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Sequential Monte Carlo (SMC) algorithms were originally designed for estimating intractable conditional
expectations within state-space models, but are now routinely used to generate approximate samples in the
context of general-purpose Bayesian inference. In particular, SMC algorithms are often used as subroutines
within larger Monte Carlo schemes, and in this context, the demands placed on SMC are different: control
of mean-squared error is insufficient—one needs to control the divergence from the target distribution di-
rectly. Towards this goal, we introduce the conditional adaptive resampling particle filter, building on the
work of Gordon, Salmond, and Smith (1993), Andrieu, Doucet, and Holenstein (2010), and Whiteley, Lee,
and Heine (2016). By controlling a novel notion of effective sample size, the ∞-ESS, we establish the ef-
ficiency of the resulting SMC sampling algorithm, providing an adaptive resampling extension of the work
of Andrieu, Lee, and Vihola (2018). We apply our results to arrive at new divergence bounds for SMC sam-
plers with adaptive resampling as well as an adaptive resampling version of the Particle Gibbs algorithm
with the same geometric-ergodicity guarantees as its nonadaptive counterpart.

Keywords: adaptive resampling; effective sample size; geometric ergodicity; particle Gibbs; sequential
Monte Carlo; state-space models; uniform ergodicity

1. Introduction

Sequential Monte Carlo (SMC) methods are a popular class of algorithms for approximate infer-
ence [8–11,14,15]. In the context of Bayesian inference, SMC produces a particle approximation
to the posterior distribution as well as an unbiased estimate of the marginal likelihood. Tradition-
ally, particle approximations were built to estimate conditional expectations, and the analysis of
SMC methods focused on this operator perspective, by bounding the mean squared error of the
resulting estimates.

Increasingly, SMC methods are being used to produce approximate samples, usually in the
inner loop of another approximate inference algorithm. A key example is the class of particle
Markov chain Monte Carlo (PMCMC) methods, which aim to combine the best features of SMC
and MCMC approaches by using SMC as a proposal mechanism for a Metropolis–Hastings
(“particle MH”) or approximate Gibbs (“particle Gibbs”) sampler [1,13]. Characterizing the ef-
ficiency of PMCMC methods is an active area of investigation [2–5,16,17].
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When SMC methods are employed for sampling, convergence guarantees from the operator
perspective are insufficient. In this work, we take up the sampling perspective, and study the
distribution of a sample drawn from the SMC particle filter approximation. Building off the
work of Andrieu et al. [1,2], Gordon et al. [12] and Whiteley et al. [18], we use conditional
filters to derive a minorization condition, lower bounding the density of the approximate sample’s
distribution in terms of that of the target distribution. The analysis extends to conditional SMC
as well as to adaptive resampling versions. One of our key contributions is a novel notion of
effective sample size, the ∞-ESS, which we use to establish the efficiency of the adaptive SMC
sampling algorithm. Thus, our results are both a sampling analogue to the operator work of
Whiteley et al. [18] and an adaptive resampling extension to the sampling work of Andrieu et
al. [2]. We apply our results to arrive at new divergence bounds for SMC samplers with adaptive
resampling as well as an adaptive resampling version of the Particle Gibbs algorithm with the
same geometric-ergodicity guarantees as its nonadaptive counterpart.

In the remainder of this section, we provide an overview of our contributions for the special
case of the the conditional adaptive resampling particle filter: we introduce the conditional adap-
tive resampling particle filter, present our main theoretical results characterizing its performance,
and describe an application to a novel adaptive resampling Particle Gibbs algorithm.

1.1. (Conditional) adaptive resampling particle filters

We follow a similar setup and notation to Del Moral [7]. Let (ξt )t≥1 be an inhomogeneous
Markov chain on the measurable space (E,E) with transition kernels (Mt)t≥2 and initial dis-
tribution M1. Denote expectations with respect to the Markov chain by E[·]. Let gt : E → R+,
for t ≥ 1, be a sequence of E-measurable potential functions on E, let g0 ≡ 1, and write
gs:t (xs:t ) �

∏t
τ=s gτ (xτ ). For t = 1,2, . . . , define the measure π1:t on Et given by

π1:t (dx1:t ) � γ1:t (dx1:t )/Zt ,

where

γ1:t (dx1:t ) �
t∏

s=1

gs(xs)Ms(xs−1,dxs) and Zt � γ1:t (1).

(We have written M1(x0,dx1) for M1(dx1).) Equivalently,

π1:t (φ) � E[φ(ξ1:t )g1:t (ξ1:t )]
Zt

, φ : Et →R measurable,

where Zt � E[g1:t (ξ1:t )] is the normalization constant.1

1In the state-space setting, the potential gt would be the conditional density (i.e., likelihood) of the observation vt at
time t as a function of unobserved state xt : i.e., gt (xt ) = pt (vt | xt ). Then π1:t would be the posterior distribution of the
unobserved state sequence given the observed sequence.
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Towards the goal of efficiently approximating π1:t , we introduce a novel sequential Monte
Carlo algorithm: the i-times conditional adaptive resampling particle filter (ciARPF), which is
a generalization of the adaptive resampling particle filter [12,15] and the conditional SMC algo-
rithm used in particle Gibbs [1]. (In Section 3, we will introduce a further generalization.) The
integer parameter i ≥ 0 determines the number of fixed trajectories y1

1:t , . . . , y
i
1:t ∈ Et required

by the algorithm, which operates by generating a collection X̃1:N
1:t � {X̃n

1:t }Nn=1 of N > i particles
with corresponding nonnegative weights W 1:N

t � {Wn
t }Nn=1. When i = 0, we recover the stan-

dard (unconditional) adaptive resampling particle filter; when i = 1, we recover a generalization
of the conditional SMC algorithm that includes adaptive resampling. For time s = 1, . . . , t , the
measure π1:s is approximated by

π
i,N
1:s �

N∑
n=1

Wn
s gs(X

n
s )∑N

k=1 Wk
s gs(Xk

s )
δ
X̃n

1:s
.

The ciARPF algorithm iteratively constructs X̃1:N
1:t and W 1:N

t as follows: The first i particles
are deterministically set to match the fixed trajectories:

Xn
s = yn

s , X̃n
1:s = yn

1:s , s = 1, . . . , t and n = 1, . . . , i.

At time s = 1, the remaining N − i particles Xn
1 , for n = i +1, . . . ,N , are sampled independently

and identically from M1. The corresponding (length 1) trajectories are

X̃n
1:1 = Xn

1 , n = i + 1, . . . ,N.

Furthermore, for all n = 1, . . . ,N , Wn
1 = 1.

The remaining particle trajectories are generated as follows: First, we introduce a cutoff pa-
rameter η ∈ [0,1] and an effective sample size (ESS) function ESS : RN+ → [1,N ]. The ESS
function measures how uniform the current weights W 1:N

s are. Typically ESS(W 1:N
s ) = 1 indi-

cates that all but one weight is zero and ESS(W 1:N
s ) = N indicates all the weights are equal.

For each time s = 2, . . . , t :

• If ESS(W 1:N
s−1) ≤ ηN , a resampling step is introduced. For n = 1, . . . ,N , the weights are set

to a common value

Wn
s = Ws � 1

N

N∑
k=1

Wk
s−1gs−1

(
Xk

s−1

)

and, for n = i + 1, . . . ,N , particle n’s “ancestor” at time s, denoted An
s , is sampled inde-

pendently, such that An
s = k, for k = 1, . . . ,N , with probability

Wk
s−1gs−1(X

k
s−1)

N Ws

.



Sequential Monte Carlo as approximate sampling 587

• If ESS(W 1:N
s−1) > ηN , then the algorithm does not resample the particles. For n = 1, . . . ,N ,

the weights are copied, that is,

Wn
s = Wn

s−1gs−1
(
Xn

s−1

)
,

and, for n = i + 1, . . . ,N , a record is made that particle n was its own ancestor by setting
An

s = n.
• Having sampled the ancestors, the algorithm propagates the particles forward. For n = i +

1, . . . ,N , Xn
s is sampled from Ms(X

An
s

s−1, ·), and the corresponding trajectories are set to

X̃n
1:s = 〈

X̃
An

s

1:s−1,X
n
s

〉
.

In the final step of the algorithm, a single particle X̃∗
1:t is sampled from the full approximation

π
i,N
1:t , and the algorithm yields an estimate Ẑt of the normalization constant Zt , where

Ẑt � 1

N

N∑
n=1

Wn
t gt

(
Xn

t

)
.

Let Ei,N

y1:i
1:t

[·] denote the expectation operator with respect to the ciARPF, and write

P i,N
(
y1:i

1:t ,dx1:t
)
� P

i,N

y1:i
1:t

(dx1:t ) � E
i,N

y1:i
1:t

[
δ
X̃∗

1:t
(dx1:t )

]
for the law of X̃∗

1:t when the i fixed trajectories are y1:i
1:t ∈ (Et )i . We can now describe in more

precise terms how the ciARPF kernel P i,N generalizes several well-known SMC kernels. When
i = 0, π

0,N
1:t is the standard adaptive SMC particle approximation of π1:t and X̃∗

1:t is a single
sample from the particle approximation. When i = 1 and resampling is done at every step by
taking η = 1, P 1,N is exactly the conditional SMC kernel used in particle Gibbs samplers [1,
2,13]. For general η ∈ (0,1), we obtain a novel adaptive resampling variant that we study in
the sequel. In particular, under mild regularity conditions, P 1,N defines a Markov kernel with
invariant distribution π1:t .

1.2. Controlling ciARPF efficiency with ∞-ESS

We can analyze the quality of the ciARPF kernel P i,N by quantifying the extent to which high-
probability sets under the target distribution also have high probability under the kernel. The
following theorem establishes a minorization condition for the i-times conditional filter in terms
of the (i + 1)-times conditional filter.

Theorem 1.1. For all t ≥ 1, i ≥ 0, N > i, and y1
1:t , . . . , y

i
1:t ∈ Et ,

P i,N
(
y1:i

1:t , S
)≥ (1 − i/N)t

∫
S

Zt

E
i+1,N

y1:i+1
1:t

[Ẑt ]
π1:t

(
dyi+1

1:t
)
, S ⊆ Et measurable. (1.1)
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The integral appearing in equation (1.1) has no simple form in general, but in many settings we
will be able to obtain a lower bound on the integrand that does not depend on the fixed trajectories
y1:i+1

1:t . In those cases, the integral is simply replaced by this uniform lower bound. For i = 0, we
are then immediately able to control numerous measures of divergence between π1:t and P 0,N

(i.e., the law of X̃∗
1:t ). For example, in the case of total variation distance, we have the following

corollary to Theorem 1.1.

Corollary 1.2. If E1,N
y1:t [Ẑt /Zt ] ≤ Bt,N for all y1:t ∈ Et , then

dTV
(
π1:t , P 0,N

)≤ 1 − B−1
t,N .

For i = 1, a uniform lower bound assumption implies a minorization condition on the kernel
P 1,N (y1:t ,dx1:t ), which in turn implies fast mixing of the Markov chain with kernel P 1,N .

Corollary 1.3. If E2,N

y1:2
1:t

[Ẑt /Zt ] ≤ Bt,N for all y1
1:t , y2

1:t ∈ Et , then the Markov chain with tran-

sition kernel P 1,N (y1:t ,dx1:t ) is uniformly ergodic in total variation distance and has invariant
distribution π1:t . In particular, for all y1:t ∈ Et and k ≥ 1,

dTV
(
π̃ k

y1:t , π1:t
)≤ (

1 − B−1
t,N (1 − 1/N)t

)k
,

where π̃ k
y1:t � δy1:t [P 1,N ]k is the law of the Markov chain, with initial state y1:t , after k transi-

tions.

