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In this paper, we study the genealogical structure of a Galton–Watson process with neutral mutations.
Namely, we extend in two directions the asymptotic results obtained in Bertoin [Stochastic Process. Appl.
120 (2010) 678–697]. In the critical case, we construct the version of the model in Bertoin [Stochastic
Process. Appl. 120 (2010) 678–697], conditioned not to be extinct. We establish a version of the limit theo-
rems in Bertoin [Stochastic Process. Appl. 120 (2010) 678–697], when the reproduction law has an infinite
variance and it is in the domain of attraction of an α-stable distribution, both for the unconditioned pro-
cess and for the process conditioned to nonextinction. In the latter case, we obtain the convergence (after
re-normalization) of the allelic sub-populations towards a tree indexed CSBP with immigration.

Keywords: branching process; domain of attraction of α-stable laws; neutral mutations; Q-processes;
regular variation

1. Model description and main results

A Galton–Watson process models a population where at every generation each individual repro-
duces according to the same distribution, independently of the others and then dies. For back-
ground about branching processes, we refer to [1,13] and [15]. A number of variants, involving
different types of conditioning and limit theorems, are core of branching processes theory. For in-
stance, when the process dies with probability one [18] proved that the distribution of the process
conditioned to nonextinction exists, under some assumptions on the moments of the reproduc-
tion law. The proof was simplified and the moment assumptions removed in [9] and in [16]. More
generally, [14] introduced the Q-process.

As a further extension of the Galton–Watson model, [3] studied the so called Galton–Watson
process with neutral mutations. This emerges assuming that the mutations modify the genotype
of individuals but not the dynamic of the population, which is modeled by a standard Galton–
Watson. Since mutations appear in the ancestral lines of the population, each individual begets
children that do not necessarily inherit its genetic type (allele). In addition, we suppose that the
population has infinity alleles, that is, each mutation event originates a different allele. We denote
the size of a typical family by ξ (+) := ξ (c) + ξ (m), where ξ (c), ξ (m) are nonnegative random
variables which determine respectively, the number of clones and mutants children of a typical
individual. We exclude the degenerate cases ξ (c) ≡ 0 or ξ (m) ≡ 0.

In [3], established asymptotic features on the genealogy of allelic sub-families in a Galton–
Watson process with neutral mutations. In his development, the genealogy of the population is
described by a planar rooted tree where the mutations are represented by marks in the edges
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Figure 1. The tree on the left, illustrates a Galton Watson process with neutral mutation, the allele type of
an individual is represented by the form of its vertex. On the right we have its tree of alleles, from this we
can deduce for instance, that M0 = 1, T0 = 3,M1 = 3, T1 = 15.

between parents and mutant children. See Figure 1 (left). The vertices with n marks in their
ancestral line are associated with the called n-type individuals. Those individuals with the nth
mark in the edge between them and their parents are known as mutants of the n-type. We denote
by the Tn the total population of individuals of the nth type and by Mn the total number of mutants
of nth type. By convention, the individual in the generation 0th, the ancestors, are consider as
mutants of the 0th type, that is M0 = a, Pa-a.s.

It is well know that the branching property is the most basic property in the analysis of Galton–
Watson processes. Then it is natural to expect a branching property for the Galton–Watson pro-
cess with neutral mutations. Indeed it has the general branching property, which states that con-
ditionally on the set of children of a stopping line, the families that those beget are independent
copies of the initial tree. The concept of stopping line was introduced by [5], where the reader
is referred for the formal definition. Roughly, a line is a family of edges such that every branch
from the root contains at most one edge in that family. A stopping line is a random line such that
the event “an edge is in the line”, only depends on the marks found on their ancestral line. In
particular, the set of edges connecting the mutants of the n type with their parents is a stopping
line. Then for every n, each mutant of the n-type begets a sub-family which is independent of
the others and has the same distribution as the original tree. Another important consequence of
the general branching property is given in the following lemma.

Lemma 1.1 ([3], Lemma 1). Under Pa , {Mn : n ∈ Z+} is a Galton–Watson process with re-
production law P1(M1 ∈ ·). More generally, {(Tn,Mn+1) : n ∈ Z+}, is a Markov chain, with
transition probabilities

Pa(Tn = k,Mn+1 = l|Tn−1 = i,Mn = j) = Pj (T0 = k,M1 = l), (1.1)

for all i, j, k, l ∈ Z+ and j ≤ k.
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Remark 1.1. Since the mutants of the nth type are also individuals of the nth type, the transition
probabilities in (1.1) are zero when j > k.

Let {P n
(i,j),(k,l) : i, j, k, l ∈ Z+} denotes the n-step transition probabilities of the Markov chain

{(Tn,Mn+1) : n ∈ Z+}, that is

P n
(i,j),(k,l) = Pa(Tr+n = k,Mr+n+1 = l|Tr = i,Mr+1 = j), i, j, k, l ∈ Z+, n ∈ N. (1.2)

Then P n
(i,j),(k,l)

depends only on the mutants coordinate. Actually, it is not difficult to prove using
induction, that the following identity holds

P n
(i,j),(k,l) =

∞∑
jn−1=1

Pn−1
(j,jn−1)

Pjn−1(T0 = k,M1 = l), (1.3)

where j0 = j and {Pn
(i,j)

: i, j ∈ Z+} denotes the n-step transition probabilities of {Mn : n ∈ Z+}.
We now introduce the space of finite sequence of integers

U :=
⋃

k∈Z+
Nk,

where N = {1,2, . . .} and N0 = {∅}. We recall that this set gives us the label of the vertices
in Ulam–Harris–Neveu tree. More precisely, the root corresponds to {∅}, one vertex at level
k > 0 is u = (u1, . . . , uk) and uj = (u1, . . . , uk, j) represents its j th children. The level of the
vertex u is denoted by |u|. We shall consider the tree of alleles A := {Au : u ∈ U} constructed
recursively in [3]. Define A∅ = T0 and Auj as the size of the j th allelic sub-population of the
type |u| + 1 which descend from the allelic sub-family indexed by the vertex u. In the case of
ties, sub-families are ordered by convention uniformly at random. See Figure 1 (right). A further
consequence of the general branching property is that, the tree of alleles enjoys a branching
property. To provide a formal statement, we first define the degree of the tree of alleles A at
some vertex u ∈U as

du := max{j ≥ 1 : Auj > 0},
where we agree that max∅ = 0. The notation (du ↓) means that the du-tuple has been rearranged
in the decreasing order of the first coordinate, by convention, in the case of ties the coordinates
are ranked uniformly at random.

Lemma 1.2 ([3], Lemma 2). For any integers a ≥ 1 and k ≥ 0, under Pa conditionally on
{(Au, du) : |u| ≤ k}, for each vertex u at level k with Au > 0, the family of variables {(Auj , duj ) :
1 ≤ j ≤ du} are independent with distribution (T0,M1)

(du↓) under P1.

It is important to observe the following identities

Tk =
∑
|u|=k

Au and Mk+1 =
∑
|u|=k

du. (1.4)
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Hence, given a population with neutral mutations, {(Au, du) : |u| ≤ k} records the genealogy
of allelic sub-families together with their sizes. Also, the size of their generations is a Galton–
Watson process.

The first goal in this paper is to construct the version of the chain {(Tn,Mn+1) : n ∈ Z+},
conditioned on nonextinction of mutants, hence we are interested in the situation where

T = inf{n ≥ 1 : Mn = 0} < ∞, (1.5)

with a strictly positive probability. According to Corollary 1 of [3], this occurs when E(ξ (c)) < 1
and E(ξ (+)) ≤ 1. This implies that the Galton Watson process of mutants {Mn : n ∈ Z+} is critical
or subcritical, that is m := E1(M1) ≤ 1.

We can now state our first theorem.

Theorem 1.3. Let a ∈N and {Fn : n ∈ Z+} be the natural filtration of the process {(Tn−1,Mn) :
n ∈ N}. Then, P↑

a is locally absolutely continuous with respect to Pa with Radom–Nikodim mar-
tingale density

Yn = Mnq
Mn−a

(f ′(q))n
1{n<T },

where f (y) = E1(y
M1) and q = P1(0 < T < ∞), that is

dP↑
a |Fn

= Yn

a
dPa

∣∣∣
Fn

, n ∈N.

Furthermore, P↑
a is the law of a Markov chain {(T ↑

n ,M
↑
n+1) : n ∈ Z+} with n-step transition

probabilities,

Qn
(i,j),(k,l) = lql−j

j (f ′(q))n
P n

(i,j),(k,l), j, l ≥ 1, (1.6)

where {P n
(i,j),(k,l)

: i, j, k, l ∈ Z+} denotes the n-step transition probabilities of {(Tn,Mn+1) : n ∈
Z+}.

We next ensure that the process defined in the above theorem is distributed as {(Tn,Mn+1) :
n ∈ Z+} conditionally on nonextinction of mutants.

Theorem 1.4. Suppose that E(ξ (c)) < 1 and E(ξ (+)) ≤ 1.

(i) Let a,n ∈ N with n fixed. The conditional law of the process {(Tk,Mk+1) : 0 ≤ k ≤ n − 1}
under Pa(·|n + k < T < ∞) converges, as k → ∞, towards the probability measure P

↑
a ,

in the sense that for any n

lim
k→∞Pa(A|n + k < T < ∞) = P↑

a (A), ∀A ∈Fn. (1.7)

(ii) The Yaglom limit

lim
n→∞P(Tn−1 = i,Mn = j |n < T < ∞),
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exists and has a generating function ϕ̂(x, y) such that for all n ∈ N,

mnϕ̂(x, y) = f̂
(
ϕn(x, y)

) − f̂
(
ϕn(x,0)

)
, x, y ∈ [0,1]. (1.8)

The proof of the above results is based on classical methods and this due to the fact that the
generating function of (Tn,Mn+1) can be written in terms of that of Mn, as it is established in
Section 2.

We now turn to analyze the asymptotic behavior of the tree of alleles. In this purpose we will
consider for ever n ∈ N, a Galton–Watson process {Z(+n)

k : k ∈ Z+} such that the reproduction
law

π+
k = P

(
ξ (c) + ξ (m) = k

)
, k ∈ Z+,

is critical (with mean one) and has a finite variance σ 2. We assume that each child is a clone
of her mother with probability 1 − p(n) and a mutant with probability p(n), so the joint law of
(ξ (c), ξ (m)), denoted by π = {πk,l : k, l ∈ Z+}, that is,

πk,l = P
(
ξ (c) = k, ξ (m) = l

)
, k, l ∈ Z+, (1.9)

satisfies

πk,l = π+
k+l

(
k + l

k

)(
1 − p(n)

)k
p(n)l, k, l ∈ Z+. (1.10)

As usual, in the remainder of this paper the relation f ∼ g refers to limx→∞ f (x)/g(x) = 1.
In the paper [3], it has been assumed that the number of ancestors and mutation rate respec-

tively have the following behavior

a(n)∼ nx and p(n)∼ cn−1, as n → ∞; (1.11)

where c, x are some positive constants. In this setting, it has been proved that

L
({(

n−2Tk,n
−1Mk+1

) : k ∈ Z+
}
,P

p(n)

a(n)

) =⇒ {
(Zk+1, cZk+1) : k ∈ Z+

}
, (1.12)

where {Zk : k ∈ Z+} is a (discrete time) continuous state branching process, in short CSBP, with
reproduction measure

ν(dy) = c√
2πσ 2y3

exp

(
− c2y

2σ 2

)
dy, y > 0, (1.13)

and initial population of size x/c. Here and all through the paper the symbol =⇒ will denote the
weak convergence of finite dimensional distributions.

