)

)
for m0 ≤ k ≤ n − 1, (5.32)

where

Gk+1,n−1(x, q) :=
n−1∑

l=k+1

F
γ

l+1,n−1(x)hl

(
1 − c−1x

)
Fν

k+1,l−1(q). (5.33)

Then, since V �
j U∗

j = P −1
j , equation (5.29) can be rewritten as

∑
j∈J

Yj,n =
(∑

j∈J

UjA
j

m0,n−1V
�
j

)∑
j∈J

Yj,m0 +
n−1∑

k=m0

TJ
k+1,n−1

+
n−1∑

k=m0

ρJ
k+1,n−1 for n ≥ m0, (5.34)

with

TJ
k+1,n−1 =

(∑
j∈J

UjA
j

k+1,n−1P
−1
j DR,kV

∗�
j

)

MY,k+1,

ρJ
k+1,n−1 =

(∑
j∈J

UjA
j

k+1,n−1V
�
j

)

RY,k+1.
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In order to get a similar decomposition for the general sum (5.24), we set, for any j ∈ J ,

U0
j (1) := (

uj (1) 0
)=

(
uj 0

g(λj )uj 0

)
and

U0
j (2) := (

0 uj (2)

)=
(

0 0
0 uj

) (5.35)

and taking into account the last relation in (5.20), we get

∑
j∈J

∑
i∈Ij

Yj (i),n = C
J(I)
m0,n−1

∑
j∈J

Yj,m0 +
n−1∑

k=m0

TJ (I)
k+1,n−1

+
n−1∑

k=m0

ρ
J (I)
k+1,n−1 for n ≥ m0, (5.36)

with

C
J(I)
m0,n−1 =

∑
j∈J

∑
i∈Ij

U0
j (i)A

j

m0,n−1V
�
j , (5.37)

TJ (I)
k+1,n−1 =

(∑
j∈J

∑
i∈Ij

U0
j (i)A

j

k+1,n−1P
−1
j DR,kV

∗�
j

)

MY,k+1, (5.38)

ρ
J (I)
k+1,n−1 =

(∑
j∈J

∑
i∈Ij

U0
j (i)A

j

k+1,n−1V
�
j

)

RY,k+1. (5.39)

In the sequel of the proof, we will establish the asymptotic behavior of the general sum (5.24) by
studying separately the three terms C

J(I)
m0,n−1

∑
j∈J Yj,m0 ,

∑n−1
k=m0

TJ (I)
k+1,n−1 and

∑n−1
k=m0

ρ
J (I)
k+1,n−1

in the six cases (i)–(vi) specified in the statement of the considered lemma.
Second step: asymptotic behavior of C

J(I)
m0,n−1

∑
j∈J Yj,m0 .

In all the six cases (i)–(vi), we have tn(J (I ))C
J(I)
m0,n−1

∑
j∈J Yj,m0

a.s.−→ 0. The proof of this
fact is given in the supplementary material (Aletti, Crimaldi and Ghiglietti [3], Section A.4).

Third step: asymptotic behavior of
∑n−1

k=m0
ρ

J (I)
k+1,n−1.

In all the cases (i)–(v) we have tn(J (I ))
∑n−1

k=m0
ρ

J (I)
n,k

a.s.−→ 0. The proof of this fact is given in
the supplementary material (Aletti, Crimaldi and Ghiglietti [3], Section A.5).

Fourth step: asymptotic behavior of
∑n−1

k=m0
TJ (I)

k+1,n−1.

We aim at proving that, for each of the cases (i)–(vi), the quantity tn(J (I ))
∑n−1

k=m0
TJ (I)

k+1,n−1
converges stably to the desired Gaussian kernel. For this purpose, we apply Theorem A.1. More
precisely, we set Gk,n = Fk+1 and, given the fact that condition (c1) required in this theorem is
obviously satisfied, we check only conditions (c2) and (c3).
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For condition (c2), we have to study the convergence of tn(J (I ))2 ∑n−1
k=m0

TJ (I)
k+1,n−1 ×

(TJ (I)
k+1,n−1)

�. To this end, recalling Equation (5.38), we note that

n−1∑
k=m0

TJ (I)
k+1,n−1

(
TJ (I)

k+1,n−1

)�
=

∑
j1∈J,j2∈J

∑
i1∈Ij1 ,i2∈Ij2

U0
j1(i1)

(
n−1∑

k=m0

Tj1
k+1,n−1

(
Tj2

k+1,n−1

)�)
U

0,�
j2(i2)

=
∑

j1∈J,j2∈J

∑
i1∈Ij1 ,i2∈Ij2

[
n−1∑

k=m0

Tj1
k+1,n−1

(
Tj2

k+1,n−1

)�]
(i1,i2)

uj1(i1)u
�
j2(i2)

,

where Tj

k+1,n−1 := A
j

k+1,n−1P
−1
j DR,kV

∗�
j 
MY,k+1. Thus, we can focus on the convergence of

tn
(
J (I)

)2
n−1∑

k=m0

Tj1
k+1,n−1

(
Tj2

k+1,n−1

)�
.

