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In this paper, we study the complete graph Kn with n vertices, where we attach an independent and identi-
cally distributed (i.i.d.) weight to each of the n(n− 1)/2 edges. We focus on the weight Wn and the number
of edges Hn of the minimal weight path between vertex 1 and vertex n.

It is shown in (Ann. Appl. Probab. 22 (2012) 29–69) that when the weights on the edges are i.i.d. with
distribution equal to that of Es , where s > 0 is some parameter, and E has an exponential distribution with
mean 1, then Hn is asymptotically normal with asymptotic mean s logn and asymptotic variance s2 logn.
In this paper, we analyze the situation when the weights have distribution E−s , s > 0, in which case the
behavior of Hn is markedly different as Hn is a tight sequence of random variables. More precisely, we use
the method of Stein–Chen for Poisson approximations to show that, for almost all s > 0, the hopcount Hn

converges in probability to the nearest integer of s + 1 greater than or equal to 2, and identify the limiting
distribution of the recentered and rescaled minimal weight. For a countable set of special s values denoted
by S = {sj }j≥2, the hopcount Hn takes on the values j and j + 1 each with positive probability.

Keywords: complete graph; extreme value theory; first passage percolation; hopcount; minimal path
weight; Poisson approximation; Stein–Chen method; stochastic mean-field model; weak disorder

1. Introduction

One of the central themes of modern discrete probability is the study of the effect of random
edge disorder on various properties of the underlying network. The base network itself could be
deterministic, for example, a large finite box in the lattice or the complete graph on n vertices, or
random, for example, the giant component of the Erdős–Rényi random graph or the configuration
model. Each edge is assigned a random edge weight, whose interpretation varies depending on
the context. One can think of this weight as the cost in traversing the edge, yielding first passage
percolation-type models. Alternatively, one could think of the underlying graph as an electrical
network and the assigned weights as resistances, yielding a random resistor network, or as ca-
pacities on edges and the underlying graph as a flow carrying network, entrusted with carrying
flow (commodities, information, etc.) between various parts of the network.

One graph model that has resulted in many problems of fundamental interest is the complete
graph Kn on n vertices with random edge weights. In the various contexts mentioned above,
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this model both gives rise to very interesting conjectures as well as generates new techniques
and insights in probability theory that can then be applied in a number of other contexts. While
providing a complete list of references of the various models that have been studied in this context
would be impractical, we direct the interested reader to [14] for one of the first refined results in
first passage percolation in this context, [10] for an analysis of the cost of the minimal spanning
tree, [11] for an analysis of random electrical networks on the complete graph, [2] for a study of
the random assignment problem, [4] for an analysis of the multicommodity flow problem and the
survey paper [1], where a number of other examples are analyzed via the powerful local weak
convergence method.

Let us now focus on the particular problem dealt with in this study and the motivations behind
it. Suppose we start with a connected graph Gn (deterministic such as Kn or random) on n ver-
tices. Suppose each edge e is assigned a random positive edge weight Ee. We shall assume that
the weights are i.i.d. over the edges with some distribution F , with density f . Fix two vertices
(say chosen uniformly at random from Gn), and let us denote them by 1 and n. For any path P
between the two vertices, let the weight of the path w(P ) be defined by

w(P ) :=
∑
e∈P

Ee,

that is, the sum of weights of the edges in the path. The optimal or minimal weight path (which
is unique since the edge weights have a density) is the path that minimizes the above weight
function. In the study of random systems, this regime is often called the weak disorder regime,
while probabilists know this problem as “first passage percolation.” The mental picture one can
have is that the network is entrusted with carrying flow between various nodes of the network,
and the way it performs this duty is via routing flow through optimal paths. We shall defer a more
extensive discussion of the relevant literature to Section 3.

Another regime which is of tremendous interest is the strong disorder regime. Here the weight
of a path is either the maximum or the minimum weight of all edges in the path. We denote the
weight functions as

wmax(P ) := max
e∈P

Ee, (1.1)

and

wmin(P ) := min
e∈P

Ee. (1.2)

In both situations, one is interested in properties of the path which minimizes the above weight
function. One is also interested in formulating a model, depending on a real-valued parameter, the
“inverse parameter,” which interpolates between these two models. One can then study questions
such as phase transitions, where there is a change in the behavior of the system from the weak
disorder regime to the strong disorder regime. Given the set of edge weights Ee, one method of
doing this is as follows: assign each edge a cost E

β
e where β ∈ R is a real-valued parameter. With

these edge weights, suppose that, as before, we consider the weak disorder regime, so that now
the weight of a path P is

wβ(P ) :=
∑
e∈P

Eβ
e .
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Then, we can identify the following special cases:

(a) Original model: β = 1 is our original model.
(b) Graph distance: β = 0 gives us the graph distance between the chosen vertices in the

graph Gn.
(c) Strong disorder, max edge weight: The case β → +∞ gives us the strong disorder regime

where the weight of a path is given by (1.1). This is also called the minimal spanning tree regime
as the optimal path between the two vertices is the same as the path in the minimal spanning tree
on Gn with edge weights Ee.

(d) Strong disorder, min edge weight: β → −∞ gives us the strong disorder model where the
weight of a path is given by (1.2).