From [13], we know that the transition probabilities of any CSBP process {Yk : k ∈ Z+} with
reproduction measure ϑ are characterized as follows:

E
(
e−λYk+1 |Yk = y

) = e−yκ(λ), k ∈ Z+, λ, y ≥ 0, (1.14)
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where κ is the cumulant of a subordinator with Lévy measure ϑ , so that
∫
(0,∞)

(1∧y)ϑ(dy) < ∞.
In this work, we will consider subordinators without drift, thus

κ(λ) =
∫

(0,∞)

(
1 − e−λy

)
ϑ(dy), λ > 0. (1.15)

Applying successively the property (1.14), we obtain

Ex

(
e−s1Y1···−skYk

) = e−xκ(lk−1(s1)), si ≥ 0, i = 1,2, . . . , k, (1.16)

where l is defined by induction as follows: l0(s) = s,

li (sn−i ) = sn−i + κ
(
li−1(sn−i+1)

)
, i ∈ N. (1.17)

Combining the convergence (1.12) and the identity (1.14), together with the Lévy–Itô decom-
position of a subordinator, one could infer that conditionally on n−2Tk ∼ y the sequence of the
sizes of the sub-population carrying a same allele of the (k + 1)-type and normalized by a factor
n−2 should converge in distribution to the sequence of atoms of a Poisson random measure on
R+ with intensity given in (1.13). Thus, the limit of a sequence of tree of alleles can be defined
as follows.

Definition 1.5 ([3], Definition 1). Fix x > 0 and ϑ a measure on (0,∞) with
∫
(0,∞)

(1 ∧
y)ϑ(dy) < ∞. A tree-indexed CSBP with reproduction measure ϑ and initial population of
size x, is a process {Yu : u ∈ U} with values in R+ and indexed by the universal tree, whose
distribution is characterized by induction on the levels as follows:

(i) Y∅ = x a.s.;
(ii) for every k ∈ Z+ conditionally on {Yv : v ∈ U, |v| ≤ k}, the sequences {Yuj : j ∈ N} for

the vertices u ∈ U at generation |u| = k are independent, and each sequence is distributed
as the family of the atoms of a Poisson random measure on (0,∞) with intensity Yuϑ ,
where the atoms are repeated according to their multiplicity, ranked in the decreasing
order, and completed by an infinite sequence of 0 if the Poisson measure is finite.

Roughly, the tree-indexed CSBP is a process indexed according to the Ulam–Harris–Neveu
tree such that the vertices u ∈ U at level |u| = k > 1 represent the sizes of the sub-populations at
generation k in the CSBP {Yk : k ∈ Z+}, which descent from the same parent at generation k − 1.

Now it can be seen that the convergence (1.12) can be written as follows

L
({(

n−2Au, n
−1du

) : k ∈ Z+
}
,P

p(n)

a(n)

) =⇒ {
(Zu, cZu) : u ∈U

}
, (1.18)

where {Zu : u ∈ U} is a tree-indexed CSBP with reproduction ν given in (1.13) and random initial
population of size x/c. We recall under some assumptions. It is du denotes the outer degree at
the vertex u ∈ U in the tree of alleles. This latter convergence is the main result of [3]. It uses an
argument on convergence of triangular arrays, described in page 690 therein, that can be extended
to a more general context, see, for example, the forthcoming Lemma 4.6.
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One main goal of this paper is to investigate the asymptotic behavior of the population in the
same sense of [3] but on a complimentary class of reproduction laws. Instead of assuming that it
has finite variance as in Bertoin’s paper, we suppose that there exists α ∈ (1,2) such that,

π̄+(j) := P
(
ξ (+) > j

) ∈ RV −α∞ , j ∈ Z+, (1.19)

where RV −α∞ denotes the class of functions which are regularly varying at ∞ with index −α, see
Chapter I in [4] for background. Note that the case α ∈ (0,1) is excluded because it contradicts
the assumption that π+ is critical.

In order to extend the main result of [3] to our setting, we prove that there exists a regularly
varying function r with index α such that

r(n)P
(
ξ+ > ny

) −−−→
n→∞ cαy−α, ∀y > 0, (1.20)

where cα = 1/�(3 −α). The proof of this fact is given in Proposition 4.1. Moreover, the follow-
ing behavior will be assumed instead of the hypothesis (1.11),

a(n)∼ xr(n)p(n) and p(n)∼ cn−1 as n → ∞. (1.21)

The result below extends to our setting the main result in [3].

Theorem 1.6. If (1.19) and (1.21) holds, then the following convergence holds in the sense of
finite dimensional distributions

L
({((

r(n)
)−1Au,

(
r(n)p(n)

)−1
du

) : u ∈ U
}
,P

p(n)

a(n)

) =⇒ {(
Z1/α

u ,Z1/α
u

) : u ∈ U
}
,

where {Z1/α
u : u ∈ U} is a tree-indexed CSBP with reproduction measure

να(dy) = c′
αy−1−1/α dy, y > 0, α ∈ (1,2), (1.22)

where c′
α = α−1/�(1 − α−1).

Finally, we establish the convergence of the finite dimensional distributions of the rescaled
chain {(Tn,Mn+1) : n ∈ Z+}, conditioned to nonextinction of mutants, towards a continuous
state branching process with immigration in discrete time.

Theorem 1.7. If the reproduction law is critical, there exist sequences b1(n) and b2(n) such that
the following joint convergence in the sense of finite dimensional distributions holds:

L
({(

b1(n)Tk−1, b2(n)Mk

) : k ∈ Z+
}
,P

p(n)↑
a(n)

) =⇒ {
(Yk,βYk) : k ∈ Z+

}
,

where {Yk : k ∈ Z+} is a CSBP with immigration, which is characterized by the following condi-
tions:

(i) if the reproduction law has finite variance σ 2 and (1.11) holds, then its reproduction
measure is given by (1.13) and the immigration measure is zν(dz) and β = c; moreover
b1(n) = n−2 and b2(n) = n−1;
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(ii) if the assumptions (1.19) and (1.21) hold, the reproduction measure is να(dz) as defined
in (1.22), the immigration measure is zνα(dz) and β = 1; the normalizing constants are
given by b1(n) = (r(n)p(n))−1 and b2(n) = (r(n))−1.

The remainder of the paper is organized as follows. In Section 2, we provide some preliminary
facts. Section 3 is devoted to construct and to interpret the process {(Tn,Mn+1) : n ∈ Z+} condi-
tioned to non extinction. In Section 4, we investigate the asymptotic behavior of the population
in the framework where the reproduction law is in the domain of attraction of an α-stable distri-
bution. In the last section, we prove Theorem 1.7, which is the result that explains the asymptotic
behavior of the process conditioned to nonextinction.

2. Preliminaries

In this section, we obtain some useful formulas for the generating function of (Tn,Mn+1), de-
noted for n ∈ Z+ by

ϕn(x, y) := E1
(
xTn−1yMn

)
, x, y ∈ [0,1],

where for notational convenience ϕ1(x, y) := ϕ(x, y). Observe that the generating function of
Mn is

fn(y) := ϕn(1, y), y ∈ [0,1], (2.1)

and as before we denote f1(y) =: f (y).
According with the classical theory of branching processes, the extinction probability of the

Galton–Watson process {Mn : n ∈ Z+}, that we denote by q , is the smallest root of f (y) = y,
which is less or equal than one depending on whether the mean of the reproduction law, m :=
E1(M1) is > 1 or ≤ 1, respectively. In order to avoid trivial cases, we assume throughout that

(H1) P(M1 = 1) > 0,
(H2) P(M1 = 0) + P(M1 = 1) < 1, and P(M1 = j) �= 1, for any j .

We also know that the n-step transition probabilities {Pn
(i,j) : i, j ∈ Z+} of the Galton–Watson

process {Mn : n ∈ Z+} satisfy

∞∑
j=0

Pn
(i,j)y

j = (
fn(y)

)i
, i ≥ 1. (2.2)

For a Galton–Watson process with neutral mutations, let g be the generating function of the
reproduction law of a typical individual, that is

g(x, y) := E
(
xξ(c)

yξ(m))
, x, y ∈ [0,1].

Proposition 1 of [3] ensures that the law of (T0,M1) can be obtained applying the Lagrange
inversion formula to the equation

ϕ(x, y) = xg
(
ϕ(x, y), y

)
, x, y ∈ [0,1]. (2.3)
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Thanks to this latter equality it is possible to deduce that T ≤ ∞ if E(ξ (c)) < 1 and E(ξ (+)) ≤ 1.
Similarly, we have that E(ξ (+)2) < ∞ if and only if E(M2

1 ) < ∞. This equality is also a key tool
to establish the following identity

Pa(T0 = k,M1 = l) = a

k
π∗k

k−a,l, k ≥ a ≥ 1 and l ≥ 0, (2.4)

where π∗k denotes the kth convolution of π , as defined in (1.9). Using the previous display,
we can write the hypothesis (H1) and (H2) in terms of the reproduction distribution of a typical
individual.

Moreover, letting P n
(i,j),(k,l) be the n-step transition probabilities of {(Tn,Mn+1) : n ∈ Z+}, for

this process we have a equality similar to (2.2), that is,

∞∑
k,l=0

P n
(i,j),(k,l)x

kyl = (
ϕn(x, y)

)j
, i, j ≥ 1. (2.5)

We get the latter equality by induction. Namely, we apply the Chapman–Kolmogorov equation
to express the (n + 1)-step transition probabilities in terms of the transitions in one step and use
(1.1).

A simple but key relation for our analysis is

ϕn(x, y) = fn−1
(
ϕ(x, y)

)
, x, y ∈ [0,1]. (2.6)

Due to (2.1), the proof of the latter identity is equivalent to establish the following equality

ϕn(x, y) = ϕn−1
(
1, ϕ(x, y)

)
, x, y ∈ [0,1], (2.7)

which follows from the standard calculations:

ϕn(x, y) = E1
(
E1

(
xTn−1yMn |Tn−2,Mn−1

))
=

∞∑
i,j=0

P1(Tn−2 = i,Mn−1 = j)

×
∞∑

k=j

∞∑
l=0

xkylP1(Tn−1 = k,Mn = l|Tn−2 = i,Mn−1 = j)

=
∞∑

i,j=0

P1(Tn−2 = i,Mn−1 = j)

∞∑
k=j

∞∑
l=0

xkylPj (T0 = k,M1 = l)

=
∞∑

i,j=0

P1(Tn−2 = i,Mn−1 = j)
(
ϕ(x, y)

)j

= ϕn−1
(
1, ϕ(x, y)

);
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where we used the Markov property of {(Tn,Mn+1) : n ∈ Z+}, Lemma 1.1 and the branching
property.

3. The process conditioned to nonextinction

This section is devoted to study the process {(Tn,Mn+1) : n ∈ Z+} conditioned to nonextinction.

