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We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochas-
tic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with
estimates for the associated stopping times and density estimates for the sum of independent and identically
distributed random vectors.
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1. Introduction

The profound connection between stochastic processes and classical linear partial differential
equations has been pivotal. For example, this connection was made use of in [8,9] to estab-
lish regularity result for the second order equations in a non-divergence form. Recently, a con-
nection between nonlinear infinity harmonic functions and tug-of-war games was discovered in
[15]. Later in [16], the authors found a stochastic game related to p-harmonic functions. They
proved among other things by using a game approach that in a game regular domain there ex-
ists a p-harmonic function extending continuously to the boundary with the given continuous
boundary values. However, a problem asking if a regular boundary point for the p-Laplacian is
necessarily game regular was left open.

We study a modified version of a “tug-of-war with noise” developed in [13] and also related to
p-harmonic functions. First, the players choose a step length ε > 0 and a starting point x0. Then,
they toss a biased coin, and if they get heads (probability α), the players play a “tug-of-war”, that
is, they toss a fair coin and the winner of the toss can move the game position to any point of
the open ball centered at x0 and of the radius ε. If in the first toss, they get tails (probability β),
the game point moves according to the uniform distribution in the open ball centered at x0 and
of the radius ε. After the first move, the players play the same game from the new game position.
The game ends, when the game position exits the game domain for the first time. In the end,
Player 2 pays to Player 1 the amount given by the payoff function at the first point outside the
domain. We consider this version of the game because the players do not affect the direction of
the noise and hence, we can prove sharp enough estimates for the density of the noise.

We give a stochastic proof that a uniform measure density condition implies game regularity
(Theorem 3.7). Roughly, a boundary point y is game regular, if Player 1 has a strategy to end the
game near y with a probability close to one whenever the game starts near y as well. A boundary
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point y satisfies a measure density condition, if the Lebesgue measure of the complement of
the game domain in the ball centered at y is comparable to the Lebesgue measure of the whole
ball. The proof of Theorem 3.7 utilizes a stochastic density estimate for the sum of independent
and identically distributed random vectors (Lemma A.4). In addition, we use a “cylinder walk”
framework together with a cancellation strategy for Player 1 to connect the stochastic estimates
to the setting. We omit the case p = 2, because in that case the process is merely a random walk
and the result follows from the classical invariance principle.

Game theory has already given new insights to partial differential equations. For instance, the
ideas emerging from nonlinear game theory have led to simpler as well as completely different
proofs for PDEs (see, for example, [1] and [10]). In addition, a dynamic programming principle
related to the game also arises from discretization schemes (see, for instance, [14]).

We expect the techniques developed in this paper to be useful for a larger class of partial
differential equations as well. In addition, stochastic estimates on where the game spends time
under cancellation strategies are likely to be important for further results.

This work is organized as follows. In Section 2, we describe the preliminaries needed in the
paper. Then in Section 3, we show that the uniform measure density condition implies game
regularity for all 2 < p < ∞. For brevity, we do not write down all the stochastic calculations
needed in the section, but the calculations are in the Appendix.

2. Preliminaries

First, let us start by introducing the notation. We denote the standard Euclidean open ball by
Br(x0) ⊂R

n,

Br(x0) = {z ∈ R
n : |z − x0| < r

}
.

Lebesgue measure is denoted by | · |, and in addition, the notation Cn,p means that the universal
constant depends only on n and p. Throughout the paper, we use the asymptotic notation O(ε).
For example, if a real-valued function f satisfies the inequality f (ε) ≤ O(ε), it means that there
exists a constant C > 0 such that |f (ε)| ≤ Cε for all ε > 0 small enough.

Let 2 < p < ∞, ε > 0 and dimension n ≥ 1. Fix a bounded, non-empty and open set � ⊂R
n.

Next, we recall the two-player zero-sum-game called “tug-of-war with noise”. First, choose a
starting point x0 ∈ � for the game, and then, the players toss a biased coin with probabilities α

and β . The probabilities depend on n and p by

α = p − 2

p + n
, β = n + 2

p + n
. (2.1)

The players get heads with the probability α, and in this case, they will toss a fair coin and the
winner of the toss can move the game position to any point of the open ball Bε(x0). Tossing of
a fair coin and the movement after the toss are the “tug-of-war” parts of the game. On the other
hand, if they get tails, the next game position will be decided by the uniform distribution in the
ball Bε(x0). A random movement is the “noise” part of the game. After the first move is decided,
the players continue playing the same game from the new position.
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The game procedure yields a sequence of game positions x0, x1, x2, . . . , where every xk is a
random variable. A history of a game up to step k is a vector of the first k + 1 game positions
x0, . . . , xk and k coin tosses c1, . . . , ck , that is,

hk := (x0, (c1, x1), . . . , (ck, xk)
)
.

In the above, cj ∈ C := {0,1,2}, where 0 denotes that Player 1 wins, 1 that Player 2 wins and 2
that a random movement occurs.

To prescribe boundary values, let us denote a compact boundary strip of width ε by

�ε :=
{
z ∈ R

n \ � : inf
y∈∂�

|z − y| ≤ ε
}
.

The reason to use the boundary strip instead of just the boundary is that Bε(x) ⊂ �ε := � ∪ �ε

for all x ∈ �. After the first time the game position is in �ε , the players do not move it anymore.
For all k ≥ 0, the history hk belongs to the space Hk := x0 × (C,�ε)

k with H 0 := x0. We denote
the space of all game sequences by

H∞ :=
⋃
k≥0

Hk = x0 × (C,�ε) × (C,�ε) × · · · .

A strategy for Player 1 is a sequence of Borel measurable functions that give the next game
position given the history of the game. To be more precise, a strategy for Player 1 is S1 :=
(S1,k)

∞
k=0 with

S1,k : Hk →R
n

for all k ≥ 0. For example, if Player 1 wins the (k + 1)th toss,

S1,k

(
x0, (c1, x1), . . . , (ck, xk)

)= xk+1 ∈ Bε(xk)

for all hk ∈ Hk . Similarly Player 2 deploys a strategy S2.
We denote the first hitting time to the set �ε by

τ := τ(ω) = inf{k : xk ∈ �ε, k = 0,1,2, . . . }.

The game process is a discrete time adapted process with respect to the filtration F0 := σ(x0)

and

Fk := σ
(
x0, (c1, x1), . . . , (ck, xk)

)
for k ≥ 1,

so τ is a stopping time. The game ends at the random time τ , and the payoff is F(xτ ), where
F : �ε → R is a fixed, bounded and Borel measurable payoff function. In the end, Player 2 pays
the amount F(xτ ) to Player 1.