Regarding to this, we observe that Tj1
k+1,n−1(T

j2
k+1,n−1)

� = A
j1
k+1,n−1H

j1,j2
k+1 (A

j2
k+1,n−1)

�, where

H
j1,j2
k+1 := P −1

j1
DR,kV

∗�
j1


MY,k+1
M�
Y,k+1V

∗
j2

DR,kP
−�
j2

= P −1
j1

DR,kV
∗�
j1

(
I

I

)

Mk+1
M�

k+1

(
I I

)
V ∗

j2
DR,kP

−�
j2

= P −1
j1

DR,k1v�
j1


Mk+1
M�
k+1vj21�DR,kP

−�
j2

= hj1
k v�

j1

Mk+1
M�

k+1vj2

(
hj2

k

)�
= β

j1,j2
k+1 hj1

k

(
hj2

k

)�
,

with

β
j1,j2
k+1 := v�

j1

Mk+1
M�

k+1vj2 and hj
k := P −1

j DR,k1 =
(

r̂k−1
q̂k,k − r̂k−1g(λj )

)
.

Now, we set dj
k,n := A

j

k+1,n−1hj
k , so that we can write

n−1∑
k=m0

Tj1
k+1,n−1

(
Tj2

k+1,n−1

)� =
n−1∑

k=m0

β
j1,j2
k+1 dj1

k,n

(
dj2

k,n

)�
. (5.40)

Hence, in order to obtain the almost sure convergence of tn(J (I ))2 ∑n−1
k=m0

Tj1
k+1,n−1(T

j2
k+1,n−1)

�,
by means of the usual martingale arguments (see Aletti, Crimaldi and Ghiglietti [2], Lemma B.1),
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it is enough to prove the convergence of tn(J (I ))2 ∑n−1
k=m0

dj1
k,n(d

j2
k,n)

�. Indeed, since {Xn,j : j =
1, . . . ,N} are conditionally independent given Fn, we have E[
Mn,h
Mn,j |Fn−1] = 0 for
h �= j ; while, for each j , using the normalization W�1 = 1, we have

E
[
(
Mn,j )

2|Fn−1
]=

(
N∑

h=1

wh,jZn−1,h

)(
1 −

N∑
h=1

wh,jZn−1,h

)
a.s.−→ Z∞(1 − Z∞).

Therefore, we get E[(
Mn)(
Mn)
�|Fn−1] a.s.−→ Z∞(1 − Z∞)I and so

E
[
β

j1,j2
n+1 |Fn

]= v�
j1

E
[

Mn+1(
Mn+1)

�|Fn

]
vj2

a.s.−→ Z∞(1 − Z∞)v�
j1

vj2,

from which we finally obtain

a.s.- lim
n

tn
(
J (I)

)2
n−1∑

k=m0

Tj1
k+1,n−1

(
Tj2

k+1,n−1

)�
= Z∞(1 − Z∞)v�

j1
vj2 lim

n
tn
(
J (I)

)2
n−1∑

k=m0

dj1
k,n

(
dj2

k,n

)�
.

In order to compute the limits in the last term of the above relation, we observe that, by means
of (5.31) and (5.32), we have the following analytic expression of dj

k,n:

d1
k,n = A1

k+1,n−1h1,k =
(

r̂k−1
(̂qk,k − r̂k−1)F

ν
k+1,n−1(q)

)
(5.41)

and, for j ≥ 2,

dj
k,n = A

j

k+1,n−1hj,k

=
(

r̂k−1F
γ

k+1,n−1(cαj )

λj r̂k−1Gk+1,n−1(cαj , q) + (
q̂k,k − r̂k−1g(λj )

)
Fν

k+1,n−1(q)

)
. (5.42)

Using these equalities, in the supplementary material (Aletti, Crimaldi and Ghiglietti [3],
Section A.6), for all the considered cases (i)–(vi), we find the limit of each component of
tn(J (I ))2 ∑n−1

k=m0
dj1

k,n(d
j2
k,n)