Thus this model allows us to interpolate between various regimes of interest. We shall denote
the optimal path by Popt(β). Given a particular base network Gn and edge weight distribu-
tion Ee, two statistics are of paramount interest:

(i) Minimal weight: This is the actual weight of the optimal path, namely Wn =∑
e∈Popt(β) E

β
e .

(ii) Hopcount: This is defined as the number of edges in the optimal path Popt(β). We shall
denote this random variable by Hn(β).

Aim of this paper: In this paper, we shall specialize to the case where the graph Gn is the
complete graph Kn and each edge originally has edge weight E

β
e , where Ee is exponentially

distributed with rate 1 (Ee
d= Exp(1)). We shall study the case where β < 0. The case where

β > 0 has been solved in [6], where it was proved that, for β > 0,

Hn(β) − β logn√
β2 logn

d−→ Z, (1.3)

where Z denotes a standard normal random variable, and
d−→ denotes convergence in distribu-

tion. In the same paper it was proved that, for the optimal weight Wn = Wn(β), there exists a
constant λ = λ(β) > 0 and a non-degenerate real-valued random variable �(β) such that

Wn(β) − 1

λ
logn

d−→ �(β). (1.4)

In this study, we shall derive asymptotics for the two random variables of interest Wn(β) and
Hn(β) as n → ∞, and see that the behavior in the case when β < 0 is markedly different.

Throughout the paper, we make use of the following standard notation. We let
d−→ denote

convergence in distribution, and
P−→ convergence in probability. For a sequence of random vari-

ables (Xn)n≥1, we write Xn = OP(1) when |Xn| is a tight sequence of random variables as

n → ∞, and Xn = oP(1) when |Xn| P−→ 0 as n → ∞. For a non-negative function n �→ g(n),
we write f (n) = O(g(n)) when |f (n)|/g(n) is uniformly bounded, and f (n) = o(g(n)) when
limn→∞ f (n)/g(n) = 0. We let Exp(λ) denote an exponential random variable with rate λ and
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Poi(λ) a Poisson random variable with mean λ. We write that a sequence of events (En)n≥1 oc-
curs with high probability (w.h.p.) when P(En) → 1. Finally, for x ∈ R, we denote by �x� the
largest integer smaller than or equal to x and by 	x
 the smallest integer larger than or equal to x.

We now state our main results and defer a further discussion to Section 3.

2. Results

Before stating the main result, we need some further notation. We study the complete graph Kn

with i.i.d. edge weights E−s
{i,j},1 ≤ i < j ≤ n, on the edges of Kn. Thus, compared to the discus-

sion in the previous section, we have taken s = −β , and we shall study the s > 0 regime. For
fixed s > 0, define the function

gs(x) = xs+1

(x − 1)s
, x ≥ 2. (2.1)

Observe that, for 0 < s ≤ 1, the function gs(x), x ≥ 2, is increasing, while for s > 1, the function
is strictly convex with unique minimum at x = s + 1. We shall be interested in minimizing this
function only on the set Z+ of positive integers. Then there is a sequence of values s = sj , j ≥ 2,

for which the minimum integer of gs is not unique. From the equation gs(j) = gs(j + 1), and
the bounds j − 1 < s < j , it is not hard to verify that

sj = log(1 + j−1)

log(1 + (j2 − 1)−1)
∈ (j − 1, j), j = 2,3, . . . . (2.2)

We will need to deal with these special points separately. When s /∈ S = {s2, s3, . . .}, then there
is a unique integer which minimizes the function gs(x) on Z+.

Below and in the remainder of the paper, for notational simplicity, we take p = 1/s, for s > 0.
Let us now state the main theorems:

Theorem 2.1 (Hopcount and weight asymptotics). For any fixed s > 0 with s /∈ S , let k∗(s) ∈
{�s + 1�, 	s + 1
} denote the unique integer that minimizes the function defined in (2.1). Then:

(a) the hopcount Hn = Hn(s) converges in probability to k∗(s) as n → ∞:

P
(
Hn = k∗(s)

) → 1;
(b) the optimal weight Wn = Wn(s), properly normalized converges in distribution as n → ∞,

P

(
k − 1

sgs(k)
(logn)s+1

(
Wn − gs(k)

(logn)s

)
+ k − 1

2
log logn − p(k − 1) loggs(k)

2
> t

)

→ exp(−aket ), t ∈ R,

where k = k∗(s), and the sequence of constants (ak)k≥1 is defined by

ak =
(

2πp

1 + p

)(k−1)/2

k((k−1)p−1)/2. (2.3)
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Theorem 2.1 states that the hopcount Hn converges to the optimal value of the function
x �→ gs(x) defined in (2.1), while the rescaled and recentered minimal weight Wn converges in
distribution to a Gumbel distribution. We can intuitively understand this as follows. For fixed k,
the minimal path of length k is similar to an independent minimum of copies of sums of k ran-
dom variables E−s . The number of independent copies is equal to the number of disjoint paths
between vertices 1 and n, which is of order nk−1. While on Kn, the appearing paths do not
have independent weights, the paths that are particularly short are almost independent. Now, the
independent problem can be handled in two steps. First, we analyze the behavior of the ran-
dom variable Zk = E−s

1 + · · · + E−s
k . In this analysis, the function gs appears in the lower tail

of the distribution. Second, we study the asymptotics of the minimum of nk−1 of such random
variables, which can be seen to be of order gs(k)/(logn)s . This explains why the minimal in-
teger value of gs is the crucial value for the hopcount, while the minimum of a large number
of independent random variables with distribution Zk , properly rescaled and recentered, con-
verges to a Gumbel distribution by standard extreme value arguments. This intuitively explains
Theorem 2.1. The main difficulty in the proof is to handle the fact that the weights of paths in
the complete graph are actually not independent, and we use the method of Stein–Chen for the
Poisson approximation to deal with the available dependence.