3.1. Construction

Here our aim is to prove Theorem 1.3, which ensures the existence of the law of a Markovian
process that we understand as the chain {(Tn,Mn+1) : n ∈ Z+}, conditioned to nonextinction of
mutants in the population.

Proof of Theorem 1.3. An application of the Monotone Convergence theorem, along with an
elementary computation, shows that

d

ds
Ea

(
sMn

)∣∣∣
s=q

= Ea

(
Mnq

Mn−1).
Moreover, the following identity is deduced from the branching property of the Galton–Watson
process {Mn : n ∈ Z+} and the properties of its generating function

d

ds
Ea

(
sMn

)∣∣∣
s=q

= aqa−1f ′
n(q).

The latter and former identities imply in turn that

Ea

(
Mnq

Mn−1) = aqa−1f ′
n(q).

Then by the Markov property,

Ea

(
Mn+kq

Mn+k−1|Fn

) = Mnq
Mn−1f ′

k(q).

Combining the latter with the fact that f ′
k(q) = [f ′(q)]k (see [1], Lemma 3.3), we have that

Yn = Mnq
Mn−a

(f ′(q))n
, n ≥ 0,

is a martingale. Now from the theory of h-transforms (see Chapter 11 in [6]), there exists a
Markovian process, that we denote by {(T ↑

n ,M
↑
n+1) : n ∈ Z+} whose law satisfies

P↑
a

(
T

↑
0 = i0,M

↑
1 = j1, . . . , T

↑
n−1 = in−1,M

↑
n = jn

) := Pa(An)
jnq

jn−a

a(f ′(q))n
, (3.1)
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where for every n ∈ N

An = {T0 = i0,M1 = j1, . . . , Tn−1 = in−1,Mn = jn},
(3.2)

i0, j1, . . . , in−1, jn ∈N. �

3.2. Conditional laws

Here we will prove Theorem 1.4. The building block in this aim will be the generating function
of {(Tn,Mn+1) : n ∈ Z+}, hence some of the results given in Section 2 will be necessary.

Proof of Theorem 1.4. (i) Let An be an event of the form given in (3.2). It thus follows from
the Markov and branching properties of {(Tn,Mn+1) : n ∈ Z+} that

Pa(n + k < T < ∞) = Ea

(
1{Mn+k>0}qMn+k

)
,

where as before q = P1(0 < T < ∞). We also have that

Pa(An,n + k < T < ∞) = Ea

(
1AnEjn

(
1{Mk>0}qMk

))
.

Then using (2.2), we get

Pa(An|n + k < T < ∞) = Pa(An)

∑∞
j=1 Pk

(jn,j)q
j∑∞

j=1 Pn+k
(1,j)q

j
,

we recall that Pn
(i,j)

denotes the n-step transition probabilities of {Mn : n ∈ Z+}. Besides, Theo-
rem 7.4 of [1] establishes that the following limit holds

lim
k→∞

Pn+k
(i1,j)

Pk
(i2,j)

= i1i
−1
2

(
f ′(q)

)k
qi1−i2 .

Finally, thanks to the hypothesis (H2) we can use the previous identity to obtain

lim
k→∞Pa(An|n + k < T < ∞) = Pa(An)

jnq
jn−a

a(f ′(q))n
, a ∈N,

which finishes the first part of the proof.
(ii) We will first ensure the convergence of the generating function. Since {Mn > 0} on the

event {n < T < ∞}, we deduce that for all x, y ∈ [0,1]:
ϕ̂n(x, y) := E1

(
xTn−1yMn |n < T < ∞)

= ϕn(x, y) − ϕn(x,0)

1 − P(Mn = 0)
.
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From the identity (2.6) and the fact that fn(0) = P(Mn = 0), the previous expression can be
written as follows

ϕ̂n(x, y) = 1 − fn−1(0)

1 − fn(0)

(
fn−1(ϕ(x, y)) − fn−1(0)

1 − fn−1(0)
− fn−1(ϕ(x,0)) − fn−1(0)

1 − fn−1(0)

)
. (3.3)

We now take u = fn−1(0) and use m = f ′(1) to obtain

lim
n→∞

1 − fn−1(0)

1 − fn(0)
= lim

u→1

1 − u

1 − f (u)
= 1

m
.

Observe that the function

n �−→ 1 − fn−1(s)

1 − fn−1(0)
,

is decreasing for each s. Therefore, as n tends to infinity the expression

fn−1(s) − fn−1(0)

1 − fn−1(0)
= 1 − 1 − fn−1(s)

1 − fn−1(0)
,

has a limit, say 1 − f̂ (s). According to Theorem 1.8.1 in [1], we know that the generating func-
tion, f̂ (s), of the Yaglom distribution of {Mn : n ∈ Z+} given by the following limit

ρk = lim
n→∞P(Mn = k|n < T < ∞) for all k ∈N.

The above cited theorem also ensures that

1 − f̂
(
f (s)

) = m
(
1 − f̂ (s)

)
, s ∈ [0,1]. (3.4)

Putting all the pieces together in (3.3), we obtain

ϕ̂(x, y) := lim
n→∞ ϕ̂n(x, y) = f̂ (ϕ(x, y)) − f̂ (ϕ(x,0))

m
.

We now prove by induction (1.8). If n = 1, it is the just proved equality. Then suppose (1.8) holds
for n = k. In order to get the identity for n = k + 1 note that by the induction hypothesis

mk+1ϕ̂(x, y) = m
[
1 − f̂

(
ϕk(x,0)

)] − m
[
1 − f̂

(
ϕk(x, y)

)]
, x, y ∈ [0,1].

From the above, we deduce the claim using first (3.4) and then (2.6). �

Remark 3.1. In the previous proof, we established the existence of a Yaglom limit when m ≤ 1,
however as in the classical case similar arguments can be used to show existence of a Yaglom
limit in the supercritical case.
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3.3. Interpretation

Motivated by the interpretation of a Galton–Watson process conditioned to nonextinction given
in [12], our objective in the present subsection is to describe the chain {(T ↑

n ,M
↑
n+1) : n ∈ Z+}

in terms of immigration of mutants. We start calculating the generating function of the n-step
transition probabilities of this process.

Proposition 3.1. Letting Qn
(i,j),(k,l)

be the n-step transition probabilities of the process

{(
T ↑

n ,M
↑
n+1

) : n ∈ Z+
}
,

we have, for x, y ∈ [0,1]
∞∑

k,l=1

Qn
(i,j),(k,l)x

kyl = yq1−j

[f ′(q)]n
[
ϕn(x, qy)

]j−1 ∂

∂y
ϕ(x, qy)

n−1∏
i=1

f ′(ϕi(x, qy)
)
. (3.5)

Proof. Let us start by pointing out the following formula

∞∑
k,l=1

Qn
(i,j),(k,l)x

kyl = yq1−j

[f ′(q)]n
[
ϕ

j−1
n (x,u)

∂

∂u
ϕn(x,u)

]
u=qy

, x, y ≤ 1.

This is a consequence of the fact that for each n ∈ Z+ the generating function of (Tn,Mn+1)

is infinitely differentiable in (x, y) ∈ [0,1]2, the identity (2.5) and some elementary computa-
tion. The claimed formula is obtained by applying repeatedly (2.6) and the recursion fn(y) =
f (fn−1(y)). �

Taking x = 1 in (3.5) and recalling the fact that the transition probabilities of {(Tn,Mn+1) :
n ∈ Z+} depend only on the second coordinate, we can identify a Galton–Watson process with
immigration (see [11] for background).

Corollary 3.2. If {Mn : n ∈ Z+} is critical or subcritical, then {M↑
n − 1 : n ∈ Z+} is a Galton–

Watson process with immigration [f,
f ′
m

].

Note that {M↑
n : n ∈ Z+} is the Q-process associated to the Galton–Watson process {Mn : n ∈

Z+} (see for instance [1] or [12]). The following corollary is analogous to Proposition 1 in [3].

Corollary 3.3. If {Mn : n ∈ Z+} is critical or subcritical, then the generating function of
(T

↑
0 ,M

↑
1 ) is determined by the equation

E1
(
xT

↑
0 yM

↑
1
) = xy

m

∂

∂y
g
(
ϕ(x, y), y

)
, x, y ∈ [0,1].
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Moreover, the distribution of (T
↑

0 ,M
↑
1 ) is given by

P↑
a

(
T

↑
0 = k,M

↑
1 = l

) = l

mk
π∗k

k−a,l, k ≥ a ≥ 1 and l ≥ 0,

we recall that π∗k denotes the kth convolution of the law π , defined in (1.9).

Proof. Taking n = 1 in the equality (3.5),

E1
(
xT

↑
0 yM

↑
1
) = y

m

∂

∂y
ϕ(x, y).

Then the first identity is obtained using the identity (2.3). To get the second one, recall the
definition of P↑ given in (3.1) and (2.4). �

We can now give an interpretation to the process {(T ↑
n ,M

↑
n+1) : n ∈ Z+}, in terms of a tree

of alleles with immigration A↑ = {A↑
u : u ∈ U}. This tree will provide a description of the ge-

nealogical structure in a population conditioned to non extinction.
We start defining A↑

∅ = T
↑
0 that is, the total number of individuals without mutations into the

population, then according to a distribution with generating function f ′/m, a random number
of individuals of the same genetic type arrive. We enumerate the M

↑
1 allelic sub-populations of

the first type beget by T
↑
0 in decreasing order, with the convention that in the case of ties, sub-

populations of the same size are ranked uniformly at random. Using Corollary 3.2, we choose
uniformly at random one of the first type sub-families in the tree of alleles, removing it and
replace it by a population of size T

↑
0 which begets allelic subpopulation according to M

↑
1 , where

(T
↑
0 ,M

↑
1 ) is given by Corollary 3.3. We continue with the construction by iteration, A↑

uj is the
size of the j th sub-population allelic of type |u| + 1 which descend from the allelic sub-family
indexed by the vertex u. Then we choose one of the sub-families of type |u| + 1 to replace it by
one of size T

↑
0 , which begets allelic subpopulation according to M

↑
1 .

4. Asymptotic behavior: The α-stable case

Our goal in this section is to prove Theorem 1.6. For that end, until further notice we will consider
a sequence of Galton–Watson processes {Z(+n)

k : k ∈ Z+} such that the reproduction law π(+) is
critical with heavy tails; the mutations appear in the population according to (1.10); and the
mutation rate, together with the ancestors behavior is given by (1.21).

4.1. Approximations for the reproduction law

We start by describing the normalizing sequence appearing in Theorem 1.6.
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Lemma 4.1. If the condition (1.19) holds, then there exists a sequence {r(n) : n ≥ 0} that is
regularly varying at infinity with index α such that

r(n)π+(ndy) −−−→
n→∞ cα

dy

y1+α
,

in the sense of vague convergence on (0,∞), where cα = 1/�(3 − α). In particular,

exp

{
−t

∫
(0,∞)

(
1 − e−λy − λy

)
r(n)π+(ndy)

}
−−−→
n→∞ e−tλα

.

The proof is an elementary application of standard results from the theory of Regular Variation
(see, e.g., [4] for background). We include a proof in Appendix A for sake of completeness.

In order to link the asymptotic behaviour of the reproduction law of a typical individual with
that of the joint distribution of clones and mutants, we first link their Laplace transform. Al-
though in the present setting we use some ideas of the standard Tauberian–Abelian theorem, we
remark that it is not straightforward application of this theorem because we consider sequences
of measures indexed by the positive integers changing, unlike to the standard case, where only
the normalizing constants change.