In order to apply the corollaries, it remains to bound E
i,N

y1:i
1:t

[Ẑt /Zt ]. Such a bound was ob-

tained for the nonadaptive conditional SMC kernel in Andrieu et al. [2]. However, in our general
adaptive resampling setting, one must make a careful choice of effective sample size function.
To this end, we introduce a generalized notion of effective sample size, which includes several
existing definitions as special cases. For p ∈ (1,∞], let p∗ � p

p−1 be the conjugate exponent of

p (so 1/p + 1/p∗ = 1). The p-effective sample size (p-ESS) of the weight vector w1:N ∈ R
N+ ,

‖w1:N‖1 > 0, is

ESSp

(
w1:N )�

‖w1:N‖p∗
1

‖w1:N‖p∗
p

.

The following proposition highlights some elementary properties of p-ESS.

Proposition 1.4. The p-ESS has the following properties:

1. For all p ∈ (1,∞], 1 ≤ ESSp(w1:N) ≤ N . The lower bound is achieved if and only if all
but one of the weights is zero. The upper bound is achieved if and only if all the weights are
equal.

2. For 1 < p < q ≤ ∞, ESSp(w1:N) ≥ ESSq(w1:N) ≥ N−(1−q∗/p∗) ESSp(w1:N), with equal-
ity if and only if K ∈ {1, . . . ,N} weights are equal and the rest are zero.
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Part (1) demonstrates that the p-ESS satisfies basic properties one would expect of a measure
of effective sample size. Part (2) places the family of p-ESS measures in a linear order: the larger
the value of p, the more stringent the notion of effective sample size.

The standard definition of effective sample size is precisely the 2-ESS. Whiteley et al. [18]
provided a rigorous justification for the use of 2-ESS from the operator perspective: if adaptive
resampling is used to guarantee that the 2-ESS does not fall below ζN , for some fixed parameter
ζ ∈ (0,1], then the error bounds on the operator approximation match those of the nonadaptive
sampler with ζN particles. More formally, let �t (y1:t ) = yt be the projection onto the t th com-
ponent. Under appropriate regularity conditions, for every bounded measurable φ : E → R and
real r ≥ 1,

sup
t≥1

ESS2
(
W 1:N

t

)≥ ζN =⇒ sup
t≥1

E
0,N

[∣∣π0,N
1:t (φ ◦ �t ) − π(φ ◦ �t )

∣∣r]1/r ≤ a(r)b(φ)√
ζN

,

where a(r) and b(φ) are explicit functions.
To upper bound E

i,N

y1:i
1:t

[Ẑt /Zt ], however, we will require a lower bound on the ∞-ESS, which

by Proposition 1.4(2) is a more stringent notion of effective sample size than 2-ESS. We suspect
this additional stringency is necessary (see Conjecture 1).

Assumption 1.A. There exists ζ ∈ (0,1] such that ESS∞(W 1:N
s ) ≥ ζN for all 1 ≤ s ≤ t .

We can ensure that Assumption 1.A holds by choosing ESS = ESS∞, which will allow us to
bound the estimate of the normalization constant. For s = 1, . . . , t , let

Gs,t (xs) � E
[
gs:t−1(ξs:t−1) | ξs = xs

]
and let G0,t � E[g1:t−1(ξ1:t−1)]. We now arrive at our second main result.

Theorem 1.5. If Assumption 1.A holds, then for all i, t ≥ 1, N > i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤ 1 + Z−1
t

∑t
s=1

∑i
j=1 G0,sGs,t+1(y

i
1:t ) − ζ i

ζN
+ 


(
N−2).

Two possible further assumptions both lead to uniform bounds on E
i,N

y1:i
1:t

[Ẑt ].

Assumption 1.B. The potentials satisfy gs � supx∈E gs(x) < ∞ for all 1 ≤ s ≤ t .

Assumption 1.C. There exists a constant β > 0 such that for any t, s ∈N,

sup
x∈E

G0,tGt,t+s(x)

G0,t+s

≤ β.
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Corollary 1.6. Under the same conditions as Theorem 1.5, if Assumption 1.B holds then

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤ 1 + Z−1
t

t∏
s=1

gs

[(
1 + i

ζN

)t

− 1

]

while if Assumption 1.C holds then

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤
(

1 + β

ζN

)t

.

Combining Corollaries 1.2 and 1.6 yields the following guarantees for the ARPF sampler.

Theorem 1.7. If Assumptions 1.A and 1.B hold, then

dTV
(
π1:t , P 0,N

)≤ tZ−1
t

∏t
s=1 gs

ζN + tZ−1
t

∏t
s=1 gs

+ 

(
N−2)

while if Assumptions 1.A and 1.C hold then

dTV
(
π1:t , P 0,N

)≤ βt

ζN + βt
+ 


(
N−2).

1.3. An application to particle Gibbs

In the language of state-space models, the setting described so far involves approximating the
posterior distribution of a Markov chain given indirect stochastic observations of the chain’s
values. However, it is often the case that the chain and the potentials are controlled by a global
parameter θ ∈ 
 for which there is a prior distribution 
(dθ). Replace Ms by Mθ

s and gs by
gθ

s , then parameterize the other quantities defined previously in terms of Ms and gs by θ . Let
(Y,Y) � (Et ,B(Et )). We will suppress much of the time dependence when possible to make the
notation less cluttered. The target distribution on the product space (
 × Y,B(
 × Y)) is

π(dθ × dy) � γ(dθ × dy)/Z,

where

γ(dθ × dy) � 
(dθ)

t∏
s=1

gθ
s (ys)M

θ
s (ys−1,dys) and Z � γ(1).

Let πθ (dy) and πy(dθ) denote the disintegrations of π along 
 and along Y , respectively.
The particle Gibbs sampler approximates the two-stage Gibbs kernel

�(θ,y,dϑ × dz) � πy(dϑ)πϑ(dz).



Sequential Monte Carlo as approximate sampling 591

In many settings, such as non-linear or non-Gaussian state-space models, it is possible to sample
from πy(dϑ), but difficult to sample from πϑ(dz). The idea is to replace πϑ(dz) with an SMC-
based approximation �ϑ(y,dz) that leaves πϑ(dz) invariant, leading to a kernel of the form
πy(dϑ)�ϑ(y,dz).

We introduce the adaptive resampling particle Gibbs (ARPG) sampler, which employs the
cARPF kernel P

1,N
ϑ,y (dz) to approximate the conditional distribution πϑ(dz) that would be used

in a standard Gibbs sampler. The ARPG kernel is thus given by

�N(θ, y,dϑ × dz) � πy(dϑ)P
1,N
ϑ,y (dz).

Theorem 1.1 and Corollaries 1.3 and 1.6 together with the results of Andrieu et al. [2] yield guar-
antees on the ergodicity properties of the cARPF kernel and the ARPG sampler. Once instances
of N are replaced by ζN , the guarantees essentially match those provided by Andrieu et al. [2]
for the standard PG sampler.

Theorem 1.8. If Assumption 1.A holds, then the cARPF kernel and ARPG sampler have the
following properties:

1. If Assumption 1.B holds, then there exists εt,N = 1 − Ct/N such that for any θ ∈ 
, y ∈ Y ,
and k ≥ 1,

dTV
(
δy

[
P

1,N
θ

]k
,πθ

)≤ (1 − εt,N )k. (1.2)

2. If Assumption 1.C holds and N ≥ t/C + 1 for any fixed C > 0, then for any t ≥ 1, equation
(1.2) holds with

εt,N ≥ exp

(
−C

ζ
(2β + ζ )

)
.

3. If either Assumption 1.B or Assumption 1.C holds, then whenever the Gibbs sampler is
geometrically ergodic the ARPG sampler is geometrically ergodic as well.

At a high level, the results we have obtained highlight the role of the expected value of Ẑt in
the mixing properties of conditional SMC Markov chains and particle Gibbs (PG) samplers: In
order to show geometric ergodicity for adaptive resampling particle Gibbs samplers, it suffices
to establish bounds on the expected value of Ẑt under the twice-conditional filter, and the growth
of the expectation as t increases determining how well the particle Gibbs algorithm scales. Sim-
ilarly, a bound on the expected value of Ẑt under the once-conditional filter implies a bound on
dTV(π1:t , P 0,N ). Hence, as a slogan, good performance of (adaptive resampling) particle Gibbs
is equivalent to good performance of (adaptive) SMC for sampling.

2. Preliminaries

In this section, we fix some additional notation, introduce a few key additional definitions, and
then present αSMC [18], a generalization of the adaptive resampling particle filter described in
the Introduction.
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For a positive integer K , let [K] � {1,2, . . . ,K}. If xi, . . . , xj are elements of a sequence,
write xi:j � 〈xi, xi+1, . . . , xj 〉. We use the following conventions:

∑
∅

= 0,
∏

∅
= 1, and 0/0 =

0.
Let (S,S), (S′,S ′) be measurable spaces. Then K : S × S ′ → R is a kernel if K(·,B) is

a (S,S)-measurable function for all B ∈ S ′ and K(x, ·) is measure on (S′,S ′) for all x ∈ S .
For a measure μ on (S,S) and kernels K,K ′ : S × S → R, let μK(dy) �

∫
μ(dx)K(x,dy)

and KK ′(x,dz) �
∫

K(x,dy)K ′(y,dz). We will often use measures and kernels as operators.
For a measurable function φ : S → R, let μ(φ) � Eξ∼μ[φ(ξ)] = ∫

φ(x)μ(dx) and K(φ)(x) �∫
φ(y)K(x,dy). For measures μ,ν on (S,S), we will write μ � ν to denote that μ is absolutely

continuous with respect to ν, in which case we will write dμ/dν for the ν-almost everywhere
(ν-a.e.) unique function f satisfying μ(A) = ∫

A
f dν, for all A ∈ S . When the choice is clear

from context, we may write B(S) for the σ -algebra of the space S.
For probability measures μ and ν on (S,S), the total variation distance between μ and ν is

dTV(μ, ν) � sup
A∈S

∣∣μ(A) − ν(A)
∣∣.

If μ � ν, then the Kullback–Liebler (KL) divergence is

dKL(μ||ν) � μ(log dμ/dν)

and the χ2 divergence is

dχ2(μ||ν) � ν
([dμ/dν − 1]2)= μ(dμ/dν) − 1.

Finally, we note that, when there is little risk of confusion, we will ignore measure-theoretic
niceties such as the distinction between equality and a.e.-equality.

Recall that (ξt )t≥1 is an inhomogeneous Markov chain on (E,E) with transition kernels
(Mt)t≥2 and initial distribution M1, and that E[·] denotes expectation with respect to the Markov
chain. We will write M1(x0, ·) for M1(·) when convenient and, for all t ≥ 1 and xt−1 ∈ E, we
will assume that Mt(xt−1, ·) has a density with respect to some common σ -finite dominating
measure (which we denote by dx). We will abuse notation and write Mt(xt−1, xt ) for the density
of Mt(xt−1, ·) as xt . Recall that, for each t ≥ 1, gt : E → R+ denotes a E-measurable potential
function, with g0 ≡ 1. Finally, recall that gs:t (xs:t ) �

∏t
τ=s gτ (xτ ).

2.1. Target distributions

We now introduce some additional target distributions. (We will also repeat the definition of γ1:t
and π1:t for completeness.)