�, that is we compute dj1(i1),j2(i2) := limn tn(J (I ))2 ∑n−1
k=m0

d
j1(i1)
k,n ×

d
j2(i2)
k,n , where d

j (1)
k,n and d

j (2)
k,n are, respectively, the first and the second component of dj

k,n given
in (5.41) and (5.42). Summing up, we have

n−1∑
k=m0

TJ (I)
k+1,n−1

(
TJ (I)

k+1,n−1

)�
a.s.−→ Z∞(1 − Z∞)

∑
j1∈J,j2∈J

v�
j1

vj2

∑
i1∈Ij1 ,i2∈Ij2

dj1(i1),j2(i2)uj1(i1)u
�
j2(i2)

.
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For the check of condition (c3) of Theorem A.1, we observe that, by (5.31), (5.32), (5.33) and
(5.35), taking into account the fact that in all the considered cases with 1 ∈ J , that is, (ii), (iii)
and (v), we have 1 /∈ I1, we can write∣∣TJ (I)

k+1,n−1

∣∣= O
(
�11

k+1,n−1

)+ O
(
�21

k+1,n−1

)+ O
(
�22

k+1,n−1

)
,

where �11
k+1,n−1, �21

k+1,n−1 and �22
k+1,n−1 are the following deterministic quantities:

�11
k+1,n−1 :=

∑
j∈J,j �=1

1{1∈Ij }̂rk−1
∣∣Fγ

k+1,n−1(cαj )
∣∣,

�21
k+1,n−1 :=

∑
j∈J,j �=1

1{2∈Ij }̂rk−1
∣∣Gk+1,n−1(cαj , q)

∣∣,
�22

k+1,n−1 :=
∑
j∈J

1{2∈Ij }(̂rk−1 + q̂k,k)
∣∣Fν

k+1,n−1(q)
∣∣.

Therefore, we find for any u > 1(
sup

m0≤k≤n−1

∣∣tn(J (I)
)
TJ (I)

k+1,n−1

∣∣)2u

≤ tn
(
J (I)

)2u
n−1∑

k=m0

∣∣TJ (I)
k+1,n−1

∣∣2u

= tn
(
J (I)

)2u

{
n−1∑

k=m0

O
((

�11
k+1,n−1

)2u)+
n−1∑

k=m0

O
((

�21
k+1,n−1

)2u)+
n−1∑

k=m0

O
((

�22
k+1,n−1

)2u)}
.

We now analyze the last three terms. For the first one, by Lemma B.1 with β = 2γ u, e = 2u and
δ = γ , we have

n−1∑
k=m0

O
((

�11
k+1,n−1

)2u)

=
∑

j∈J,j �=1

I{1∈Ij }O
(

n−1∑
k=m0

1

k2γ u

∣∣Fγ

k+1,n−1(cαj )
∣∣2u

)

=
∑

j∈J,j �=1

I{1∈Ij }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−γ (2u−1)

)
if 1/2 < γ < 1,

O
(
n−2ca∗u) if γ = 1 and 1/2 < ca∗ < 1 − (2u)−1,

O
(
n−2u+1 ln(n)

)
if γ = 1 and ca∗ = 1 − (2u)−1,

O
(
n−2u+1) if γ = 1 and ca∗ > 1 − (2u)−1.

For the third term, we observe that r̂k−1 = O(̂qk,k) when ν ≤ γ and q̂k,k = O(̂rk−1) when ν > γ .
Hence, by Lemma B.1 with e = 2u, δ = ν and β = 2νu if ν ≤ γ and β = 2γ u if ν > γ , we get
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for the case ν ≤ γ

n−1∑
k=m0

O
((

�22
k+1,n−1

)2u)

=
∑
j∈J

I{2∈Ij }O
(

n−1∑
k=m0

1

k2νu

∣∣Fν
k+1,n−1(q)

∣∣2u

)

=
∑
j∈J

I{2∈Ij }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−ν(2u−1)

)
if 1/2 < ν < 1,

O
(
n−2qu

)
if ν = 1 and 1/2 < q < 1 − (2u)−1,

O
(
n−2u+1 ln(n)

)
if ν = 1 and q = 1 − (2u)−1,

O
(
n−2u+1) if ν = 1 and q > 1 − (2u)−1,

and for the case ν > γ

n−1∑
k=m0

O
((

�22
k+1,n−1

)2u)

=
∑
j∈J

I{2∈Ij }O
(

n−1∑
k=m0

1

k2γ u

∣∣Fν
k+1,n−1(q)

∣∣2u

)

=
∑
j∈J

I{2∈Ij }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−2γ u+ν

)
if 1/2 < ν < 1,

O
(
n−2qu

)
if ν = 1 and 1/2 < q < γ − (2u)−1,

O
(
n−2γ u+1 ln(n)

)
if ν = 1 and q = γ − (2u)−1 > 1/2,

O
(
n−2γ u+1) if ν = 1 and q > max

{
1/2, γ − (2u)−1}.