To establish a unique probability measure, we need to know a starting point x0 and strategies
S1 and S2. Then, the probability measure P

x0
S1,S2

on the natural product σ -algebra is built by



Uniform measure density condition and game regularity 411

applying Kolmogorov’s extension theorem to the family of transition densities

πS1,S2

(
x0, (c1, x1), . . . , (ck, xk), (C,A)

)
= α

2
δ0(C)δS1(x0,(c1,x1),...,(ck,xk))(A) + α

2
δ1(C)δS2(x0,(c1,x1),...,(ck,xk))(A)

+ βδ2(C)
|A ∩ Bε(xk)|

|Bε(xk)|
for any subset C ⊂ C and Borel subset A ⊂ �ε as long as xk ∈ �. If xk /∈ �, the transition
probability forces xk+1 = xk .

The expected payoff is

E
x0
S1,S2

[
F(xτ )

]= ∫
H∞

F
(
xτ (ω)

)
dP

x0
S1,S2

,

when the game starts from x0 and the players use strategies S1 and S2. The value of the game for
Player 1 is given by

u1
ε(x0) = sup

S1

inf
S2

E
x0
S1,S2

[
F(xτ )

]
and the value of the game for Player 2 is given by

u2
ε(x0) = inf

S2
sup
S1

E
x0
S1,S2

[
F(xτ )

]
,

respectively. The game has a value that is, there exists a unique value function uε := u1
ε = u2

ε

(see [13] and [11]).
Since � is bounded, the game ends almost surely for any choice of strategies. This is true due

to the fact that for n0 ≥ 1 large enough, we have n0ε > diam(�), and almost surely there will be
infinitely many blocks of length n0 consisting of solely random moves in the game.

Observe that the history hk contains all the information at the moment k, and since the strate-
gies are a collection of Borel measurable functions from all possible histories, it is clear that the
game process will not be a Markov process in general.

This version of the tug-of-war game has good symmetry properties, which we will utilize in
the proofs. Other versions of tug-of-war games have been studied for example in [16] and [6]
and a continuous time game in [2].

A rough outline of the connection between the version of the game considered in this paper
and p-harmonic functions is the following. First, assume that we have a p-harmonic function in
an open set �′ ⊃ � with a nonvanishing gradient. Then, the p-harmonic function is real analytic,
and Theorem 4.1 in [13] states that the game with probabilities (2.1) and with the values of the p-
harmonic function on the boundary approximates the p-harmonic function in the game domain.
The proof is based on the gradient strategy for the p-harmonic function and on the optional
stopping theorem as well as on the asymptotic expansion in [12].

The general case requires game regularity of the boundary of the game domain. Then, it is
possible to use a barrier argument to get estimates close to the boundary. By copying the strate-
gies and utilizing the translation invariance of the game, the same estimates also holds in the
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interior of the game domain. Finally, a variant of the classical Arzelà–Ascoli’s theorem provides
a convergent subsequence. To prove that the limit is a viscosity solution to the homogeneous
p-Laplace equation, a dynamic programming principle related to the game is applied (for more
details about the principle, see, for example, [11]).

3. Measure density condition implies game regularity

We show in Theorem 3.7 that a uniform measure density condition implies game regularity for
all p > 2. To establish this, we first show in Lemma 3.3 a more attainable criterion for game
regularity. Then in Theorem 3.6, we use a “cylinder walk” framework, introduced in [10], to
obtain some important hitting probability estimates.

Definition 3.1. A point y ∈ ∂� satisfies a measure density condition if there is c > 0 such that

∣∣�c ∩ Br(y)
∣∣≥ c

∣∣Br(y)
∣∣

for all r > 0.

Definition 3.2. A point y ∈ ∂� is game regular, if for all δ > 0 and η > 0, there exist δ0 > 0 and
ε0 > 0 such that for all ε < ε0 and x0 ∈ Bδ0(y), there is a strategy S∗

1 for Player 1 such that

P
x0
S∗

1 ,S2

(
xτ ∈ Bδ(y) ∩ �c

)≥ 1 − η.

If every boundary point of � is game regular, we say that � is game regular.

Roughly speaking, game regularity means that whenever the game starts near a boundary
point y, Player 1 has a strategy to end the game near y with a high probability. Next, we give a
more attainable criterion to obtain game regularity. We modify the idea from [16], page 13.

Lemma 3.3. A boundary point y ∈ ∂� is game regular if there exists a constant θ > 0 such that
for all δ > 0, there are parameters ε0 > 0 and δ0 > 0 such that for all ε < ε0 and x0 ∈ Bδ0(y),
there is a strategy S∗

1 for Player 1 such that

P
x0
S∗

1 ,S2

(
the game ends before exiting the ball Bδ(y)

)≥ θ.

Proof. The idea of the proof is the following. By choosing δ0 > 0 small enough, we can start
the game as near the point y as we want, and in order to exit the ball Bδ(y), the game sequence
has to exit all the concentric smaller balls inside Bδ(y) as well. The probability to exit all the
concentric balls inside Bδ(y) can be estimated above via the uniform probability θ ; it is less than
(1 − θ)k , where k is the amount of concentric balls inside Bδ(y). Thus, the probability to end the
game near y is close to one, when k is big enough.
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To be more precise, let δ > 0 and η > 0. Now, there are θ > 0, ε0,1 > 0 and 0 < δ0,1 < δ such
that for all ε < ε0,1 and for all x0 ∈ Bδ0,1(y), we have a strategy S1

1 for Player 1 such that

P
x0

S1
1 ,S2

(
the game ends before exiting the ball Bδ(y)

)≥ θ.

We can assume that ε0,1 < δ0,1/2. Again similarly as above, for the constant δ0,1 − ε0,1, there are
ε0,2 > 0 and 0 < δ0,2 < δ0,1/2 such that for all ε < ε0,2 and for all x0 ∈ Bδ0,2(y), we have a strat-
egy S2

1 for Player 1 such that the probability to end the game before exiting the ball Bδ0,1−ε0,1(y)

is at least θ . We can do this as many times we want. Let us do this k ∈ N times, where k is such
that

(1 − θ)k ≤ η.

