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If α is a probability on R
d and t > 0, the Dirichlet random probability Pt ∼ D(tα) is such that for any

measurable partition (A0, . . . ,Ak) of Rd the random variable (Pt (A0), . . . ,Pt (Ak)) is Dirichlet distributed
with parameters (tα(A0), . . . , tα(Ak)). If

∫
Rd log(1 + ‖x‖)α(dx) < ∞ the random variable

∫
Rd xPt (dx)

of R
d does exist: let μ(tα) be its distribution. The Dirichlet curve associated to the probability α is

the map t �→ μ(tα). It has simple properties like limt↘0 μ(tα) = α and limt→∞ μ(tα) = δm when

m = ∫
Rd xα(dx) exists. The present paper shows that if m exists and if ψ is a convex function on Rd then

t �→ ∫
Rd ψ(x)μ(tα)(dx) is a decreasing function, which means that t �→ μ(tα) is decreasing according to

the Strassen convex order of probabilities. The second aim of the paper is to prove a group of results around
the following question: if μ(tα) = μ(sα) for some 0 ≤ s < t , can we claim that μ is Cauchy distributed
in R

d?

Keywords: Cauchy distribution; Dirichlet random probability; Strassen convex order

1. Introduction

If a0, . . . , ak > 0 and t = a0 + · · · + ak recall that the Dirichlet distribution D(a0, . . . , ak) (as
named by Wilks [28]) is the law of the random variable (X0, . . . ,Xk) of Rk+1 such that Xi ≥ 0
for all i = 0, . . . , k and X0 + · · · + Xk = 1, with the density of (X1, . . . ,Xk) equal to

�(t)

�(a0) · · ·�(ak)
(1 − x1 − · · · − xk)

a0−1x
a1−1
1 · · ·xak−1

k .

For f0, . . . , fk > 0 it satisfies

E

(
1

(f0X0 + · · · + fkXk)t

)
= 1

f
a0
0 · · ·f ak

k

. (1)

See, for instance [2], Proposition 2.1. By considering moments, we can prove the following weak
limits:

lim
r→∞D(ra0, . . . , rak) = δ(a0/t,...,ak/t), (2)
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lim
ε→0

D(εa0, . . . , εak) =
k∑

i=0

ai

t
δei

, (3)

where (e0, . . . , ek) is the canonical basis of Rk+1.
More generally, consider a measured space (�,A, tα) where α is a probability on � and

t > 0. A quick way to introduce the Dirichlet random probability Pt on � associated to the
bounded measure tα follows Sethuraman’s stick breaking method: select independent random
variables B1, Y1, . . . ,Bn,Yn, . . . such that for all n ≥ 1 we have Bn ∼ α and Yn ∼ β(1, t)(dy) =
t (1 − y)t−11(0,1)(y) dy. Then define W1 = Y1 and for n > 1

Wn = Yn(1 − Yn−1) · · · (1 − Y1).

It is an easy consequence of the strong law of large numbers that with probability 1, as N → ∞
one has

∑N
n=1 Wn = 1 − (1 −Y1) · · · (1 −YN) → 1. Sethuraman [24] has proved that the random

purely atomic probability Pt on � defined by

Pt (dw) =
∞∑

n=1

WnδBn(dw), (4)

satisfies for any measurable partition (A0, . . . ,Ak) of �(
Pt (A0), . . . ,Pt (Ak)

) ∼D
(
tα(A0), . . . , tα(Ak)

)
. (5)

For this reason, the random probability Pt is said to be a Dirichlet random probability and its
distribution is denoted by D(tα). One says also that α is the governing probability of Pt and that
t is its intensity. Of course, (Pt )t≥0 has a venerable story and the papers by [4,6,9] and [17] are
among the important papers to read on the subject.

Some simple considerations about {D(tα), t > 0} are in order. If f is a real bounded mea-
surable function defined on � and if Pt ∼ D(tα), then the Fourier transform of the real random
variable

Xt(f ) =
∫

�

f (w)Pt (dw) =
∞∑

n=1

Wnf (Bn)

will satisfy for real s:

lim
t→∞E

(
eis

∫
� f (w)Pt (dw)

) = eis
∫
� f (w)α(dw), (6)

lim
t↘0

E
(
eis

∫
� f (w)Pt (dw)

) =
∫

�

eisf (w)α(dw). (7)

If f is taking a finite number of values, this is a reformulation of the statements (2) and (3). To
show (6) when f is bounded denote α(f ) = ∫

�
f dα for simplicity. Consider a sequence gN of

functions on � taking a finite number of values such that εN = sup |gN − f | →N→∞ 0. Then∣∣E(
eisXt (f )

) − eisα(f )
∣∣ ≤ A + B + C,
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where

A = ∣∣E(
eisXt (f )

) −E
(
eisXt (gN )

)∣∣, B = ∣∣E(
eisXt (gN )

) − eisα(gN )
∣∣,

C = ∣∣eisα(gN ) − eisα(f )
∣∣.

From |eia − eib| ≤ |a − b|, we get that A and C are less that 2|s|εN . Furthermore, limt↘0 B = 0
since gN takes a finite number of values. As a consequence lim supt↘0(A+B +C) ≤ 2|s|εN for
all N and this proves (6). Formula (7) is intuitively clear from the representation (4). A detailed
proof is similar to the previous one.

Notice that, if we assume that � is a locally compact separable space, then equality (6) says
that limt→∞ D(tα) = δα whereas, if we denote by Qα the distribution of the random probability
on � defined by δX with X ∼ α, equality (7) says that limt↘0 D(tα) = Qα both in the sense of
weak convergence.

The present paper focuses on the distribution of the random variable Xt(f ) when f is neither
necessarily non-negative nor bounded, and it can be even valued in R

d rather than in R. It is
easily seen that if f : � → R

d and α′ and P ′
t are the respective images by f on R

d of the
probabilities α and Pt on �, then P ′

t ∼ D(tα′). Therefore, in order to study the distribution of
Xt(f ) = ∫

�
f (w)Pt (dw) = ∫

Rd xP ′
t (dx), there is no loss of generality in choosing � = R

d and
f equal to the identity.

The problem of the existence of

Xt =
∫
Rd

xPt (dx) =
∞∑

n=1

WnBn (8)

(where now the Bn’s are i.i.d., α distributed in R
d ) has been solved by a crucial paper of [7]

where they prove that for a fixed t > 0, then
∫
Rd ‖x‖Pt(dx) < ∞ almost surely if and only if∫

Rd

log
(
1 + ‖x‖)α(dx) < ∞ (9)

(actually they did this for d = 1; the case d > 1 is easily deduced from it). Let us denote by L
log
d

the set of probabilities α on R
d such that (9) holds. If α ∈ L

log
d denote by μ(tα) the distribution in

R
d of Xt defined by (8). We anticipate that μ(tα) /∈ L

log
d in general (see Proposition 5.6 below).

The main character of this paper is the map t �→ μ(tα) from (0,∞) to the set of probabilities
on R

d . We call this map the Dirichlet curve associated to the probability α ∈ L
log
d on R

d . Here is
a useful and classical characterization of μ(tα) (see, e.g., [12], Proposition 2 and the subsequent
discussion):

Proposition 1.1. Let α ∈ L
log
d and consider three independent random variables X (valued in

R
d ), B ∼ α and Y ∼ β(1, t). Then

X ∼ (1 − Y)X + YB (10)

if and only if X ∼ μ(tα).
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The if part is obvious from the definition (8). The converse follows from a general result
described in [2], (Proposition 1).

In Proposition 3.4, we will see that t �→ μ(tα) is weakly continuous and that

lim
t↘0

μ(tα) = α. (11)

Furthermore, if ∫
Rd

‖x‖α(dx) < ∞ (12)

then m = ∫
Rd xα(dx) is well defined and Theorem 3.5 below in particular shows

lim
t→∞μ(tα) = δm. (13)

If α has compact support, these two facts are immediate consequences of (6) and (7). Observe
also that (12) implies through (8) that E(Xt ) exists and is equal to m, for any t > 0. Comparing
the behavior of μ(tα) in the neighbourhood of 0 and ∞, one can make the vague observation
that the concentration of μ(tα) is increasing with t . In order to give a meaning to this statement,
namely that for 0 ≤ s ≤ t the probability μ(tα) is more concentrated than μ(sα), we use the
Strassen convex order. Before stating its definition, observe that if μ is a probability in R

d having
a mean and if ψ is a convex function on R

d then
∫
Rd max(0,−ψ(x))μ(dx) < +∞. This comes

from the fact that there exists a ∈ R
d and b ∈ R such that ψ(x) ≥ 〈a, x〉+b together with the fact

that μ has a mean. As a consequence
∫
Rd ψ(x)μ(dx) makes sense, although it can be possibly

+∞.

Definition (Strassen convex order). If μ and ν are probabilities on R
d having means, we write

ν ≺ μ if
∫
Rd ψ(x)ν(dx) ≤ ∫

Rd ψ(x)μ(dx) for all convex functions ψ on R
d .

Needless to say, ν ≺ μ implies that μ and ν have the same mean. For general references on
stochastic orders, see [25] or [19].