(5.43)

For the second term, we apply Lemma B.1 together with Lemma B.2 so that we get:

Case ν < γ We have Gk+1,n−1(cαj , q) = O(n−(γ−ν)|Fν
k+1,n−1(q)| + k−(γ−ν)|Fγ

k+1,n−1(cαj )|)
by means of Lemma B.2, and so we find

n−1∑
k=m0

O
((

�21
k+1,n−1

)2u) =
∑

j∈J,j �=1

I{2∈Ij }O
(

n−1∑
k=m0

1

k2γ u

∣∣Gk+1,n−1(cαj , q)
∣∣2u

)

=
∑

j∈J,j �=1

I{2∈Ij }O
(

n−2(γ−ν)u
n−1∑

k=m0

1

k2γ u

∣∣Fν
k+1,n−1(q)

∣∣2u

+
n−1∑

k=m0

1

k4γ u−2νu

∣∣Fγ

k+1,n−1(cαj )
∣∣2u

)
,
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where, by Lemma B.1, the first term is O(n−4γ u+2νu+ν), while for the second term we have

n−1∑
k=m0

1

k4γ u−2νu

∣∣Fγ

k+1,n−1(cαj )
∣∣2u

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−4γ u+2νu+γ

)
if 1/2 < γ < 1,

O
(
n−2ca∗u) if γ = 1 and 1/2 < ca∗ < 2 − ν − (2u)−1,

O
(
n−2ca∗u ln(n)

)
if γ = 1 and ca∗ = 2 − ν − (2u)−1,

O
(
n−4u+2νu+1) if γ = 1 and ca∗ > 2 − ν − (2u)−1.

Case ν > γ We have Gk+1,n−1(cαj , q) = O(n−(ν−γ )|Fν
k+1,n−1(q)| + k−(ν−γ )|Fγ

k+1,n−1(cαj )|)
by means of Lemma B.2, and so we find

n−1∑
k=m0

O
((

�21
k+1,n−1

)2u)

=
∑

j∈J,j �=1

I{2∈Ij }O
(

n−1∑
k=m0

1

k2γ u

∣∣Gk+1,n−1(cαj , q)
∣∣2u

)

=
∑

j∈J,j �=1

I{2∈Ij }O
(

n−2(ν−γ )u
n−1∑

k=m0

1

k2γ u

∣∣Fν
k+1,n−1(q)

∣∣2u

+
n−1∑

k=m0

1

k2νu

∣∣Fγ

k+1,n−1(cαj )
∣∣2u

)
,

where, by Lemma B.1, the second term is O(n−2νu+γ ), while the sum in the first term has the
asymptotic behavior given in (5.43).

Case ν = γ By assumption (2.5) and Lemma B.2, we have2 Gk+1,n−1(cαj , q) = O ×
(|Fγ

k+1,n−1(q)| + |Fγ

k+1,n−1(cαj )|), and so we find

n−1∑
k=m0

O
((

�21
k+1,n−1

)2u)

=
∑

j∈J,j �=1

I{2∈Ij }O
(

n−1∑
k=m0

1

k2γ u

∣∣Fγ

k+1,n−1(q)
∣∣2u +

n−1∑
k=m0

1

k2γ u

∣∣Fγ

k+1,n−1(cαj )
∣∣2u

)
,

2If there exists j ≥ 2 such that q = cαj , we have to consider the other asymptotic expression given in the supplementary
material (Aletti, Crimaldi and Ghiglietti [3], Lemma A.4).
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where, by Lemma B.1, we have for x = q or x ∈ {cαj : j ∈ J, j �= 1}

n−1∑
k=m0

1

k2γ u

∣∣Fγ

k+1,n−1(x)
∣∣2u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−γ (2u−1)

)
if 1/2 < ν = γ < 1,

O
(
n−2axu

)
if ν = γ = 1 and 1/2 < ax < 1 − (2u)−1,

O
(
n−2u+1 ln(n)

)
if ν = γ = 1 and ax = 1 − (2u)−1,

O
(
n−2u+1) if ν = γ = 1 and ax > 1 − (2u)−1

and so, setting x∗ := min{q, ca∗}, we can write

n−1∑
k=m0

O
((

�21
k+1,n−1

)2u)

=
∑

j∈J,j �=1

I{2∈Ij }

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−γ (2u−1)

)
if 1/2 < ν = γ < 1,

O
(
n−2x∗u) if ν = γ = 1 and 1/2 < x∗ < 1 − (2u)−1,

O
(
n−2u+1 ln(n)

)
if ν = γ = 1 and x∗ = 1 − (2u)−1,

O
(
n−2u+1) if ν = γ = 1 and x∗ > 1 − (2u)−1.