Define δ0 := δ0,k and ε0 := min{ε0,1, . . . , ε0,k}, and fix any x0 ∈ Bδ0(y) and ε < ε0. We
can assume that ε < 1

2 min{δ0, δ0,k−1 − δ0,k, . . . , δ0,1 − δ0,2} so that the game position cannot
jump over many concentric balls during one turn. Denote the first time the game sequence exits
Bδ0,i−1−ε0,i−1(y) by τ i := τ i(ω) for all i ∈ {1, . . . , k} with δ0,0 := δ and ε0,0 := 0. Also, denote
the set

Ai := {exits the ball Bδ0,i−1−ε0,i−1(y) before the game ends
}

for all i ∈ {1, . . . , k}.
Recall that the game ends at the random time τ . Define a strategy S∗

1 for Player 1 such that
first, Player 1 uses the strategy Sk

1 . If τ k < τ , Player 1 starts to use the strategy Sk−1
1 after the

stopping time τ k . Similarly, if τ k−1 < τ , Player 1 starts to use the strategy Sk−2
1 after the stopping

time τ k−1. Thus, if it holds 0 < τk < τk−1 < · · · < τ 1 < τ , after every stopping time τ i , Player 1
starts to use the strategy Si−1

1 for all i ∈ {2, . . . , k} and for all game sequences ω ∈ H∞. After the
stopping time τ 1, Player 1 does not change her strategy anymore. Observe that the earlier strategy
Si

1 does not affect the game after the first time the game sequence exits Bδ0,i−1−ε0,i−1(y) for every
i ∈ {2, . . . , k}. Roughly this means that for every i ∈ {2, . . . , k}, after the stopping time τ i , Player
1 forgets everything that has happened prior the time τ i .

Let S2 be any strategy for Player 2. The strategy S2 can depend heavily on the past, so it
could well be that our game process does not have any Markovian structure at any game round.
However, the uniform θ is independent of the information available, so roughly, Player 2 cannot
gain too much from the information of the past.

By the reasoning above, we can estimate iteratively

P
x0
S∗

1 ,S2

(
exits the ball Bδ(y) before the game ends

)

= E
x0

Sk
1 ,S2

[
χAk

E
x0

Sk−1
1 ,S2

[
k−1∏
l=1

χAl

∣∣∣Fτk

]]

= E
x0

Sk
1 ,S2

[
χAk

E
x0

Sk−1
1 ,S2

[
χAk−1 · · ·Ex0

S1
1 ,S2

[χA1 |Fτ 2 ] · · · |Fτk

]]
≤ (1 − θ)k ≤ η.
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This implies that

P
x0
S∗

1 ,S2

(
xτ ∈ Bδ(y) ∩ �c

)≥ P
x0
S∗

1 ,S2

(
the game ends before exiting Bδ(y)

)
≥ 1 − η.

Thus, we have shown the game regularity. �

To see that the uniform measure density condition implies game regularity, we need a “cylinder
walk” framework.

Cylinder walk. Set the constants α, β > 0 with α + β = 1 as before in (2.1), and fix the
cylinder size r > 0. Consider the following random walk (called the “cylinder walk”) in a (n+1)-
dimensional cylinder Br(0)×[0, r]. Suppose that we are at a point (xj , tj ) ∈ Br(0)×[0, r]. Next,
we move to the point (xj , tj − ε) with the probability α/2 and to the point (xj , tj + ε) with the
probability α/2. With the probability β we move to the point (xj+1, tj ), where xj+1 is chosen
from the ball Bε(xj ) according to the uniform distribution.

We have the following estimate for the probability that the cylinder walk exits the cylinder
through its bottom; the proof is in the Appendix of the paper [10].

Lemma 3.4. Let us start the cylinder walk from the point (0, t) with 0 < t < r . Then, the proba-
bility that the walk exits the cylinder through its bottom is at least

1 − Cn,p(t + ε)/r

for all ε > 0 small enough.

Assume that the origin 0 ∈ R
n+1 at the bottom of the cylinder belongs to the set ∂� × {0}

and that this boundary point satisfies the measure density condition. The set � ∩ Br(0) × {0} ⊂
Br(0)×[0, r]. We are interested in the probability that the cylinder walk exits through the bottom
and in addition, at the first time the walk hits the bottom, the process is in the complement of
the set �. Since the origin satisfies the measure density condition, the complement has some
positive Lebesgue measure. This suggests that the event we are interested in could have some
positive probability measure.

The cylinder walk can be constructed by combining three independent random constructions.
There is a “horizontal” random walk with the initial position x̃0 = x ∈ Br(0). The point x̃j+1 is
chosen according to the uniform distribution in the ball Bε(x̃j ) ⊂R

n for all j ≥ 0. Further, there
is a “vertical” random walk in the real axis with steps +ε or −ε and with the initial position
t̃0 = t ∈]0, r[. For all j ≥ 0, the next positions are t̃j+1 = t̃j + ε or t̃j+1 = t̃j − ε both with
probability 1

2 . In addition, there is the increasing sequence

Uj =
j∑

m=1

Berm,
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where the Berm’s are independent Bernoulli variables with Berm(ω) ∈ {0,1} and P(Berm = 1) =
α. Therefore, a copy of the cylinder walk is obtained by letting for j ≥ 0

tj = t̃Uj
, xj = x̃j−Uj

.

Let τg stand for the first moment tj exits the cylinder through its bottom or top, that is, the first
j such that tj ∈ R\]0, r[. Also, let τ̃g stand for the first moment t̃j exits the cylinder through its
bottom or top. Here, the subindex g refers to a “good exit”.

We assume that x = 0. First, let us study the properties of the function τg − Uτg = τg − τ̃g .
The random variable τg − τ̃g is the number of times a random horizontal movement has occurred
at the first moment the cylinder walk hits the bottom or top. The proof of the lemma below is in
the Appendix for completeness.

Lemma 3.5. Let τg, τ̃g, α,β and r be as above, and let n0 ≥ 1 and γ ∈]0,1[. Then, there is a
universal constant C := Cn0,n,p,γ > 1 such that for all a > 0, Cε ≤ t < r/2 and ε small enough
it holds

P(τg − τ̃g ≥ n0) ≥ 1 − γ and (3.1)

P
(
τg − τ̃g ≥ aε−2)≤ 1 − 2√

2π

∫ ∞
t√
a
νn,p

e− s2
2 ds + γ +O(ε) (3.2)

with the constant

νn,p := 2

√
β + 0.01α

0.99α
.

For any a > 0, n0 ≥ 1 and γ ∈]0,1[ the inequalities (3.1) and (3.2) yield

P
(
n0 ≤ τg − τ̃g < aε−2)≥ P(τg − τ̃g ≥ n0) − P

(
τg − τ̃g ≥ aε−2)

≥ 2√
2π

∫ ∞
t√
a
νn,p

e− s2
2 ds − 2γ −O(ε)

(3.3)

for all Cε ≤ t < r/2 and ε small enough with a large C > 1 independent of ε. Observe that

2√
2π

∫ ∞
t√
a
νn,p

e− s2
2 ds → 1

as t → 0. Thus, the inequality (3.3) points out that for the cylinder walk started from the height
Cε ≤ t < r0, the random variable τg − τ̃g is very likely between the times n0 and aε−2 for all r0,
γ and ε small enough and fixed n0 ≥ 1 and a > 0.