Let us now deal with the case where s ∈ S .

Theorem 2.2 (The special set S ). Suppose s ∈ S , so that both �s+1� and 	s+1
 minimize gs(·)
over Z+. Define a sequence of independent random variables (�k)k≥2, where, for any k ≥ 2, �k

has the Gumbel survival function

P(�k > t) = exp(−aket ), t ∈ R, (2.4)

with (ak)k≥2 defined in (2.3). Then:

(a) the optimal weight Wn = Wn(s), properly normalized, converges in distribution as
n → ∞. More precisely

(logn)s+1

sg∗

(
Wn − g∗

(logn)s

)
+ 1

2
log logn − p logg∗

2
d−→ min

(
��s+1�

�s + 1� − 1
,

�	s+1

	s + 1
 − 1

)
,

where g∗ = gs(�s + 1�) = gs(	s + 1
);
(b) the hopcount Hn = Hn(s) converges in distribution as n → ∞, that is

Hn(s)
d−→ H ∗,

where

H ∗ = arg min
{
�k/(k − 1): k ∈ {�s + 1�, 	s + 1
}}.

Another quantity of interest is the distribution of optimal paths between vertex 1 and a set
of vertices. In telecom, this is called multicast, since one source sends to a multiple number of
users. This also follows from the analysis in the paper. We shall give a brief idea of the proof
in Section 4.6. The result is stated for s /∈ S , but one could state an equivalent result for s ∈ S
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as well. Before we state the result we need some further notation. Recall that we used k∗(s) to
denote the unique minimizer of gs(·) over Z+. For fixed m ≥ 1, let {ηi}1≤i≤m denote independent
copies of the Gumbel random variable defined in (2.4) with k = k∗(s).

Corollary 2.3 (Multipoint distances). Fix m ≥ 1 distinct vertices say 2,3, . . . ,m + 1 in Kn.
Suppose s /∈ S , and let {W(j)

n }2≤j≤m+1 denote the weight of the optimal path from 1 to these
vertices. Write

W̃
(j)
n = (logn)s+1

(
W

(j)
n − gs(k)

(logn)s

)
+ k − 1

2
log logn − p(k − 1) loggs(k)

2
,

where k = k∗(s). Then, as n → ∞,

(W̃
(j)
n )2≤j≤m+1

d−→ (ηj )1≤j≤m.

Organization of the paper: The paper is organized as follows. We first discuss the relevance
of our results and techniques in Section 3. We shall then continue to prove the main results in
Section 4.

3. Discussion

We now provide a discussion of the various concepts used in this paper and the relevance of the
results.

(a) Stochastic mean-field model of distance: This notion refers to the complete graph with
exponentially distributed edge weights having unit mean. The model gives a simpler but mathe-
matically more tractable model of distances between random points in high dimensions. While
one can consider other edge distributions, the memoryless property of exponential random vari-
able allows one to give clean proofs in a number of different contexts, including first passage
percolation; see [14] where this property is used to great effect to derive refined asymptotics. We
also refer to [1], where many other computations are derived in this context with the help of a
powerful infinite random structure called the weighted infinite tree.

(b) Weak and strong disorder: The last few years, with the availability of an enormous amount
of data on real-world networks, has witnessed an explosion in network models for these real-
world networks as well as dynamics on them. Physicists have been highly interested in under-
standing the effect of random disorder on the various flow carrying properties of these network
models. Via simulations, they have predicted a number of fascinating phenomena in these net-
works. Regarding the notions of weak and strong disorder mentioned in Section 1, we refer the
interested reader to [8,9,12] and [17] and the references therein.

(c) First passage percolation: First passage percolation problems have been of great interest
to probabilists for quite a while now, not just because of their origin from physical motivations
of modeling disordered random flow systems, but also because this process and its variants (e.g.,
oriented first passage percolation and last passage percolation) arise as basic constructing blocks
for more complicated problems, such as the contact process. There has been an intensive study
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of this model on the d-dimensional lattice (see, e.g., [15,16] and [13]). The case of the complete
graph with exponential edge weights was analyzed in [14], where, in particular, it was proved
that the weight and hopcount of the optimal path satisfy

nWn − logn
d−→ �,

and

Hn

logn

P−→ 1,

as n → ∞, where � ∈ R is a non-degenerate random variable.
In the last few years, due to the connections to real-world networks described above, these

questions have taken on an added significance, and a number of studies both at the non-rigorous
level [8] and rigorous level (see, e.g., [7]) have been undertaken to study such questions in many
other random graph models.