Summing up, taking into account the conditions ca∗ > 1/2 when γ = 1 and q > 1/2 when
ν = 1, we can conclude that in all the six cases (i)–(vi), there exists a suitable u > 1 such that
(supm0≤k≤n−1 |tn(J (I ))TJ (I)

k+1,n−1|)2u converges in mean to zero. This convergence trivially im-
plies condition (c3) of Theorem A.1. �

5.4. Proof of Theorem 3.2

The proof of Theorem 3.2 follows by recalling that (Ỹn −Z∞1) = (Ỹn −Z∞1)+ Ŷn, where the

convergence rate for the first term is nγ− 1
2 for any parameters (see (5.23)), while the convergence

rate of the second term is ne, with e specified in Theorem 5.1 according to the values of the
parameters. Therefore, we can have three different cases:

• If e < γ − 1
2 , then we have

ne(Yn − Z∞1) = ne

nγ− 1
2

nγ− 1
2 (Ỹn − Z∞1) + neŶn,

where the first term converges in probability to zero and the second term converges stably
to a certain Gaussian kernel. This occurs only in case (a) with e = ν/2 and ν < γ0.

• If e > γ − 1
2 , then we have

nγ− 1
2 (Yn − Z∞1) = nγ− 1

2 (Ỹn − Z∞1) + nγ− 1
2

ne
neŶn,

where the first term converges stably (in the strong sense) to the Gaussian kernel given in
(5.23) and the second term converges in probability to zero. This occurs in case (a) with
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e = ν/2 and γ0 < ν < γ , in case (b) with e = γ /2 and ν = γ < 1 and in case (c) with
e = γ − ν/2 and γ < ν < 1.

• If e = γ − 1
2 , then we have

nγ− 1
2 (Yn − Z∞1) = nγ− 1

2 (Ỹn − Z∞1) + nγ− 1
2 Ŷn,

where the first term converges stably in the strong sense to the Gaussian kernel given in
(5.23) and the second term is Fn-measurable and it converges stably to a certain Gaussian
kernel. Thus, in this case, we can apply Theorem A.2 in the Appendix. This occurs in case
(a) with e = ν/2 and ν = γ0 < 1, in case (b) with e = γ /2 and ν = γ = 1 (i.e., ν = γ0 = 1)
and in case (c) with e = γ − ν/2 and γ < ν = 1 (i.e. γ0 < ν = 1).

Remark 5.2. As told in Remark 3.3, statements (a), (b) and (c) of Theorem 3.2 with N = 1 (and
so without the condition on λ∗) can be proven with the same proof. Specifically, it is enough to
take into account that when N = 1, we have Ŷn = Y1(2) and Z̃n = Zn.

6. Proof of the results for statistical applications

Here we prove the convergence results stated in Section 4. As we will see, the decomposition of
Yn given in Section 5.2 is a fundamental tool also for the proof of these results.

6.1. Proof of Theorem 4.1

For the proof of this result, we need the following lemma:

Lemma 6.1. Let us set

β := ν

2
1{ν≤γ } +

(
γ − ν

2

)
1{γ<ν}. (6.1)

Then, under all the assumptions stated in Section 2, we have

nβY1(2)
a.s.−→ N

(
0,Z∞(1 − Z∞)

‖v1‖2

N
d1(2),1(2)

(
0 0
0 11�

))
,

where

d1(2),1(2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q

2
for ν < γ,

(q − c)2

2q − 1{ν=1}
for ν = γ,

c2

2q − 1{ν=1}(2γ − 1)
for γ < ν.
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Proof. We observe that Y1(2) can be written as the general sum (5.24) with J = {1} and I1 = {2}.
Therefore case γ < ν coincides with the case (v) of Lemma 5.1, taking into account the value
d1(2),1(2) computed in the supplementary material (Aletti, Crimaldi and Ghiglietti [3], Sec-
tion A.6) for this case and equality (5.28). The cases ν < γ and ν = γ follows from the same
arguments employed for the proof of Lemma 5.1, setting tn(J (I )) = nν/2 and using the value
d1(2),1(2) obtained in the supplementary material (Aletti, Crimaldi and Ghiglietti [3], Section A.6)
when ν ≤ γ . �

Remark 6.1. Note that, when ν = γ and q = c, we have d1(2),1(2) = 0 and so we obtain that
nβY1(2) converges to 0 in probability. This means that in this case the convergence of Y1(2) to 0
is faster than n−β = n−γ /2.