Our main theorem is the following:

Theorem 1.2. Let α ∈ L
log
d . If

∫
Rd ‖x‖α(dx) < ∞ then for 0 ≤ s ≤ t we have μ(tα) ≺ μ(sα).

In other terms, t �→ μ(tα) is decreasing for the Strassen convex order on (0,+∞).

We shall comment on this result and we will give examples in Section 2. We will prove it in
Section 4, after gathering several properties of μ(tα) in Section 3.

Next, we suppose that (9) is fulfilled but not (12). In the asymptotic behavior of μ(tα) when
t → ∞, Cauchy laws play a crucial role. For b > 0 and a ∈ R denote w = a + ib and consider
the strict Cauchy distribution on R

cw(dx) = 1

π

b dx

(x − a)2 + b2
. (14)
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This notation is borrowed from [15]; it enables us to write the Fourier transform of cw in the
following way. For s > 0 ∫ ∞

−∞
eisxcw(dx) = eisw

and obviously
∫ ∞
−∞ eisxcw(dx) = eisw if s < 0. Moreover, this formula has a sense for b = 0, in

which case cw is defined as the Dirac mass δa . Both strict Cauchy and Dirac distributions will be
called Cauchy distributions in the sequel.

It is a well-known fact due to [29] that μ(tcw) = cw for all t > 0 when �w > 0. In other terms,
the Dirichlet curve governed by cw is reduced to a point. If (12) is not fulfilled, the asymptotic
behavior of μ(tα) is not yet well understood: Theorem 3.5 below shows if the limit of μ(tα) as
t → ∞ exists, it is a Cauchy distribution in R

d (in R
d , what we call a Cauchy distribution is a

probability law such that all linear forms are one dimensional Cauchy). In Section 5, we shall
study the α′s such that μ(tα) = μ(sα) for some 0 ≤ s < t . In many particular cases for (s, t), we
will prove that these α’s are Cauchy distributions in R

d . On the basis of these partial results, we
conjecture that this is true for any 0 ≤ s < t .

2. Comments and examples

Comments on Strassen convex order:

1. The Strassen convex order between probabilities on R
d has an important characterization

due to [26]:

Theorem 2.1. Let μ and ν be probabilities on R
d with the same finite mean. Then μ ≺ ν if

and only if there exists a probability kernel K(y,dx) from R
d to itself such that μ(dx) =∫

Rd ν(dy)K(y, dx), the integral
∫
Rd ‖x‖K(y,dx) exists and

∫
Rd xK(y, dx) is equal to y, ν

almost everywhere. In other terms if X ∼ μ and Y ∼ ν, one can find a joint distribution
ν(dy)K(y, dx) for (X,Y ) such that E(X|Y) = Y .

2. More generally if I is an real interval, a family (νs)s∈I of probabilities on R
d is sometimes

called a “peacock” if s1 < s2 implies νs1 ≺ νs2 . For d = 1, Kellerer [14] has shown that in this
case there exists a Markovian martingale (Ms)s∈I such that Ms ∼ νs for all s ∈ I . Hirsch and
Roynette [10] have extended this result to any d . Therefore, our Theorem 1.2 says that if we
denote for s ∈ (0,1)

νs = μ

(
1 − s

s
α

)
(15)

then (νs)s∈(0,1) is a peacock. In practical circumstances, it is difficult to make the kernels K and
the martingale (Ms) explicit, in agreement with the fact that Kellerer’s proof is not constructive
(see also the comment after Proposition 2.2 below).

3. It is useful to know that if νn ≺ μn and if μn and νn converge weakly to μ and ν respec-
tively, and if the means of μn and νn converge to the means of μ and ν, then ν ≺ μ. This is
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Theorem 3.4.6 of [19]. Here is an application of this fact: with the hypotheses and notations of
Theorem 1.2, we have μ(tα) ≺ α for any t > 0, because of (11).

4. If μ ≺ ν and ν ≺ μ, we have μ = ν. To see this in dimension one, use the convex function
ψa(x) = (x − a)+, getting

∫
[a,∞)

(x − a)μ(dx) = ∫
[a,∞)

(x − a)ν(dx). Thus,

∫ ∞

a

(∫
[t,∞)

μ(dx)

)
dt =

∫ ∞

a

(∫
[t,∞)

ν(dx)

)
dt

for any a and μ = ν follows. It is easy to pass to higher dimensions by taking linear forms.

Examples of Strassen convex order:

1. A classical example is offered by a sequence X1, . . . ,Xn, . . . of i.i.d. random variables
of R

d having a mean. If μn is the distribution of Xn = 1
n
(X1 + · · · + Xn), then μn ≺ μm if

1 ≤ m ≤ n since E(Xm|Xn) = Xn. To see this, observe that j �→ E(Xj |Xn) does not depend
on j . This sequence (μn)n≥1 presents an analogy with the Dirichlet curve. Indeed, by the weak
law of large numbers μn converges weakly to δE(X1). Moreover, if X1 ∼ cw is Cauchy distributed
on R then μn ∼ cw , for any for any integer n. Furthermore, if μ1 = μn = μm where m is not
a rational power of n, then X1 is strictly one-stable, that is, is Cauchy (see [21] and [30], page
14 or [22], page 4). This does not hold under the assumption μ1 = μm for some m > 1, as
proved by Lévy’s counderexampled reported in [8], page 538. This behaviour differs from what
we conjecture to be true for the Dirichlet curve at the end of the Introduction. In all the examples
known so far, the asymptotic behaviour of μ(tμ1) as t → ∞ is the same as that of μn as n → ∞.

2. Suppose that X ∼ μ, Y ∼ ν and 0 < U < 1 are independent random variables such that
X ∼ (1 − U)X + UY where μ and ν are probabilities on R

d having a mean. Then μ ≺ ν, since
for any convex function ψ , with m = E(U) ∈ (0,1), we obtain

E
(
ψ(X)

) = E
(
ψ

(
(1 − U)X + UY

)) ≤ (1 − m)E
(
ψ(X)

) + mE
(
ψ(Y )

)
⇒ E

(
ψ(X)

) ≤ E
(
ψ(Y )

)
.

3. To give an explicit example of application of 2 let us use the following result due to [1]
(with a different proof).

Proposition 2.2. Let 0 < a < b. Let Xb ∼ β(b, b), Xa ∼ β(a, a) and U ∼ β(2a, b − a) be
mutually independent. Then Xb ∼ (1 − U)Xb + UXa .

Proof. For |z| < 1 apply (1) to the Dirichlet distribution (1 − U,U) ∼ D(b − a,2a) and to
f1 = 1 − zXb,f2 = 1 − zXa . We get

E

(
1

(1 − z((1 − U)Xb + UXa))b+a

)
= E

(
1

(1 − zXb)b−a

)
×E

(
1

(1 − zXa)2a

)
.

Now we use Euler’s formula (see [20], page 47): for V ∼ β(B,C − B) then

2F1(A,B;C; t) = E

(
1

(1 − zV )A

)
.
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We apply it to V = Xa , with B = a and A = C = 2a, then to V = Xb , with A = b − a, B = b

and C = 2b:

E

(
1

(1 − zXa)2a

)
= 1

(1 − z)a
, E

(
1

(1 − zXb)b±a

)
= 2F1(b ± a, b;2b; z).

Now we use the other Euler formula (Rainville [20], page 60)

2F1(A,B;C,z) = (1 − t)C−A−B
2F1(C − A,C − B;C; z).

for A = b − a, B = b and C = 2b, obtaining

E

(
1

(1 − z((1 − U)Xb + UXa))b+a

)
= E

(
1

(1 − zXb)b+a

)

which implies the result. �

As a consequence β(b, b) ≺ β(a, a) if 0 < a < b. We shall use this fact in the proof of Theo-
rem 1.2. No explicit probability kernel K(x,dy) satisfying the characterization in Theorem 2.1
for this pair (β(b, b),β(a, a)) is known to us.

4. Suppose that α is concentrated on [0,∞) and has a moment of order n. Then Gn(t) =∫ ∞
0 xnμ(tα)(dx) exists (see [12] and Section 3 below). Theorem 1.2 implies that t �→ Gn(t) is

decreasing. Proving directly this fact for small values of n ≥ 2 is a painful process using classical
inequalities for the moments of α, as exemplified by Proposition 3.3 below.

Examples of Dirichlet curves:

1. Bernoulli case: If � =R
d+1 and α = p0δe0 + · · · + pdδed

where (e0, . . . , ed) is the canon-
ical basis of R

d+1 then from (5) we have Pt = X0δe0 + · · · + Xdδed
where (X0, . . . ,Xd) ∼

D(tp0, . . . , tpd). This implies that μ(tα) = D(tp0, . . . , tpd). The fact that in this example we
have μ(tα) ≺ μ(sα) for 0 ≤ s < t is by no means obvious and is a consequence of The-
orem 1.2. A particular example is obtained for d = 1: the ordinary Bernoulli distribution
α(dx) = qδ0 + pδ1 with p = 1 − q ∈ (0,1) governs the Dirichlet curve μ(tα) = β(tp, tq), for
t > 0. It should be mentioned that another proof of β(tp, tq) ≺ β(sp, sq) for s < t is obtained
from Theorem 2.A.7 of [25]. To apply this theorem, it is necessary to study the ratio between
their densities. For the particular case p = q = 1/2, Theorem 1.2 is directly obtained by using
Proposition 2.2, since

μ

(
t

(
1

2
δ0 + 1

2
δ1

))
= β

(
t

2
,
t

2

)
.