Lemma 4.2. For every positive integer n, let φn be the Laplace transform of ξ (n) = (ξ (cn), ξ (mn))

under the measure Pp(n)

1 . Assume that {λ(n) : n ∈ Z+} is a positive sequence such that λ(n) → 0,
as n → ∞. Then, as n → ∞

φn

(
λ(n), θ

)
∼ φ+((

1 − p(n)
)(

1 − e−λ(n)
) + p(n)

(
1 − e−θ

))
, ∀θ ≥ 0, (4.1)

where φ+ is the Laplace transform of ξ (+). In particular φm
n , respectively φc

n, the Laplace trans-
form of ξ (mn), respectively ξ (cn), satisfies

φm
n (θ) ∼ φ+(

p(n)
(
1 − e−θ

))
, ∀θ ≥ 0, (4.2)

φc
n

(
λ(n)

)
∼ φ+((

1 − p(n)
)(

1 − e−λ(n)
))

as n → ∞. (4.3)

Proof. According to (1.10), conditionally to ξ (+) = k the distribution of ξ (m) is Binomial with
parameter (k,p). This fact implies the following equality in law

(
ξ (c), ξ (m)

) L=
ξ (+)∑
i=1

(1{Ui>p},1{Ui≤p}), (4.4)

where {Ui : i ∈ N} are independent random variables with common distribution that of an uni-
form random variable in (0,1). Therefore,

φn

(
λ(n), θ

) =
∞∑

k=0

P
p(n)

1

(
ξ (+) = k

)[(
1 − p(n)

)
e−λ(n) + p(n)e−θ

]k
= φ+(− log

(
1 − (

1 − (
1 − p(n)

)
e−λ(n) − p(n)e−θ

)))
.



On branching process with rare neutral mutation 1591

We conclude the proof using (1.11) and the elementary asymptotic estimate

log(1 − y)

y
−−−→
y→0

−1. (4.5)

�

In the same way, it is possible to establish the following estimate.

Corollary 4.3. For every positive integer n, let ψn be the characteristic function of ξ (n) =
(ξ (cn), ξ (mn)) under the measure P

p(n)

1 . Then

ψn

(
λ(n), θ

)
∼ φ+((

1 − p(n)
)(

1 − eiλ(n)
) + p(n)

(
1 − eiθ )),

(4.6)
as λ(n) −−−→

n→∞ 0,∀θ ≥ 0.

In particular ψm
n , respectively ψc

n , the characteristic function of ξ (mn), respectively of ξ (cn),
satisfies

ψm
n (θ) ∼ φ+(

p(n)
(
1 − eiθ

))
,

ψc
n

(
λ(n)

)
∼ φ+((

1 − p(n)
)(

1 − eiλ(n)
))

,

as n → ∞, λ(n) → 0 and for all θ ≥ 0.

Proof. Similarly to previous lemma, using (4.4) we have

ψn

(
λ(n), θ

) =
∞∑

k=0

P
p(n)

1

(
ξ (+) = k

)[(
1 − p(n)

)
eiλ(n) + p(n)eiθ ]k

=
∞∑

k=0

P
p(n)

1

(
ξ (+) = k

)
exp

{
k log

(
1 − ((

1 − p(n)
)(

1 − eiλ(n)
) − p(n)

(
1 − eiθ )))}.

To conclude, we apply the asymptotic estimate (4.5). �

We can now use the results above to give an estimate for the reproduction measure.

Proposition 4.4. For every positive integer n, let π(cn), π(mn) be the reproduction laws of ξ (cn)

and ξ (mn), respectively. Assume that {y(n) : n ≥ 0} is any sequence such that y(n) → ∞ as
n → ∞. In the regime (1.19), the asymptotic behavior of the tail distribution of ξ (·) is given by

π̄ (·)(y(n)
)
∼ cαπ̄+(

y(n)/E
(
ξ (·))) as n → ∞, (4.7)

where (·) = cn,mn and cα = 1/�(3 − α).

The proof of this proposition is deferred to the Appendix B because it use some elements of
the proof of Lemma 4.1, which is included in Appendix A.
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4.2. Proof of Theorem 1.6

The aim of this section is to prove Theorem 1.6. For that end, we required two auxiliaries results
that we will next state.

Let n ∈ N fixed. According with the construction of alleles trees, given a vertex u, at level
k ≥ 1, in {Au : u ∈ U}, a vertex uj represents the size of the j th allelic sub-populations of
type k + 1 begot by u, and this holds for every j ∈ N. Thus, the labels of the vertices at level
k + 1 determine the variable Tk+1. Moreover, for all k ∈N, the total number of vertices at level k

correspond to Mk . Hence, a first step to establish the convergence in Theorem 1.6 will be describe
the scaling limit of the process {(Tk,Mk+1) : k ∈ Z+}, towards a CSBP {Z1/α

k : k ∈ Z+}. That is
the purpose of the Proposition 4.5 below, whose proof its deferred to Section 4.3.

Proposition 4.5. Assuming (1.19) and (1.21), we have

L
({(

Tk

r(n)
,

Mk+1

r(n)p(n)

)
: k ∈ Z+

}
,P

p(n)

a(n)

)
=⇒ {(

Z
1/α

k+1,Z
1/α

k+1

) : k ∈ Z+
}
, (4.8)

where {Z1/α
k : k ∈ Z+} is a CSBP process with reproduction measure να given in Theorem 1.6.

To obtain from this result the convergence claimed in Theorem 1.6, we will need the
Lemma 4.6 below, whose proof is given in Section 4.4.

Lemma 4.6. Let b(n) be a sequence of integers such that b(n) ∼ br(n)p(n) for some b > 0.

(i) For every n ∈ N, let {χ(n)
j : 1 ≤ j ≤ b(n)} be a sequence of independent identically dis-

tributed random variables with distribution (
T0

r(n)
, M1

r(n)p(n)
). Defining for every n ∈ N,

γ
(n)
j := δ

χ
(n)
j

and γn = ∑∞
j=1 γ

(n)
j , the following weak convergence of measures holds

γn −−−→
n→∞ γ, (4.9)

where γ is a Poisson point measure with intesity bη, with η the image of the measure να

(given in Theorem 1.6) by the action of the map x �→ (x, x).
(ii) We have the following convergence, under the measure P

p(n)

1(
T0

r(n)
,

M1

r(n)p(n)

)(b(n)↓)

=⇒ (a1,a2, . . .), (4.10)

where for all k ∈ N, ak = (ak, ak) with {ak : k ∈ N}, the atoms of a Poisson random mea-
sure on (0,∞) with intensity bνα ranked in decreasing order; the measure να is given in
Theorem 1.6.

Taking for granted the above results, we can provide a proof to Theorem 1.6.
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4.2.1. Proof of Theorem 1.6

We will establish

L
(((( Au

r(n)
,

du

r(n)p(n)

)
: |u| ≤ k

)
: k ∈ Z+

)
,P

p(n)

a(n)

)
=⇒ (((

Z1/α
u ,Z1/α

u

) : |u| ≤ k
) : k ∈ Z+

)
.

(4.11)

Actually by the monotone class theorem, it is enough to show for nonnegative measurable con-
tinuous functions f1, . . . , fk

E
p(n)

a(n)

[
k∏

i=1

fi

((
r(n)

)−1Au,
(
r(n)p(n)

)−1
du : |u| ≤ i

)]

−−−→
n→∞ EQx

[
k∏

i=1

fi

(
Z1/α

u ,Z1/α
u : |u| ≤ i

)]
,

where Qx is the law of a tree-indexed CSBP started with an initial population of size x con-
structed from the subordinator {τα

t : t ≥ 0}. This will be done by induction on k. The case k = 1
is given in the convergence (4.10). Assuming the result holds fork, we will prove the convergence
for k + 1. Conditioning with respect to Gk = σ(A(n)

u , d
(n)
u : |u| ≤ k) and using Lemma 1.2, we

have

E
p(n)

a(n)

[
E

p(n)

a(n)

(
k+1∏
i=1

fi

((
r(n)

)−1Au,
(
r(n)p(n)

)−1
du : |u| = i

)|Gk

)]

= E
p(n)

a(n)

[
k∏

i=1

fi

((
r(n)

)−1Au,
(
r(n)p(n)

)−1
du : |u| ≤ i

)

×E
p(n)

1

(
fk+1

(((
r(n)

)−1
T0,

(
r(n)p(n)

)−1
M1

)du↓ : |u| = k
))]

.

Besides, by the induction hypothesis du ∼ r(n)p(n)Z1/α
u with |u| = k, therefore when n → ∞

in the previous equality we obtain

EQx

[
k∏

i=1

fi

(
Z1/α

u ,Z1/α
u : |u| ≤ i

)
E1

(
fk+1

((
a′

1,a′
2, . . .

)))]
,

where a′
k = (a′

k, a
′
k) are the atoms of a Poisson random measure on (0,∞) with intensity

bZ1/α
u να , repeated according to their multiplicity and ranked in the decreasing order. Due to

the definition of a tree-indexed CSBP this concludes the proof.
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4.3. Proof of Proposition 4.5

Observe that is enough to show the convergence of the Laplace transforms associated with the fi-
nite dimensional distributions of each processes. Since {Z1/α

k : k ∈ Z+} is a CSBP with transition
probabilities characterized by the subordinator τα , we use (1.16) to get its Laplace transform.
Therefore we will establish the following convergence:

E
p(n)

a(n)

(
k∏

i=1

e
− si−1

r(n)
Ti−1− ti

r(n)p(n)
Mi

)
−−−→
n→∞ exp

{−xκ
(
lk−1(s0 + t1)

)}
, (4.12)

for all si , ti ≥ 0, i = 1,2, . . . , k. According to (1.15), κ denotes the cumulant of the subordinator
that characterizes the transition probabilities. In this case, we have the 1/α-stable subordinator
τα with the Lévy measure να . The function l is given in (1.17).

We will prove the converge (4.12) by induction on k. The aim of the following lemma is to
ensure the above claimed result holds for k = 0.

Lemma 4.7. For α ∈ (1,2), let τα be an 1/α-stable subordinator with no drift and Lévy measure
να . Assuming (1.19) and (1.21)

(i) the following convergences hold:

L
((

T0

r(n)
,

M1

r(n)p(n)

)
,P

p(n)

a(n)

)
=⇒ (

τα
x , τα

x

); (4.13)

(ii) under the measure P
p(n)

1 , the behavior of the joint tail distribution of T0 and M1 is given
by

lim
n→∞ r(n)p(n)P

p(n)

1

(
T0

r(n)
> s,

M1

r(n)p(n)
> t

)
= ν̄α(s ∧ t), (4.14)

where ν̄α denotes the tail function of the Lévy measure να .

A key tool to establish Lemma 4.7 is the following lemma.