Next, we concentrate on the distribution of the random variable x̃k . Assume that Z is a random
vector with the uniform distribution in the ball Bε(0) ⊂ R

n. The density of the random vector Z

is

fZ(x) = 1

|Bε(0)|χBε(0)(x).
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We denote the measure of the unit ball by ωn := |B1(0)|. Let k0 := k0,n > 2 denote the constant
in Lemma A.4 and fix any k ≥ k0. For the density of the random variable x̃k =∑k

i=1 Zi , where
the random vectors Zi are independent and distributed as Z, we use the notation fk := f∑k

i=1 Zi
.

The density fk is a decreasing radial function. In the Appendix, we have derived in (A.8) and
(A.10) the following estimates: There are constants Cn > 0 and C1 > 0 such that

fk(0) ≤ Cn

(
1√
kε

)n

,

and

fk(C∗
√

kε) ≥
(

1

C1

)n(0.99

ωn

− Cn(C∗)n
)(

1√
kε

)n

(3.4)

for all C∗ ∈ ]0,C1[. By the comment after the statement of Lemma A.4 in the Appendix, we have

fk(C∗
√

kε) ≥ ζ

(
1√
kε

)n

for some ζ := ζn > 0, if we choose C∗ > 0 so small that

C∗ <

(
0.99

ωnCn

)1/n

. (3.5)

Let τb stand for the first j when |xj | reaches [r,∞[. Here, the subindex b refers to a “bad
exit”. Recall that the origin at the bottom of the cylinder satisfies the measure density condition.
Let Cn,p > 0 denote the constant in Lemma 3.4, and for all δ > 0, denote

Aδ := Bδ(0) ∩ �c.

Theorem 3.6. Consider the cylinder Bδ/3(0) × [0, δ/3] for any fixed δ > 0. Then, there exist
constants θ := θn,p > 0, ε0 := ε0,n,p,δ > 0 and δ0 := δ0,n,p,δ > 0 such that

P(τb ≤ τg or tτg ≥ δ/3 or xτg /∈ Aδ/3) ≤ 1 − θ

for all ε < ε0 whenever the cylinder walk starts from the point (0, t) for some 0 < t ≤ δ0.

Proof. To establish the result, we use the inequality (3.3) to estimate how many times it is likely
that a random horizontal movement has occurred at the first time the cylinder walk hits the
bottom. Then, we use the estimate (3.4) and the fact that vertical and horizontal movements are
independent to estimate the probability that we are in the complement of the set � at the first
time the walk exits the cylinder through its bottom.

Let 0 < λ < 1, where the exact value of λ will be fixed later. Define

δ0 := δλ

3Cn,p

, (3.6)
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and start the cylinder walk from the point (0, t) for some 0 < t ≤ δ0 in the cylinder Bδ/3(0) ×
[0, δ/3].

We recall the constant k0 := k0,n > 2 from Lemma A.4. In addition, let C := Cn0,n,p,γ > 1
be the constant from Lemma 3.5 with n0 = k0 and 0 < γ < 1 defined later. First, assume that
t < Cε. Then, the number of ε-steps required to reach the bottom from t is less than the universal
constant C. Hence, the probability that the cylinder walk exits the cylinder through its bottom
and in addition, it holds xτg = 0, is greater than or equal to (α/2)C . From this the statement
immediately follows in the case t < Cε.

Next, assume that t ≥ Cε. Lemma 3.4 states that

P(τb ≤ τg or tτg ≥ δ/3) ≤ 3Cn,pδ−1(t + ε) ≤ 3Cn,pδ−1(δ0 + ε).

Therefore, we have by (3.6) that

P(τb ≤ τg or tτg ≥ δ/3 or xτg /∈ Aδ/3) ≤ O(ε) + λ + 1 − P(xτg ∈ Aδ/3).

The inequality (3.3) and the remark after suggest the estimate

P(xτg ∈ Aδ/3) = P(x̃τg−τ̃g
∈ Aδ/3)

≥ P
(
x̃τg−τ̃g

∈ Aδ/3 and k0 ≤ τg − τ̃g < δ2ε−2)

=
�δ2ε−2�∑
k=k0

P(x̃τg−τ̃g
∈ Aδ/3 and τg − τ̃g = k).

Denote the index set

I := {k0, k0 + 1, . . . ,
⌊
δ2ε−2⌋}.

Since the random variables x̃k and τg − τ̃g are independent for all k ∈ I , we have∑
k∈I

P(x̃τg−τ̃g
∈ Aδ/3 and τg − τ̃g = k) =

∑
k∈I

P(x̃k ∈ Aδ/3)P(τg − τ̃g = k).

Let k ∈ I and choose the constant C∗ > 0 as in (3.5). We may assume that C∗ < 1/3. Because√
kε < δ and the density fk is a decreasing radial function, we can calculate

P(x̃k ∈ Aδ/3) ≥ P
(
x̃k ∈ BC∗

√
kε(0) ∩ �c

)≥ fk(C∗
√

kε)
∣∣BC∗

√
kε(0) ∩ �c

∣∣.
By using the estimate (3.4) and the uniform measure density condition, we obtain

fk(C∗
√

kε)
∣∣BC∗

√
kε(0) ∩ �c

∣∣
≥
(

1

C1

)n(0.99

ωn

− Cn(C∗)n
)(

1√
kε

)n

c
∣∣BC∗

√
kε(0)

∣∣
= ωnc

(
C∗
C1

)n(0.99

ωn

− Cn(C∗)n
)

=: Ĉn,
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where the constant c > 0 comes from the uniform measure density condition. This together with
the inequality (3.3) yield∑

k∈I

P(x̃k ∈ Aδ/3)P(τg − τ̃g = k)

≥ ωnc

(
C∗
C1

)n(0.99

ωn

− Cn(C∗)n
)
P
(
k0 ≤ τg − τ̃g < δ2ε−2)

≥ Ĉn

2√
2π

∫ ∞
λ
3 C̃n,p

e− s2
2 ds − 2γ Ĉn −O(ε)

with the constant

C̃n,p := 2

Cn,p

√
β + 0.01α

0.99α
.

Therefore, we have shown

P(τb ≤ τg or tτg ≥ δ/3 or xτg �∈ Aδ/3)

≤ 1 − Ĉn

2√
2π

∫ ∞
1
3 C̃n,p

e− s2
2 ds + λ + 2γ Ĉn +O(ε)

≤ 1 − 1

2
Ĉn

2√
2π

∫ ∞
1
3 C̃n,p

e− s2
2 ds

for all Cε ≤ t ≤ δ0 and ε, λ and γ small enough. Thus, this concludes the case t ≥ Cε. To
combine the cases, we define

θ := min

{
1

2
Ĉn

2√
2π

∫ ∞
1
3 C̃n,p

e− s2
2 ds, (α/2)C

}
.