Let φ1:t : Et → R and φt : E → R denote generic measurable functions. For each t ≥ 1, the
unnormalized predictive and updated measures are defined, respectively, by

γ ′
1:t (φ1:t ) � E

[
φ1:t (ξ1:t )g1:t−1(ξ1:t−1)

]
and γ1:t (φ1:t ) � E

[
φ1:t (ξ1:t )g1:t (ξ1:t )

]
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with corresponding marginal versions

γ ′
t (φt ) � E

[
φt (ξt )g1:t−1(ξ1:t−1)

]
and γt (φt ) � E

[
φt (ξt )g1:t (ξ1:t )

]
.

Our ultimate goal is to approximate the normalized predictive and updated measures along with
their marginal versions:

π1:t (φ1:t ) � γ1:t (φ1:t )
Zt

, η1:t (φ1:t ) �
γ ′

1:t (φ1:t )
Z′

t

,

πt (φt ) � γt (φt )

Zt

and ηt (φt ) � γ ′
t (φt )

Z′
t

,

where Zt � γt (1) and Z′
t � γ ′

t (1) are normalization constants.

2.2. The αSMC algorithm

In the Introduction, adaptation in the particle filter was implemented via a simple multinomial
resampling step, triggered when the effective sample size fell below a fixed threshold. For the
remainder of the article, we will consider a more general mechanism for adaptation captured
by the αSMC algorithm introduced by Whiteley et al. [18]. The αSMC algorithm can produce
sequential importance sampling (SIS), sampling importance resampling (SIR, also known as the
bootstrap filter), and numerous other SMC variants as special cases. Not only does the αSMC
formulation aid in analyzing adaptive resampling strategies, it provides a useful framework for
devising novel adaptive schemes with attractive computational properties, such as admitting par-
allelization even on resampling steps. In the remainder of this section, we outline the (uncon-
ditional) αSMC algorithm. In the following section, we introduce a novel i-times conditional
version of αSMC, which will include the ciARPF as a special case.

The αSMC algorithm, which is given as Algorithm 1, provides a flexible resampling mecha-
nism: at each time t , a stochastic matrix αt−1 is chosen from a set AN of N × N matrices. We
denote the value in the nth row and kth column of αt−1 by αnk

t−1. The αSMC estimators are

π
0,N
1:t �

N∑
n=1

Wn
t gt (X

n
t )∑N

k=1 Wk
t gt (X

k
t )

δX̃n
1:t

, π
0,N
t �

N∑
n=1

Wn
t gt (X

n
t )∑N

k=1 Wk
t gt (X

k
t )

δXn
t
,

η
0,N
1:t �

N∑
n=1

Wn
t∑N

k=1 Wk
t

δ
X̃n

1:t
and η

0,N
t �

N∑
n=1

Wn
t∑N

k=1 Wk
t

δXn
t
,

and the estimators of the normalization constants Zt and Z′
t are

Ẑt � 1

N

N∑
n=1

Wn
t gt

(
Xn

t

)
and Ẑ′

t � 1

N

N∑
n=1

Wn
t .
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Algorithm 1 αSMC
for n = 1, . . . ,N do

Sample Xn
1 from M1

Set X̃n
1:1 ← Xn

1
Set Wn

1 ← 1
end for
for t = 2,3, . . . do

Select αt−1 from AN according to some function of X1:N
1:t−1 and A1:N

1:t−2
for n = 1, . . . ,N do

Set Wn
t ←∑N

k=1 αnk
t−1W

k
t−1gt−1(X

k
t−1)

Sample An
t−1 from Multi(〈αnk

t−1W
k
t−1gt−1(X

k
t−1)

Wn
t

〉Nk=1)

Sample Xn
t from Mt(X

An
t−1

t−1 , ·)
Set X̃n

1:t ← 〈XAn
t−1

1:t−1,X
n
t 〉

end for
end for

Expectations with respect the law of the αSMC algorithm are written as E0,N [·].
SIS, SIR, and the standard adaptive algorithm are obtained as special cases of αSMC as fol-

lows. SIS is recovered when αt−1 = IN , the N ×N identity matrix, while SIR is recovered when
αt−1 = 11/N , the N × N matrix with all entries equal to 1/N . The adaptive particle filter (APF)
algorithm is obtained by setting αt−1 to 11/N if ESS2(W

1:N
t−1 ) ≤ ζN and to IN otherwise, where

ζ ∈ (0,1] is fixed.

3. Conditional αSMC

It is useful both algorithmically and analytically to generalize αSMC in such a way that one or
more particle trajectories is fixed ahead of time. The result, which we will refer to as conditional
αSMC, is a strict generalization of the conditional adaptive particle filter given in the Introduc-
tion. We will use conditional αSMC to study the properties of (unconditional) αSMC, to design
novel adaptive particle Gibbs algorithms, and to analyze their mixing properties.

For this section, fix t ≥ 1, i ≥ 0, and N > i. The i-times conditional αSMC (ciαSMC) process
(or simply the cαSMC process when i = 1) is defined on the space (EN × [N ]N × [N ]i )t−1 ×
EN × [N ] × [N ]i , and is essentially equivalent to αSMC with the first i particle trajectories, but
not their lineages, fixed a priori. If f 1:i ∈ [N ]i are indices of the first i particles, let D(f 1:i ) �∏

j �=j ′ 1(f j �= f j ′
) be the function that indicates whether the indices are distinct. As in αSMC,

the matrix αt−1 ∈ AN is a function of X1:N
1:t−1 and A1:N

1:t−2. We have x1:N
1:t ∈ (EN)t , f 1:i

1:t ∈ ([N ]i )t ,
a1:N

1:t−1 ∈ ([N ]N)t−1, and a∗
t ∈ [N ], and use the notation

wn
1 � 1, wn

t �
N∑

k=1

αnk
t−1w

k
t−1gt−1

(
xk
t−1

)
,
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and

rn
(
k|w1:N

s−1,x
1:N
1:s−1

)
�

αnk
s−1w

k
s−1gs−1(x

k
s−1)

wn
s

.

For fixed trajectories y1
1:t , . . . , y

i
1:t ∈ Et , the law of the ciαSMC process is given by

P
i,N

y1:i
1:t

[
X1:N

1 ∈ dx1:N
1 ,F 1:i

1 = f 1:i
1

]
� Ci

1D
(
f 1:i

1

) i∏
j=1

1

N
δ
y

j
1

(
dx

f
j
1

1

) N∏
n/∈f 1:i

1

M1
(
dxn

1

)
,

for s = 2, . . . , t ,

P
i,N

y1:i
1:t

[
X1:N

s ∈ dx1:N
s ,A1:N

s−1 = a1:N
s−1,F

1:i
s = f 1:i

s |

X1:N
1:s−1 = x1:N

1:s−1,A
1:N
1:s−2 = a1:N

1:s−2,F
1:i
s−1 = f 1:i

s−1

]
� Ci

sD
(
f 1:i

s

) i∏
j=1

α
f

j
s f

j
s−1

s−1 δ
y

j
s

(
dx

f
j
s

s

)
1
(
a

f
j
s−1

s = f
j

s−1

)

×
∏

n/∈f 1:i
s

rn
(
an
s−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

an
s−1

s−1 , xn
s

)

and

P
i,N

y1:i
1:t

[
A∗

t = a∗
t | X1:N

1:t = x1:N
1:t ,A1:N

1:t−1 = a1:N
1:t−1

]
� w

a∗
t

t gt (x
a∗
t

t )∑N
n=1 wn

t gt (x
n
t )

.

The Ci
s terms are normalization constants that ensure the expressions are valid probabilities. Let

X̃∗
1:t � X

A∗
t

1:t , let Ei,N

y1:i
1:t

[·] denote the expectation operator with respect to the ciαSMC, and write

P i,N
(
y1:i

1:t ,dx1:t
)
� P

i,N

y1:i
1:t

(dx1:t ) � E
i,N

y1:i
1:t

[
δ
X̃∗

1:t
(dx1:t )

]
for the law of X̃∗

1:t .
The normalization constants Ci

s arise because the lineages f 1:i
1:t of the fixed trajectories y1:i

1:t
are kept distinct. The ciαSMC kernel enforces distinct lineages for the fixed trajectories since in

general y
j

1:t �= y
j ′
1:t for j �= j ′ and, from an algorithmic standpoint, allowing overlapping lineages

could lead to a substantial increase in complexity, both in terms of implementation and compu-
tation. The distinct lineage requirement is enforced by the D(f 1:i

s ) terms. Since there is at most
one fixed trajectory when i = 0 or 1, C0

s = C1
s = 1 for all s ∈ [t].

Algorithm 2 provides pseudocode to sample from the law of the cαSMC process, which is a
necessary part of the particle Gibbs sampler described in Section 6. Sampling from the law of
the ciαSMC process for i > 1 is more delicate, but unnecessary since these are only used for
analytical purposes.
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Algorithm 2 Conditional αSMC
Require: Fixed trajectory y1:t

Sample F 1
1 uniformly from {1, . . . ,N}

for n = 1, . . . ,N do
if n = F 1

1 then
Set Xn

1 ← y1
else

Sample Xn
1 from M1

end if
Set X̃n

1:1 ← Xn
1

Set Wn
1 ← 1

end for
for t = 2,3, . . . do

Select αt−1 from AN according to some function of X1:N
1:t−1 and A1:N

1:t−2

Sample F 1
t from Multi(〈αkF 1

t−1
t−1 〉Nk=1)

for n = 1, . . . ,N do
Set Wn

t ←∑N
k=1 αnk

t−1W
k
t−1gt−1(X

k
t−1)

if n = F 1
t then

Set An
t−1 ← F 1

t−1
Set Xn

t ← yt

else
Sample An

t−1 from Multi(〈αnk
t−1W

k
t−1gt−1(X

k
t−1)

Wn
t

〉Nk=1)

Sample Xn
t from Mt(X

An
t−1

t−1 , ·)
end if
Set X̃n

1:t ← 〈XAn
t−1

1:t−1,X
n
t 〉

end for
end for
Sample A∗

t from Multi(〈 Wk
t gt (X

k
t )∑N

n=1 Wn
t gt (X

n
t )

〉Nk=1)

Remark 3.1. To recover the ciARPF described in the Introduction, let αt−1 = 11/N if
ESS(W 1:N

t−1 ) ≤ ζN and let αt−1 = IN otherwise. Then note that by the symmetry of 11/N and
IN , instead of sampling them, we can set the lineage for the j th fixed trajectory to j : that is, set
f

j
s = j for all j ∈ [i] and s ∈ [t].

4. Main results

We are now ready to undertake our study of the i-times conditional αSMC kernel P i,N (y1:i
1:t ,

dx1:t ). Specifically, our aim is to understand the conditions under which the ciαSMC kernel is
close to π1:t (dx1:t ). Formally, we will establish a minorization condition for the i-times con-
ditional filter in terms of the expected value of Ẑt under the (i + 1)-times conditional filter.
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The remainder of the section presents conditions under which the expected value of Ẑt can be
bounded. One of the key assumptions is that adaptation controls the ∞-ESS.

Of particular interest are the cases i = 0, which corresponds to the αSMC filter, and i = 1,
which corresponds to the conditional αSMC kernel. The former provides approximate samples
from π1:t . The latter can be used to define a Markov chain with invariant distribution π1:t , pro-
ducing an adaptive resampling particle Gibbs sampler. We consider both these applications in,
respectively, Sections 5 and 6.

4.1. A minorization condition for the ciαSMC kernel

For the remainder of the article, we will work under the following assumption.

Assumption 4.D. For all N ≥ 1, all α ∈ AN are doubly stochastic.

Remark 4.1. Assumption 4.D is the same as Assumption (B++) in [18], although there, the
condition is stated as assuming each α admits the uniform distribution as an invariant mea-
sure.

Let

κN � max
n�=m,α∈AN

N∑
k=1

αknαkm and κ ′
N � max{κN,1/N}.