Lemma 4.8. In the regime (1.19) and (1.21), the normalized random walk defined by

S̄(n)
�r(n)t� = (

a(n)/r(n)p(n),0
) +

�r(n)t�∑
i=1

((
ξ

(cn)
i − 1

)
/n, ξ

(mn)
i /r(n)p(n)

)
, t ≥ 0,

converges weakly {
S̄(n)

�r(n)t� : t ≥ 0
} =⇒ {

(x + Xt, t) : t ≥ 0
}
,

where {Xt : t ≥ 0} is an α-stable process with no-negative jumps with and characteristic exponent
cα|λ|α .
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Given that this result is similar to other existing results in the literature we prefer to postpone
its proof to the Appendix C and focus in the proof of Lemma 4.7.

Proof of Lemma 4.7(i). From Lemma 3 of [3], we know that the first passage time below 0 for
the centered random walk S(n)

1,k = a(n) + ∑k
i=1(ξ

(cn)
k − 1) has the same distribution as T0. Let

(ς(n)(0),�(n)(0)) be the random variables

ς(n)(0) = inf
{
k ∈ Z+ : S(n)

1,k = 0
}

and �(n)(0) :=
ς(n)(0)∑
i=1

ξ
(mn)
i .

According to Lemma 3 of [3], we have that (ς(n)(0),�(n)(0)) has the same distribution as
(T0,M1) under Pp(n)

a(n) . On the other hand, we also have the following two identities

ς(n)(0)

r(n)
= 1

r(n)
inf

{
k ∈ Z+ : S(n)

1,k = 0
} = inf

{
t ≥ 0 : S̄(n)

1,�r(n)t� = 0
}

and (
1

r(n)
ς(n)(0), S̄(n)

ς(n)(0)

)
=

(
1

r(n)
ς(n)(0),

(
S̄(n)

1,�ς(n)(0)�,
1

r(n)p(n)
�(n)(0)

))
. (4.15)

From the Lemma 4.8, we have the weak convergence{
S̄(n)

�r(n)t� : t ≥ 0
} =⇒ {

(x + Xt, t) : t ≥ 0
}
,

and in fact the convergence holds in the sense of Skorohod’s topology, see Chapter IV of [17].
Since X is an α-stable process, Theorem 1 in Chapter VII of [2] ensures that the first passage
time below −x for the process X

τα
x = inf{t ≥ 0 : Xt ≤ −x}, x ≥ 0.

is a stable subordinator of parameter 1/α. We will conclude from these facts that the claimed
convergence holds as soon as(

1

r(n)
ς(n)(0), S̄(n)

ς(n)(0)

)
=⇒ (

τα
x , (x + Xt, t)|t=τα

x

)
. (4.16)

But according to Theorem 13.6.5 of [17] about weak convergence of first passage times and
undershoots and overshoots, when there is convergence in Skorohod’s topology, we have(

1

r(n)
ς(n)(0), S̄(n)

1,ς(n)(0)

)
=⇒ (

τα
x ,Xτα

x
+ x

)
.

Moreover, since we have the joint convergence{(
S̄(n)

1,�ς(n)(0)t�, S̄(n)

2,�ς(n)(0)t�
) : t ≥ 0

} =⇒ {
(x + Xt, t) : t ≥ 0

}
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in the sense of Skorohod’s topology, and the second coordinate is a determinist linear function, it
is an elementary exercise to extend the above mentioned result of [17] to get that the convergence
in (4.16) holds. �

Proof of Lemma 4.7(ii). We will apply the same techniques used in the proof of statement (ii)
in Lemma 4 of [3]. Let us start observing that for every x, y ∈R

e−sx−ty = st

∫ ∞

0

∫ ∞

0
e−sx−ty1{x<u,y<v} dudv, s, t ≥ 0.

Thus Fubini’s theorem implies that for any random vector (X,Y ) the following identity holds.

1 −E
(
e−sX−tY

) = st

∫ ∞

0

∫ ∞

0
e−sx−tyP(X ≥ u or Y ≥ v)dudv, s, t ≥ 0.

In particular,

1 −E
p(n)

1

(
e
− s

r(n)
T0− t

r(n)p(n)
M1

) = st

∫ ∞

0

∫ ∞

0
e−su−tvμ̄n

(
r(n)u, r(n)p(n)v

)
dudv, s, t ≥ 0,

where μ̄n(x, y) := P
p(n)

1 (T0 > x or M1 > y). Hence by the branching property,

E
p(n)

a(n)

(
e
− s

r(n)
T0− t

r(n)p(n)
M1

)
(4.17)

=
(

1 − st

∫ ∞

0

∫ ∞

0
e−su−tvμ̄n

(
r(n)u, r(n)p(n)v

)
dudv

)a(n)

.

According to the first part of this lemma together with (1.21), the previous display converges as
n → ∞ towards

E
(
e−(s+t)τα

x
) = exp

(
−x

∫ ∞

0

(
1 − e−(s+t)y

)
να(dy)

)
.

Taking logarithms in the last two identities we obtain that

lim
n→∞ sta(n)

∫ ∞

0

∫ ∞

0
e−su−tvμ̄n

(
r(n)u, r(n)p(n)v

)
dudv = x

∫ ∞

0

(
1 − e−(s+t)y

)
να(dy).

Hence, it only remains to see that the line above is equal to

xst

∫ ∞

0

∫ ∞

0
e−sy−tzν̄α(y ∧ z) dy dz.

For that end, we observe the equality∫ ∞

0

∫ ∞

0
e−sy−tzν̄α(y ∧ z) dy dz =

∫ ∞

0
να(du)

∫ ∞

0

∫ ∞

0
e−sy−tz1{u>y or u>z} dy dz,

and we obtain the claimed identity by uniqueness of the Laplace transform. �
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Continuing with the proof of Proposition 4.5, we assume that (4.12) holds for n = k and prove
the convergence for n = k +1. To this end, we use the Markov property of {(Tn,Mn+1) : n ∈ Z+}
and the fact that, conditionally to Mn = j , the pair (Tn,Mn+1) has the same distribution as
(T0,M1) under Pj , to obtain

E
p(n)

a(n)

(
k+1∏
i=1

e
− si−1

r(n)
Ti−1− ti

r(n)p(n)
Mi

)

= E
p(n)

a(n)

(
e
− s0

r(n)
T0− t1

r(n)p(n)
M1 · · ·

× e
− sk−1

r(n)
Tk−1−(

tk
r(n)p(n)

− 1
r(n)p(n)

logEp(n)

r(n)p(n)
(e

− sk
r(n)

T0− tk+1
r(n)p(n)

M1 ))Mk
)
.

Due to the assumption r(n)p(n) ∼ a(n)x in hypothesis (1.21), we obtain as a consequence of
Lemma 4.7(i), that

E
p(n)

a(n)

(
k+1∏
i=1

e
− si−1

r(n)
Ti−1− ti

r(n)p(n)
Mi

)

∼E
p(n)

a(n)

(
e
− s0

r(n)
T0− t1

r(n)p(n)
M1 · · · e− sk−1

r(n)
Tk−1− 1

r(n)p(n)
(tk+κ(sk+tk+1))Mk

)
.

Then using the induction hypothesis with

s′
i−1 + t ′i =

{
rlsi−1 + ti , i < k,

l(si−1 + ti ), i = k,
(4.18)

we get

E
p(n)

a(n)

(
e
− s0

r(n)
T0− t1

r(n)p(n)
M1 · · · e− sk−1

r(n)
Tk−1− 1

r(n)p(n)
(tk+κ(sk+tk+1))Mk

)
−−−→
n→∞ exp

{−xκ
(
lk−1

(
s′

0 + t ′1
))}

.

This concludes the proof because of the recursive definition of li given in (1.17) together with
the choice of s′

i−1 + t ′i ,

κ
(
lk−2

(
s′

1 + t ′2
)) = κ

(
lk−1(s1 + t2)

)
,

as consequence of lk−1(s
′
0 + ct ′1) = lk(s0 + t1).

4.4. Proof of Lemma 4.6

By the construction {γ (n)
j : 1 ≤ j ≤ b(n)} is a sequence of independent random variables. Be-

sides, the convergence (4.14) in Lemma 4.7 implies γ
(n)
j

P→ 0 as n → ∞, uniformly in j . Then

sup
j

E
(∣∣γ (n)

j ∧ 1
∣∣) → 0.
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Hence, according with the definition given in Chapter 4 of [10], we have that {γ (n)
j : 1 ≤ j ≤

b(n)} is a null array. Thus, we will get the convergence (4.9) as an application of Theorem 16.18
of [10], once we verify the following conditions:

(a)
∑

j P(γ
(n)
j (B) > 0) → η(B), as n → ∞, for all B ∈ B̂, where η is as defined in the state-

ment of the lemma,
(b)

∑
j P(γ

(n)
j (B) > 1) → 0, as n → ∞, for all B ∈ B.

Here B is the Borel σ -algebra of [0,∞)2, B̂ =: {B ∈ B : γ (∂B) = 0 c.s.}, with γ the measure
defined in the statement of this lemma and the symbol ∂ denotes the boundary of B . Observe that
the class of sets B = ((b,∞)×R+)∪ (R+ × (b′,∞)) is a π -system which generates a λ-system
that coincides with B. Then, by Dynkin’s theorem it is enough to establish the conditions above
for sets of the latter form B . In this setting, the condition (b) holds because γ

(n)
j (·) takes only the

values 0 or 1, for any j and n. To establish (a), observe the following identities

b(n)∑
j=1

P
(
γ

(n)
j (B) > 0

) =
b(n)∑
j=1

P
(
γ

(n)
j (B) = 1

)

=
b(n)∑
j=1

μ̄n

((
r(n)

)−1
s,

(
r(n)p(n)

)−1
t
)

= b(n)μ̄n

((
r(n)

)−1
s,

(
r(n)p(n)

)−1
t
)
,

here we recall the identity μ̄n(x, y) = P
p(n)

1 (T0 > x or M1 > y). Assuming that b(n) ∼

br(n)p(n) for some b > 0, from Lemma 4.7 and the last equality we have

b(n)∑
j=1

P
(
γ

(n)
j (B) > 0

) −−−→
n→∞ bν̄α(s ∧ t).

To get the first convergence in the lemma, it remains to observe that the equality bν̄α(s ∧ t) =
η(B) holds. But this follows from the equalities,∫

B

η(dx, dy) = b

∫
(x,x)∈B

να(dx) = b

∫
(s∧t,∞)

να(dx).

We will now prove the convergence (ii). For i = 1,2, χ
(n)
ij denotes the ith coordinate of the

sequence χ
(n)
j that appears in the statement (i). Assuming that χ

(n)
i := (χ

(n)
1i , χ

(n)
2i ) ≤ χ

(n)
j :=

(χ
(n)
1j , χ

(n)
2j ) if and only if χ

(n)
1i ≤ χ

(n)
1j or χ

(n)
2j ≤ χ

(n)
2j , let us define j1 as the index where the

maximum of the sequence {χ(n)
i : 1 ≤ i ≤ b(n)} is reached.

χ
(n)
j1

= max
1≤i≤b(n)

χi .
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Similarly for k = 2, . . . , b(n), let jk be the index of the k-order statistic

χ
(n)
jk

= max
i∈Jk

χi,

where Jk = {1, . . . , b(n)} \ {j1, . . . , jk−1}. Then observe that

P
(
χ

(n)
j1

≥ c1, χ
(n)
j2

≥ c2, . . . , χ
(n)
jk

≥ ck

) = P
(
γn(C1) ≥ 1, γn(C2) ≥ 2, . . . , γn(Ck) ≥ k

)
,

if ci = (ci, ci), Ci = (0,1) × (0,1) \ (0, ci) × (0, ci) and c1 > · · · > ck . Taking now the limit as
n → ∞ in the equality below and using the convergence in (4.14), we have

P(χj1 ≥ c1, χj2 ≥ c2, . . . , χjk
≥ ck) −−−→

n→∞ P
(
γ (C1) ≥ 1, γ (C2) ≥ 2, . . . , γ (Ck) ≥ k

)
.