(d) Proof techniques: A number of different techniques have been used in the analysis of first
passage percolation asymptotics in various contexts, ranging from subadditivity methods in the
context of the lattice, to continuous-time branching process embeddings and renewal theory in
the context of various random graph models. The paper [6] used embeddings into a particular
continuous-time branching process to derive the results in (1.3) and (1.4). As far as we know, the
present paper is the first paper that uses the method of Stein–Chen for Poisson approximation to
derive refined asymptotics in the first passage percolation context. In particular the results here
complete the program started in [6] and show that for β ≤ 0, Hn(β) is a tight sequence of random

variables, while for β > 0, Hn(β)/(β logn)
P−→ 1. Clearly, this further shows that there are at

least two universality classes for first-passage percolation on the complete graph in terms of the
edge weight distribution. When β ≤ 0, the weights Eβ are in the same universality class as the
weight 1, in the sense that the hopcount remains bounded, while for β > 0, they are in the same
universality class as the exponential distribution arising for β = 1. As discussed in more detail
in [6], this raises the question of what the universality classes for first passage percolation on
Kn are. In particular, does Hn always satisfy a central limit theorem whenever Hn → ∞? Or are
there classes of edge weight distributions where the behavior is even different? For example, is
there a class of random edge weights where the behavior is similar as for the minimal spanning
tree, where Hn is of the order n1/3.

(e) Multi-point distances and exchangeability: The classical probability theory of exchange-
ability has been used in the last few years to analyze various complex random structures; see [3]
for a nice, modern survey. In the context of Corollary 2.3, one can analyze such questions in a
number of different contexts (such as the stochastic mean-field model of distance or your favorite
random graph model with your favorite random edge weights). For the stochastic mean-field
model, the multi-point optimal path weights converge (after proper rescaling and recentering) to
an exchangeable sequence of random variables. In the present model, we can once again show
convergence but to an independent sequence of random variables.
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4. Proofs

This section contains the proofs of the main results. We start with an outline of the proof. In Sec-
tion 4.1, we shall show that the hopcount Hn(s), s > 0, is a tight sequence of random variables
as n → ∞. In Section 4.2, we shall derive the asymptotic behavior, for z ↓ 0, of the distribution
function Fk(z), where

Fk(z) = P(E−s
1 + E−s

2 + · · · + E−s
k ≤ z), (4.1)

and where E1,E2, . . . is an i.i.d. sequence of Exp(1) random variables. Denoting the weight of
the minimal path with exactly k edges between vertex 1 and vertex n by Wk(n), we then show
that for each K , and each 0 < ε < 1, uniformly in 2 ≤ k ≤ K , w.h.p.,

(logn)sWk(n) ≥ (1 − ε)gs(k), (4.2)

where gs(x) is defined in (2.1).
Inequality (4.2) yields a first-order lower bound for all values of k ≥ 2. We will show in the

paper that the function gs(x) determines the first-order asymptotics of the weights Wk(n). The
behavior of gs near its minimum value determines the asymptotic behavior of the hopcount Hn.
Roughly speaking, the hopcount Hn will converge in probability to the integer k = k∗(s) that
minimizes the function gs(x), x ≥ 2, over the set Z+. The above statement about the convergence
of Hn is true for every s > 0 for which the minimizing integer of gs(x) for x ≥ 2 is unique, that
is, s /∈ S . In Section 4.3, we study the minimum of an independent number of nk−1 random
variables. Each of these nk−1 variables is the sum of k i.i.d. random variables with distribution
E−s . The result is used to complete the proof of Theorem 2.1 when 0 < s ≤ 1. In Section 4.4,
we extend the analysis to s > 1 and complete the proof of Theorem 2.1 by studying the second
order asymptotics of the minimal weight of paths of length k in the complete graph Kn.

For sj ∈ S , to decide whether the hopcount Hn converges in probability either to �sj + 1� or
to 	sj + 1
, we need the second order asymptotics of Wk(n), which is carried out in detail in
Section 4.5. In Section 4.6, we sketch the proof of Corollary 2.3.

4.1. Tightness of the hopcount

Note that the minimal weight Wn satisfies the following inequality:

Wn ≥ Hn · min
1≤j≤n(n−1)/2

E−s
j , (4.3)

where Ej ∼ Exp(1) are independent. Since the maximum of n independent exponentials scales
like (1 + oP(1)) logn, we obtain from (4.3) that w.h.p.

Wn ≥ Hn log−s
(
n(n − 1)/2

)(
1 + oP(1)

)
. (4.4)

On the other hand, Wn is, at most, equal to the minimal weight of all two-edge paths between 1
and n. Here, a two-edge path is a path of the form 1 → j → n, j = 2,3, . . . , n − 1, so that

Wn ≤ min
2≤j≤n−1

(
(E′

j )
−s + (E′′

j )−s
)
, (4.5)
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where E′
j ,2 ≤ j ≤ n − 1, and E′′

j ,2 ≤ j ≤ n − 1, are independent Exp(1) random variables. It
is not hard to verify (see Lemma 4.1 in Section 4.2) that (4.5) implies that w.h.p.,

Wn ≤ C

(logn)s
. (4.6)

Inequalities (4.4) and (4.6) together imply that w.h.p.,

Hn ≤ C(log 2)s . (4.7)

We conclude that Hn is a tight sequence of random variables. The remainder of the proof will
reveal that, in fact, Hn converges in distribution, either to a constant k∗(s) when s /∈ S , or to a
random variable giving positive mass to two values when s ∈ S .