2. If � = R and α(dx) = β(2)( 1
2 , 1

2 )(dx) = 1
π

x−1/2

(1+x)
1(0,+∞)(x) dx, then

μ(tα)(dx) = β(2)

(
t + 1

2
,

1

2

)
(dx) = 1

B(t + 1/2,1/2)

xt−1/2

(1 + x)1+t
1(0,∞)(x) dx. (16)

This fact has been observed by [3], Example 7, page 1394. It has been actually completed by [12],
Remark 7, page 234. This example has no first moments so Theorem 1.2 cannot be applied to it.
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However, notice that limt→∞ μ(tα) does not exist (it goes to infinity, see also Corollary 3.6 for a
generalization). More specifically, if Xt ∼ β(2)(t + 1

2 , 1
2 ) then the distribution of t/Xt converges

to a gamma distribution γ1/2 (in the sequel we write γa(dx) = e−xxa−11(0,∞)(x) dx/�(a) for
a > 0). To see this, use the Mellin transform or the representation of Xt as a quotient of two
independent gamma variables. Using this representation one easily sees that t �→ Pr(Xt > x) is
increasing. More generally, one can conjecture that if α is supported by (0,∞) and has no mean,
then t �→ Pr(Xt > x) is increasing for all x when Xt ∼ μ(tα). If α has a finite expectation m,
this is impossible since in this case

m = E(Xt ) =
∫ ∞

0
Pr(Xt > x)dx.

3. If � =R and α = β( 1
2 , 1

2 ) then μ(tα) = β(t + 1
2 , t + 1

2 ). To see this apply Proposition 2.2
to the particular case a = 1

2 and b = t + 1
2 : the proposition says that if X ∼ β(t + 1

2 , t + 1
2 ), Y ∼

β(1, t) and B ∼ β( 1
2 , 1

2 ) are independent, then X ∼ (1 − Y)X + YB . From the characterization
(10) of Proposition 1.1, we get the result. Comparing example 1 with d = 1 with the present
example 3, we notice the formula: for t ≥ 1/2

μ(tα1) = β

(
t

2
,
t

2

)
= μ

(
t − 1

2
α

)
,

with α1 = (δ0 + δ1)/2 and α = β(1/2,1/2): the curve of α1 contains the curve of α. This is the
only example we know in which this happens.

4. If � = R
2 and α is the uniform distribution on the circle U = {(x, y);x2 + y2 = 1}, then

μ(tα) is the distribution of Rt� where R2
t ∼ β(1, t) is independent of � ∼ α. To see this, observe

from (8) that μ(tα) must be invariant by rotation since α has this property. Furthermore, the
image of α by the projection (x, y) �→ x is also the image of β( 1

2 , 1
2 ) by x �→ x′ = 2x − 1. Using

the preceding example, the image of μ(tα) by the projection (x, y) �→ x is also the image of
β(t + 1

2 , t + 1
2 ) by x �→ x′ = 2x − 1. A slightly tedious calculation leads to the result: for this

observe that X′
t = Rt cos� where � is uniform on (0,2π ] and is independent of Rt . Therefore

if s > 0 we write E(R2s
t ) = E(((X′

t )
2)s)/E((cos2 �)s). Similar examples when α is the uniform

distribution on the unit sphere of Rd with d > 2 are manageable but they lead to untractable
formulas for the distribution of Rt .

Already for d = 3 we are led to deal with the Dirichlet curve of the uniform distribution α1 on
(0,1). Diaconis and Kemperman [6] (Example 4, page 99) seem to be the first to have written
that

μ(α1) = e

π

sinπx

xx−1(1 − x)−x
α1(dx),

but μ(tα1) for t �= 1 is notoriously complicated, as it can be seen in [17]. Explicit calculations
about this problem appear in [16], in the comments following Theorem 16.

5. If α ∈ L
log
d , if X ∼ μ(tα) is independent of U ∼ β(t, t0), then XU ∼ μ(t0δ0 + tα).

This remark can be found in [13], Theorem 2.1. More generally, suppose that X0, . . . ,Xn

and Y = (Y0, . . . , Yn) ∼ D(t0, . . . , tn) are independent, with Xj ∼ μ(tjαj ) with αj ∈ L
log
d , for
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j = 0, . . . , n. Then

Y0X0 + · · · + YnXn ∼ μ(t0α0 + · · · + tnαn).

In particular, for αj = α ∈ L
log
d for all j = 0, . . . , n, the distribution of Y0X0 + · · · + YnXn still

lies on the Dirichlet curve of α.

Comments on the Cauchy distribution in R
d :

1. Recall that a Cauchy distribution c in R
d is a distribution such that if X ∼ c then 〈f,X〉 is

Cauchy in R for any linear form f on R
d . This means that

∫
Rd eis〈f,x〉c(dx) = eisw(f ), with f �→

w(f ) positively homogeneous (i.e., w(λf ) = λw(f ) for λ ≥ 0): the admissible w’s are described
in the following proposition (see [23], Theorem 4.10, or [22], Chapter 2, Theorem 2.3.1).

Proposition 2.3. The random variable X in R
d is Cauchy distributed if and only if there exists

a ∈ R
d and a positive measure b(ds) on the unit sphere S of Rd such that

∫
S
sb(ds) = 0 and

such that for all f ∈R
d we have 〈f,X〉 ∼ cw(f ) with

w(f ) = 〈a,f 〉 − 2

π

∫
S

〈f, s〉 log
∣∣〈f, s〉∣∣b(ds) + i

∫
S

∣∣〈f, s〉∣∣b(ds). (17)

There are several other definitions of the Cauchy distribution in a Euclidean space in the
literature, generally more restrictive that the present one. The most popular is the distribu-
tion of X such that E(e〈t,X〉) = e−‖tt‖ and its affine deformations. For such an X, we have
w(f ) = i‖f ‖ and b(ds) = CU(ds) where U(ds) is the uniform probability on the unit sphere S

and C = √
π�((d + 1)/2)/�(d/2).

2. A remarkable fact about the distribution of 〈f,X〉 is that its median

〈a,f 〉 − 2

π

∫
S

〈f, s〉 log
∣∣〈f, s〉∣∣b(ds)

is not a linear form in f , which means that the distribution of X has not necessarily a center of
symmetry. If b(ds) is invariant by s �→ −s of course

∫
S
〈f, s〉 log |〈f, s〉|b(ds) = 0 and a is the

center of symmetry. If d = 1, b is necessary symmetric.
For an example of a Cauchy distribution in R2 without center of symmetry, one can consider

b = δ1 + δj + δj2 where S is identified with the unit circle of the complex plane and where
j and j2 are the complex cubic roots of the unity. It satisfies

∫
S
sb(ds) = 0. If f = eiθ and if

g(θ) = − 2
π

cos θ log | cos θ | then the median of 〈f,X〉 is

r(θ) = g(θ) + g

(
θ − 2π

3

)
+ g

(
θ + 2π

3

)
.

and θ �→ r(θ)eiθ is the equation of a nice trefoil curve.
3. If α is a probability on [0,∞) and if ρ is a probability in R

d we denote by ρ � α the
distribution of XY when X ∼ ρ and Y ∼ α are independent. For d = 1, the following invariance
principle was obtained by [29] in the particular case α = δ1 and in general by [12]:
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Proposition 2.4. If c is Cauchy in Rd and if α is a probability on [0,∞) belonging to L
log
1 , then

μ(tc � α) = c � μ(tα). (18)

Proof. The proof is quite easy: since c is Cauchy, then c ∈ L
log
d . Furthermore, if α ∈ L

log
1 , then

c � α ∈ L
log
d and μ(tc � α) makes sense. Let X = (Xn), A = (An) and Y = (Yn) be three

independent i.i.d. sequences such that Xn ∼ c, An ∼ α and Yn ∼ β(1, t) then

μ(tc � α) ∼
∞∑

n=1

XnAnWn,

where W1 = Y1, and Wn denotes Yn

∏n−1
j=1(1 − Yj ) as usual. So we have to prove that the latter

has the same law as X0
∑∞

n=1 AnWn, where X0 ∼ c is independent of everything else. Recall that
the Fourier transform of c is eisw(f ), with w positively homogeneous, from which the Fourier
transform of μ(tc � α) is obtained as follows:∫

Rd

eis〈f,x〉μ(tc � α)(dx) = E
(
E

(
eis

∑∞
n=1〈f,Xn〉AnWn |A,W

)) = E
(
e
∑∞

n=1 iswf AnWn
)

=
∫ ∞

0
eiswf aμ(tα)(da) = E

(
eis〈f,X〉∑∞

n=1 AnWn
)

=
∫
Rd

eis〈f,x〉c � μ(tα)(dx). �

Corollary 2.5. If c is Cauchy in R
d , then μ(tc) = c for all t > 0.