Consequently, the proof is complete. �

If Player 1 plays by canceling the moves of the other player, we obtain Theorem 3.7. Observe
that this strategy is not optimal for Player 1 in the sense that Player 1 also tries to cancel the
moves that might benefit her.

The cancellation strategy was introduced in the paper [10] to prove Harnack’s inequality for
p-harmonic functions via tug-of-war games. In addition, the cancellation strategy can be used
to prove regularity properties for viscosity solutions of the inhomogeneous p-Laplace equation
(see [18]).

Theorem 3.7. If y ∈ ∂� satisfies the measure density condition, then it is game regular for
p > 2.

Proof. To establish the result, our aim is to use Lemma 3.3 and therefore, to find a uniform
lower bound for the probability that the game ends before exiting a given ball. If Player 1 plays
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by canceling the moves of the other player, the lower bound θ > 0 for the probability is obtained
by using Theorem 3.6.

We can clearly assume that y = 0. Let δ > 0, and consider the cylinder Bδ/3(0) × [0, δ/3].
Define a constant δ0 as in (3.6), and find ε0 > 0 and λ > 0 small enough such that we can apply
Theorem 3.6. Let x0 ∈ Bδ0(0) and ε < ε0. At every moment, we can divide the game position as
a sum of vectors

x0 +
∑
k∈I1

v1
k +

∑
k∈I2

v2
k +

∑
k∈I3

v3
k .

Here, I1 denotes the indices of rounds when Player 1 has moved with the vectors v1
k as her moves.

Similarly, Player 2 has moved in the indices of rounds I2 with the moves v2
k as his moves. The

random movements have occurred in the indices of rounds I3, and these random movements are
denoted by v3

k .
Let

M := 2

⌈ |x0|
ε

⌉
,

where the factor 2 is due to the fact that the players cannot step to the boundary of Bε(xj ) for
any j . Define the following strategy S∗

1 for Player 1 for the game that starts from x0. She always
tries to cancel the earliest move of Player 2 which she has not yet been able to cancel. If all the
moves at that moment are cancelled and she wins the coin toss, she moves the game point by the
vector

−ε/2
x0

|x0| .
She does this until she has won M − 1 more coin tosses than Player 2. If she wins her M th more
coin toss, her move will be such that the game position is∑

k∈I3

v3
k

after the move. Observe that the game, with the strategy S∗
1 , is related to the cylinder walk, when

we start the cylinder walk from the point (0,Mε/2) with Mε/2 → |x0| < δ0 as ε → 0.
Let us define three conditions for the game sequences of the game:

(A) Player 1 has won the coin toss M more times than Player 2, and at the moment this
happens, the game sequence is in the set �c.

(B) Player 2 has won the coin toss at least δ
3ε

more times than Player 1.
(C) |∑k∈I3

v3
k | ≥ δ

3 .

We are interested in the following event

X := {the condition (A) happens before conditions (B) and (C)
}
,

and Theorem 3.6 states that there is a constant θ := θn,p > 0 such that

PS∗
1 ,S2(X) ≥ θ.
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Now, we can estimate

PS∗
1 ,S2

(
the game ends before exiting the ball Bδ(0)

)≥ PS∗
1 ,S2(X).

Above, we also used the fact that the game sequences for which the game has ended before
Player 1 has won M more coin tosses than Player 2 are good for our purposes. To finish the
proof, we can use Lemma 3.3, and thus the proof is complete. �

It is worth mentioning that in the case p > n, every point becomes game regular. This is proved
in [16], and the same also holds for the version of the game considered in this paper. Roughly, as
p increases, the probability for the player to end the game before exiting a given ball increases.

Appendix: Hitting probabilities for a cylinder walk

Fix the cylinder size r > 0. The cylinder walk in a cylinder Br(0) × [0, r] ⊂ R
n+1 can be con-

structed by combining three independent random constructions. There is a “horizontal” random
walk with the initial position x̃0 = x ∈ Br(0). The point x̃j+1 is chosen according to the uniform
distribution in the ball Bε(x̃j ) ⊂ R

n for all j ≥ 0. Further, there is a “vertical” random walk in
the real axis with steps +ε or −ε and with the initial position t̃0 = t ∈]0, r[. The next positions
are t̃j+1 = t̃j + ε or t̃j+1 = t̃j − ε both with probability 1

2 for all j ≥ 0. In addition, there is the
increasing sequence

Uj =
j∑

m=1

Berm,

where the Berm’s are independent Bernoulli variables with Berm(ω) ∈ {0,1} and P(Berm = 1) =
α ∈]0,1[. Thus, a copy of the cylinder walk is obtained by letting for j ≥ 0

tj = t̃Uj
, xj = x̃j−Uj

.

Let τg stand for the first moment tj exits the cylinder through its bottom or top, and let τ̃g

stand for the first moment t̃j exits the cylinder through its bottom or top.
Recall Hoeffding’s (or Azuma’s or Bernstein’s) inequality for a sum of independent and iden-

tically distributed random variables (see, for example, [7], page 198).

Theorem A.1. Let Ym be independent and identically distributed symmetric R
n-valued random

variables, m ∈ {1,2, . . . ,N}, that are uniformly bounded: |Ym| ≤ b almost surely for all m. Then,

P

(
max

1≤m≤N

∣∣∣∣∣
m∑

i=1

Yi

∣∣∣∣∣≥ λ

)
≤ 4n exp

(
− λ2

2Nb2n

)
.
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In the theorem above, the factor 4 instead of 2 comes from the use of Levy–Kolmogorov’s
inequality (see, for example, [19], page 397)

P

(
max

1≤m≤N

∣∣∣∣∣
m∑

i=1

Yi

∣∣∣∣∣≥ λ

)
≤ 2P

(∣∣∣∣∣
N∑

i=1

Yi

∣∣∣∣∣≥ λ

)
.

We assume that x = 0, and denote β = 1 − α.

Lemma A.2. Let τg and τ̃g be as above, n0 ≥ 1 and γ ∈]0,1[. Then, there is a constant C :=
Cn0,n,p,γ > 0 such that it holds

P(τ̃g ≥ n0) ≥ 1 − γ and (A.1)

P(τg − τ̃g ≥ n0) ≥ 1 − γ (A.2)

for all Cε ≤ t < r/2 and ε < r/(4C).

Proof. The vertical movement consists of the moves +ε or −ε in the real axis. Let Yi be in-
dependent and identically distributed random variables with Yi(ω) ∈ {−ε, ε} and P(Yi = ε) =
P(Yi = −ε) = 1

2 for all i. Assume t < r/2, and recall the cylinder size Br(0) × [0, r]. Now, it
holds

P(τ̃g ≥ n0) = P

(
max
k<n0

k∑
i=1

Yi < min{t, r − t}
)

= 1 − P

(
max
k<n0

k∑
i=1

Yi ≥ t

)
.