Proof. Proof of Theorem 4.1 The convergence rate and the second-order asymptotic distribution
of Ñn can be obtained by combining the second-order convergences of the two stochastic pro-
cesses Z̃n and (Ñn − Z̃n). In order to get the convergence results for these two last processes, we
observe that

N−1/2u�
1

(
0 I

)
Ỹn = Z̃nN

−1/2u�
1 1 = Z̃n and

N−1/2u�
1

(
0 I

)
Y1(2),n = N−1/2u�

1

(
0 I

)
u1(2)v�

1(2)Yn

= N−1/2u�
1

(−u1v�
1 u1v�

1

)
Yn

= (Ñn − Z̃n)N
−1/2u�

1 1 = Ñn − Z̃n

(where we have used (5.21) for the first equality and relations (5.20), (5.6), (5.12), (4.1) and (2.2)
for the other equalities). Hence, from the convergence result stated in (5.23) and Lemma 6.1,
together with Remark 6.1, we obtain that Z̃n converges in probability to the random variable Z∞
with rate nγ−1/2 and (Ñn − Z̃n) converges in probability to zero with at least rate nβ defined in
(6.1). Then, since Ñn = Z̃n + (Ñn − Z̃n), it is possible to follow analogous arguments to those
used in the proof of Theorem 3.2 to combine the asymptotic behaviors of Z̃n and (Ñn − Z̃n).
More precisely:

(a) in the case ν < γ0, we necessarily have γ0 = 2γ − 1 ≤ γ (since γ ≤ 1) and so we have
β = ν/2 < (γ − 1/2). Thus Ñn has the same convergence rate and the same asymptotic
variance as (Ñn − Z̃n) = N−1/2u�

1

(
0 I

)
Y1(2),n, that is (see Lemma 6.1) we get

nν/2(Ñn − Z∞) −→N
(
0,Z∞(1 − Z∞)̃σ 2) stably

with σ̃ 2 = q/2;
(b) in the case γ0 < ν < 1, we have β > (γ − 1/2) and hence Ñn has the same asymptotic

behavior as Z̃n = N−1/2u�
1

(
0 I

)
Ỹn, that is (see (5.23))

nγ− 1
2 (Ñn − Z∞) −→ N

(
0,Z∞(1 − Z∞)̃σ 2

γ

)
stably;
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(c) If ν = γ0 (i.e., ν = 2γ −1 ≤ γ ) or ν = 1, we have β = (γ −1/2) and hence the asymptotic
behavior of Ñn follows by combining the convergence results for (Ñn − Z̃n) and Z̃n as
done in the proof of Theorem 3.2, and so we get

nγ− 1
2 (Ñn − Z∞) −→N

(
0,Z∞(1 − Z∞)

(
σ̃ 2

γ + σ̃ 2)) stably,

where σ̃ 2 is defined in (4.2). �

Remark 6.2. Returning to Remark 4.1, we observe that in the proof of Theorem 4.1 the asymp-
totic behavior of Ñn is obtained as the combination of the asymptotic behaviors of Ñn − Z̃n

and Z̃n. In case (b), Z̃n converges slower than Ñn − Z̃n, and so only the rate and the asymptotic
variance of Z̃n appear in the statement of the result. However, if we look at an higher level of
approximation, we should also consider the process Ñn − Z̃n, that converges to zero with at least
rate nβ . Then, we can note that β as a function of ν has its maximum in ν = γ , which hence
provides the “optimal value” of ν. In addition, in this case the quantity d1(2)1(2) as a function of
q has its minimum in q = c, which hence gives the “optimal value” of q . Note that, as told in the
previous Remark 6.1, when ν = γ and q = c, we have nβY1(2) → 0 in probability and so also
nβ(Ñn − Z̃n) → 0 in probability. This means that in this case the convergence of Ñn − Z̃n to
zero is faster then n−β = n−γ /2.

6.2. Proof of Theorem 4.2

Recalling (4.1), together with (2.3) and the fact that

U∗
j V ∗�

j =
(

uj v�
j 0

0 uj v�
j

)
,

we can write N′
n = ∑N

j=2 uj v�
j Nn = (

0 I
)∑N

j=2 U∗
j V ∗�

j Yn. Now we can use the decomposi-

tion Yn = (Ỹn + Ŷn) and the fact that U∗
j V ∗�

j Ỹn = 0 for any 2 ≤ j ≤ N (by (2.1) and (5.21)) in
order to obtain the equality

N′
n = (

0 I
) N∑

j=2

U∗
j V ∗�

j Ŷn.