Our first main result provides control over how much the measure P
i,N

y1:i
1:t

differs from π1:t . The

theorem gives a stronger result when i = 0 and gives a simpler result when i = 1, by express-
ing the lower bound on P 1,N (y1:t , S) in terms the more transparent quantity κ ′

N instead of the
normalization terms C2

s . For example, if AN = {IN } then κN = 0, while if AN = {11/N }, then
κN = 1/N , so in either case κ ′

N = 1/N .

Theorem 4.2. If Assumption 4.D holds, then for all t ≥ 1, i ≥ 0, N > i, S ⊆ Et measurable,
and y1

1:t , . . . , y
i
1:t , x1:t ∈ Et ,

P i,N
(
y1:i

1:t , S
)≥

∫
S

Zt

E
i+1,N

y1:i
1:t ,x1:t

[Ẑt

∏t
s=1 Ci+1

s /Ci
s]

π1:t (dx1:t ). (4.1)

In particular, in the case of i = 0, we have

dP 0,N

dπ1:t
(x1:t ) = E

1,N
x1:t

[
Zt

Ẑt

]
≥ Zt

E
1,N
x1:t [Ẑt ]

and in the case of i = 1, we have

P 1,N (y1:t , S) ≥
∫

S

Zt (1 − κ ′
N)t

E
2,N
y1:t ,x1:t [Ẑt ]

π1:t (dx1:t ). (4.2)
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Remark 4.3. By identical arguments, Theorem 4.2 also holds in the marginal and predictive
cases. In the predictive cases, however, Ẑ′

t and Z′
t replace, respectively, Ẑt and Zt . In the pre-

dictive case, under Assumption 4.D, Ẑ′
t = Ẑt−1 and Z′

t = Zt−1, so later results pertaining to
E

i,N

y1:i
1:t

[Ẑt ], such as Proposition 4.4 and Theorem 4.7, apply to Z′
t as well. The fact that Z′

t = Zt−1

follows immediately from the definitions. To show that Ẑ′
t = Ẑt−1, apply Assumption 4.D:

Ẑ′
t = N−1

∑
n

Wn
t

= N−1
∑
n

∑
k

αnk
t−1W

k
t−1g

k
t−1

= N−1
∑

k

Wk
t−1g

k
t−1 = Ẑt−1.

We will prove Theorem 4.2 in two parts: first for the case of i = 0, then for i ≥ 1. For the
i = 0 case (corresponding to vanilla αSMC), we begin by writing the joint density of the αSMC
process as

ψ
(
x1:N

1:t ,a1:N
1:t−1

)
�
(

N∏
n=1

M1
(
xn

1

))( t∏
s=2

N∏
n=1

rn
(
an
s−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

an
s−1

s−1 , xn
s

))
.

Under Assumption 4.D, the density of the cαSMC process with law P
1,N
y1:t [X1:N

1:t ,A1:N
1:t−1,F

1
1:t ] can

be written in the following “collapsed” form, by implicitly identifying x
f 1

t

1:t with y1:t :

ψ̃
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)

= ψ(x1:N
1:t ,a1:N

1:t−1)
∏t

s=2 Isα
f 1

s f 1
s−1

s−1

NM1(x
f 1

1
1 )

∏t
s=2 rf 1

s
(f 1

s−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

f 1
s−1

s−1 , x
f 1

s
s )

= 1

N

∏
n�=f 1

1

M1
(
xn

1

) t∏
s=2

(
Isα

f 1
s f 1

s−1
s−1

∏
n�=f 1

s

rn
(
an
s−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

an
s−1

s−1 , xn
s

))
,

where Is � 1(a
f 1

s

s−1 = f 1
s−1).

Proof of Theorem 4.2, i = 0 case. Consider the density

π̃1:t
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
� π1:t

(
x

f 1
t

1:t
)
ψ̃
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
. (4.3)
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Then

ψ(x1:N
1:t ,a1:N

1:t−1)gt (x
f 1

t
t )w

f 1
t

t

π̃1:t (x1:N
1:t ,a1:N

1:t−1, f
1
1:t )

∑N
n=1 gt (x

n
t )wn

t

= M1(x
f 1

1
1 )

∏t
s=2 rf 1

s
(f 1

s−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

f 1
s−1

s−1 , x
f 1

s
s )gt (x

f 1
t

t )w
f 1

t
t

π1:t (x
f 1

t

1:t )
∏t

s=2 Isα
f 1

s f 1
s−1

s−1 N−1
∑N

n=1 gt (x
n
t )wn

t

= M1(x
f 1

1
1 )

∏t
s=2 α

f 1
s f 1

s−1
s−1 w

f 1
s−1

s−1 gs−1(x
f 1

s−1
s−1 )Ms(x

f 1
s−1

s−1 , x
f 1

s
s )gt (x

f 1
t

t )w
f 1

t
t

π1:t (x
f 1

t

1:t )
∏t

s=2 w
f 1

s
s

∏t
s=2 Isα

f 1
s f 1

s−1
s−1 N−1

∑N
n=1 gt (x

n
t )wn

t

=
∏t

s=1 gs(x
f 1

s
s )Ms(x

f 1
s−1

s−1 , x
f 1

s
s )

π1:t (x
f 1

t

1:t )N−1
∑N

n=1 gt (x
n
t )wn

t

∏t
s=2 Is

= Zt

Ẑt

1∏t
s=2 Is

.

Using the convention that 0/0 = 0, it follows that

P 0,N (dx1:t ) =
∑

a1:N
1:t−1,a

∗
t

∫ {
ψ
(
x1:N

1:t ,a1:N
1:t−1

) gt (x
a∗
t

t )w
a∗
t

t∑N
n=1 gt (x

n
t )wn

t

δx
at
1:t

(dx1:t )
}

dx1:N
1:t

=
∑

a1:N
1:t−1,f

1
1:t

∫ {
ψ(x1:N

1:t ,a1:N
1:t−1)gt (x

f 1
t

t )w
f 1

t
t

∏t
s=2 Is

π̃1:t (x1:N
1:t ,a1:N

1:t−1,f
1:i
1:t )

∑N
n=1 gt (x

n
t )wn

t

× π̃1:t
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
δ
x

ft
1:t

(dx1:t )
}

dx1:N
1:t

=
∑

a1:N
1:t−1,f

1
1:t

∫ {
Zt

Ẑt

π̃1:t
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
δ
x

ft
1:t

(dx1:t )
}

dx1:N
1:t

=
{ ∑

a1:N
1:t−1,f

1
1:t

∫
Zt

Ẑt

ψ̃
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
δx1:t

(
dx

ft

1:t
)
dx

−f 1
t

1:t

}
π1:t (dx1:t ).

The result follows from Lemma A.1. �

We defer the proof of Theorem 4.2 in the i ≥ 1 case to Appendix A.2.
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4.2. Bounding Ẑt under the ciαSMC kernel

In order to apply Theorem 4.2, we must be able to control the quantity E
i,N

y1:i
1:t

[Ẑt ]. As an initial

step toward this goal, we consider the SIR case:

Assumption SIR. For all s ∈ [t − 1], αs = 11/N .

For SIR, we can rewrite E
i,N

y1:i
1:t

[Ẑt ] in an equivalent but more explicit form Proposition 4.4.

Our goal will then be to provide general conditions under which E
i,N

y1:i
1:t

[Ẑt ] can be rewritten in a

similar manner (Proposition 4.7).
Recall that G0,t � E[g1:t−1(ξ1:t−1)] and Gs,t (xs) � E[gs:t−1(ξs:t−1) | ξs = xs] for s ∈ [t] and

xs ∈ E. For t ≥ 1, 1 ≤ � ≤ s ≤ t + 1, let

Tt,�,s �
{〈τ1, . . . , τ�〉 : t − s + 1 < τ1 < · · · < τ� = t + 1

}
and, for τ ∈ Tt,�,s , define

C�

(
τ , y1:t

)
�

�−1∏
i=1

Gτi,τi+1(yτi
).

We will sometimes write C
y
� (τ ) or Cτ

� (y1:t ) instead of C�(τ , y1:t ). The following is a straight-
forward generalization of [2], Proposition 9.

Proposition 4.4. If Assumption SIR holds, then for all t ≥ 1, i ≥ 1, N ≥ i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt ] = 1

Nt

t+1∑
�=1

(N − i)t+1−�
∑

τ∈Tt,�,t+1

G0,τ1

�−1∏
m=1

i∑
j=1

Gτm,τm+1

(
yj
τm

)
. (4.4)

In particular, in the case of i = 1, we have

E
1,N
y1:t [Ẑt ] = 1

Nt

t+1∑
�=1

(N − 1)t+1−�
∑

τ∈Tt,�,t+1

G0,τ1C�(τ , y1:t ).

In order to obtain a version of Proposition 4.4 for the general ciαSMC case, we will require
that the algorithm enforce a lower bound on a carefully chosen notion of effective sample size
called ∞-ESS. The ∞-ESS is a member of a family of effective sample size measures we call
p-ESS, which also includes two commonly used definitions as special cases.
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Definition 4.5. For parameter p ∈ [1,∞], let p∗ � p
p−1 be the conjugate exponent of p (so

1/p + 1/p∗ = 1). The p-effective sample size (p-ESS) of the weight vector w1:N ∈R
N+ is

ESSp

(
w1:N )�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ‖w1:N‖1

‖w1:N‖p

)p∗
, p > 1,

‖w1:N‖1∏N
n=1(w

n)w
n/‖w1:N‖1

, p = 1.

The following proposition highlights some elementary properties of p-ESS and subsumes
Proposition 1.4 (see Appendix A.3 for a proof).

Proposition 4.6. The p-ESS has the following properties:

1. For all p ∈ [1,∞], 1 ≤ ESSp(w1:N) ≤ N . The lower bound is achieved if and only if all
but one of the weights is zero. The upper bound is achieved if and only if all the weights are
equal.

2. For 1 ≤ p < q ≤ ∞, ESSp(w1:N) ≥ ESSq(w1:N) ≥ N−(1−q∗/p∗) ESSp(w1:N), with equal-
ity if and only if K ∈ {1, . . . ,N} weights are equal and the rest are zero.

3. The 1-ESS satisfies

ESS1
(
w1:N )= lim

p↓1
ESSp

(
w1:N )= ESSent

(
w1:N )� eH(w1:N),

where H(w1:N) � −∑
n

wn

‖w1:N‖1
log wn

‖w1:N‖1
is the entropy.

Parts (1) and (2) generalize their counterparts in Proposition 1.4 to all p ∈ [1,∞], including the
case p = 1. Part (3) shows that the 1-ESS corresponds to the entropic ESS, which is a common
choice of ESS in applications [6].

In order to obtain a bound on E
i,N

y1:i
1:t

[Ẑt ], we will require a lower bound on the ∞-ESS of the

weights, as formalized in Assumption 1.A. Our development follows that of [18], who used the
2-ESS lower bound guarantee to bound the L2 norm of the weights in terms of their L1 norm.
Similarly, we will use the ∞-ESS lower bound guarantee to bound the sup-norm of the weights
in terms of their L1 norm. Specifically, under Assumption 1.A, we have

ζN ≤ ESS∞
(
W 1:N

s

)= ‖W 1:N
s ‖1

‖W 1:N
s ‖∞

= ‖W 1:N
s ‖1

supn Wn
s

,

and so, for all n ∈ [N ] and s ∈ [t], Wn
s ≤ ‖W 1:N

s ‖1
ζN

. We can use this upper bound on Wn
s to prove a

result that is very similar to Proposition 4.4, but permits an arbitrary adaptation scheme satisfying
Assumptions 1.A and 4.D. (See Appendix A.4 for a proof):
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Theorem 4.7. If Assumptions 1.A and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i, y1
1:t , . . . , y

i
1:t ∈

Et ,

E
i,N

y1:i
1:t

[Ẑt ]

≤ 1

N(ζN)t−1

t+1∑
�=1

∑
τ∈Tt,�,t+1

(ζN)t+1−�

(
N − i

ζN

)1(τ1>1)

G0,τ1

�−1∏
m=1

i∑
j=1

Gτm,τm+1

(
yj
τm

)
.