Random variables Yi are bounded, |Yi | ≤ ε for all i ≥ 1. By using Hoeffding’s inequality that is,
Theorem A.1, we can deduce that for C > 0 and t ≥ Cε it holds

P

(
max
k<n0

k∑
i=1

Yi ≥ t

)
≤ 4 exp

(
− t2

2n0ε2

)
≤ 4 exp

(
− C2

2n0

)
.

Consequently, there is C := Cn0,γ > 1 large enough such that (A.1) holds for all Cε ≤ t < r/2
and ε < r/(4C).

For the second part, let us consider the event

B := {0.99ατg < τ̃g < (α + β/2)τg

}
. (A.3)

For any j0 ≥ 1, denote the sets

B∗ := {Uj < (α + β/2)j for all j ≥ j0
}

and

B∗ := {Uj > 0.99αj for all j ≥ j0}.
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Again, apply Hoeffding’s inequality with Ym = Berm −α, λ = jβ/2, b = 1 and N = j to get

P
(
Uj ≥ (α + β/2)j

)= P(Uj − αj ≥ jβ/2) ≤ P
(|Uj − αj | ≥ jβ/2

)
≤ 4 exp

(
−1

8
β2j

)
.

In a similar fashion, we can calculate

P(Uj ≤ 0.99αj) ≤ 4 exp

(
− α2j

2 · 104

)
.

Thus by choosing j0 large enough and summing over all indices, we get

P
((

B∗)c)= P
(
Uj ≥ (α + β/2)j for some j ≥ j0

)
≤
∑
j≥j0

P
(
Uj ≥ (α + β/2)j

)

≤
∑
j≥j0

4 exp

(
−1

8
β2j

)
≤ γ

8
.

By a similar argument, it holds

P(B∗) ≥ 1 − γ /8

for j0 large enough. Hence, we choose a large index j0 := j0,n,p,γ such that

P
(
B∗ and B∗)≥ P(B∗) − P

((
B∗)c)≥ 1 − γ /4.

Observe that {
B∗ and B∗ and τg ≥ j0

}⊂ B.

Therefore, we get

P(B) ≥ P(τg ≥ j0) − γ /4.

Since τg ≥ τ̃g always, we have {τ̃g ≥ j0} ⊂ {τg ≥ j0}. Combining this with a similar argument
to (A.1), we can deduce that there is C̃ := C̃j0,γ > 1 large enough such that for all C̃ε ≤ t < r/2
and ε < r/(4C̃) it holds

P(B) ≥ 1 − γ /2. (A.4)

By a direct calculation, we have

B ⊂
{

β

2α + β
τ̃g < τg − τ̃g <

β + 0.01α

0.99α
τ̃g

}
.
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Therefore, we obtain by using (A.4)

P(τg − τ̃g ≥ n0) ≥ P

(
β

2α + β
τ̃g ≥ n0 and B

)

= P
(
τ̃g ≥ (2α + β)n0(β)−1 and B

)
≥ P
(
τ̃g ≥ (2α + β)n0(β)−1)− γ /2

for all C̃ε ≤ t < r/2 and ε < r/(4C̃). Thus, this estimate and a similar argument to (A.1) imply
that there is C := Cn0,n,p,γ > max{C, C̃} > 1 large enough such that (A.2) holds for all Cε ≤
t < r/2 and ε < r/(4C). �

Lemma A.3. Let τg, τ̃g, r and α,β > 0 such that α + β = 1 be as at the beginning of the Ap-
pendix. In addition, let C := Cn0,n,p,γ > 1 be the constant from Lemma A.2 for γ ∈]0,1[ and
n0 ≥ 1. Then for all a > 0, Cε ≤ t < r/2 and ε small enough, we have

P
(
τg − τ̃g ≥ aε−2)≤ 1 − 2√

2π

∫ ∞
t√
a
νn,p

e− s2
2 ds + γ +O(ε)

with the constant

νn,p := 2

√
β + 0.01α

0.99α
.

Proof. By using the inequality (A.4) and the inclusion after it, we can deduce

P
(
τg − τ̃g ≥ aε−2)≤ P

(
τg − τ̃g ≥ aε−2 and B

)+ P
(
Bc
)

≤ P

(
τ̃g ≥ 0.99αa

(β + 0.01α)ε2

)
+ γ

for all Cε ≤ t < r/2 and ε < r/(4C) with the set B defined in (A.3).
We estimate the probability of the event {τ̃g ≥ dε−2} for all d > 0. Consider the following in-

dependent and identically distributed random variables: Zi(ω) ∈ {1,−1}, P(Zi = −1) = P(Zi =
1) = 1

2 and E[Zi]2 = 1 for all i ≥ 1. For these random variables, we have the following equality
(see, for example, [7], page 351)

P

(
max

1≤m≤N

m∑
i=1

Zi ≥ l

)
= 2P

(
N∑

i=1

Zi ≥ l

)
− P

(
N∑

i=1

Zi = l

)

for all integers N ≥ 1 and l ≥ 1. Further, since E|Zi |3 = 1 < ∞ for all i ≥ 1, we can use the
Berry–Esseen theorem to determine the speed in the central limit theorem (see, for example,
[19], page 63), and thus

2P

(
N∑

i=1

Zi ≥ l
√

N

)
− P

(
N∑

i=1

Zi = l
√

N

)
≥ 2√

2π

∫ ∞

l

e− s2
2 ds −O

(
N−1/2).
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Observe that for all ε > 0 small enough

�tε−1�√�dε−2� ≤ 2t√
d

.

Therefore, for all t < r/2 and ε > 0 small enough, we have

P
(
τ̃g ≥ dε−2)≤ P

(
max

1≤m≤�dε−2�

m∑
i=1

Zi <
⌈
tε−1⌉)

≤ 1 − 2√
2π

∫ ∞
2t√
d

e− s2
2 ds +O(ε).

�

Lemma 3.5 is now an immediate consequence of Lemmas A.2 and A.3.
Next, we prove a technical result (Lemma A.4 below) that we use in Section 3 above. First,

in order to keep the calculations simple, let the dimension n be one for now. Assume that Z

is distributed according to the uniform distribution in ]−ε, ε[ for some ε > 0. Then for two
independent Z1 and Z2 both distributed as Z, the density of the random variable Z1 + Z2 can be
computed via convolution. Thus, since fZ(x) = 1/(2ε)χ]−ε,ε[(x), we have

fZ1+Z2(x) =
∫ ∞

−∞
fZ(x − y)fZ(y)dy =

(
1

2ε

)2(
2ε − |x|)χ]−2ε,2ε[(x).