Hence, the convergence rate and the second-order asymptotic distribution of N′
n can be obtained

by using the convergences stated in Theorem 5.1 or in Lemma 5.1. Specifically, case (a) follows
from Theorem 5.1(a), observing that (by (2.1)) we have

(
0 I

) N∑
j=2

U∗
j V ∗�

j

(
0 0
0 Ũ

)
= (

0 I
)(0 0

0 Ũ−1

)
= (

0 Ũ−1
)
.



Weighted empirical means of interacting RSPs 1133

Case (b) follows from Theorem 5.1(b), observing that (by (2.1)) we have

(
0 I

) N∑
j=2

U∗
j V ∗�

j

(
Ũ 0
0 Ũ

)
= (

0 I
)(Ũ−1 0

0 Ũ−1

)
= (

0 Ũ−1
)
.

Finally, case (c) cannot be obtained directly by using the convergences stated in Theorem 5.1
since in this case we have (by (2.1))

(
0 I

) N∑
j=2

U∗
j V ∗�

j

(
0
1

)
= N1/2 (0 I

) N∑
j=2

U∗
j V ∗�

j

(
0
u1

)
= (

0 I
)(0

0

)
= 0.

Therefore, we need to express N′
n in the following equivalent way:

N′
n = (

0 I
) N∑

j=2

U∗
j V ∗�

j Ŷn = (
0 I

)( N∑
j=2

Yj (1),n +
N∑

j=2

Yj (2),n

)
,

where for the last equality we have used the decomposition (5.22) of Ŷn and the fact that
U∗

j V ∗�
j Y1(2),n = U∗

j V ∗�
j u1(2)v�

1(2)Yn = 0 for 2 ≤ j ≤ N . Now, we recall that, in case (c),
that is ν > γ , we have g(λ1) = g(1) = 1 and g(λj ) = 0 for 2 ≤ j ≤ N and so we get(
0 I

)
uj (1) = 0 for 2 ≤ j ≤ N . As a consequence, since Yj (1),n = uj (1)v�

j (1)Yn, we have

that
(
0 I

)∑N
j=2 Yj (1),n = 0, and the desired convergence result follows from case (vi) of

Lemma 5.1.

Appendix A: Stable convergence and its variants

This brief appendix contains some basic definitions and results concerning stable convergence
and its variants. For more details, we refer the reader to Crimaldi [14,16], Crimaldi, Letta and
Pratelli [19], Hall and Heyde [26] and the references therein.

Let (�,A,P ) be a probability space, and let S be a Polish space, endowed with its Borel σ -
field. A kernel on S, or a random probability measure on S, is a collection K = {K(ω) : ω ∈ �}
of probability measures on the Borel σ -field of S such that, for each bounded Borel real function
f on S, the map

ω �→ Kf (ω) =
∫

f (x)K(ω)(dx)

is A-measurable. Given a sub-σ -field H of A, a kernel K is said H-measurable if all the above
random variables Kf are H-measurable.

On (�,A,P ), let (Yn)n be a sequence of S-valued random variables, let H be a sub-σ -field
of A, and let K be a H-measurable kernel on S. Then we say that Yn converges H-stably to K ,
and we write Yn −→ K H-stably, if

P(Yn ∈ ·|H)
weakly−→ E

[
K(·)|H ]

for all H ∈H with P(H) > 0,
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where K(·) denotes the random variable defined, for each Borel set B of S, as ω �→ KIB(ω) =
K(ω)(B). In the case when H = A, we simply say that Yn converges stably to K and we write
Yn −→ K stably. Clearly, if Yn −→ K H-stably, then Yn converges in distribution to the prob-
ability distribution E[K(·)]. Moreover, the H-stable convergence of Yn to K can be stated in
terms of the following convergence of conditional expectations:

E
[
f (Yn)|H

] σ
(
L1,L∞)
−→ Kf (A.1)

for each bounded continuous real function f on S.
In Crimaldi, Letta and Pratelli [19] the notion of H-stable convergence is firstly generalized

in a natural way replacing in (A.1) the single sub-σ -field H by a collection G = (Gn)n (called
conditioning system) of sub-σ -fields of A and then it is strengthened by substituting the conver-
gence in σ(L1,L∞) by the one in probability (i.e., in L1, since f is bounded). Hence, according
to Crimaldi, Letta and Pratelli [19], we say that Yn converges to K stably in the strong sense,
with respect to G = (Gn)n, if