This implies the desired convergence because

P
(
γ (C1) ≥ 1, . . . , γ (Ck) ≥ k

) = P(aj1 ≥ c1,aj2 ≥ c2, . . . ,ajk
≥ ck),

where ak = (ak, ak) with {ak : k ∈ N}, the atoms of a Poisson random measure on (0,∞) with
intensity bνα ranked in decreasing order; the measure να is given in Theorem 1.6. As before we
used the indices jk to rank in decreasing order the sequence ak .

5. Asymptotic behavior: The conditioned to nonextinction case

This section is devoted to establish Theorem 1.7. Following the same strategy of Proposition 4.5,
we shall establish by induction the convergence of Laplace transforms of the finite dimensional
distributions associated with the processes involved. With this aim, we first deduce the Laplace
transform of the finite dimensional distributions of a CSBP with immigration {ZI

n : n ∈ N}, with
mechanism (ϑ, ι). We recall that it is defined for every n ∈ N as follows

ZI
n+1 = τn

(
ZI

n

) + In,

where {In : n ∈ N} is a sequence of nonnegative random variables with common probability
measure ω, which determine the distribution of individual immigrants arriving in the population.
Let us denote its Laplace transform of ω by ι, i.e.

ι(λ) =
∫ ∞

0
e−λxω(dx), λ ≥ 0. (5.1)

Let {T (n)(t) : t ≥ 0}n≥0 be a sequence of independent subordinators (without drift) and also
independents of In, with the same distribution and Laplace transform given in (1.15). Thereby

E
(
e−λT (n)(ZI

n)|ZI
n

) = e−ZI
nκ(λ).
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This previous equality together with the Markov property imply that

Ex

(
e−s1Z

I
1 −···−skZ

I
k
) =

k−1∏
i=0

ι
(
li (sk−i )

)
e−xκ(lk−1(s1)) for all si ≥ 0, i = 1,2, . . . , k;

where the functions l·(sk−·) are defined in (1.17). Thus, the proof of statement (i) of Theorem 1.7
require to establish that for all si , ti ≥ 0, i = 1,2, . . . , k, the convergence below holds

E
p(n)↑
an

(
k∏

i=1

e
− si−1

n2 Ti−1− ti
n
Mi

)
−−−→
n→∞ exp

{−xκ
(
lk−1(s0 +cϑ t1)

)} k−1∏
i=0

ι
(
lk−i (si−1 + c̃ϑ ti)

)
, (5.2)

where κ and l are respectively defined in (1.15) and (1.17), taking in particular ϑ = ν given in
(1.13). To obtain (ii) of Theorem 1.7, the previous convergence is proved with ϑ = να defined in
(1.22). The following lemma establishes the above convergence in the case k = 1. In its proof we
use the reference [3] to justify the statement corresponding to ϑ = ν and previous results here
obtained to establish the case where ϑ = να .

Lemma 5.1. If (1.11) holds, then we have the following convergence

L
((

b1(n)T0, b2(n)M1
)
,P

p(n)↑
a(n)

) =⇒ (τ, cϑτ),

where τ is a random variable with Laplace transform e−κ(s)ι(s), where κ(s), ι(s) are given in
(1.15) and (5.1), according to

(i) if the reproduction law has finite variance σ 2, ϑ = c−1ν, where ν is the measure in (1.13).
Moreover, b1(n) = n−2, b2(n) = n−1 and cϑ = c;

(ii) otherwise, under the assumptions (1.19) and (1.21), b1(n) = (r(n))−1, b2(n) =
(r(n)p(n))−1, ϑ = να is given by (1.22) and cϑ = 1.

Proof. We will only prove the claim in the setting in (i). The proof in the other case is fully ana-
logue. To simplify the notation, we just write b1 and b2. We prove the convergence of Laplace
transform (b1T0, b2M1) under the measure P

p(n)↑
a(n) . First, recalling the definition of the condi-

tional measure given in (3.1), an elementary calculation using the branching property shows

E
p(n)↑
a(n)

(
e−sT0−tM1

) = E
p(n)

a(n)−1

(
e−sT0−tM1

)
E

p(n)

1

(
e−sT0−tM1M1

)
. (5.3)

Thanks to Lemma 4 of [3] and Lemma 4.7.

E
p(n)

a(n)

(
exp(−sb1T0 − tb2M1)

) −−−→
n→∞ exp

(
−x

∫ ∞

0

(
1 − e−(s+cϑ t)y

)
c−1
ϑ ϑ(dy)

)
, (5.4)

so it remains to calculate the limit of the second factor in (5.3). Using again [3] together with the
equality (4.17), we have

E
p(n)

1

(
exp(−sb1T0 − tb2M1)

) = 1 − st

∫ ∞

0

∫ ∞

0
e−sx−ty μ̄n

(
b−1

1 x, b−1
2 y

)
dx dy,
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where as before μ̄n(x, y) := P
p(n)

1 (T0 > x or M1 > y). Due to Lemma 4(ii) in [3] and
Lemma 4.7(ii) the latter implies

E
p(n)

1

(
exp(−sb1T0 − tb2M1)M1

) −−−→
n→∞ s

∫ ∞

0

∫ ∞

0
e−sx−ty ϑ̄

(
x ∧ y

cϑ

)
dx dy

− st

∫ ∞

0

∫ ∞

0
ye−sx−ty ϑ̄

(
x ∧ y

cϑ

)
dx dy.

Computing the integrals, we get

E
p(n)

1

(
exp(−sb1T0 − tb2M1)M1

) −−−→
n→∞

∫ ∞

0
e−(s+cϑ t)zzϑ(dz). (5.5)

This finishes the proof. �

We can now continue with the proof of Theorem 1.7. We assume that (5.2) holds for k and
verify it also holds for k + 1. Let Fk = σ((Mj−1, Tj ), j ≤ k) and (T ′

0,M
′
1) be an independent

copy of (T0,M1). Recalling the definition of the measure P
↑
a in Theorem 1.3 we have for any

a ∈N and p > 0 that,

E
p↑
a

(
e−λ0T0−θ1M1 · · · e−λkTk−θk+1Mk+1

)
= E

p
a

(
e−λ0T0−θ1M1 · · · e−λk−1Tk−1−θkMk

1

a
E

p
Mk

(
e−λkT

′
0−θk+1M

′
1M ′

1

))
.

Then applying the identity (5.3) we get

E
p↑
a

(
e−λ0T0−θ1M1 · · · e−λkTk−θk+1Mk+1

)
= E

p
a

(
e−λ0T0−θ1M1 · · · e−λk−1Tk−1−θkMk

Mk

a

(
E

p

1

(
e−λkT

′
0−θk+1M

′
1
))Mk−1

×E
p

1

(
e−λkT

′
0−θk+1M

′
1M ′

1

))
.

Using the Markov property of {(Tn,Mn+1) : n ∈ Z+} and writing the terms suitably, we get

E
p↑
a

(
e−λ0T0−θ1M1 · · · e−λkTk−θk+1Mk+1

)
= e− 1

n
logEp

n (e
−λkT ′

0−θk+1M ′
1 )E

p

1

(
e−λkT

′
0−θk+1M

′
1M ′

1

)
×E

p
a

(
e−λ0T0−θ1M1 · · · e−λk−1Tk−1e

−(θk−b2 logEp(n)

b
−1
2

(e
−λkT ′

0−θk+1M ′
1 ))Mk Mk

a

)
.
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In the previous equality, we have (λi−1, θi) = (b1si−1, b2ti ), i = 1, . . . , k + 1 and (a,p) =
(a(n),p(n)), and the we use hypotheses (1.11) and (1.21) to obtain

E
p(n)↑
a(n)

(
k+1∏
i=1

e−b1si−1Ti−1−b2tiMi

)

∼ e
−b2 logEp(n)

b
−1
2

(e
−b1skT ′

0−b2 tk+1M ′
1 )

E
p(n)

1

(
e−b1skT

′
0−b2tk+1M

′
1M ′

1

)
×E

p(n)↑
a(n)

(
e−b1s0T0−b2t1M1 · · · e−b1sk−1Tk−1−b2(tk+κ(sk+ctk+1))Mk

)
.

Now we have to calculate the limit of each factor. The first one converges towards to 1 thanks
to (5.4). Besides, to get

E
p(n)

1

(
e−b1skT

′
0−b2tk+1M

′
1M ′

1

) −−−→
n→∞ ι

(
κ0(sk + cϑ tk+1)

)
, (5.6)

we use the convergence (5.5) together with the convention κ0(s) = s. As in Proposition 4.5, in
order to conclude we use the induction hypothesis with s′

i−1 + t ′i , 1 ≤ i ≤ k as defined in (4.18).

Appendix A: Proof of Lemma 4.1

A consequence of (1.19) is that the measure defined on [0,∞) by

μ(x) :=
∫ x

0
zπ̄+(z) dz, x ≥ 0. (A.1)

is such that x �→ μ(x) is RV 2−α∞ . Then from the Tauberian–Abelian theorem (see Theorem 1.7.1
in [4]), its Laplace transform Lμ ∈ RV

−(2−α)
0 and

μ(x) ∼
1

�(3 − α)
Lμ(1/x), x → ∞.

Observe that

λ2Lμ(λ) = E
(
1 − e−λξ+ − λξ+e−λξ+)

, λ → 0. (A.2)

As consequence of the definition of the measure μ and the approximations above,

π̄+(1/λ) ∼ cαE
(
1 − e−λξ+ − λξ+e−λξ+)

, λ → 0, (A.3)

where cα = 1/�(3 − α). Hence for all x > 0,

1

E(1 − e−λξ+ − λξ+e−λξ+
)
π̄+(x/λ) ∼

π̄+(x/λ)

cαπ̄+(1/λ)
−−−→
λ→0

cαx−α. (A.4)
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We set r(n) = (E[1 − e−ξ+/n − ξ+e−ξ+/n/n])−1 and define the measure on (0,∞), mn(dy) =
r(n)π̄+(ndy). The convergence in (A.4) implies

mn(x,∞) −−−→
n→∞

∫ ∞

x

cα

α

dy

y1+α
for all x > 0.

Therefore, for all 0 < x ≤ y ≤ ∞

mn(x, y] −−−→
n→∞

∫ y

x

cα

α

dz

z1+α
.

This implies that the measure on (0,∞) defined by mn(dy) = r(n)π̄+(ndy) converges vaguely
towards cα

dy

y1+α . We also have

∫
y21{y≤x}r(n)π+(ndy) −−−→

n→∞ cα

∫
y21{y≤x}

dy

y1+α
.

Using an argument of monote class to deduce the above convergence over intervals I ⊂ (0,∞).
Thus, we obtain the convergence of the Laplace transform of the measure μ. This complete the
proof because μ is regularly varying at infinity with indices 2 − α and its Laplace transform
satisfies the identity (A.2).