(4.5)

In particular, in the case of i = 1, we have

E
1,N
y1:t [Ẑt ] ≤ 1

N(ζN)t−1

t+1∑
�=1

∑
τ∈Tt,�,t+1

(ζN)t+1−�

(
N − 1

ζN

)1(τ1>1)

G0,τ1C
y
� (τ ).

The gap between Proposition 4.4 and Theorem 4.7 is that most of the factors of N − i in the
former are replaced by factors of N in the latter. Luckily we are interested in the i = 1,2 cases,
so we expect the differences between the two quantities to be fairly small. The following result,
which is immediate upon expanding the left-hand sides of equations (4.4) and (4.5) and keeping
only �(1/N) terms, formalizes this intuition:

Corollary 4.8. If Assumption SIR holds, then for all i, t ≥ 1, N > i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] = 1 + Z−1
t

∑t
s=1

∑i
j=1 G0,sGs,t+1(y

i
1:t ) − t i

N
+ 


(
N−2).

If Assumptions 1.A and 4.D hold, then for all i, t ≥ 1, N > i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤ 1 + Z−1
t

∑t
s=1

∑i
j=1 G0,sGs,t+1(y

i
1:t ) − ζ i

ζN
+ 


(
N−2).

We suspect that using ∞-ESS is not only sufficient but necessary.

Conjecture 1. Fix any ε ∈ (0,1). There exists a choice of (E,E), (Mt)t≥1, and (gt )t≥1 such that
the following holds: For any sufficiently small ζ > 0, under Assumption 4.D and the assumption
that resampling only occurs when ESS2(W

1:N
s ) < ζN ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] > 1 + Z−1
t

∑t
s=1

∑i
j=1 G0,sGs,t+1(y

i
1:t ) − t i

εζN
+ o

(
N−1).

4.3. Quantitative bounds

Recall Assumptions 1.B and 1.C, either of which can be used in conjunction with Theorem 4.7 to
obtain uniform, quantitative bounds on E

i,N

y1:i
1:t

[Ẑt ] by following the approach of Andrieu et al. [2]:
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Assumption 1.B. The potentials satisfy gs � supx∈E gs(x) < ∞ for all 1 ≤ s ≤ t .

Assumption 1.C. There exists a constant β > 0 such that for any t, s ∈N,

sup
x∈E

G0,tGt,t+s(x)

G0,t+s

≤ β.

Assumption 1.C is implied by a standard “strong mixing” condition which is often employed
in SMC analyses (e.g., [7,18]). See Andrieu et al. [2] for details.

Proposition 4.9. If αs = 11/N for s ∈ [t −1] and Assumption 1.B holds, then for all t ≥ 1, i ≥ 1,
N ≥ i, y1

1:t , . . . , y
i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤ 1 +
[
Z−1

t

t∏
s=1

gs − 1

][
1 −

(
1 − i

N

)t]
. (4.6)

If Assumptions 1.A, 1.B and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤ 1 + Z−1
t

t∏
s=1

gs

[(
1 + i

ζN

)t

− 1

]
. (4.7)

Proof. The proof of equation (4.6) is a straightforward generalization of that for [2], Proposi-
tion 12, with some additional bookkeeping for i (instead of 2) fixed trajectories. As for equation
(4.7), we have

E
i,N

y1:i
1:t

[
Ẑt

]≤
t+1∑
�=1

∑
τ∈Tt,�,t+1

(ζN)−�+1G0,τ1

�−1∏
m=1

i∑
j=1

Gτm,τm+1

(
yj
τm

)

≤ Zt +
t∏

s=1

gs

t+1∑
�=2

(
t

� − 1

)
i�−1(ζN)−�+1

= Zt +
t∏

s=1

gs

t∑
�=1

(
t

�

)
(ζN/i)−�

= Zt +
t∏

s=1

gs

[(
1 + i

ζN

)t

− 1

]
.

�

Proposition 4.10. If αs = 11/N for s ∈ [t − 1] and Assumption 1.C holds, then for all t ≥ 1,
i ≥ 1, N ≥ i, y1

1:t , . . . , y
i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤
(

1 + i(β − 1)

N

)t

. (4.8)



604 J.H. Huggins and D.M. Roy

If Assumptions 1.A, 1.C and 4.D hold, then for all t ≥ 1, i ≥ 1, N ≥ i, y1
1:t , . . . , y

i
1:t ∈ Et ,

E
i,N

y1:i
1:t

[Ẑt /Zt ] ≤
(

1 + iβ

ζN

)t

. (4.9)

Proof. The proof of equation (4.8) is a simple generalization of that for [2], Proposition 14. As
for equation (4.9), observe that for s ∈ [t + 1], G0,t+1 = G0,t+1

G0,t+1
G0,s

= G0,sηs(Gs,t+1), so we
can write for � ∈ [t], τ ∈ Tt,�,t+1,

Zt = G0,t+1 = G0,τk

�−1∏
i=1

ητi
(Gτi ,τi+1).

Combined with Assumption 1.C and writing Ḡs,t � supx∈E Gs,t (x),

t+1∑
�=1

(ζN)−�+1
∑

τ∈Tt,�,t+1

G0,τ1

�−1∏
i=1

i∑
j=1

Gτm,τm+1

(
yj
τm

)

≤ Zt + Zt

t+1∑
�=2

(ζN)−�+1
∑

τ∈Tt,�,t+1

G0,τ1

G0,τ1

�−1∏
i=1

i∑
j=1

Ḡτi ,τi+1

ητi
(Gτi ,τi+1)

= Zt

t+1∑
�=1

(
t

� − 1

)
(ζN)−�+1(iβ)�−1

= Zt

(
1 + iβ

ζN

)t

. �

To compare equations (4.6) and (4.7), consider the 
(1/N) terms, which are, respectively,

t i[Z−1
t

∏t
s=1 gs − 1]
N

and
t iZ−1

t

∏t
s=1 gs

ζN
.

Thus, up to a −t i term and a factor of 1/ζ , the two bounds are of the same leading order in 1/N .
The −it is likely an artifact of the analysis while the 1/ζ term accounts for there being only ζN

“effective particles.” The differences between equations (4.8) and (4.9) are identical.

5. Bounding the divergence of SMC samplers

Recall that P 0,N (dx1:t ) is the distribution of X̃∗
1:t ∼ π

0,N
1:t , a single sample from the αSMC es-

timator of π1:t . Equivalently, P 0,N (dx1:t ) = E
0,N [π0,N

1:t ](dx1:t ) � E
0,N [π0,N

1:t (dx1:t )] is the ex-

pected value of the random measure π
0,N
1:t . As a first application of our results from Section 4,
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Table 1. Divergences of the form equation (5.1). The operator (a)+ gives the positive part of a ∈R

Name Symbol i f

KL divergence (version 1) dKL 1 a �→ loga

KL divergence (version 2) dKL 2 a �→ − loga

χ2 distance dχ2 1 a �→ a − 1
Total variation distance (version 1) dTV 2 a �→ (a − 1)+
Total variation distance (version 2) dTV 2 a �→ (1 − a)+

we consider bounding the distance between the measures π1:t and P 0,N . That is, for some diver-
gence d(μ||ν) between measures, can we bound d(π1:t ||P 0,N )? To the best of our knowledge,
there has been minimal investigation of this question, with [7], Chapter 8, a notable exception.
For example, under Assumption SIR, the bound

dKL
(
P 0,N ||πt

)≤ c

N
,

can be extracted as a special case of a more general propagation-of-chaos result [7], Theo-
rem 8.3.2.

Let F1 be the set of functions f : R+ → R that are monotonically increasing or decreasing
and satisfy f (1) = 0. We consider the class of monotonic divergences of the form

di,f (μ1||μ2) � μi

(
f ◦ dμ1

dμ2

)
, i ∈ {1,2}, f ∈F1. (5.1)

Table 1 lists some common divergences that can be written this way.
The following result characterizes the divergence between π1:t and P 0,N , only assuming that

f is concave.

Proposition 5.1. Let Rt (y1:t ) � E
1,N
y1:t [Ẑt /Zt ] and St � Z−1

t

∑t
s=1 G0,sπ1:t (Gs,t+1) − ζ . If As-

sumption 4.D holds, then for all concave f ∈ F1,

d1,f

(
π1:t ||P 0,N

)≤ f
(
π1:t (Rt )

)
.

In particular, if Assumption SIR holds, then

dKL
(
π1:t ||P 0,N

)≤ log

(
1 + St − t

N
+ 


(
N−2)),

dχ2

(
π1:t ||P 0,N

)≤ St − t

N
+ 


(
N−2)

while if Assumptions 1.A and 4.D hold, then

dKL
(
π1:t ||P 0,N

)≤ log

(
1 + St − ζ

ζN
+ 


(
N−2)), dχ2

(
π1:t ||P 0,N

)≤ St − ζ

ζN
+ 


(
N−2).
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Proof. The general statement follows by applying Jensen’s inequality to equation (5.1), then
using Theorem 4.2. The special cases correspond to using the KL divergence (version 1) and χ2

distance rows of Table 1 and applying Corollary 4.8. �

Similar results for (sequential) importance sampling are included in Appendix A.5.
We can also consider the divergence between π1:t and P 0,N when E

1,N
y1:t [Ẑt ] is uniformly

bounded:

Proposition 5.2. If Assumption 4.D holds and E
1,N
y1:t [Ẑt /Zt ] ≤ Bt,N for all y1:t ∈ Et , then for all

increasing f ∈F1

di,f

(
π1:t ||P 0,N

)≤ f (Bt,N )

and for all decreasing f ∈ F1,

di,f

(
P 0,N ||π1:t

)≤ f
(
B−1

t,N

)
.

In particular,

dKL
(
π1:t ||P 0,N

)≤ logBt,N ,

dχ2

(
π1:t ||P 0,N

)≤ Bt,N − 1,

dTV
(
π1:t , P 0,N

)≤ Bt,N − 1

Bt,N

≤ Bt,N − 1.

Proof. The general statements follow immediately from equation (5.1) and Theorem 4.2. The
special cases correspond to using the KL divergence (version 1), χ2 distance, and total vari-
ation distance (version 2) rows of Table 1. The second total variation inequality holds since
Bt,N ≥ 1. �

The bounds in Proposition 5.2 for KL divergence, χ2 distance, and total variation distance are
asymptotically equivalent if Bt,N → 1 as N → ∞. Combining Proposition 5.2 with, for example,
Proposition 4.10, yields quantitative bounds for SIR and αSMC:

Corollary 5.3. If Assumptions 1.C and SIR hold, then

dKL
(
π1:t ||P 0,N

)≤ t (β − 1)

N
,

dχ2

(
π1:t ||P 0,N

)≤ t (β − 1)

N
+ O

(
N−2),

dTV
(
π1:t , P 0,N

)≤ t (β − 1)

N + t (β − 1)
+ O

(
N−2).
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If Assumptions 1.A, 1.C and 4.D hold, then

dKL
(
π1:t ||P 0,N

)≤ tβ

ζN
,

dχ2

(
π1:t ||P 0,N

)≤ tβ

ζN
+ O

(
N−2),

dTV
(
π1:t , P 0,N

)≤ tβ

ζN + tβ
+ O

(
N−2).