For any k ≥ 1, denote the density fk := f∑k
i=1 Zi

, where Zi are independent random variables
distributed as Z. Similarly as in the case k = 2, we can deduce and prove by induction (see, for
example, [17], page 197) that for any k ≥ 1

fk(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

(k − 1)!(2ε)k

� x+kε
2ε

�∑
j=0

(−1)j
(

k

j

)
(x + kε − 2jε)k−1, if x ∈]−kε, kε[,

0, otherwise.

Unfortunately, it is hard to get quantitative estimates from it.
There have been a lot of studies on the concentration function of a sum of independent random

variables (see, for example, [4]). However, we are interested in the pointwise value of the function
fk at the origin, and we will estimate the value by hand for the reader in a rather accessible way.

The characteristic function of the random variable Z can be easily calculated,

ϕZ(t) = 1

2ε

∫ ε

−ε

eitx dx = sin(εt)

εt
.

Let k ≥ 2. Because of the independence,

ϕ∑k
i=1 Zi

(t) =
(

sin(εt)

εt

)k

.
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Now, we have
∫∞
−∞ |ϕ∑k

i=1 Zi
(t)|dt < ∞, so we can use the well-known inversion formula

fk(x) = 1

2π

∫ ∞

−∞
e−itxϕ∑k

i=1 Zi
(t) dt.

This inversion formula yields

fk(0) = 1

π

∫ ε−1

0

(
sin(εt)

εt

)k

dt + 1

π

∫ ∞

ε−1

(
sin(εt)

εt

)k

dt.

Define

h(z) := 2
1 − cos z

z2

so that we have for any 0 ≤ m ≤ 2π

sin z

z
≤ 1 − h(m)

z2

6
(A.5)

for all |z| ≤ m. This inequality is true since the function sin z/z decreases for 0 < z ≤ π implying

(
sin(m/2)

m/2

)2

≤
(

sin(z/2)

z/2

)2

for all 0 < z ≤ 2π . This inequality yields

1 − cos z − h(m)
z2

2
≥ 0

for all 0 < z ≤ 2π so we have the inequality (A.5), since both sides of the inequality (A.5) are
even functions. By using the inequality (A.5), a change of variables formula and the inequality
1 − z ≤ e−z for all z ∈ R, we have

1

π

∫ ε−1

0

(
sin(εt)

εt

)k

dt = 1

πε

∫ 1

0

(
sin z

z

)k

dz

≤ 1

πε

∫ 1

0

(
1 − h(1)

z2

6

)k

dz

≤ 1

πε

∫ 1

0
e− z2kh(1)

6 dz.

Again, via changing the variables we derive

1

πε

∫ 1

0
e− z2kh(1)

6 dz ≤ 1

ε

√
6

kπh(1)

1√
2π

∫ ∞

0
e− u2

2 du =
√

3

2πh(1)

1√
kε

.
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Thus, we have estimated

1

π

∫ ε−1

0

(
sin(εt)

εt

)k

dt ≤
√

3

2πh(1)

1√
kε

.

Because sin z ≤ 1 for all z ∈R, we can estimate the second integral directly, and hence

1

π

∫ ∞

ε−1

(
sin(εt)

εt

)k

dt ≤ 1

πε

∫ ∞

1

1

zk
dz = 1

πε(k − 1)
.

Therefore, we have derived the estimate

fk(0) ≤
√

3

2πh(1)

1√
kε

+ 1

πε(k − 1)
.

Next, we extend the argument to the higher dimensions as well. Assume that Z is a random
vector with the uniform distribution in the n-ball Bε(0), n ≥ 1. The density of the random vector
Z is

fZ(x) = 1

|Bε(0)|χBε(0)(x).

Using the same approach as in dimension one, we first need the characteristic function of the
random vector Z. Denote the measure of the unit ball by ωn := |B1(0)| = πn/2/�(n

2 + 1), where
the function � is the usual gamma function. The random variable Z is invariant under rotation,
that is, the density function is a constant on every sphere Sn−1

r (0) := {x ∈ R
n : |x| = r} for all

r > 0. Hence, by rotating the ball Bε(0), we see that ϕZ(u) = ϕZ((r,0, . . . ,0)) for all u ∈ R
n

such that |u| = r . Let r > 0, and direct computation with a change of variables x = εy yields

ϕZ

(
(r,0, . . . ,0)

)= ∫
Rn

eirx1fZ(x)dx

= 1

ωn

∫
B1(0)

eiεry1 dy1 · · · dyn

= ωn−1

ωn

∫ 1

−1

(
1 − y2

1

)(n−1)/2
eiεry1 dy1

= ωn−1

ωn

∫ 1

−1

(
1 − y2

1

)(n−1)/2 cos(εry1) dy1.

A spherical Bessel function of order n/2, often denoted by Jn/2(z), has an integral represen-
tation

Jn/2(z) =
(

z

2

)n/2 1

�(n+1
2 )

√
π

∫ 1

−1

(
1 − t2) n−1

2 cos(zt) dt
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(see, for example, [20]). We can use this integral formula to obtain

ωn−1

ωn

∫ 1

−1

(
1 − y2

1

)(n−1)/2 cos(εry1) dy1

= (εr/2)−n/2�

(
n

2
+ 1

)
Jn/2(εr).

Thus, we have derived the characteristic function

ϕZ(u) =
(

2

ε|u|
)n/2

�

(
n

2
+ 1

)
Jn/2

(
ε|u|) (A.6)

for all u ∈ R
n. Spherical Bessel functions have a connection to our calculations in dimension

n = 1, since one could show that

sin z

z
=
√

π

2z
J 1

2
(z)

holds for all z ∈R.
It is possible to express Jn/2(z) as a product of factors such that each factor vanishes

at one of the zeros of z−n/2Jn/2(z). Denote the zeros of the function z−n/2Jn/2(z) by
±jn/2,1,±jn/2,2,±jn/2,3, . . . with jn/2,l > 0 for all l = 1,2, . . . and jn/2,1 ≤ jn/2,2 ≤ jn/2,3 ≤
· · · . Then, we have the infinite product formula of the Bessel function

Jn/2(z) =
(

z

2

)n/2 1

�(n
2 + 1)

∞∏
l=1

(
1 − z2

j2
n/2,l

)
(A.7)

(see [20], pages 497–498). The number of zeros of z−n/2Jn/2(z) between the origin and the point

lm := mπ + π

4
(n + 1)

is exactly m for all m big enough (see [20], pages 495–497). Consequently, the infinite sum∑∞
l=1 j−2

n/2,l converges, since

∞∑
l=p

j−2
n/2,l ≤

∞∑
l=p

(
1

(l − 1)π + π/4(n + 1)

)2

< ∞

for some p big enough. Therefore, the infinite product in the formula (A.7) is well defined for all
z ∈R.