Appendix B: Proof of Proposition 4.4

We prove the statement for clones, the mutants case is similar. First, note that in the same way as
in the proof above,

μcn(x) =
∫ x

0
sπ̄cn(s) ds, x ≥ 0, (B.1)

is a measure on [0,∞) with Laplace transform Lμcn such that

λ2Lμcn(λ) = E
(
1 − e−λξ(cn) − λξ(cn)e−λξ(cn))

, λ ≥ 0.

We now replace λ by a sequence {λ(n) : n ≥ 0} such that λ(n) → 0 as n → ∞,

λ(n)2Lμcn

(
λ(n)

) = 1 − φc
n

(
λ(n)

) + λ(n)
(
φc

n

)′(
λ(n)

)
.

From (4.2) we have an estimate of the term φc
n. In order to estimate (φc

n)
′ we use the fact that

for every fixed n, conditionally to ξ (+) = k the distribution of ξ (cn) is Binomial with parameter
(k,1 − p(n)). Then we apply the same techniques as in Lemma 4.2 to get the following estimate(

φc
n

)′(
λ(n)

)
∼

(
1 − p(n)

)
e−λ(n)φ+′((1 − p(n)

)(
1 − e−λ(n)

))
, n → ∞.
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Putting both estimates together we infer:

λ(n)2Lμcn

(
λ(n)

)
∼ 1 − φ+((

1 − p(n)
)(

1 − e−λ(n)
))

+ (
1 − p(n)

)(
1 − e−λ(n)

)
φ+′

n

((
1 − p(n)

)(
1 − e−λ(n)

))
− (

1 − p(n)
)(

1 − e−λ(n) − λ(n)e−λ(n)
)
φ+′

n

((
1 − p(n)

)(
1 − e−λ(n)

))
,

as n → ∞. Furthermore,(
1 − p(n)

)(
1 − e−λ(n) − λ(n)e−λ(n)

)
φ+′

n

((
1 − p(n)

)(
1 − e−λ(n)

)) −−−→
n→∞ 0,

and from (A.2) we have

λ(n)2Lμ

(
λ(n)

) = 1 − φ+(
λ(n)

) + λ(n)φ+′(λ(n)
)
, n → ∞,

where Lμ is the Laplace transform of the measure μ defined in (A.1). From these last two dis-
plays, we obtain

λ(n)2Lμcn

(
λ(n)

)
∼

((
1 − p(n)

)(
1 − e−λ(n)

))2Lμ

((
1 − p(n)

)(
1 − e−λ(n)

)) + O
(
λ(n)2),

as n → ∞. Due to the estimate λ(n) ∼ 1 − e−λ(n) as n → ∞, the approximation of Lμ given in
(A.3) implies

cαλ(n)2Lμcn

(
λ(n)

)
∼ π̄+

(
1

λ(n)(1 − p(n))

)
+ O

(
λ(n)2), n → ∞. (B.2)

Hence, it is remains to prove

lim
n→∞

π̄ cn(1/λ(n))

(λ(n))2Lμcn(λ(n))
= cα. (B.3)

In this aim, define for every y ≥ 0, the following measure

mcn
λ(n)(0, y] := mcn

λ(n)(y) = μcn(y/λ(n))

Lμcn(λ(n))
, ∀y > 0.

Observe that ∫
[0,∞)

e−θsdy

(
μcn(y/λ(n))

Lμcn(λ(n))

)
= 1

Lμcn(λ(n))

∫
[0,∞)

e−θλ(n)yμcn(dy)

= Lμcn(θλ(n))

Lμcn(λ(n))
, ∀θ > 0.

From the previous display and the estimate in (B.2), we get

Lmcn
λ(n)

(θ) −−−→
n→∞ θ−(2−α), ∀θ > 0.
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Writing now θ−(2−α) in terms of the gamma function we have

θ−(2−α) = 1

�(2 − α)

∫ ∞

0
s(2−α)−1e−θs ds.

Since the convergence of the Laplace transform implies the weak convergence of measures (see
Theorem 13.1.2 in [7]), we have

mcn
λ(n)(y) −−−→

n→∞
1

�(2 − α)

∫ y

0
s(2−α)−1 ds = y2−α

�(3 − α)
. (B.4)

Moreover, by the definition of the measure μ(cn) we can obtain the following inequality for any
y < 1,(
1/λ(n)

)2
y(1−y)π̄cn

(
y/λ(n)

) ≤ μcn
(
1/λ(n)

)−μcn
(
y/λ(n)

) ≤ (
1/λ(n)

)2
(1−y)π̄cn

(
1/λ(n)

)
.

Due to (B.4) this implies

cα

1 − y2−α

1 − y
≤ lim inf

n→∞
π̄ cn(1/λ(n))

(λ(n))2Lμcn(λ(n))
≤ lim sup

n→∞
π̄ cn(1/λ(n))

(λ(n))2Lμcn(λ(n))
≤ cα

1 − y2−α

y(1 − y)
,

for all y < 1. To conclude, we make y ↑ 1.

Appendix C: Proof of Lemma 4.8

Before proving Lemma 4.8, we would like to present some basic aspect of functional conver-
gence of stochastic process, further details can be found in [8]. It is well known that the law of a
Lévy process {Xt : t ≥ 0} on Rd is determined by that of random variable X1, which is infinitely
divisible random variable, and according to the Lévy–Khintchine formula has characteristic ex-
ponent

�(u) = iu · b − 1

2
u · cuT +

∫ (
eiu·x − 1 − iu · h(x)

)
π(dx),

where b ∈ Rd , c is a d × d symmetric nonnegative matrix, π is a positive measure on Rd with
π({0}) = 0 and

∫
(1∧|x|2)π(dx) < ∞, h is a truncation function from Rd to Rd , that is, bounded

measurable satisfying

h(x) = o
(|x|), |x| → 0.

Hence an infinitely divisible distribution, and therefore a Lévy process, is uniquely characterized
by the triple (b, c,π). Another useful related quantity is a d × d symmetric nonnegative matrix,
called the modified second characteristic, and defined as follows

c̃ij = cij +
∫

hi(x)hj (x)π(dx), i, j = 1,2, . . . , d.
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According to Theorem VII.2.9 of [8], if {πn : n ∈ N} is a sequence of infinitely divisible distri-
butions on Rd . Then πn converges weakly to π if and only if

bn → b,

c̃n → c̃,

πn(g) → π(g) for all g ∈ C1
(
Rd

)
,

where C1(R
d) is a convergence-determining class for the weak convergence induced by all con-

tinuous bounded nonnegative functions Rd → R, vanishing at the origin and with limit at infinity.
We will assume furthermore that h is a continuous function and that it is the same function for
all the independent distributions considered here.

In a more general sense, a d-dimensional semimartingale W , has associated a characteristic
triplet (B,C, ν) consisting in:

− B = (Bi)i≤d a predictable process with components of finite variation over each interval
[0, t].

− C = (Cij )i,j≤d a continuous process, namely

Cij = 〈
Wi,c,Wj,c

〉
,

where Wc is the continuous martingale part of W .
− ν a predictable random measure on R+ ×Rd .

A second modified characteristic C̃ is also defined,

C̃
ij
t = C

ij
t + (

hihj
) ∗ νt −

∑
s≤t

(∫
hi(x)ν

({s} × dx
))(∫

hj (w)ν
({s} × dw

))
.

If W has no fixed times of discontinuity, in which case B is continuous, and |h(x)|2 ∗ νt < ∞, it
reduces to

C̃
ij
t = C

ij
t + (

hihj
) ∗ νt .

According to Theorem VII.3.4 of [8], the necessary and sufficient conditions to assure the func-
tional convergence of a sequence of semimartingales Wn towards W are given also in terms of
their characteristics:

sup
s≤t

∣∣Bn
s − Bs

∣∣ → 0 for all t ≥ 0,

C̃n → C̃ for all t ∈ D, (C.1)

g ∗ νn
t → g ∗ νt for all t ∈ D,g ∈ C1

(
Rd

)
,

where D is a dense subset of R+.
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We now turn to prove the convergence claimed in Proposition 4.8. In order to apply the Theo-
rem VII.3.4 of [8], first we will prove the convergence of the characteristics of the process

S̃n
Nr(n)t

− (
r(n)t/n,0

)
, t ≥ 0, (C.2)

where

S̃n
k =

k∑
i=1

(
ξ

(cn)
i /n, ξ

(mn)
i /r(n)p(n)

)
, k ∈N,

and {Nt : t ≥ 0} is a Poisson process with parameter one, independent of the sequence

ξ (n) = {(
ξ

(cn)
k , ξ

(mn)
k

) : k ∈ Z+
}
.

The following lemma establishes the previous statement. We will use this result as a device to
study the characteristics of S̄n

�r(n)t�, which are closely related to those of S̃n
Nr(n)t

− (r(n)t/n,0).

Lemma C.1. The process defined in (C.2) is a semimartingale with characteristics relatives to
a continuous truncation function h given by

bn
t = r(n)tE

[
h
(
b(n)ξ (n)

)] − (
r(n)t/n,0

)
,

c
n,ij
t = 0, c̃

n,ij
t = r(n)tE

[
hi

(
b(n)ξ (n)

)
hj

(
b(n)ξ (n)

)]
, i, j = 1,2, (C.3)

Fn
t (dx) = r(n)tπ(dx),

where b(n)ξ (n) = (ξ (cn)/n, ξ (mn)/r(n)p(n)), π(n)(dx) = P(ξ (cn) ∈ dx1, ξ
(mn) ∈ dx2). More-

over, in the regime determined by (1.19) and (1.21), we have the following weak convergence
in the sense of Skorohod topology({

S̃n
Nr(n)t

− (
r(n)t/n,0

) : t ≥ 0
}
,P

p(n)

a(n)

) =⇒ {
(Xt , t) : t ≥ 0

}
, (C.4)

where Xt is a spectrally positive α-stable process with parameter α ∈ (1,2). In particular, we
obtain the convergence of the characteristics in (C.3) towards those relatives to {(Xt , t) : t ≥ 0}
and characteristic exponent cα|λ|α , that is

bt =
(

t

(∫
(0,∞)

λ
(
h(y) − y

)
cαy−(α+1) dy

)
, t

)
,

c
ij
t = 0, c̃

ij
t = E

[
hi(Xt )hj (Xt )

]
, i, j = 1,2, (C.5)

Ft (dx) = tcαx
−(α+1)
1 dx1δ0(dx2).

Proof of Lemma C.1. Note that for u = (λ, θ) ∈R2,

E
(
e

iu·S̃n
Nr(n)t

) = e
r(n)t (ψn( λ

n
, θ
r(n)p(n)

)−1)
, t ≥ 0. (C.6)
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Then the exponent in the right-hand side of the previous equality can be written as follows

t

[
i
∫

(0,∞)

∫
(0,∞)

u · h
(
b(n)x

)
r(n)π(n)(dx)

+
∫

(0,∞)

∫
(0,∞)

(
eiu·b(n)x − 1 − iu · h

(
b(n)x

))
r(n)π(n)(dx)

]
,

(C.7)

where b(n)x = (x1/n, x2/r(n)p(n)), π(n)(dx) = P(ξ (cn) ∈ dx1, ξ
(mn) ∈ dx2). From here S̃Nr(n)t

is infinitely divisible, also we can deduce that the characteristics of the process {S̃n
Nr(n)t

−
(r(n)t/n,0) : t ≥ 0} are given by (C.3). Thanks to Theorem II.3.11 of [8] this process is a Lévy
process and a semimartingale.