6. The α-particle Gibbs sampler

As a second application of our results from Section 4, we consider the mixing properties of parti-
cle Gibbs with adaptive resampling. Recall from Section 1.3 that we introduce a global parameter
θ ∈ 
 with prior distribution 
(dθ). Replace Ms by Mθ

s and gs by gθ
s , then parameterize the

other quantities defined previously in terms of Ms and gs by θ . The target distribution on the
product space (
 × Y,B(
 × Y)), Y � Et , is

π(dθ × dy) � γ(dθ × dy)/Z,

where

γ(dθ × dy) �
t∏

s=1

gθ
s (ys)M

θ
s (ys−1,dys)
(dθ) and Z � γ(1).

Particle Gibbs samplers have kernels of the form πy(dθ)�θ (y,dz), where �θ(y,dz) is an
SMC-based kernel with invariant distribution πθ . The standard PG sampler employs the iterated
conditional SMC (i-cSMC) kernel [2]: that is, �θ = P

1,N
θ,y and require Assumption SIR to hold.

We now introduce the novel α-particle Gibbs (αPG) sampler, which employs the iterated con-
ditional αSMC (i-cαSMC) kernel P

1,N
θ,y , so �θ = P

1,N
θ,y . In Appendix A.6, we prove that the

i-cαSMC kernel is reversible with respect to πθ and hence has invariant distribution πθ .
The first step to proving mixing results for the i-cαSMC kernel and the αPG sampler is to

use Theorem 4.2 to obtain a sufficient condition for the i-cαSMC transition kernel to satisfy a
minorization condition.

Proposition 6.1. If Assumption 4.D holds and E
2,N

θ,y1:2 [Ẑt /Zt ] ≤ Bt,N for all θ ∈ 
 and y1, y2 ∈
Y , then

P
1,N
θ,y (y,dx) ≥ εt,Nπθ (dx), (6.1)

where εt,N � (1−κ ′
N )t

Bt,N
.

The constant εt,N , which determines mixing speed, can be found explicitly using the quan-
titative bounds from Section 4.3. For example, using Assumption 1.C we obtain the following
corollary.
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Corollary 6.2. If Assumptions 1.A, 1.C and 4.D and hold, then for all y ∈ Y ,

P
1,N
θ,y (y,dx) ≥ εt,Nπθ (dx),

where

εt,N �
(

1 − κ ′
N

1 + 2β
ζN

)t

.

Furthermore, if ζN ≥ 2βt

C(1−κ ′
N )−κ ′

N t
for some constant C > 0, then

εt,N ≥ e−C.

In particular, assuming κ ′
N ≤ B/N for some constant B ≥ 1, if N ≥ t/C + B , then

εt,N ≥ exp

(
−C

ζ
(2β + ζB)

)
.

Proof. The first part follows from Propositions 6.1 and 4.10. For the second part, we then have

εt,N ≥
(1 + 2β

ζN

1 − κ ′
N

)−t

=
(

1 + 1

1 − κ ′
N

(
2β

ζN
+ κ ′

N

))−t

≥
(

1 + C

t

)−t

≥ e−C.

The final part follows after noting that if κ ′
N ≤ B/N , then

1

1 − κ ′
N

(
2β

ζN
+ κ ′

N

)
≤ 1

1 − B/N

(
2β

ζN
+ B/N

)
= 1

N − B

(
2β

ζ
+ B

)
. �

Remark 6.3. In the case of the i-cSMC kernel, Corollary 6.2 is almost as tight as [2], Corol-
lary 14: the former result replaces β − 1 with β .

The minorization condition (6.1) implies uniform ergodicity and a number of other types
of convergence guarantees for the i-cSMC process. The following generalizes [2], Theorem 1,
which applies only to the i-cSMC kernel and the PG sampler.

Theorem 6.4. Assume that Assumptions 1.A and 4.D hold.

I. Let N ≥ 2, and consider the i-cαSMC process with kernel P = P
1,N
θ .

1. P is reversible with respect to π and defines a positive operator.
2. If the potentials are bounded, then there exists εt,N = 1 − Ct/N such that

(i) for all y ∈ Y , P(y,dz) ≥ εt,Nπθ (dz),
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(ii) for every measure ν � πθ and k ≥ 1,

dχ2

(
νP k||πθ

)≤ dχ2(ν||πθ )(1 − εt,N )k,

(iii) for every y ∈ Y and k ≥ 1,

dTV
(
δyP

k,πθ

)≤ (1 − εt,N )k.

3. If Assumption 1.C also holds and there is a constant B > 0 such that κ ′
N ≤ B/N , then

for every C > 0, there exists εB,C,ζ > 0 such that for N ≥ t/C + B and all t > 1,

εt,N ≥ εB,C,ζ > 0.

II. If there exists β ≥ 1 such that, for all t, s ∈ N,

π- ess sup
θ,x

Gθ
0,tG

θ
t,t+s(x)

Gθ
0,t+s

≤ β,

or if

π- ess sup
θ

∏t
s=1 gθ

s

γθ (1)
< ∞,

then the αPG chain is geometrically ergodic whenever the Gibbs sampler is geometrically
ergodic.

Proof. Part I.1 follows from Lemma A.4. Parts I.2–3 follow from Proposition 6.1, Corollary 6.2,
and [2], Proposition 31. Part II follows from [2], Section 7. �

Remark 6.5. Part I.3 means that if Assumption 1.C holds, then scaling N linearly with t ensures
a uniform convergence rate, as measured by χ2-divergence or total variation distance.

Appendix: Additional proofs

A.1. A technical lemma

Lemma A.1. Let X and Y be random elements in Borel spaces (S,S) and (T ,T ), respectively,
let ψ : S × T →R+ be a measurable, and let μ be the distribution of X. If

ν = E
[
ψ(X,Y )δX

]
,

then ν � μ and

dν

dμ
(X) = E

[
ψ(X,Y ) | X] a.s.
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Proof. Because S is Borel, there exists an f satisfying f (X) = E[ψ(X,Y ) | X] a.s. It follows
from the chain rule of conditional expectation and then some elementary manipulations that, for
all A ∈ S ,

ν(A) = E
[
f (X)δX(A)

]= E
[
f (X)1A(X)

]=
∫

A

f (x)μ(dx),

and so f is a version of the Radon–Nikodym derivative dν/dμ. �

A.2. Proof of Theorem 4.2, i ≥ 1 case

First, observe that we can write the ciαSMC kernel as

P i,N
(
y1:i

1:t ,dx1:t
)= E

i,N

y1:i
1:t

[
δ
X̃∗

1:t
(dx1:t )

]
= E

i,N

y1:i
1:t

[ ∑
k1:t∈[N ]t

Ik1:t
(
X1:N

1:t ,A1:N
1:t ,dx1:t

)]
,

where

Ik1:t
(
x1:N

1:t ,a1:N
1:t ,dx1:t

)
� δ

x̃
kt
1:t

(dx1:t )1
(
kt = a∗

t

) t−1∏
s=1

1
(
ks = a

ks+1
s

)
.

Next, note that

N∑
k1=1

1
(
x̃

kt

1:t ∈ S
)
P

i,N

y1:i
1:t

[
X1:N

1 ∈ dx1:N
1 ,F 1:i

1 = f 1:i
1

]

=
N∑

k1=1

1
(
x̃

kt

1:t ∈ S
)
Ci

1D
(
f 1:i

1

) i∏
j=1

1

N
δ
y

j
1

(
dx

f
j
1

1

) N∏
n/∈f 1:i

1

M1
(
dxn

1

)

≥ N Ci
1

Ci+1
1

N∑
k1=1

∫
E

1
(
x̃

kt

1:t ∈ S
)
Ci+1

1 D
(
f 1:i

1 , k1
) i∏

j=1

1

N
δ
y

j
1

(
dx

f
j
1

1

) 1

N
δx1

(
dx

k1
1

)

×
N∏

n/∈f 1:i
1 ,k1

M1
(
dxn

1

)
M1(dx1)

≥ N Ci
1

Ci+1
1

N∑
k1=1

∫
E

1
(
x̃

kt

1:t ∈ S
)
P

i+1,N

y1:i
1:t ,x1:t

[
X1:N

1 ∈ dx1:N
1 ,F 1:i

1 = f 1:i
1 ,F i+1

1 = k1
]
M1(dx1).

(A.1)

For the remainder of the proof, to keep notation compact when writing laws, instead of writ-
ing, for example, X1:N

s ∈ x1:N
s or F 1:i

s = f 1:i
s , whenever a random variable is instantiated to be
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(the differential) of the lowercase version of itself, we will write only the random variable: for
example, X1:N

s or F 1:i
s . Now, for s = 2, . . . , t ,

N∑
ks=1

1
(
x̃

kt

1:t ∈ S
)
1
(
ks−1 = a

ks

s−1

)
P

i,N

y1:i
1:t

[
X1:N

s ,A1:N
s−1,F

1:i
s | X1:N

1:s−1,A
1:N
1:s−2,F

1:i
s−1

]

�
N∑

ks=1

1
(
x̃

kt

1:t ∈ S
)
1
(
ks−1 = a

ks

s−1

)
Ci

sD
(
f 1:i

s

) i∏
j=1

α
f

j
s f

j
s−1

s−1 δ
y

j
s

(
dx

f
j
s

s

)
1
(
a

f
j
s−1

s = f
j

s−1

)

×
∏

n/∈f 1:i
s

rn
(
an
s−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

an
s−1

s−1 , xn
s

)

≥
N∑

ks=1

Ci
s

Ci+1
s α

ksks−1
s−1

∫
E

1
(
x̃

kt

1:t ∈ S
)
Ci+1

s D
(
f 1:i

s , ks

)

×
i∏

j=1

α
f

j
s f

j
s−1

s−1 δ
y

j
s

(
dx

f
j
s

s

)
1
(
a

f
j
s−1

s = f
j

s−1

)

× α
ksks−1
s−1 δxs

(
dxks

s

)
1
(
ks−1 = a

ks

s−1

)
×

∏
n/∈f 1:i

s ,ks

rn
(
an
s−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

an
s−1

s−1 , xn
s

)

× rks

(
ks−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

ks−1
s−1 ,dxs

)

=
N∑

ks=1

Ci
s

Ci+1
s α

ksks−1
s−1

∫
E

1
(
x̃

kt

1:t ∈ S
)
rks

(
ks−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

ks−1
s−1 ,dxs

)

× P
i+1,N

y1:i
1:t ,x1:t

[
X1:N

s ,A1:N
s−1,F

1:i
s ,F i+1

s = ks | X1:N
1:s−1,A

1:N
1:s−2,F

1:i
s−1,F

i+1
s−1 = ks−1

]
.