Proof. Choose α = δ1 in Proposition 2.4. �

3. Moments and asymptotic properties of the Dirichlet curve

The basic link between μ(tα) and α is the Proposition 3.1 below, generally attributed to [4].
Other proofs are given in Theorem 1 of [12] or in Theorem 2 of [27] (where it is called Markov–
Krein identity). It is a considerable extension of (1). For convenience, we give two versions. For
a real number t and a nonzero complex number z such that its argument arg z is in (−π,π),
symbols log z and zt mean log |z| + i arg(z) and et log z, respectively.

Proposition 3.1. If α ∈ L
log
1 , then for any real s we have∫ +∞

−∞
μ(tα)(dx)

(1 − isx)t
= e−t

∫ +∞
−∞ log(1−isx)α(dx)

and, for �z �= 0: ∫ +∞

−∞
μ(tα)(dx)

(x − z)t
= e−t

∫ +∞
−∞ log(x−z)α(dx).
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With the methods of [12] the next proposition gives information on the Mellin transform of
‖X‖ when X ∼ μ(tα). We use the Pochhammer symbol (t)k = t (t + 1) · · · (t + k − 1) if k is a
positive integer and (t)0 = 1.

Proposition 3.2. Let α ∈ L
log
d . Let Xt ∼ ∫

Rd xPt (dx), where Pt ∼ D(tα), and let B ∼ α. Then
for any number s > 0 we have

E
(‖Xt‖s

)
< ∞ ⇔ E

(‖B‖s
)
< ∞.

Under these circumstances, for d = 1 and if s = n is a positive integer we have the Hjort–Ongaro
formula

E
(
Xn

t

) = (n − 1)!
(t + 1)n−1

n−1∑
k=0

(t)k
E(Xk

t )

k! E
(
Bn−k

)
. (19)

Furthermore if s ≥ 1, we have E(‖Xt‖s) ≤ E(‖B‖s) and if 0 < s < 1 we have

E(‖Xt‖s)

E(‖B‖s)
≤ t

�(t)�(s)

�(t + s)
, E

(‖B‖s
) ≤ E

((∫ +∞

−∞
‖x‖Pt(dx)

)s)
. (20)

Proof. For simplicity, write X = Xt . We prove first the equivalence for s ≥ 1. If X,Y,B are
independent and Y ∼ β1,t , we have X ∼ (1 −Y)X +YB from (10). Introduce a random variable
G ∼ γ1+t independent of X,Y,B and observe that G′ = G(1 − Y) ∼ γt and G′′ = GY ∼ γ1 are
independent. Therefore,

GX ∼ G′X + G′′B (21)

with X, G′, G′′ and B mutually independent. For proving part ⇐, we use (4). Since s ≥ 1, one
has

‖X‖s ≤
(∫

Rd

‖x‖Pt(dx)

)s

≤
∫
Rd

‖x‖sPt (dx) =
∞∑
i=1

‖Bi‖sYi

i−1∏
k=1

(1 − Yk),

E
(‖X‖s

) ≤ E

(∫
Rd

‖x‖sPt (dx)

)
= E

( ∞∑
i=1

‖Bi‖sYi

i−1∏
k=1

(1 − Yk)

)
= E

(‖B‖s
)
< ∞.

For proving part ⇒, let us denote U = G′X and V = G′′B . If E(‖X‖s) < ∞, then E(‖U +
V ‖s) = E(Gs)E(‖X‖s) < ∞. Denote Cs(u) = E(‖u + V ‖s) ≤ ∞. Since E(Cs(U)) < ∞, by
Fubini’s theorem there exists u0 such that Cs(u0) < ∞. We get from Minkowski’s inequality

E
(‖V ‖s

) ≤ (‖u0‖ + (
E

(‖V + u0‖s
))1/s)s

< ∞

since V is the sum of V + u0 and the constant −u0. Since E(‖V ‖s) = E((G′′)s)E(‖B‖s) we get
E(‖B‖s) < ∞ and part ⇒ is proved. Suppose now that d = 1 and that E(‖B‖n) < ∞). Then
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(19) is easily seen from (21):

(t + 1)n
E(Xn)

n! = E(GnXn)

n! =
n∑

k=0

E((G′)kXk)

k!
E((G′′)n−kBn−k)

(n − k)! =
n∑

k=0

(t)k
E(Xk)

k! E
(
Bn−k

)
.

Subtracting from both sides the nth term of the sum and simplifying one gets the desired expres-
sion. Finally, assume 0 < s < 1 and observe that for all t > 0 we have (1 + t)s ≤ 1 + t s (just
show that t �→ 1 + t s − (1 + t)s is increasing). Together with the triangle inequality, this implies
that ‖U + V ‖s ≤ ‖U‖s + ‖V ‖s and therefore by taking expectations

(
E

(
Gs

) −E
((

G′)s))
E

(‖X‖s
) ≤ E

((
G′′)s)

E
(‖B‖s

)
which is (20) since t

�(t)�(s)
�(t+s)

= E((G′′)s)/(E(Gs) − E((G′)s)). For (20), integrate x �→ ‖x‖s

with Pt(dx) defined by (4), use the equality inside (22) and the following inequality (correct for
0 < s < 1) ∫

Rd

‖x‖sPt (dx) ≤
(∫

Rd

‖x‖Pt(dx)

)s

. �

Comment. About the first inequality in (20) note that t
�(t)�(s)
�(t+s)

≥ 1 for 0 < s < 1: just observe

that since log� is convex, then s �→ log t
�(t)�(s)
�(t+s)

is decreasing and zero for s = 1.

Next, the proposition shows that if α is concentrated on [0,∞), then the first moments of
Xt ∼ μ(tα) have certain delicate properties (which are probably true for any moment). These
properties imply that t �→ E(Xn

t ) is decreasing. This fact has been an incentive for guessing the
statement of Theorem 1.2.

Proposition 3.3. Let α be a probability on [0,∞), let Xt ∼ μ(tα) and let k be a fixed positive
integer. Suppose that mk = ∫ ∞

0 xkα(dx) < ∞. Consider the function

ck(t) = E(Xk
t )

k! .

Then Pk(t) = (t + 1)kck+1(t) is a polynomial of degree k. In particular

P0(t) = m1, P1(t) = m2

2
+ m2

1

2
t, P2(t) = m3

3
+ m1m2

2
t + m3

1

6
t2,

P3(t) = m4

4
+

(
m1m3

3
+ m2

2

8

)
t + m2

1m2

4
t2 + m4

1

24
t3.

Finally, the polynomial t �→ Qk(t) = −[(t + 1)k]2c′
k+1(t) of degree 2k − 1 has nonnegative

coefficients for k = 1,2,3. As a consequence, the functions t �→ E(Xn
t )

n! are decreasing for n =
2,3,4.
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Proof. From (19), one easily gets P0(t) = m1 and

Pn(t) = 1

n + 1
mn+1 + t

n + 1

n−1∑
k=0

Pk(t)mn−k

from which P1,P2,P3 are deduced. One also gets

−[
(t + 1)k

]2
c′
k+1(t) = Qk(t) = Pk(t)

d

dt
(t + 1)k − (t + 1)kP

′
k(t).

The first Qk’s are

Q1(t) = 1

2

(
m2 − m2

1

)
, Q2(t) = (m3 − m1m2) + 2

3

(
m3 − m2

1

)
t + m1

2

(
m2 − m2

1

)
t2,

Q3(t) =
(

2(m4 − m1m3) + 3

4

(
m4 − m2

2

)) + 3
(
m4 − m2

1m2
)
t

+
(

3

4

(
m4 − m2

1m2
) + 3m2

4

(
m2 − m2

1

) + 2m1(m3 − m1m2)

)
t2

+
(

2m1

3

(
m3 − m3

1

) + 1

4

(
m2

2 − m4
1

))
t3 + m4

1

4

(
m2 − m2

1

)
t4.

If B ∼ α, then m2 − m2
1 = E((B − m1)

2) ≥ 0, m4 − m2
2 = E((B2 − m2)

2) ≥ 0 and

m3 − m2m1 = E
(
(B − m1)

2(B + 2m1)
) ≥ 0,

m4 − m3m1 = E
(
(B − m1)

2(B2 + m1B + 2m2
1

)) ≥ 0,

m3 − m3
1 = (m3 − m2m1) + m1

(
m2 − m2

1

) ≥ 0,

m4 − m2
1m2 = (m4 − m3m1) + m1(m3 − m1m2) ≥ 0.

This shows the nonnegativity of the coefficients of Q1, Q2 and Q3. �

Proposition 3.4. If α ∈ L
log
d then t �→ μ(tα) is weakly continuous on (0,∞). Furthermore, we

have limt↘0 μ(tα) = α.

Proof. We fix t0 > 0. We consider a sequence (Un)n≥1 of i.i.d. random variables which are uni-
form on (0,1). Then 1−U

1/t
n ∼ β(1, t). If the Bn’s are independent with the same distribution α,

we consider for t > 0 and N integer

XN,t =
∞∑

n=N

(U1 · · ·Un−1)
1/t

(
1 − U

1/t
n

)
Bn
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with the convention U1 · · ·Un−1 = 1 for n = 1. We have Xt = X1,t ∼ μ(tα). Consider MN,t =∑∞
n=N(U1 · · ·Un−1)

1/t‖Bn‖. Having E(log(1 + ‖Bn‖)) finite we get limn ‖Bn‖1/n = 1 almost
surely. This comes from

∞∑
n=1

Pr

(
1

n
log

(
1 + ‖Bn‖

)
> ε

)
< ∞

and the Borel Cantelli lemma. From the law of large numbers and the fact that Un ∼ γ1 we have
that limn

1
n

∑n
k=1 logUk = −1. By Cauchy criterion for real series, these two remarks imply that

MN,t converges almost surely to zero for N → ∞. Since t �→ MN,t is increasing we conclude
that for 0 < t ≤ t0 we have

‖XN,t‖ ≤ MN,t ≤ MN,t0 .