Via independence we have

ϕ∑k
i=1 Zi

(u) = (ϕZ(u)
)k

,
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and the inversion formula together with the characteristic function (A.6), the infinite product
formula (A.7) and a change of variables z = εu yield

fk(0) = 1

(2π)n

∫
Rn

(
ϕZ(u)

)k
du

= 1

(2π)nεn

∫
Bs(0)

[ ∞∏
l=1

(
1 − |z|2

j2
n/2,l

)]k

dz

+ 2kn/2�(n
2 + 1)k

(2π)nεn

∫
Rn\Bs(0)

(
1

|z|
)kn/2(

Jn/2
(|z|))k dz

for all s > 0.
Now, the function

1 − |z|2
j2
n/2,l

≥ 0

for all l ≥ 1, if 0 ≤ |z| ≤ jn/2,1. In addition, since 1 − z ≤ e−z for all z ∈R, we have

1

(2π)nεn

∫
Bjn/2,1 (0)

[ ∞∏
l=1

(
1 − |z|2

j2
n/2,l

)]k

dz

≤ |Sn−1
1 |

(2π)nεn

∫ jn/2,1

0
e
−r2k

∑∞
l=1 j−2

n/2,l rn−1 dr

≤ |Sn−1
1 |

(2π)nεn

∫ ∞

0
e
−r2k

∑∞
l=1 j−2

n/2,l rn−1 dr.

Hence, we can integrate with a change of variables r = (k
∑∞

l=1 j−2
n/2,l)

−1/2t to obtain

|Sn−1
1 |

(2π)nεn

∫ ∞

0
e
−r2k

∑∞
l=1 j−2

n/2,l rn−1 dr

= n
∫∞

0 e−t2
tn−1 dt

�(n
2 + 1)πn/22n(

∑∞
l=1 j−2

n/2,l)
n/2

(
1√
kε

)n

.

Thus, there is a constant

c1
n := n

∫∞
0 e−t2

tn−1 dt

�(n
2 + 1)πn/22n(

∑∞
l=1 j−2

n/2,l )
n/2

> 0
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such that

1

(2π)nεn

∫
Bjn/2,1 (0)

[ ∞∏
l=1

(
1 − |z|2

j2
n/2,l

)]k

dz ≤ c1
n

(
1√
kε

)n

.

It holds Jn/2(|z|) ≤ 1 for all z ∈ R
n (see, for example, [20]). Therefore, we get by a direct

calculus

2kn/2�(n
2 + 1)k

(2π)nεn

∫
Rn\Bjn/2,1 (0)

(
1

|z|
)kn/2(

Jn/2
(|z|))k dz

≤ |Sn−1
1 |2kn/2�(n

2 + 1)k

(2π)nεn

∫ ∞

jn/2,1

rn−1−kn/2 dr

= (jn/2,1)
n

2n−1�(n
2 + 1)πn/2εn

(
1

k − 2

)((
2

jn/2,1

)n/2

�

(
n

2
+ 1

))k

for all k > 2. There exists the following lower bound for the first zero jv,1 (see [5] and for
example [3])

jv,1 > v + π + 1

2
> v + 2

for all v > − 1
2 . Thus, if n is even, n = 2h for some h ≥ 1, we get

�(h + 1)2h

(jh,1)h
<

h!2h

(h + 2)h
< 1.

Similarly, if n is odd, n = 2h + 1 for some h ≥ 0, we get

�(h + 3
2 )2h+1/2

(jh+1/2,1)h+1/2
<

(2h + 2)!2h
√

2π

4h+1(h + 1)!(h + 2.5)h+1/2
< 1.

Hence, there exists a constant k0 := k0,n > 2 such that

(
1

k − 2

)((
2

jn/2,1

)n/2

�

(
n

2
+ 1

))k

≤
(

1√
k

)n

for all k ≥ k0. Denote

c2
n := (jn/2,1)

n

2n−1�(n
2 + 1)πn/2

> 0

and

Cn := 2 max
{
c1
n, c

2
n

}
.
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Thus, we have derived the estimate

fk(0) ≤ Cn

(
1√
kε

)n

(A.8)

for all k ≥ k0.
Let k ≥ k0. Theorem A.1 implies that there is a constant C1 := C1,n > 0 big enough such that

for all ε > 0

P

(∣∣∣∣∣
k∑

i=1

Zi

∣∣∣∣∣< C1
√

kε

)
≥ 0.99.

By using the convolution formula, we have that

fk(x) =
∫
Rn

fk−1(x − y)χBε(0)(y) dy =
∫

Bε(0)

fk−1(x − y)dy

=
∫

Bε(x)

fk−1(y) dy

(A.9)

holds for all x ∈ R
n. The function f1 is a decreasing radial function. Thus, we can deduce by

using the formula (A.9) that f2 is also a decreasing radial function, and by induction fk as well.
Therefore, we can denote the density fk as a function of the radius |u| for all u ∈ R

n, and we
have for any C∗ ∈ ]0,C1[

fk(0)
∣∣BC∗

√
kε(0)

∣∣+ fk(C∗
√

kε)
(∣∣BC1

√
kε(0)

∣∣− ∣∣BC∗
√

kε(0)
∣∣)≥ 0.99.

This inequality yields

fk(C∗
√

kε) ≥ 0.99 − fk(0)|BC∗
√

kε(0)|
|BC1

√
kε(0)| − |BC∗

√
kε(0)|

≥ 0.99

|BC1
√

kε(0)| − fk(0)

(
C∗
C1

)n

.

Now, we use the estimate (A.8) to obtain

fk(C∗
√

kε) ≥ 0.99

|BC1
√

kε(0)| − Cn

(
C∗

C1
√

kε

)n

=
(

1

C1

)n(0.99

ωn

− Cn(C∗)n
)(

1√
kε

)n

.

Thus, we have proven the following lemma.

Lemma A.4. Let ε > 0 and let Z be distributed according to the uniform distribution in the ball
Bε(0) ⊂ R

n. For any k ≥ 2, denote the density of the random variable
∑k

i=1 Zi by fk , where
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the random variables Zi , i ∈ {1, . . . , k}, are independent and distributed as Z. Then fk is a
decreasing radial function, and there exist universal constants k0 := k0,n > 2, C1 := C1,n > 0
and Cn > 0 such that for all k ≥ k0 and C∗ ∈ ]0,C1[ we have

fk(C∗
√

kε) ≥
(

1

C1

)n(0.99

ωn

− Cn(C∗)n
)(

1√
kε

)n

. (A.10)

Observe that

fk(C∗
√

kε) ≥ ζ

(
1√
kε

)n

for some ζ := ζn > 0, if we choose C∗ > 0 so small that

C∗ <

(
0.99

ωnCn

)1/n

.
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