4.2. The first-order lower bound

We start with an investigation of the distribution function Fk of an independent sum of k inverse
powers of exponentials, that is,

Zk = E−s
1 + · · · + E−s

k , s > 0. (4.8)

Lemma 4.1 (Sums of inverse powers of exponentials). Fix s > 0, and put p = 1/s. Then, for
z ↓ 0,

Fk(z) ∼ akz
−(k−1)p/2e−kp+1z−p

, (4.9)

where (ak)k≥1 is defined in (2.3), and where, for arbitrary real functions g and h, g(z) ∼
h(z), z ↓ 0, means that limz↓0 g(z)/h(z) = 1.

Proof. The result for k = 1 is immediate from F1(z) = e−z−p
, z > 0. We proceed by induction.

Suppose that (4.9) holds for some integer k ≥ 1, then

Fk+1(z) ∼
∫ z

0
ak(z − y)−(k−1)p/2e−kp+1(z−y)−p

d(e−y−p

)

= pakz
−(k−1)p/2z−p

∫ 1

0
x−p−1(1 − x)−(k−1)p/2e−z−phk(x) dx,

where hk(x) = x−p + kp+1(1 − x)−p . The function hk has a minimum at x = 1/(k + 1), since
hk(1/(k + 1)) = (k + 1)p+1, h′

k(1/(k + 1)) = 0, and

h′′
k

(
1/(k + 1)

) = p(p + 1)(k + 1)p+2
(

1 + 1

k

)
.
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Hence, from a standard Laplace-method argument, we obtain

Fk+1(z) ∼ pakz
−(k−1)p/2z−p

∫ 1

0
x−p−1(1 − x)−(k−1)p/2e−z−phk(x) dx

∼ pakz
−(k−1)p/2z−p(k + 1)p+1(k/(k + 1)

)−(k−1)p/2

× e−z−phk(1/(k+1))

√
2π

z−ph′′
k(1/(k + 1))

.

From the latter expression, we obtain

ak+1 =
(

2πp

1 + p

)1/2

ak(k + 1)(kp−1)/2k−((k−1)p−1)/2.

This recursion is telescoping in k. Defining c = (
2πp
1+p

)1/2 and bk = k((k−1)p−1)/2, we find

ak+1 = cak

bk+1

bk

⇒ ak+1 = ck bk+1

b1
a1 = ckbk+1,

which yields (2.3). �

Using the above lemma, we obtain the following first-order lower bound for Wk(n):

Theorem 4.2 (First-order lower bound). Fix s > 0 and an arbitrary large integer K . For each
0 < ε < 1, with the function gs defined in (2.1), w.h.p. and uniformly in k ∈ {2,3, . . . ,K},

(logn)sWk(n) ≥ (1 − ε)gs(k).

Proof. Fix s > 0 and 2 ≤ k < n, and define, for 0 < ε < 1,

xk,n = xk,n(ε) = (1 − ε)
gs(k)

(logn)s
. (4.10)

Let N
(n)
k (x), x > 0, be the number of paths between 1 and n with exactly k edges and weight at

most x. Note that the total number of paths with exactly k edges between 1 and n is
∏k

j=2(n−j).
Thus, according to Lemma 4.1, for x ↓ 0,

E
[
N

(n)
k (x)

] =
[

k∏
j=2

(n − j)

]
Fk(x) ∼

[
k∏

j=2

(n − j)

]
akx

−(k−1)p/2e−kp+1x−p

. (4.11)

For n → ∞ the expression xk,n ↓ 0, and the term x
−(k−1)p/2
k,n blows up only polynomially fast,

while exp{−kp+1x
−p
k,n } tends to 0 exponentially fast. Using that

∏k
j=2(n − j) < nk−1 and abbre-



Distances in weak disorder 373

viating N
(n)
k = N

(n)
k (xk,n), we reach to the conclusion that

E
[
N

(n)
k

] ≤ nk−1 exp{−kp+1x
−p
k,n } = exp

{
−

(
1

(1 − ε)p
− 1

)
(k − 1) logn

}
.

Boole’s inequality and the Markov inequality together yield

P

(
K⋃

k=2

{(logn)sWk(n) < (1 − ε)gs(k)}
)

≤
K∑

k=2

P
(
(logn)sWk(n) < (1 − ε)gs(k)

) ≤
K∑

k=2

P
(
N

(n)
k ≥ 1

)

≤
K∑

k=2

E
[
N

(n)
k

] ≤
∞∑

k=1

exp

{
−

(
1

(1 − ε)p
− 1

)
k logn

}
.

Since the summand on the right-hand side is of order n−pεk , we may conclude that the probability
that (logn)sWk(n) < (1 − ε)gs(k), for some 2 ≤ k ≤ K , tends to 0 as n → ∞. �

4.3. Second-order asymptotics

In this section we identify the second-order asymptotics for the independent minimum of nk−1

random variables, where each of these random variables has distribution function Fk(z), z > 0.
The proof of Theorem 2.1 for 0 < s ≤ 1 follows quite easily from this and the lower bound (4.2).
The proof of Theorem 2.1 for s > 1 is postponed to the next section.