Besides, to get the convergence in (C.4) we shall prove the convergence of the characteris-
tic functions. This fact is verified using Corollary 4.3, together with the fact that conditionally
to ξ (+) = k the distribution of ξ (cn) is Binomial with parameter (k,1 − p(n)), as well as the
assumption that ξ+ has mean 1. Indeed, the expression can be written (C.7) as

t

∫
(0,∞)

(
e−((1−p(n))(1−eiλ/n)−p(n)(1−eiθ/r(n)p(n)))y − 1

− iu · h
(

y

n

(
1 − p(n)

)
,

y

r(n)p(n)
p(n)

))
r(n)π+(dy)

+ t i
∫

(0,∞)

(
u · h

(
y

n

(
1 − p(n)

)
,

y

r(n)p(n)
p(n)

)
−

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
y

)
r(n)π+(dy)

+ i

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
r(n)t.

Then by the continuity of h and the assumptions (1.11) and (1.20), the previous display becomes

∼ t

∫
(0,∞)

(
e−((1−p(n))(1−eiλ/n)−p(n)(1−eiθ/r(n)p(n)))y − 1 − iλh

(
y

n

))
r(n)π+(dy)

+ t i
∫

(0,∞)

(
λh

(
y

n

)
−

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
y

)
r(n)π+(dy)

+ i

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
r(n)t,
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where h is the truncation function from R to R obtained as projection of h in the second coordi-
nate. Making a change of variables z = y/n.

∼ t

∫
(0,∞)

(
e−((1−p(n))(1−eiλ/n)−p(n)(1−eiθ/r(n)p(n)))nz − 1 − iλh(z)

)
r(n)π+(ndz)

+ t i
∫

(0,∞)

(
λh(z) −

(
λ
(
1 − p(n)

) + θ

r(n)p(n)
np(n)

)
z

)
r(n)π+(ndz)

+ i

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
r(n)t.

(C.8)

Finally, we have the convergence

E
(
e

iu·(S̃n
Nr(n)t

−(r(n)t/n,0))) −−−→
n→∞ e

t(
∫
(0,∞)(e

iλy−1−iλy)cαy−(α+1) dy)+itθ
, (C.9)

where cα is a constant depending on α that appears in Lemma 4.1. Indeed, the result in
Lemma 4.1 implies the following convergence∫

(0,∞)

(
e−((1−p(n))(1−eiλ/n)−p(n)(1−eiθ/r(n)p(n)))ny − 1 − iλh(y)

)
r(n)π+(ndy)

−−−→
n→∞ t

∫
(0,∞)

(
eiλy − 1 − iλh(y)

)
cαy−(α+1) dy,

while the second adding in (C.8) converges towards

it
∫

(0,∞)

λ
(
h(y) − y

)
cαy−(α+1) dy.

To finish, we observe that the assumption that r(n) ∈ RV α∞ with α ∈ (1,2) and p(n) ∼ cn−1

implies that

r(n)p(n)

n
−−−→
n→∞ 0.

The final term in (C.9) is such that

i

(
λ

n

(
1 − p(n)

) + θ

r(n)p(n)
p(n)

)
r(n)t − i

λ

n
r(n)t −−−→

n→∞ iθt,

for all t ≥ 0. From (C.9) the characteristic of (Xt , t) are given by (C.5). As a consequence of
Theorem VII.2.9 of [8], we have the convergence of the characteristics. Finally, the characteristic
exponent of Xt is cα|λ|α . �

We have now all the elements to prove Lemma 4.8.
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Proof of Lemma 4.8. Thanks to Theorem 2.3.11 of [8], S̃(n)
�r(n)t� is a semimartingale with char-

acteristics relatives to h :R2 → R2, given by

Bn
t = ⌊

r(n)t
⌋
E

[
h
(
b(n)ξ (n)

)] − (⌊
r(n)t

⌋
/n,0

)
,

C
n,ij
t = 0,

C̃
n,ij
t = ⌊

r(n)t
⌋(
E

[
hi

(
b(n)ξ (n)

)
hj

(
b(n)ξ (n)

)] −E
[
hi

(
b(n)ξ (n)

)]
E

[
hj

(
b(n)ξ (n)

)])
,

g ∗ νn
t = ⌊

r(n)t
⌋
E

(
g
(
b(n)ξ (n)

))
for g ≥ 0 measurable and positive,

for i, j = 1,2. As usual �·� denotes the floor function.
Now only remains to verify the conditions (C.1) where the limit characteristics agree with

these in (C.5). In this direction, we recall that

bn
t = r(n)tE

[
h
(
b(n)ξ (n)

)] − (
r(n)t/n,0

)
,

and observe∣∣Bn
s − bs

∣∣ ≤ ∣∣⌊r(n)s
⌋ − r(n)s

∣∣E[
h
(
b(n)ξ (n)

)] + ∣∣(r(n)s/n,0
) − (⌊

r(n)s
⌋
/n,0

)∣∣ + ∣∣bn
s − bs

∣∣.
Then using the properties of the floor function, we obtain∣∣Bn

s − bs

∣∣ ≤ E
[
h
(
b(n)ξ (n)

)] + ∣∣(s/n,0)
∣∣ + ∣∣bn

s − bs

∣∣.
Thus, by the convergence of bn

t established in the previous lemma, together with the fact that
r(n) → ∞, we get

sup
s≤t

∣∣Bn
s − bs

∣∣ ≤ E
[
h
(
b(n)ξ (n)

)] + ∣∣(t/n,0)
∣∣ + ∣∣bn

t − bt

∣∣ −−−→
n→∞ 0,

hence we have the first condition in (C.1). In order to determine the second one, let b
n,i
t be the

ith coordinate of bn
t , i = 1,2. Once more, applying the properties of the floor function we have(

1 − 1

r(n)t

)
c̃
n,ij
t − 1

r(n)t
b

n,i
t b

n,j
t − r(n)t

n
E

[
h2

(
b(n)ξ (n)

)]
≤ C̃

n,ij
t ≤ c̃

n,ij
t + 1 − r(n)t

(r(n)t)2
b

n,i
t b

n,j
t + 1 − r(n)t

n
E

[
h2

(
b(n)ξ (n)

)]
.

Also (
1 − 1

r(n)t

)
c̃
n,22
t − 1

r(n)t

(
b

n,2
t

)2 ≤ C̃
n,22
t ≤ c̃

n,22
t + 1 − r(n)t

(r(n)t)2

(
b

n,2
t

)2

and(
1 − 1

r(n)t

)
c̃
n,11
t − 1

r(n)t

(
b

n,1
t

)2 ≤ C̃
n,11
t ≤ c̃

n,11
t + 1 − r(n)t

(r(n)t)2

(
b

n,1
t

)2 + b
n,1
t + 1

n2

[
r(n) − 1

]
.
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As consequence of the convergence, bn
t → bt , b

n,i
t converges for i = 1,2. Then the above in-

equalities imply C̃
n,ij
t → c̃

ij
t , because r(n) ∈ RV α∞ and α ∈ (1,2). It is easily proved that also

g ∗ νn
t → g ∗ Ft for all g using that Fn

t = r(n)tπ(dx) converges to Ft , as we proved in the
previous lemma, together with properties of the floor function. �

Acknowledgements

This work was undertaken whilst AB was doing her PhD, AB acknowledged support from
CONACyT and CONACyT-CNRS Laboratorio Internacional Solomon Lefschetz.

References

[1] Athreya, K.B. and Ney, P.E. (1972). Branching Processes. Die Grundlehren der Mathematischen Wis-
senschaften 196. New York: Springer.

[2] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge: Cambridge
Univ. Press.

[3] Bertoin, J. (2010). A limit theorem for trees of alleles in branching processes with rare neutral muta-
tions. Stochastic Process. Appl. 120 678–697. MR2603059

[4] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1989). Regular Variation. Encyclopedia of Mathe-
matics and Its Applications 27. Cambridge: Cambridge Univ. Press. MR1015093

[5] Chauvin, B. (1986). Arbres et processus de Bellman–Harris. Ann. Inst. Henri Poincaré B, Probab.
Stat. 22 209–232.

[6] Chung, K.L. and Walsh, J.B. (2005). Markov Processes, Brownian Motion, and Time Symmetry, 2nd
ed. Grundlehren der Mathematischen Wissenschaften 249. New York: Springer.

[7] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. New
York: Wiley. MR0270403

[8] Jacod, J. and Shiryaev, A.N. (1987). Limit Theorems for Stochastic Processes. Grundlehren der Math-
ematischen Wissenschaften 288. Berlin: Springer. MR0959133

[9] Joffe, A. (1967). On the Galton–Watson branching process with mean less than one. Ann. Math. Stat.
38 264–266. MR0205337

[10] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications
(New York). New York: Springer.

[11] Kawazu, K. and Watanabe, S. (1971). Branching processes with immigration and related limit theo-
rems. Teor. Verojatnost. i Primenen. 16 34–51.

[12] Lambert, A. (2007). Quasi-stationary distributions and the continuous-state branching process condi-
tioned to be never extinct. Electron. J. Probab. 12 420–446.

[13] Lambert, A. (2008). Population dynamics and random genealogies. Stoch. Models 24 45–163.
MR2466449

[14] Lamperti, J. and Ney, P. (1968). Conditioned branching processes and their limiting diffusions. Teor.
Verojatnost. i Primenen. 13 126–137.

[15] Li, Z. (2011). Measure-Valued Branching Markov Processes. Probability and Its Applications (New
York). Heidelberg: Springer. MR2760602

[16] Seneta, E. and Vere-Jones, D. (1966). On quasi-stationary distributions in discrete-time Markov chains
with a denumerable infinity of states. J. Appl. Probab. 3 403–434. MR0207047

http://www.ams.org/mathscinet-getitem?mr=2603059
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0959133
http://www.ams.org/mathscinet-getitem?mr=0205337
http://www.ams.org/mathscinet-getitem?mr=2466449
http://www.ams.org/mathscinet-getitem?mr=2760602
http://www.ams.org/mathscinet-getitem?mr=0207047


1612 A. Blancas and V. Rivero

[17] Whitt, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their
Application to Queues. Springer Series in Operations Research. New York: Springer. MR1876437

[18] Yaglom, A.M. (1947). Certain limit theorems of the theory of branching random processes. Dokl.
Akad. Nauk SSSR 56 795–798.

Received August 2015 and revised June 2016

http://www.ams.org/mathscinet-getitem?mr=1876437

	Model description and main results
	Preliminaries
	The process conditioned to nonextinction
	Construction
	Conditional laws
	Interpretation

	Asymptotic behavior: The alpha-stable case
	Approximations for the reproduction law
	Proof of Theorem 1.6
	Proof of Theorem 1.6

	Proof of Proposition 4.5
	Proof of Lemma 4.6

	Asymptotic behavior: The conditioned to nonextinction case
	Appendix A: Proof of Lemma 4.1
	Appendix B: Proof of Proposition 4.4
	Appendix C: Proof of Lemma 4.8
	Acknowledgements
	References