(A.2)

Using equations (A.1) and (A.2), we have (note that the terms such as those involving a0

should be ignored)

∑
k1:t∈[N ]t

1
(
x̃

kt

1:t ∈ S
)
1
(
kt = a∗

t

) t∏
s=2

1
(
ks−1 = a

ks

s−1

)
P

i,N

y1:i
1:t

[
X1:N

1:t ,A1:N
1:t ,F 1:i

1:t
]

=
∑

k1:t∈[N ]t
1
(
x̃

kt

1:t ∈ S
)
1
(
kt = a∗

t

)
P

i,N

y1:i
1:t

[
A∗

t | X1:N
1:t ,A1:N

1:t−1

]
P

i,N

y1:i
1:t

[
X1:N

1 ,F 1:i
1

]

×
t∏

s=2

1
(
ks−1 = a

ks

s−1

)
P

i,N

y1:i
1:t

[
X1:N

s ,A1:N
s−1,F

1:i
s | X1:N

1:s−1,A
1:N
1:s−2,F

1:i
s−1

]
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≥
∑

k1:t∈[N ]t

∫
Et

N 1(x̃
kt

1:t ∈ S)1(kt = a∗
t )

(
∏t

s=1 Ci+1
s /Ci

s )(
∏t−1

s=1 α
ksks−1
s−1 )

w
a∗
t

t gt (x
a∗
t

t )∑N
n=1 wn

t gt (x
n
t )

×
t∏

s=2

rks

(
ks−1|w1:N

s−1,x
1:N
1:s−1

)
Ms

(
x

ks−1
s−1 ,dxs

)

×
t∏

s=2

P
i+1,N

y1:i
1:t ,x1:t

[
X1:N

s ,A1:N
s−1,F

1:i
s ,F i+1

s = ks | X1:N
1:s−1,A

1:N
1:s−2,F

1:i
s−1,F

i+1
s−1 = ks−1

]

× P
i+1,N

y1:i
1:t ,x1:t

[
X1:N

1 ∈ dx1:N
1 ,F 1:i

1 = f 1:i
1 ,F i+1

1 = k1
]
M1(dx1)

=
∑

k1:t∈[N ]t

∫
Et

N 1(x1,t ∈ S)

(
∏t

s=1 Ci+1
s /Ci

s )
∑N

n=1 wn
t gt (x

n
t )

× P
i+1,N

y1:i
1:t ,x1:t

[
X1:N

1:t ,A1:N
1:t−1,F

1:i
1:t , F

i+1
1:t = k1:t

]
γ1:t (dx1:t )

=
∫

S

∑
k1:t∈[N ]t

Zt

Ẑt

∏t
s=1 Ci+1

s /Ci
s

P
i+1,N

y1:i
1:t ,x1:t

[
X1:N

1:t ,A1:N
1:t−1,F

1:i
1:t , F

i+1
1:t = k1:t

]
π1:t (dx1:t ),

from which equation (4.1) follows.
To prove equation (4.2), first note that under Assumption 4.D, the normalization constants for

the c2αSMC process are given by

C2
1 � N

N − 1

and, for s = 2, . . . , t ,

C2
s �

(
1 −

N∑
k=1

α
kf 1

s−1
s−1 α

kf 2
s−1

s−1

)−1

.

Thus, C2
s ≤ 1

1−κN
for s = 2, . . . , t and hence C2

s ≤ 1
1−κ ′

N

for all s ∈ [t].

A.3. Proof of Proposition 4.6

For (1), the fact that ESS1(w
1:N) = ESSent(w

1:N) is a straightforward algebraic manipulation.
To prove the limit equality, observe that, using the Taylor series for xp and log(1 + x), we have

lim
p→1

( ‖w1:N‖p

1∑N
n=1(w

n)p

)1/(p−1)

= lim
p→1

(∑∞
k=0 ‖w1:N‖1(p − 1)k logk(‖w1:N‖1)/k!∑N

n=1
∑∞

k=0 wn(p − 1)k logk(wn)/k!
)1/(p−1)
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= lim
x→∞

(∑∞
k=0 ‖w1:N‖1x

−k logk(‖w1:N‖1)/k!∑N
n=1

∑∞
k=0 wnx−k logk(wn)/k!

)x

= lim
x→∞

(
exp(log(1 +∑∞

k=1 x−k logk(‖w1:N‖1)/k!))
exp(log(1 +∑∞

k=1
∑N

n=1 wn‖w1:N‖−1
1 x−k logk(wn)/k!))

)x

= lim
x→∞

exp(x
∑∞

m=1(−1)m+1[∑∞
k=1 x−k logk(‖w1:N‖1)/k!]m)

exp(x
∑∞

m=1(−1)m+1[∑∞
k=1

∑N
n=1 wn‖w1:N‖−1

1 x−k logk(wn)/k!]m)

= lim
x→∞

exp(log(‖w1:N‖1) + 
(x−1))

exp(log(
∏N

n=1(w
n)w

n/‖w1:N‖1) + 
(x−1))

= ‖w1:N‖1∏N
n=1(w

n)w
n/‖w1:N‖1

.

To prove the remaining parts, we make repeated use of the following.

Fact. For 1 ≤ r < s ≤ ∞, and any vector w1:N ∈ R
N+ , ‖w1:N‖s ≤ ‖w1:N‖r ≤

N1/r−1/s‖w1:N‖s , with the lower (upper) bound achieved if and only if w1:N has one non-zero
entry (w1:N has all equal entries).

For (2), apply the Fact with r = 1, s = p > 1, and note that in this case 1/r −1/s = 1−1/p =
1/p∗. We then have 1 ≤ ‖w1:N‖1/‖w1:N‖p ≤ N1/p∗ , proving the result for p > 1. For p = 1,
the result follows from part (1) and elementary properties of the entropy.

For (3), in the case that p > 1, note that∥∥w1:N∥∥q∗−p∗
1 ≥ N(q∗−p∗)/q∗∥∥w1:N∥∥q∗−p∗

q
= N1−p∗/q∗∥∥w1:N∥∥q∗−p∗

q

= N−p∗(1/p−1/q)
∥∥w1:N∥∥q∗−p∗

q
,

(A.3)

where the final equality follows since

1 − p∗/q∗ = 1 − p∗(1 − 1/q) = 1 − p∗ + p∗/q = −p∗/p + p∗/q.

We conclude that( ‖w1:N‖1

‖w1:N‖p

)p∗
≥ ‖w1:N‖p∗

1

Np∗(1/p−1/q)‖w1:N‖p∗
q

≥ ‖w1:N‖p∗
1

Np∗(1/p−1/q)‖w1:N‖p∗
q

‖w1:N‖q∗−p∗
1

N−p∗(1/p−1/q)‖v‖q∗−p∗
q

=
(‖w1:N‖1

‖w1:N‖q

)q∗

≥
( ‖w1:N‖1

‖w1:N‖p

)q∗
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=
(‖w1:N‖p

‖w1:N‖1

)p∗−q∗( ‖w1:N‖1

‖w1:N‖p

)p∗

≥ N−(p∗−q∗)/p∗
( ‖w1:N‖1

‖w1:N‖p

)p∗
,

where the first, third, and fourth inequalities follow from the Fact and the second follows from
equation (A.3).

The case of p = 1 follows from the p > 1 case and part (1).

A.4. Proof of Proposition 4.7

We prove the result for i = 1. The general case follows from straightforward modifications.
For t ≥ 1, let Qt(xt−1,dxt ) � gt−1(xt−1)Mt(xt−1,dxt ), and for 0 ≤ s < t , let

Qs,t � Qs+1Qs+2 · · ·Qt,

so Qt,t+1 = Qt . By convention Qt,t (xt ,dyt ) = δxt (dyt ) and Q0,t (dxt ) is a measure, not a prob-
ability kernel. Notice that for s ∈ [t], xs ∈ E, and φt : E →R,

Qs,t (xs)(φt ) = E
[
φt (ξt )gs:t−1(ξs:t−1) | ξs = xs

]
and Q0,t (φt ) = M1Q1,t (φt ). Generalizing these identities, we will abuse notation and write, for
s ∈ [t], xs ∈ E, and φs,t : Et−s →R,

Qs,t (xs)(φs,t ) � E
[
φs:t (ξs:t )gs:t−1(ξs:t−1) | ξs = xs

]
and Q0,t (φ1:t ) � M1Q1,t (φ1:t ). Note that Gs,t (y) = Qs,t (y)(1) for s ∈ [t − 1] and G0,t =
Q0,t (1).

We will use the abbreviated notation Qk
s,t (·) = Qs,t (·)(Xk

s ) or Qs,t (·)(xk
s ), Gk

s,t = Gs,t (X
k
s ) or

Gs,t (x
k
s ), G

y
s,t = Gs,t (ys), gk

s = gs(X
k
s ) or gs(x

k
s ), and g

y
s = gs(ys). The variables are Xk

s inside
expectations and xk

s outside expectations. Throughout the proof, when limits of a sum are not
specified, the sum is from 1 to N .

Let Fs be the σ -algebra generated by X1:N
1:s , A1:N

1:s−1, and F 1
1:s , where by convention we let F0

be the trivial σ -algebra. The proof relies on the following lemma.

Lemma A.2. If y1:t ∈ Et , then

1. for s = 2, . . . , t and any functions φn
s : E →R, n ∈ [N ],

E
1,N
y1:t

[∑
n

φn
s

(
Xn

s

) ∣∣∣Fs−1

]

=
∑
f 1

s

α
f 1

s f 1
s−1

s−1 φ
f 1

s
s (ys) +

∑
f 1

s

∑
n�=f 1

s

∑
k

α
f 1

s f 1
s−1

s−1

αnk
s−1w

k
s−1

wn
s

Qk
s−1,s

(
φn

s

);
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2. for τ ∈ [t − s],

E
1,N
y1:t

[∑
n

Wn
s Gn

s,s+τ

∣∣∣Fs−1

]

≤ 1

ζN

∑
n

wn
s−1g

n
s−1G

y
s,s+τ +

∑
n

wn
s−1G

n
s−1,s+τ ;

and
3. for s = 1, . . . , t − 1,

N E
1,N
y1:t [Ẑt | Ft−s] ≤ At−s + Bt−s ,

where,

At−s � (ζN)−s+1
∑
n

wn
t−sg

n
t−s

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−1−�G
y

t−s+1,τ1
C

y

� (τ )

)
,

Bt−s � (ζN)−s+1
∑
n

wn
t−s

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�Gn
t−s,τ1

C
y

� (τ )

)
.

Proof. For (1),

E
1,N
y1:t

[∑
n

φn
s

(
Xn

s

) ∣∣∣Fs−1

]

=
∑
f 1

s

∑
a

−f 1
s−1

s

α
f 1

s f 1
s−1

s−1

∏
k �=f 1

s

rk
(
ak
s−1|w1:N

s−1,x
1:N
1:s−1

)

×E
1,N
y1:t

[∑
n

φn
s

(
Xn

s

) ∣∣∣Fs−1,A
1:N
s−1 = a1:N

s−1,F
1
s = f 1

s

]

=
∑
f 1

s

∑
a

−f 1
s−1

s

α
f 1

s f 1
s−1

s−1

∏
k �=f 1

s

α
kak

s−1
s−1 w

ak
s−1

s−1 gs−1(x
ak
s−1

s−1 )

wk
s

(
φ

f 1
s

s (ys)

+
∑
n�=f 1

s

E
[
φn

s (ξs) | ξs−1 = x
an
s−1

s−1

])

=
∑
f 1

s

α
f 1

s f 1
s−1

s−1 φ
f 1

s
s (ys)
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+
∑
f 1

s

∑
n�=f 1

s

∑
k

α
f 1

s f 1
s−1

s−1

αnk
s−1w

k
s−1gs−1(x

k
s−1)

wn
s

E
[
φn

s (ξs) | ξs−1 = xk
s−1

]

=
∑
f 1

s

α
f 1

s f 1
s−1

s−1 φ
f 1

s
s (ys) +

∑
f 1

s

∑
n�=f 1

s

∑
k

α
f 1

s f 1
s−1

s−1

αnk
s−1w

k
s−1

wn
s

Qk
s−1,s

(
φn

s

)
.