We write

W
(ind)
k = min

1≤j≤nk−1
Yk,j , (4.12)

where Yk,1, . . . , Yk,nk−1 are i.i.d. with distribution function Fk . The following theorem derives

the asymptotics of W
(ind)
k :

Theorem 4.3 (Minimum for independent r.v.s). For k ≥ 2 fixed, the minimal weight W
(ind)
k

defined in (4.12), satisfies

P

(
k − 1

sgs(k)
(logn)s+1

(
W

(ind)
k − gs(k)

(logn)s

)
+ k − 1

2
log logn − p(k − 1) loggs(k)

2
> t

)
(4.13)

→ e−aket

,

where (ak)k≥1 is defined in (2.3).
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Proof. We compute zn = zn(t), such that

(
1 − Fk(zn)

)nk−1 → exp{−aket }.
Taking logarithms on both sides and using that log{1 − Fk(zn)} ∼ −Fk(zn) for zn → 0, this is
equivalent to

nk−1Fk(zn) → aket , (4.14)

or

(k − 1) logn + log{Fk(zn)} → t + logak. (4.15)

Put zn = κ(logn)−s + ζn(t), where κ = gs(k). From Lemma 4.1, we find that (4.15) is equivalent
to

(k − 1) logn − (k − 1)p/2 log
(
κ(logn)−s + ζn(t)

)
(4.16)

− kp+1(κ(logn)−s + ζn(t)
)−p → t.

Writing

κ(logn)−s + ζn(t) = κ(logn)−s
(
1 + ζn(t)(logn)s/κ

)
,

yields

(k − 1) logn − (k − 1)p/2 log
(
κ(logn)−s

(
1 + ζn(t)(logn)s/κ

))
− kp+1κ−p logn · (1 + ζn(t)(logn)s/κ

)−p → t.

Using that kp+1κ−p = k − 1 and ps = 1, we arrive at

(k − 1) logn + (k − 1)/2 log(logn) − (k − 1)p/2 log
(
1 + ζn(t)(logn)s/κ

)
− (k − 1) logn · (1 + ζn(t)(logn)s/κ

)−p → t + (k − 1)p/2 logκ.

Now we choose

ζn(t) = (logn)−s−1 · (ζ log logn + h(t)
)

or ζn(t)(logn)s = (ζ log logn + h(t))

logn
. (4.17)

Then

(k − 1)p/2 log
(
1 + ζn(t)(logn)s/κ

) = O

(
log logn

logn

)
→ 0,

and

−(k − 1) logn · (1 + ζn(t)(logn)s/κ
)−p ∼ −(k − 1) logn · (1 − pζn(t)(logn)s/κ

)
= −(k − 1) logn + (k − 1)p

κ

(
ζ log logn + h(t)

)
,
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resulting in

ζ = −κ/2p and
(k − 1)ph(t)

κ
= t + 1

2
(k − 1)p logκ. (4.18)

Hence, we can choose

zn(t) = gs(k)(logn)−s + ζn(t)

= gs(k)(logn)−s + (logn)−s−1 · (ζ log logn + h(t)
)

(4.19)

= gs(k)

(logn)s
+ gs(k)

(logn)s+1

[
− log logn

2p
+ t

(k − 1)p
+ loggs(k)

2

]
. �

We now turn to the proof of Theorem 2.1 in the case where 0 < s ≤ 1:

Proof of Theorem 2.1 in case 0 < s ≤ 1. Observe from Theorem 4.2 that for any K , w.h.p. and
uniform in k ∈ {2,3, . . . ,K},

(logn)sWk(n) ≥ (1 − ε)gs(3) > gs(2), (4.20)

where the latter inequality follows since for the indicated values of s, the function gs is increasing
on [2,∞) and where we can take ε < min0<s≤1[1 − gs(2)/gs(3)] = 1/9. On the complete graph
with n vertices the paths of length 2 have independent total weight, since they are disjoint. The
number of paths of length 2 is equal to n− 2 ∼ n, so that we can conclude from the Theorem 4.3
that, for any ε > 0 and w.h.p.,

(logn)sW2(n) ∈ (
gs(2) − ε, gs(2) + ε

)
. (4.21)

From (4.20) and (4.21) it is immediate that, w.h.p., the minimal-weight path is either a path of
length 2 or has a length exceeding K . Since K can be taken arbitrary large and the hopcount Hn

is tight (see 4.7), we conclude that

Hn(s)
P−→ 2

for 0 < s ≤ 1. Consequently, Wn = Wn(2), w.h.p., and statement (b) of Theorem 2.1 follows
from (4.13) for 0 < s ≤ 1 and k = 2. �

4.4. The case s > 1

In this section we treat the case s > 1. The number of paths with k ≥ 2 edges between the
vertices 1 and n is equal to

∏k
j=2(n − j) ∼ nk−1. Let Sk(n) denote the set of all such paths. As

before, we let Fk denote the distribution function of the sum of k independent random variables
each with distribution equal to the distribution of E−s , and by N

(n)
k (z), z > 0, the number of paths

with k edges which have total weight ws(P ) = ∑
e∈P E−s

e less than z. Recall the definition of
zn(t) in (4.19). From Theorem 4.3 and its proof (compare (4.14)), we conclude that, as n → ∞,

λ
(n)
k (t) := E

[
N

(n)
k (zn(t))

] ∼ nk−1Fk(zn(t)) → aket . (4.22)
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We shall prove the following proposition:

Proposition 4.4 (Poisson approximation for small weight paths). Fix s > 1 and let Poi(n)
k (t)

be a Poisson random variable with mean λ
(n)
k (t). Then, both for k = �s + 1� and k = 	s + 1
, as

n → ∞,

dTV
(
N

(n)
k (zn(t)),Poi(n)

k (t)
) → 0,

where dTV denotes the total variation distance.