E
[
f (Yn)|Gn

] P−→ Kf (A.2)

for each bounded continuous real function f on S.
Finally, a strengthening of the stable convergence in the strong sense can be naturally obtained

if in (A.2) we replace the convergence in probability by the almost sure convergence: given a
conditioning system G = (Gn)n, we say that Yn converges to K in the sense of the almost sure
conditional convergence, with respect to G, if

E
[
f (Yn)|Gn

] a.s.−→ Kf

for each bounded continuous real function f on S. The almost sure conditional convergence
has been introduced in Crimaldi [14] and, subsequently, employed by others in the urn model
literature.

We now conclude this section recalling two convergence results that we need in our proofs.
From (Crimaldi and Pratelli [20], Proposition 3.1), we can get the following result.

Theorem A.1. Let (Tk,n)1≤k≤kn,n≥1 be a triangular array of d-dimensional real random vec-
tors, such that, for each fixed n, the finite sequence (Tk,n)1≤k≤kn is a martingale difference array
with respect to a given filtration (Gk,n)k≥0. Moreover, let (tn)n be a sequence of real numbers
and assume that the following conditions hold:

(c1) Gk,n ⊆ Gk,n+1 for each n and 1 ≤ k ≤ kn;

(c2)
∑kn

k=1(tnTk,n)(tnTk,n)
� = t2

n

∑kn

k=1 Tk,nT�
k,n

P−→ �, where � is a random positive
semidefinite matrix;

(c3) sup1≤k≤kn
|tnTk,n| L1−→ 0.

Then tn
∑kn

k=1 Tk,n converges stably to the Gaussian kernel N (0,�).
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The following result combines together a stable convergence and a stable convergence in the
strong sense.

Theorem A.2 (Berti et al. [8], Lemma 1). Suppose that Cn and Dn are S-valued random vari-
ables, that M and N are kernels on S, and that G = (Gn)n is a filtration satisfying σ(Cn) ⊆ Gn

and σ(Dn) ⊆ σ(
⋃

nGn) for all n. If Cn stably converges to M and Dn converges to N stably in
the strong sense, with respect to G, then

(Cn,Dn) −→ M ⊗ N stably.

(Here, M ⊗ N is the kernel on S × S such that (M ⊗ N)(ω) = M(ω) ⊗ N(ω) for all ω.)

This last result contains as a special case the fact that stable convergence and convergence in
probability combine well: that is, if Cn stably converges to M and Dn converges in probability
to a random variable D, then (Cn,Dn) stably converges to M ⊗ δD , where δD denotes the Dirac
kernel concentrated in D.

Appendix B: Statements of some technical lemmas

For the reader’s convenience, we collect here the statements of some technical lemmas quoted in
the paper. For the proofs of these results, we refer to the supplementary material Aletti, Crimaldi
and Ghiglietti [3].

Given (zn)n, (z′
n)n two sequences of complex numbers, the notation zn = O(z′

n) means |zn| ≤
C|z′

n| for a suitable constant C > 0 and n large enough. Then, the following results hold true.

Lemma B.1 (Aletti, Crimaldi and Ghiglietti [3], Lemma A.2). Given β > 1 and e > 0, we
have

n∑
k=m0

1

kβ

∣∣Fδ
k+1,n(x)

∣∣e =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(
n−(β−δ)

)
if 1/2 < δ < 1,

O
(
n−eax

)
if δ = 1 and eax < β − 1,

O
(
n−(β−1) ln(n)

)
if δ = 1 and eax = β − 1,

O
(
n−(β−1)

)
if δ = 1 and eax > β − 1.

Lemma B.2 (Aletti, Crimaldi and Ghiglietti [3], Part of Lemma A.4). When ν = γ , we have
for x ∈C \ {0, q}

Gk+1,n−1(x, q) = q

x − q

(
F

γ

k+1,n−1(q) − F
γ

k+1,n−1(x)
)
.

When ν �= γ , we have for x ∈C \ {0}

Gk+1,n−1(x, q) = C(x, q)

(
Fν

k+1,n−1(q)

(n − 1)μ
− F

γ

k+1,n−1(x)

kμ

)

+ O

( |Fν
k+1,n−1(q)|

n2μ
+ |Fγ

k+1,n−1(x)|
k2μ

)
,
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where μ := |γ − ν| and

C(x, q) :=
⎧⎨⎩−x

q
if ν < γ,

q

x
if γ < ν.
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