This implies the almost sure normal convergence of the series Xt on (0, t0]. This implies that
t �→ Xt is almost surely continuous on (0,∞). Finally, let us extend the definition of Xt to
t = 0 by X0 = B1. The above uniform convergence extends to [0, t0] and limt↘0 Xt = B1 almost
surely. Since almost sure convergence implies weak convergence the proof is complete. �

Theorem 3.5. If
∫
Rd ‖x‖α(dx) < ∞ and m = ∫

Rd xα(dx), then μ(tα) →
t→∞ δm.

In case
∫
Rd ‖x‖α(dx) = ∞, with α ∈ L

log
d , and μ(tα) →

t→∞μ exists and it is a probability, then

μ is a Cauchy distribution.
In particular for d = 1, μ(tα) converges to μ = cw , with w = a + ib, if and only if

b = lim
t→∞

∫ ∞

0
Pr

(|B| > x
) xt

x2 + t2
dx,

(22)

a = lim
t→∞

∫ ∞

0

(
Pr(B > x) − Pr(B < −x)

) t2

x2 + t2
dx,

where B ∼ α.

Comments and examples:

1. For d = 1, consider the case where B is symmetric and |B| has a Pareto distribution of the
form Pr(|B| > x) = 1/xr for x > 1 where r is a positive parameter. If r > 1, then B is integrable,
so E(B) = 0 and b = 0. Elementary calculations from (22) show that b = π if r = 1, meaning
that μ(tα) converges to the strict Cauchy distribution ciπ . If r ∈ (0,1) b = ∞, so μ(tα) has no
limit.

2. For d = 1, consider B symmetric with Pr(|B| > x) = e
x logx

if x > e. The change of vari-
ables x = eu and t = es shows that∫ ∞

e

1

x logx

xt

x2 + t2
dx =

∫ ∞

1

du

u cosh(u − s)
du
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and it is easy to see that the limit b of this expression when s → ∞ is zero. This proves that in
this example limt→∞ μ(tα) = δ0 while E(|B|) = ∞. This shows that the Cauchy distribution in
the second statement of Theorem 3.5 can be a Dirac mass.

3. If m exists, with the notation coined in (15) let us define ν0 = δm and ν1 = α. Therefore
(νs)s∈[0,1] is a peacock. From Proposition 3.4, it is weakly continuous. In dimension 1, from
Theorem 4.4. of [11], the Kellerer martingale (Ms)0≤s≤1 is continuous and uniformly integrable.

4. In case
∫
Rd ‖x‖α(dx) = ∞, we have seen in (16) that limt→∞ μ(tα) may fail to exist.

Proposition 2.4 has shown that if α is the distribution of M > 0, if C ∼ c is Cauchy in R
d and is

independent of M > 0, and if α1 is the distribution in R
d of MC, then μ(tα1) is the distribution

of XtC where Xt ∼ μ(tα) is independent of C. Now if E(M) = m, Proposition 2.4 shows that
the limit distribution of XtC when t → ∞ is the Cauchy distribution of mC. This example helped
us to guess the second statement of Theorem 3.5. The Dirichlet curve (μ(tα))t≥0 is not always
tight, as shown by the example (16). But even if the Dirichlet curve is tight, it is not clear that a
limit μ(tα) →

t→∞μ always exists.

Proof of Theorem 3.5. We assume first that
∫
Rd ‖x‖α(dx) < ∞. It is enough to prove the result

for d = 1. The idea of the proof is to use Proposition 3.1. For real s, we have∫ +∞

−∞
μ(tα)(dx)

(1 − isx
t

)t
= e−t

∫ +∞
−∞ log(1−(isx)/t)α(dx). (23)

We will show that the left-hand side converges to some
∫ +∞
−∞ eisxμ(dx) and we will show that

the right-hand side to converges to eism.
For the left-hand side of (23), we first establish the tightness of the family {μ(tα), t > 0}. To

see this, we consider let Xt ∼ μ(tα) and observe that from Markov inequality and Proposition 3.2
we have for all t > 0:

Pr
(|Xt | > a

) ≤ 1

a
E

(|Xt |
) ≤ E(|B|)

a
.

Next, suppose that for some increasing sequence (tn), the sequence μ(tnα) converges weakly to
a probability μ as n → ∞. Now we consider

A(t) =
∫ +∞

−∞

(
1

(1 − (isx)/t)t
− eisx

)
μ(tα)(dx),

B(t) =
∫ +∞

−∞
eisx

(
μ(tα)(dx) − μ(dx)

)
.

The left-hand side of (23) is A(t) + B(t) + ∫ +∞
−∞ eisxμ(dx). By Paul Lévy’s theorem, the se-

quence B(tn) goes to zero when n → ∞.
We now show that limt→∞ A(t) = 0. We assume s �= 0. Let us fix ε > 0 and a = E(|B|)/ε,

and define

A0(t) =
∫

|x|≥a

(
1

(1 − (isx)/t)t
− eisx

)
μ(tα)(dx), A1(t) = A(t) − A0(t).
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Since
∫
|x|≥a

μ(tα)(dx) ≤ ε and since |(1 − isx
t

)−t | = (1 + s2x2

t2 )−t/2 ≤ 1 we can claim that
A0(t) ≤ 2ε for all t .

Next for 0 ≤ y < t introduce the function

f (t, y) = 1

(1 − y/t)t
− ey.

This is a nonnegative function since (t)n
tn

− 1 ≥ 0 shows f (t, y) = ∑∞
n=0

yn

n! (
(t)n
tn

− 1) ≥ 0. Fur-
thermore, y �→ f (t, y) is non-decreasing on (0, t) since ∂

∂y
f (t, y) = t

t−y
f (t, y) + y

t−y
ey ≥ 0.

For −t < sx < t , we have

∣∣∣∣ 1

(1 − (isx)/t)t
− eisx

∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

(isx)n

n!
(

(t)n

tn
− 1

)∣∣∣∣∣ ≤ f
(
t, |sx|).

As a consequence, for t > |sa|
∣∣A1(t)

∣∣ ≤
∫ a

−a

f
(
t, |sx|)μ(tα)(dx) ≤ f

(
t, |sa|) →

t→∞ = 0.

This finally proves that limt→∞ A(t) = 0.

For the right-hand side of (23), we introduce the function g(t, y) = t
2 log(1 + y2

t2 ). Now we
consider

−t

∫ +∞

−∞
log

(
1 − isx

t

)
α(dx) = R(t) + iI (t),

where R(t) = − ∫ +∞
−∞ g(t, sx)α(dx) and where

I (t) = −t

∫ +∞

−∞
Arg

(
1 − isx

t

)
α(dx) = t

∫ +∞

−∞
arctan

(
sx

t

)
α(dx)

=
∫ +∞

−∞

(∫ sx

0

t2 dv

t2 + v2

)
α(dx) →

t→∞

∫ +∞

−∞
sxα(dx) = sm

(here we have used dominated convergence). In order to show limt→∞ R(t) = 0, we fix ε > 0;
we introduce a > 0 such that

∫
|sx|>a

|x|α(dx) ≤ ε and such that 1
2 log(1 + y2) ≤ |y| if |y| ≥ a.

Since y �→ g(t, y) is increasing we get

∣∣R(t)
∣∣ =

∫
|sx|≤a

+
∫

|sx|≥a

g(t, sx)α(dx) ≤ g(t, a) + t

∫
|sx|≥a

|sx|
t

α(dx) ≤ g(t, a) + |s|ε

leading to the result since limt→∞ g(t, a) = 0.
Finally, we have proved that for all probability μ such that there exists an increasing sequence

(tn) satisfying limn→∞ μ(tnα) = μ we have
∫ +∞
−∞ eisxμ(dx) = eism, that is μ = δm. This is

enough to claim that limt→∞ μ(tα) = δm.
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Let us now assume that
∫
Rd ‖x‖α(dx) = ∞ and that μ(tα) →

t→∞μ exists and is a probabil-

ity. We imitate much of the preceding proof, by starting from (23) and proving that A(t) and
B(t) both converge to 0: the tightness of (μ(tα))t>0 is guaranteed by the existence of μ. There-
fore, the right-hand side of (23) has a limit when t → ∞. As a consequence, the limit iw of
− t

s

∫ +∞
−∞ log(1 − isx

t
)α(dx) exists but does not depend on s > 0. This implies that the limit of

the right-hand side of (23) is eiws , which means that μ is the one dimensional Cauchy distribu-
tion cw . For checking (22), observe that the real part of

∫ ∞
−∞ log(1 − i x

t
)α(dx) is

t

2
E

(
log

(
1 + B2

t2

))
= t

2

∫ ∞

0
Pr

(
log

(
1 + |B|2

t2

)
> z

)
dz =

∫ ∞

0
Pr

(|B| > x
) xt

x2 + t2
.