For (2), choosing φn
s (x) = wn

s Gs,s+τ (x), we have

E
1,N
y1:t

[∑
n

Wn
s Gn

s,s+τ

∣∣∣Fs−1

]

=
∑
f 1

s

α
f 1

s f 1
s−1

s−1 w
f 1

s
s G

y
s,s+τ +

∑
f 1

s

∑
n�=f 1

s

∑
k

α
f 1

s f 1
s−1

s−1

αnk
s−1w

k
s−1

wn
s

Qk
s−1,s

(
wn

s Gs,s+τ

)

= G
y
s,s+τ

∑
f 1

s

α
f 1

s f 1
s−1

s−1 w
f 1

s
s +

∑
f 1

s

∑
n�=f 1

s

∑
k

α
f 1

s f 1
s−1

s−1 αnk
s−1w

k
s−1G

k
s−1,s+τ

≤ G
y
s,s+τ

∑
f 1

s

α
f 1

s f 1
s−1

s−1
‖w1:N

s ‖1

ζN
+
∑
f 1

s

∑
n

∑
k

α
f 1

s f 1
s−1

s−1 αnk
s−1w

k
s−1G

k
s−1,s+τ

= G
y
s,s+τ

ζN

∑
n

wn
s +

∑
n

∑
k

αnk
s−1w

k
s−1G

k
s−1,s+τ

= G
y
s,s+τ

ζN

∑
n

∑
k

αnk
s−1w

k
s−1g

k
s−1 +

∑
k

wk
s−1G

k
s−1,s+τ

= 1

ζN

∑
k

wk
s−1g

k
s−1G

y
s,s+τ +

∑
k

wk
s−1G

k
s−1,s+τ ,

where the inequality follows from Assumption 1.A, and we have repeatedly used Assump-
tion 4.D.

To show (3), we start by using (2) with s = t and τ = 1:

E
1,N
y1:t

[∑
n

Wn
t gn

t

∣∣∣Ft−1

]
= 1

ζN

∑
k

wk
t−1g

k
t−1g

y
t + ζN

ζN

∑
m

wm
t−1G

m
t−1,t+1

= At−1 + Bt−1.

Hence, (3) holds for s = 1. We now assume that the bound holds for some s ∈ {1, . . . , t − 2} and
establish that it also holds for s + 1. Using the inductive hypothesis,

N E
1,N
y1:t [Ẑt | Ft−s−1] = E

1,N
y1:t

[
N E

1,N
y1:t [Ẑt |Ft−s] | Ft−s−1

]
≤ E

1,N
y1:t [At−s + Bt−s |Ft−s−1].
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Using (2), we have

A � E
1,N
y1:t [At−s | Ft−s−1]

= (ζN)−s+1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−1−�G
y

t−s+1,τ1
C

y
� (τ )

)
E

1,N
y1:t

[∑
n

Wn
t−sg

n
t−s

]

≤ (ζN)−s

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−1−�G
y

t−s+1,τ1
C

y

� (τ )

)

×
(∑

n

wn
t−s−1g

n
t−s−1g

y
t−s + ζN

∑
n

wn
t−s−1G

n
t−s−1,t−s+1

)

and

B � E
1,N
y1:t [Bt−s | Ft−s−1]

= (ζN)−s+1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�
E

1,N
y1:t

[∑
n

Wn
t−sG

n
t−s,τ1

∣∣∣Ft−s−1

]
C

y

� (τ )

)

≤ (ζN)−s

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�

(∑
n

wn
t−s−1g

n
t−s−1G

y
t−s,τ1

+ ζN
∑
n

wn
t−s−1G

n
t−s−1,τ1

)
C

y
� (τ )

)
.

Hence,

A + B ≤ (ζN)−s
∑
n

wn
t−s−1g

n
t−s−1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−1−�G
y

t−s,t−s+1G
y

t−s+1,τ1
C

y
� (τ )

)

+ (ζN)−s
∑
n

wn
t−s−1g

n
t−s−1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�G
y
t−s,τ1

C
y
� (τ )

)

+ (ζN)−s
∑
n

wn
t−s−1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�Gn
t−s−1,t−s+1G

y

t−s+1,τ1
C

y
� (τ )

)

+ (ζN)−s
∑
n

wn
t−s−1

(
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�+1Gn
t−s−1,τ1

C
y

� (τ )

)
.
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Summing the parenthesized double sums of the first two terms yields

s∑
�=1

∑
τ∈Tt,�,s

(ζN)s−1−�G
y

t−s,t−s+1G
y

t−s+1,τ1
C

y
� (τ ) +

s∑
�=1

∑
τ∈Tt,�,s

(ζN)s−�G
y
t−s,τ1

C
y
� (τ )

=
s+1∑
�=1

∑
τ∈Tt,�,s+1
τ1=t−s+1

(ζN)s−�G
y
t−s,τ1

C
y

� (τ ) +
s+1∑
�=1

∑
τ∈Tt,�,s+1
τ1>t−s+1

(ζN)s−�G
y
t−s,τ1

C
y

� (τ )

=
s+1∑
�=1

∑
τ∈Tt,�,s+1

(ζN)s−�G
y
t−s,τ1

C
y

� (τ ),

so the first two terms are equal to At−(s+1). Summing the parenthesized double sums of the last
two terms yields

s∑
�=1

∑
τ∈Tt,�,s

(ζN)s−�Gn
t−s−1,t−s+1G

y

t−s+1,τ1
C

y

� (τ )

+
s∑

�=1

∑
τ∈Tt,�,s

(ζN)s−�+1Gn
t−s−1,τ1

C
y

� (τ )

=
s+1∑
�=1

∑
τ∈Tt,�,s+1
τ1=t−s+1

(ζN)s−�+1Gn
t−s−1,τ1

C
y
� (τ ) +

s+1∑
�=1

∑
τ∈Tt,�,s+1
τ1>t−s+1

(ζN)s−�+1Gn
t−s−1,τ1

C
y
� (τ )

=
s+1∑
�=1

∑
τ∈Tt,�,s+1

(ζN)s−�+1Gn
t−s−1,τ1

C
y
� (τ ),

so the last two terms are equal to Bt−(s+1). �

Using part (3) of Lemma A.2 with s = t − 1, we have

N E
1,N
y1:t [Ẑt ] ≤ E

1,N
y1:t [A1 + B1].

Therefore,

E
1,N
y1:t [A1] = (ζN)−t+2

E
1,N
y1:t

[∑
n

gn
1

]( t−1∑
�=1

∑
τ∈Tt,�,t−1

(ζN)t−2−�G
y

2,τ1
C

y
� (τ )

)

= (ζN)−t+2(Gy

1,2 + (N − 1)G0,2
)( t−1∑

�=1

∑
τ∈T ′

�,t−1

(ζN)t−2−�G
y

2,τ1
C

y

� (τ )

)
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and

E
1,N
y1:t [B1] = (ζN)−t+2

(
t−1∑
�=1

∑
τ∈Tt,�,t−1

(ζN)t−1−�
E

1,N
y1:t

[∑
n

Gn
1,τ1

]
C

y
� (τ )

)

= (ζN)−t+2

(
t−1∑
�=1

∑
τ∈Tt,�,t−1

(ζN)t−1−�
(
G

y

1,τ1
+ (N − 1)G0,τ1

)
C

y

� (τ )

)
.

Hence, using arguments analogous to those from the proof of Lemma A.2 and the fact that
G0,1 = 1 yields

E
1,N
y1:t [A1 + B1] = (ζN)−t+2

t∑
�=1

∑
τ∈Tt,�,t

(ζN)t−1−�G
y

1,τ1
C

y

� (τ )

+ N − 1

ζN
(ζN)−t+2

t∑
�=1

∑
τ∈Tt,�,t

(ζN)t−�G0,τ1C
y
� (τ )

= (ζN)−t+2
t+1∑
�=1

∑
τ∈Tt,�,t+1

τ1=1

(ζN)t−�G0,τ1C
y

� (τ )

+ N − 1

ζN
(ζN)−t+2

t+1∑
�=1

∑
τ∈Tt,�,t+1

τ1>1

(ζN)t−�G0,τ1C
y

� (τ )

= (ζN)−t+2
t+1∑
�=1

∑
τ∈Tt,�,t+1

(ζN)t−�

(
N − 1

ζN

)1(τ1>1)

G0,τ1C
y

� (τ ).

A.5. Divergence of importance samplers

The key quantity in this section is the variance of the potentials:

Vt � Var
[
Z−1

t g1:t (ξ1:t )
]= E

[(
Z−1

t g1:t (ξ1:t ) − 1
)2]

.

Theorem A.3. If αs = IN for all s ∈ [t − 1], then

dKL
(
π1:t ||P 0,N

)≤ log

(
1 + Vt

N

)
,

dχ2

(
π1:t ||P 0,N

)≤ Vt

N
.
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Proof. By Theorem 4.2 and Jensen’s inequality

dP 0,N

dπ1:t
(x1:t ) = E

1,N
x1:t

[
Zt

Ẑt

]

≥ N

E
1,N
x1:t [∑N

k=1 Z−1
t g1:t (X̃k

1:t )]

= N

N − 1 + Z−1
t g1:t (x1:t )

.

By definition of the χ2 divergence,

dχ2

(
π1:t ||π̄S,N

1,t

)= π1:t
(

dπ1:t
dP 0,N

)
− 1

= M1:t
(

dπ1:t
dP 0,N

dπ1:t
dM1:t

)
− 1

≤ M1:t
(

N − 1 + Z−1
t g1:t

N
Z−1

t g1:t
)

− 1

= M1:t (Z−1
t g1:t )2 − 1

N

= Var[Z−1
t g1:t (ξ1:t )]

N
.

The bound of the KL divergence follows from the elementary inequality dKL(μ||ν) ≤ log(1 +
dχ2(μ||ν)). �

A.6. Invariant distribution of the i-cαSMC kernel

Lemma A.4. P
1,N
θ,y (dz) is reversible with respect to πθ (dz).

Proof. We mostly suppress dependence on θ since θ is fixed. We will show that the cαSMC
kernel is Gibbs sampler for the artificial joint density given in equation (4.3), which we recall is

π̃1:t
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
� π1:t

(
x

f 1
t

1:t
)
ψ̃
(
x1:N

1:t ,a1:N
1:t−1, f

1
1:t
)
.

In particular, letting ω1:t � (x1:N
1:t ,a1:N

1:t−1, f
1
1:t ), by definition,

P
i,N

y1:i
1:t

[dω1:t ] = π̃1:t
(
dω1:t | x̃f 1

t

1:t = y1:t
)
.
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Furthermore,

π̃1:t
(
x̃

f 1
t

1:t = x̃
a∗
t

1:t | ω1:t
)= π̃1:t

(
f 1

t = a∗
t | ω1:t

)

∝ M1(x
a∗

1
1 )g1(x

a∗
1

1 )
∏t

s=2 IsMs(x
a∗
s−1

s−1 , x
a∗
s−1

s s)gs(x
a∗
s

s )α
a∗
s a∗

s−1
s−1

M1(x
a∗

1
1 )

∏t
s=2 ra∗

s
(a∗

s−1|w1:N
s−1,x

1:N
1:s−1)Ms(x

a∗
s−1

s−1 , x
a∗
s−1

s )

= w
a∗
t

t gt

(
x

a∗
t

t

)
∝ P

i,N

y1:i
1:t

[
a∗
t | x1:N

1:t ,a1:N
1:t−1, f

1
1:t
]
.

Reversibility now follows easily:

P 1,N
y (dz)π(dy) =

∫
π̃1:t (dz | ω1:t )π̃1:t (dω1:t | y)π(dy)

=
∫

π̃1:t (dz | ω1:t )π̃1:t (dy | ω1:t )π̃1:t (dω1:t )

=
∫

π̃1:t (dy | ω1:t )π̃1:t (dω1:t | z)π(dz)

= P 1,N
z (dy)π(dz). �
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