Assuming the proposition let us first show how to complete the proof of Theorem 2.1.

Proof of Theorem 2.1 in case s > 1 and s /∈ S . Observe that

P
(
Wk(n) > zn(t)

) = P
(
N

(n)
k (zn(t)) = 0

)
. (4.23)

Now Proposition 4.4 together with (4.22) imply that, for k = �s +1� and k = 	s +1
, as n → ∞,

P
(
Wk(n) > zn(t)

) → exp(−aket ). (4.24)

Note that the weak convergence shows in particular that (logn)sWk(n) converges in probability
to gs(k) for the two indicated values of k. This together with the lower bound proven in Theo-
rem 4.2, and an argument similar to the case 0 < s ≤ 1 then completes the proof of Theorem 2.1,
in case the integer that minimizes gs(x) is unique, that is, in case s /∈ S . �

Proof of Proposition 4.4. We shall use [5], Theorem 1.A. Before quoting this result, we shall
need to setup some notation. Let I be a finite index set, and let {Iα :α ∈ I} be a family of
indicator random variables and write pα = E[Iα]. Let

W =
∑
α∈I

Iα, λ = E[W ] =
∑
α∈I

pα.

Now suppose for each α we can decompose the index set I as I = {α} ∪ I ∗(α) ∪ S ∗(α), where
we shall think of {Iβ : β ∈ I ∗(α)} to be the set of random variables which “strongly depend” on Iα

while {Iβ ′ : β ′ ∈ S ∗(α)} consists of the set of random variables which only “weakly depend”
on Iα . Now let Zα = ∑

β∈I ∗(α) Iβ , while

Yα = W − Iα − Zα =
∑

β ′∈S ∗(α)

Iβ ′ .

Then with this notation, the following is just one example of the power of the Stein–Chen ma-
chinery for Poisson approximation for weakly dependent indicator random variables:

Theorem 4.5 (Stein–Chen Poisson approximation ([5], Theorem 1.A)). With the above nota-
tion,

dTV(W,Poi(λ)) ≤ min(1, λ−1)
∑
α∈I

(p2
α + pαE[Zα] + E[IαZα]) + min(1, λ−1/2)

∑
α∈I

ηα,
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where ηα is such that

|E[Iαg(Yα + 1)] − pαE[g(Yα + 1)]| ≤ ηα‖g‖, α ∈ I

for all bounded functions g on Z+, and where ‖ · ‖ is the supremum norm.

To apply Theorem 4.5 to the situation at hand, we take I = Sk(n), the set of paths between 1
and n having precisely k edges. For α ∈ Sk(n), we denote by

Iα = Iα(zn(t)) = 1{ws(α)≤zn(t)}, (4.25)

where, as before, ws(α) = ∑
e∈α E−s

e denotes the weight of the path α, and where 1A denotes

the indicator of event A. Furthermore, let p
(n)
k (t) denote the expectation of Iα(zn(t)), that is,

p
(n)
k (t) = P

(
ws(α) ≤ zn(t)

) = Fk(zn(t)). (4.26)

Let I ∗(α) ⊆ Sk(n) denote the set of paths (not including α) which have at least one edge in
common with α (i.e., I ∗(α) is the set of paths β for which Iβ is “strongly” dependent on Iα),
and let S ∗(α) ⊆ Sk(n) denote the set of paths that do not overlap on any edge with α. Note that
the random variable ws(α) is independent of {ws(β): β ∈ S ∗(α)}. Finally, in the above notation,
note that

Zα =
∑

β∈I ∗(α)

1{ws(β)≤zn(t)}.

The independence of ws(α) and {ws(β): β ∈ S ∗(α)} implies that we can take ηα = 0 in Theo-
rem 4.5. Thus applying Theorem 4.5, we get

dTV
(
N

(n)
k (zn(t)),Poi(n)

k (t)
) ≤

∑
α∈Sk(n)[(p(n)

k (t))2 + p
(n)
k (t)E[Zα] + E[IαZα]]

λ
(n)
k (t)

(4.27)

= p
(n)
k (t) + E[Zα] + E[IαZα]

p
(n)
k (t)

,

where the last equality follows since λ
(n)
k (t) = |Sk(n)|p(n)

k (t) and since E[Zα] and E[IαZα] are
independent of α. As before, by the choice of zn(t),

nk−1p
(n)
k (t) → aket .

Thus, in particular, p
(n)
k (t) → 0, as n → ∞. Further, there exists a constant Ck such that, as

n → ∞,

E[Zα] = |I ∗(α)|p(n)
k (t) ≤ Ckn

k−2p
(n)
k (t) → 0.
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Thus, the first two terms in (4.27) vanish as n → ∞. The last term requires some more analysis.
We note that

E[IαZα] =
k−2∑
j=1

|I ∗
k,j (α)|p(n)

k,j (t). (4.28)

Here I ∗
k,j (α) ⊆ Sk(n) consists of the set of paths of length k which overlap with α in exactly j

edges, while

p
(n)
k,j (t) = P

(
Xk,k ≤ zn(t),Xk,j ≤ zn(t)