The proof for a in (22) is similar. �

Corollary 3.6. If α ∈ L
log
1 suppose that

∫ 0
−∞ |x|α(dx) < ∞ and that

∫ ∞
0 xα(dx) = ∞. If Xt ∼

μ(tα), then for any x we have Pr(Xt > x) →
t→∞ 1.

Proof. If N > 0, denote pN = α([N,∞)) and αN(dx) = α(dx)1(−∞,N)(x) + pNδN(dx). De-
note mN = ∫ ∞

−∞ xαN(dx). Theorem 3.5 implies that μ(tαN) tends to δmN
and the assumption

implies that limN mN = +∞. If Y1, . . . , Yn, . . . ,B1, . . . ,Bn, . . . are independent with Yn ∼ β1,t

and Bn ∼ α, then

XN
t =

∞∑
n=1

(1 − Y1) · · · (1 − Yn−1)Yn max(Bn,N) ∼ μ(tαN)

and this shows that N �→ Pr(XN
t > x) is an increasing sequence with limit Pr(Xt > x). Further-

more if x < mN from weak convergence limt→∞ Pr(XN
t > x) = 1. Therefore, for fixed ε and N0

such that mN0 > x there exists Tε such that t > Tε implies

1 − ε ≤ Pr
(
X

N0
t > x

) ≤ Pr(Xt > x)

which ends the proof. �

4. Proof of Theorem 1.2

First step. The following proposition belongs to folklore (see [12], Theorem 1). We give be-
low a self-contained proof. In the particular case where α is uniform on the unit sphere of Rd ,
additional details are given in Section 6 of [16].

Proposition 4.1. If (W1, . . . ,Wn) ∼ D(t/n, . . . , t/n) and B1, . . . ,Bn are independent, with
Bj ∼ α ∈ L

log
d then the limit distribution of Mn = W1B1 + · · · + WnBn for n → ∞ is μ(tα).
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Proof. Let f ∈R
d and z complex with �z > 0. Then if Wt ∼ μ(tα) we have

E

(
1

(〈f,Mn〉 − z)t

)
= E

(
1

(〈f,W1B1 + · · · + WnBn〉 − z(W1 + · · · + Wn))t

)

= E

(
1

(〈f,B1〉 − z)t/n
· · · 1

(〈f,Bn〉 − z)t/n

)
=

(
E

(
1

(〈f,B1〉 − z)t/n

))n

.

We compute the limit of the last expression as follows. If z = a + ib with b > 0, write

eU+iV = 1

(〈f,B1〉 − a − ib)t
,

where U and V are real. We have U ≤ −t logb and V ∈ (0,π). Therefore, E(U) makes sense,
by allowing −∞ ≤ E(U). Consider now i.i.d. random variables (U1,V1), . . . , (Un,Vn) with the
distribution of (U,V ). Then the law of large numbers applies and 1

n
(U1 + iV1 + · · ·+Un + iVn)

converges almost surely to E(U) + iE(V ). Also from U ≤ −t logb we are able to claim that by
dominated convergence:

(
E

(
1

(〈f,B1〉 − z)t/n

))n

= E

(
exp

1

n
(U1 + iV1 + · · · + Un + iVn)

)

→
n→∞ exp

(
E(U) + iE(V )

) = e−tE(log(〈f,B1〉−z))

= E

(
1

(〈f,Wt 〉 − z)t

)

by Proposition 3.1. �

Second step. We want to use Proposition 4.1 in the particular case n = 2k . The reason is that
we can realise D(t/2k, . . . , t/2k) by using products of beta random variables as follows. If k = 1
and Zt ∼ β( t

2 , t
2 ), then (W t

1,W
t
2) = (1 − Zt ,Zt ) ∼ D( t

2 , t
2 ). If k = 2 and if Zt , Zt

0 and Zt
1 are

independent and if Zt
i are β( t

4 , t
4 ) distributed, then

(
Wt

1,W
t
2,W

t
3,W

t
4

) = ((
1 − Zt

)(
1 − Zt

0

)
,
(
1 − Zt

)
Zt

0,Z
t
(
1 − Zt

1

)
,ZtZt

1

) ∼ D

(
t

4
,
t

4
,
t

4
,
t

4

)
.

It is worth giving the details of the proof; taking f1, f2, f3, f4 > 0 we write

E
[(

f1W
t
1 + f2W

t
2 + f3W

t
3 + f4W

t
4

)−t ]
= E

[((
1 − Zt

)(
f1

(
1 − Zt

0

) + f2Z
t
0

) + Zt
(
f3

(
1 − Zt

1

) + f4Z
t
1

))−t ]
= E

[((
f1

(
1 − Zt

0

) + f2Z
t
0

))−t/2] ×E
[((

f3
(
1 − Zt

1

) + f4Z
t
1

))−t/2] = (f1f2f3f4)
−t/4.
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More generally, the set {1, . . . ,2k} is put in a one to one correspondence j �→ (i1(j), . . . , ik(j))

with {0,1}k by

j = 1 +
k∑

h=1

ih(j)2h−1,

we introduce for each h = 1, . . . , k − 1 and each (i1, . . . , ih) ∈ {0,1}h the random variable

Zt
(i1,...,ih) ∼ β

(
t

2h+1
,

t

2h+1

)

in such a way that these random variables are all independent (and are independent of Zt ). We
define for h = 1, . . . , k

T t
(i1,...,ih) = Zt

(i1,...,ih−1)
if ih = 1,

= 1 − Zt
(i1,...,ih−1)

if ih = 0,

W t
j =

k∏
h=1

T t
(i1(j),...,ih(j)).

One can now prove by induction on k along lines similar to the case k = 2 that (W t
j )

2k

j=1 ∼
D(t/2k, . . . , t/2k). We skip the details.

Third step. We have seen in the comment following Proposition 2.2 that 0 < s < t implies that
β(t, t) ≺ β(s, s). From Theorem 2.1, this implies the existence of a probability kernel Ks,t (x, dy)

on (0,1)2 such that

Ks,t (x, dy)β(t, t)(dx)

is a joint distribution of (X,Y ) with X ∼ β(t, t), Y ∼ β(s, s) and E(Y |X) = X.
Next, for fixed 0 < s < t and each (i1, . . . , ih) with h = 1, . . . , k − 1 we consider a pair

(Zs
(i1,...,ih),Z

t
(i1,...,ih)) with respective margins β( s

2h+1 , s

2h+1 ) and β( t

2h+1 , t

2h+1 ) and such that the
conditional distribution of the former given the latter is Ks/2h+1,t/2h+1 . Finally, all these pairs are
mutually independent. Now we create also the Ws

j ’s from the Zs ’s as done in the second step.
The important point is now

E
(
Ws

j |Zt
(i1,...,ih), (i1, . . . , ih) ∈ {0,1}h,h = 0,1, . . . , k − 1

)
(24)

=
k∏

h=1

E
(
T s

(i1(j),...,ih(j))|Zt
(i1(j),...,ih−1(j))

) =
k∏

h=1

T t
(i1(j),...,ih(j)) = Wt

j .

Essentially we are using that if (Xi, Yi), i = 1, . . . , n are mutually independent pairs of random
variables with Xi integrable and E(Xi |Yi) = Yi for i = 1, . . . , n, then E(

∏n
i=1 Xi |Y1, . . . , Yn) =∏n

i=1 E(Xi |Yi). From (24) we get

E
(
Ws

j |Wt
j

) = Wt
j (25)
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by using the tower property of conditional expectations: if E(X|F) = Y then E(X|G) = Y if
G ⊂F and if Y is G-measurable.

Fourth step. For simplicity, we continue to omit in the notations Ws
j and Wt

j the fact that these
random variables depend on k. Defining like in Proposition 4.1

Xt
k =

2k∑
j=1

BjW
t
j , Xs

k =
2k∑

j=1

BjW
s
j

we can now claim that from (25) that

E
(
Xs

k|Wt
j ,Bj ,∀j = 1, . . . ,2k

) = Xt
k.

Again by the tower property we get E(Xs
k|Xt

k) = Xt
k . By Theorem 2.1, this implies that Xt

k ≺ Xs
k .

Furthermore E(Xt
k) = E(Xs

k) = E(B1) for any integer k. By Proposition 4.1, Xt
k and Xs

k converge
in law to μ(tα) and μ(sα), respectively, as k → ∞. Moreover, these limit distributions keep the
same mean vector E(B1). The proof of Theorem 1.2 is completed by an application of comment 3
on the Strassen convex order in Section 2.

5. Cauchy distributions in R
d and Dirichlet curves

The next problem to deal with is the study of the Dirichlet curve t �→ μ(tα) when∫
Rd ‖x‖α(dx) = ∞. Theorem 3.5 has shown that if the probability μ(∞) = limt→∞ μ(tα)

exists then μ(∞) is Cauchy in R
d . In this section, we will prove various characterizations of

the Cauchy distributions related to the Dirichlet curve. These characterizations are linked with
the general conjecture μ(tα) = μ(sα) for t �= s implies that α is Cauchy. Propositions 5.1 and
5.2 consider the cases (s, t) = (n,n + 1) and (n,n + 2) for n = 0,1,2, . . . . Propositions 5.3
and 5.4 and Corollary 5.5 consider the case where μ(tα) = μ(sα) holds for some infinite sets
of t ’s. Propositions 5.6 and 5.7 concern the iteration of the map α �→ μ(α). The proofs use the
properties of analytic functions and differential equations in the complex plane.

All along this section we exploit the properties of the Stieltjes transform of a probability α on
R, namely the function, defined for all complex numbers z with �z > 0 by y(z) = ∫ +∞

−∞
α(dw)
w−z

.

Recall that the Stieltjes transform of the Cauchy distribution cζ with ζ = a + ib ∈ H+ and ζ =
a − ib is ∫ +∞

−∞
cζ (dt)

t − z
= 1

ζ − z
.

Note that for any positive integer k we have y(k)(z) = k! ∫ +∞
−∞

α(dw)

(w−z)k+1 .

Proposition 5.1. Let α ∈ L
log
1 and let y be its Stieltjes transform. Then μ(nα) = α if and only if

ny(z)y(n−1)(z) = y(n)(z). (26)
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In particular for n = 1 and n = 2 this implies that α is Cauchy. If α ∈ L
log
d again μ(α) = α or

μ(2α) = α if and only if α is Cauchy in R
d .

Proof. Suppose d = 1 and use Proposition 3.1. If μ(nα) = α ∈ L
log
1 we can write with g(z) =

− ∫ +∞
−∞ log(w − z)α(dw): ∫ +∞

−∞
α(dw)

(w − z)n
= eng(z).

Both sides are analytic functions on the half plane H+ = {z ∈ C : �z > 0}. Deriving in z and
using y = g′ we get

n

∫ +∞

−∞
α(dw)

(w − z)n+1
= neng(z)g′(z) = ny(z)

∫ +∞

−∞
α(dw)

(w − z)n
,

from which (26) is immediate. Conversely, from (26) we write

ny(z) = ng′(z) = y(n)(z)

y(n−1)(z)

and we get that y(n−1) is proportional to eng . Since, up to a muliplicative constant, the left-hand
side is equal to

∫ +∞
−∞

α(dw)
(w−z)n

, we get for some constant C

∫ +∞

−∞
α(dw)

(w − z)n
= Ceng(z).

To see that C = 1 we use the fact that α has mass 1 and we replace z by ri with r > 0 in the
equality. We get ∫ +∞

−∞
rn α(dw)

(w − ri)n
= Cen(g(ri)+log r).

Now limr→∞
∫ +∞
−∞ rn α(dw)

(w−ri)n
= in. Also

g(ri) + log r = −
∫ +∞

−∞
log

(
w

r
− i

)
α(dw) →

r→∞− log(−i) = π

2
i

and therefore limr→∞ en(g(ri)+log r) = en π
2 i = in which implies C = 1.

As far as the second statement is concerned, for n = 1 this is a result due to [18]. Our proof
is shorter, since the general solution of the differential equation y′(z) = y2(z), corresponding to
(26) for n = 1 is y(z) = 1

a−ib−z
where a − ib is an arbitrary complex constant. However, since

z �→ y(z) is analytic in H+ we have necessarily b ≥ 0. If b > 0 one gets the Stieltjes transform
of the Cauchy distribution ca+ib , if b = 0, then α = δa .

For n = 2 things are more involved. Any solution of the differential equation y′′ = 2yy′, cor-
responding to (26) for n = 2, which is analytic in H+ satisfies y′ = y2 − C2 where C is some
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complex constant. If C = 0, we get that y(z) = 1
a−ib−z

as in the case n = 1. In this case, α is
Cauchy. Let us show now that taking C �= 0 does not lead to an acceptable solution. We write
first 1 = y′

y2−C2 leading with an arbitrary constant z0 to y(z) = C cotanhC(z0 − z). If �C �= 0

the meromorphic function z �→ cotanhC(z0 − z) has poles in H+ and y would not be holomor-
phic in H+. If C = ir is purely imaginary, we observe that y(z) = C cotanhC(z0 − z) cannot
be a Stieltjes transform since the condition limt→±∞ y(z + t) = 0 is not fulfilled, the function
t �→ y(z + t) being periodic.

Finally we consider the d-dimensional case. If α ∈ L
log
d and if μ(nα) = α, let f ∈ R

d and
denote by αf the image of α by x �→ 〈f,x〉. Then μ(nαf ) = αf . If n = 1 or n = 2, we have seen
that αf is Cauchy: the definition of a Cauchy distribution in R

d implies the result. �

In the sequel, all the characterizations of the Cauchy distribution in R are extendable to R
d as

done in Proposition 5.1, so we shall not mention it anymore and set d = 1 from now on.

Proposition 5.2. Let α ∈ L
log
1 . Let n < m any positive integers. Suppose that μ(nα) = μ(mα)

and let y(z) = ∫ +∞
−∞

μ(nα)(dw)
w−z

. Then

(
y(n−1)

(n − 1)!
)m

=
(

y(m−1)

(m − 1)!
)n

. (27)

In particular if m = n + 1 or if m = n + 2 then α is Cauchy.

Proof. As usual we write g(z) = − ∫ +∞
−∞ log(w − z)α(dw). From Proposition 3.1, we have

eng(z) =
∫ +∞

−∞
μ(nα)(dw)

(w − z)n
= y(n−1)(z)

(n − 1)! .

From this (27) is plain.
Suppose now that m = n + 1 and denote Y = y(n−1)/(n − 1)!. From (27), we get (Y ′

n
)n =

Yn+1. Clearly Y is not identically zero, since the Stieltjes transform of a probability cannot
be a polynomial. Select an open ball U ⊂ H+ where Y(z) �= 0 for all z ∈ U . Therefore there

exists a nth root of unity ω such that Y ′ = nωY 1+ 1
n . Integrating this differential equation we

get that there exists a complex number a − ib such that Y−1/n = ω(a − ib − z) leading to
y(n−1)

(n−1)! = 1
(a−ib−z)n

. Integrating n−1 times we get y(z) = P(z)+ 1
a−ib−z

where P is a polynomial
with degree < n. This is correct for z ∈ U , but by analytic continuation it extends to the whole
H+. Since y is a Stieltjes transform P = 0 and one concludes as the usual way that b ≥ 0
and that μ(nα) is either strict Cauchy ca+ib or Dirac δa (from the Stieltjes transform of the
Cauchy distribution). Since, again by Proposition 3.1, the map α �→ μ(nα) is injective and from
Corollary 2.5 μ(nca+ib) = ca+ib and μ(nδa) = δa we conclude that μ(nα) = α, so α is Cauchy.

Consider now the case m = n + 2. From (27) we get

(
y(n−1)

(n − 1)!
)n+2

=
(

y(n+1)

(n + 1)!
)n

.
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Again taking Y = y(n−1)/(n − 1)! we get Y ′′ = n(n + 1)y(n+1)/(n + 1)! and finally

(
Y ′′

n(n + 1)

)n

= Yn+2.

Using again a ball U ⊂ H+ on which Y(z) �= 0 there exists a nth root of unity ω such that

Y ′′ = n(n + 1)ωY 1+2/n.

We now use a classical trick for ordinary differential equations of the form Y ′′ = f (Y ′, Y ). From
the implicit function theorem in the analytic case, there exists an open set V ⊂ U such that
z �→ Y(z) is injective while restricted to V and such that Y(V ) is open. As a consequence, there
exists an analytic function p on Y(V ) such that Y ′(z) = p(Y (z)) for z ∈ V . Deriving we get
Y ′′(z) = p′(Y (z))p(Y (z)) leading to

2p′(Y(z)
)
p
(
Y(z)

) = 2n(n + 1)ωY 1+2/n(z).

Thus integrating this differential equation in p there exists a complex constant C such that

p
(
Y(z)

)2 = (
Y ′(z)

)2 = n2ω
(
Y (2n+2)/n(z) − C(2n+2)/n

)
.

Now Y(z) = ∫ +∞
−∞

α(dw)
(w−z)n

and Y ′(z) = n
∫ +∞
−∞

α(dw)

(w−z)n+1 imply that C = 0 and that for some 2nth
root of unity ω1 we have, for z in some non-empty open subset V1 of V

Y ′(z) = nω1Y
(n+1)/n(z)

leading to the existence of a complex number a − ib such that Y−1/n = ω1(z − a + ib). Since
ω2n

1 = 1 we get ωn
1 = ±1 and

Y(z) = ± 1

(a − ib − z)n
.

Finally we get that y(z) = P(z) ± 1
a−ib−z

where P is a polynomial. The fact that y is a Stieltjes

transform leads easily to P = 0 and to y(z) = 1
a−ib−z

where b ≥ 0: this implies again that α is
Cauchy. �

Proposition 5.3. Let α ∈ L
log
1 . Let N be an integer and suppose that μ(nα) = α for all n ≥ N .

Then α is Cauchy.

Proof. By Proposition 5.1, the hypothesis implies that for all n ≥ N we have

y
y(n−1)

(n − 1)! = y(n)

n! ,
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where y(z) = ∫ +∞
−∞

α(dw)
w−z

is the Stieltjes transform of α, which is analytic in H+ = {z ∈C;�z >

0}. Since the above equality is true for all n ≥ N , we deduce from it that for all n ≥ N we have

yn−N+1 y(N−1)

(N − 1)! = y(n)

n! . (28)

Since y is analytic in H+, when z ∈ H+ the Taylor expansion of t �→ y(z + t) converges for
|t | < �z and we can write for such (z, t)

y(z + t) =
N−1∑
n=0

y(n)(z)tn

n! +
∞∑

n=N

y(n)(z)tn

n!

=
N−1∑
n=0

y(n)(z)tn

n! + y(N−1)(z)

(N − 1)!
∞∑

n=N

yn−N+1(z)tn (29)

=
N−1∑
n=0

y(n)(z)tn

n! + y(N−1)(z)

(N − 1)!
y(z)tN

1 − ty(z)
, (30)

where (29) comes from (28). From (30), we get that t �→ y(z + t) is a rational function. Since y

is analytic on H+ this implies that (30) holds for all z ∈ H+ and all real t . We deduce from (30)
by expanding the rational function t �→ y(z+ t) in partial fractions that there exists a polynomial
t �→ Az(t) whose coefficients depend on z such that

y(z + t) = Az(t) + Bz

1 − ty(z)
, (31)

where Bz = y(N−1)(z)
(N−1)! y(z)1−N if y(z) �= 0 and Bz = 0 if y(z) = 0. The trick is now to observe that

since y is the Stieltjes transform of the probability α we can write

lim
t→∞ ty(z + t) = lim

t→∞ t

∫ +∞

−∞
α(dw)

w − z − t
= −1.

Applying this remark to (31), we obtain that Az = 0, that Bz = y(z) and finally that y(z +
t) = y(z)

1−ty(z)
. Deriving with respect to t and setting t = 0 we get y′(z) = y2(z), from which one

concludes as in Proposition 5.1. �

Proposition 5.4. Let α ∈ FT1 and 0 ≤ b < c. Suppose that ν = μ(aα) for all a ∈ (b, c). Then
α = ν is Cauchy.

Proof. Again with g(z) = − ∫ +∞
−∞ log(w − z)α(dw), with z ∈ H+, we can differentiate n times

with respect to a ∈ (b, c) both sides of∫ +∞

−∞
ν(dw)

(w − z)a
= eag(z).



Dirichlet curves 25

We get for all a ∈ (b, c)

∫ +∞

−∞
[− log(w − z)

]n ν(dw)

(w − z)a
= eag(z)g(z)n. (32)

The idea of the proof is to multiply both sides of (32) by tn/n!, to sum up in n, to invert sum and
integral in order to get finally

∫ +∞

−∞
α(dw)

(w − z)a+t
= e(a+t)g(z).

However, the inversion of the sum and the integral needs some care. For this reason, denote
un(w) = | − log(w − z)|n 1

|w−z|a and observe that F(w, t) = ∑∞
n=0 un(w) tn

n! < ∞. If 0 < t < a,
let us observe that ∫ +∞

−∞
F(w, t)ν(dw) < ∞.

This obtained since un(w) ≤ (| log |w − z|| + π)n 1
|w−z|a and therefore if |w − z| > 1

F(w, t) ≤ 1

|w − z|a et | log |w−z||+tπ = 1

|w − z|a−t
eπt .

We now write from (32) and the dominated convergence theorem

∫ +∞

−∞
ν(dw)

(w − z)a+t
= e(a+t)g(z) =

∞∑
n=0

eag(z)g(z)n
tn

n!

=
∞∑

n=0

∫ +∞

−∞
[− log(w − z)

]n tn

n!
α(dw)

(w − z)a

=
∫ +∞

−∞
α(dw)

(w − z)a+t
.

As a result α = ν and furthermore μ((a + t)α) = α for all t ∈ (0, a). By induction, we get easily
that μ((a+ t)α) = α for all t > 0. Now we apply Proposition 5.3 since μ(nα) = α for all integers
n large enough and the proof is complete. �

Corollary 5.5. If for a fixed b and c such that 0 ≤ b < c we have μ(bα) = μ(cα) and if α has a
mean, then α is Dirac.

Proof. If b < a < c from Theorem 1.2 we have μ(cα) ≺ μ(aα) ≺ μ(bα). From comment 4 on
the Strassen convex order in Section 2 and from the hypothesis of the present corollary we have
μ(cα) = μ(aα) = μ(bα). Therefore, the hypothesis of Proposition 5.4 is fulfilled and α is strict
Cauchy or Dirac. By since α has a mean, the first possibility is ruled out. �
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Comment. Suppose that α ∈ L
log
d is invariant by rotation and consider Xt ∼ μ(tα). Suppose that

t �→ Pr(‖Xt‖ ≤ x) is increasing on [0,∞) for any x ≥ 0. In other terms, the laws of the ‖Xt‖’s
are decreasing in the stochastic order. In this case μ(bα) = μ(cα) for some 0 ≤ b < c implies
that α is Cauchy. For seeing this, observe that ‖Xb‖ ∼ ‖Xc‖ and therefore ‖Xb‖ ∼ ‖Xa‖ for
all a ∈ (b, c). From the invariance by rotation, we get that μ(aα) = μ(bα) for all a ∈ (b, c) and
Proposition 5.4 applies.

Proposition 5.6. There exists a probability α ∈ L
log
1 such that μ(α) /∈ L

log
1 .

Proof. Let us fix 1 < a ≤ 2 and consider

α(dw) = a

(1 + log(1 + w))a+1
1(0,∞)(w)

dw

1 + w
.

With this definition, if B ∼ α, then Pr(log(1+B) > t) = 1
(1+t)a

for t > 0, so E(log(1+B)) < ∞.
Let us compute

g(x) = −
∫ ∞

0
log |x − w|α(dw) = −

∫ ∞

0
log |x − w| a

(1 + log(1 + w))a+1

dw

1 + w

= −a

∫ ∞

0
log

∣∣x + 1 − ey
∣∣ dy

(1 + y)a+1
,

g
(
eu − 1

) = −a

∫ ∞

0
log

∣∣eu − ey
∣∣ dy

(1 + y)a+1
= −u − a

∫ ∞

0
log

∣∣1 − ey−u
∣∣ dy

(1 + y)a+1
.

From Cifarelli and Regazzini [4] the density f (x) of X ∼ μ(α) is, for x > 0,

f (x) = 1

π
sin

(
π

∫ ∞

x

α(dw)

)
eg(x) ∼

x→∞

(∫ ∞

x

α(dw)

)
eg(x).

From this remark, E(log(1 + X)) = ∞ if and only if the integral

I =
∫ ∞

0
log(1 + x)

(∫ ∞

x

α(dw)

)
eg(x) dx

diverges. Doing in I the change of variable x = eu − 1, we obtain

I =
∫ ∞

0

u

(1 + u)a
eg(eu−1)+u du.

From dominated convergence, we have

g
(
eu − 1

) + u = −a

∫ ∞

0
log

∣∣1 − ey−u
∣∣ dy

(1 + y)a+1
→

u→∞ 0.

Therefore, I diverges like the integral J = ∫ ∞
0

udu
(1+u)a

since 1 < a ≤ 2. �
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Proposition 5.7. For α ∈ L
log
1 let μ1(α) = μ(α), and define by induction μn(α) = μ(μn−1(α)),

if μn−1(α) ∈ L
log
1 . Let n ≥ 2 be an integer, and suppose that α ∈ L

log
1 and μk(α) ∈ L

log
1 for

k = 2, . . . , n − 1 and μn(α) = α. Denote yj (z) = ∫ +∞
−∞

μj (α)(dw)

w−z
, for j = 1, . . . , n. Then

(
y′

1, . . . , y
′
n

) = (yny1, y1y2, . . . , yn−1yn). (33)

In particular, if μ(μ(α)) = α then α is Cauchy.

Proof. With the convention μ0(α) = α and the assumption μn(α) = α, we can write for j =
1, . . . , n: ∫ +∞

−∞
μj (α)(dw)

w − z
= egj−1(z), (34)

where gj (z) = − ∫ +∞
−∞ log(w−z)μj (α)(dw), for j = 0, . . . , n−1. Since g′

j = yj , taking deriva-
tives in (34) we get y′

j = egj−1g′
j−1 = yjyj−1, which is (33). If n = 2, the differential system

(33) gives y′
1 = y1y2 = y′

2. Therefore, there exists a complex constant C such that y2 = y1 + C.
If C = 0 we get y′

1 = y2
1 leading to α being Cauchy as above. We are going to prove that C �= 0

is impossible. Suppose the contrary: then, being y′
1 = y1(y1 + C) we get

1

C

(
y′

1

y1
− y′

1

y1 + C

)
= 1

from which there exists a complex constant z0 such that y1 = C

e−C(z−z0)−1
. The constant z0 cannot

belong to H+: otherwise it is a pole of y1, which is impossible. Finally, if �C �= 0 the function
y1 has poles in H+, whereas if C = ir is purely imaginary the function t �→ y1(z+ t) is periodic
and this contradicts the fact that y1 is a Stieltjes transform. The proof is finished. �
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