)
,

where Xk,k = ∑k
r=1 E−s

r , while Xk,j = ∑j

r=1 E−s
r + ∑k

r=j+1 Ẽ−s
r ,1 ≤ j ≤ k − 2 and (Ei)

k
i=1

and (Ẽr )
k
r=1 are two independent vectors of i.i.d. Exp(1) random variables. We bound the prob-

ability p
(n)
k,j (t) in the same way as before, using the standard Laplace’s method:

Lemma 4.6 (Correlated sums of inverse powers of exponentials). Fix k ≥ 3, and let 1 ≤ i ≤
k − 2. Then, for z ↓ 0,

p
(n)
k,j (t) = P(Xk,k ≤ z,Xk,i ≤ z) ∼ Ck,i

1

z(k−i−1)p+ip/2
exp

(−z−p[(k − i)ν + i]p+1),
where ν = 21/(p+1) and Ck,i > 0 is a constant.

Proof. The proof is given by straightforward computation using Laplace’s method:

P(Xk,k ≤ z,Xk,i ≤ z)

= P

(
k∑

r=1

E−s
r ≤ z,

i∑
r=1

E−s
r +

k∑
r=i+1

(Ẽr )
−s ≤ z

)
=

∫ z

0
F 2

k−i (z − y)dFi(y)

∼ aia
2
k−i

∫ z

0
(z − y)−(k−i−1)pe−2(k−i)p+1(z−y)−p

dy−(i−1)p/2e−ip+1y−p

= aia
2
k−i

∫ z

0
y−(i−1)p/2−1e−ip+1y−p(

pip+1y−p − (i − 1)p/2
)

× (z − y)−(k−i−1)pe−2(k−i)p+1(z−y)−p

dy

= aia
2
k−iz

−(k−i−1)p−(i−1)p/2
∫ 1

0
x−(i−1)p/2−1(pip+1x−pz−p − (i − 1)p/2

)
× (1 − x)−(k−i−1)p exp{−z−phk,i(x)}dx,

where we abbreviate

hk,i(x) = ip+1x−p + 2(k − i)p+1(1 − x)−p.
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Put ν = 21/(p+1). Then the minimum arises in the point xk,i , satisfying h′
k,i (xk,i) = 0, which

yields

xk,i = i

(k − i)ν + i
.

Furthermore, hk,i(xk,i) = ((k − i)ν + i)p+1, while

h′′
k,i (xk,i) = p(p + 1)

i(k − i)ν

(
(k − i)ν + i

)p+3
.

Applying Laplace’s method then yields

P(Xk,k ≤ z,Xk,i ≤ z)

∼ aia
2
k−iz

−(k−i−1)p−(i−1)p/2(xk,i)
−(i−1)p/2−1(pip+1(zxk,i)

−p − (i − 1)p/2
)

(4.29)

× (1 − xk,i)
−(k−i−1)p exp{−z−phk,i(xk,i)}

√
2π

z−ph′′
k,i (xk,i)

.
�

Recall (4.27). The first two terms on the right-hand side vanish, as n → ∞, hence it suffices
to show that

E[IαZα]
p

(n)
k (t)

→ 0.

Using that p
(n)
k (t) = O(n−(k−1)) and that |I ∗

k,j (α)| ∼ nk−j−1 it follows from (4.28) that we now
need to show for 1 ≤ j ≤ k − 2,

n2k−j−2p
(n)
k,j (t) → 0,

as n → ∞. Now the polynomial terms (zk type terms) in the approximation of p
(n)
k,j (t) should not

play a role. Thus, using the fact that up to the first-order

(zn(t))
−p ∼

(
gs(k)

logs n

)−p

= (k − 1) logn

k1+p
, (4.30)

we need to show that for 1 ≤ j ≤ k − 2 and with ν = 21/(p+1),

[((
1 − j

k

)
ν + j

k

)p+1

−
(

2 − j

k − 1

)]
> 0. (4.31)

The above inequality is not true for s close to 0 and larger values of k. However, it is true for
s > 1 and k ∈ {�s + 1�, 	s + 1
} as we will now show. Indeed, define, for x ∈ [0,1],

uk(x) = [
(1 − x)2s/(s+1) + x

](1+1/s) −
(

2 − k

k − 1
x

)
,
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and note that uk(j/k) is equal to the left-hand side of (4.31). Hence, if we show that when s > 1
for both k = �s + 1� and k = 	s + 1
, the function uk(x) > 0 for all x ∈ (0,1), then we are done.
Differentiating x �→ uk(x) with respect to x yields

u′
k(x) = −a[(1 − x)21/a + x]a−1(21/a − 1) + k

k − 1
,

where a = (s + 1)/s > 1. The function u′
k is increasing as can easily be seen from the second

derivative

u′′
k(x) = a(a − 1)(1 − 21/a)2[(1 − x)21/a + x]a−2 > 0.

Hence, since uk(0) = 0, it suffices to show that u′
k(0) > 0, for the two indicated values of k.

Claim. Fix s > 1, then the statement u′
k(0) > 0 is true for both k = �s + 1� and k = 	s + 1
.

Proof. Since a = (s + 1)/s, the condition u′
k(0) > 0 is equivalent to

sk
(
21/(s+1) − 1

)
>

(
k − (s + 1)

)(
2 − 21/(s+1)

)
.

This inequality is trivially true for k = �s + 1�, since then the right-hand side is smaller than or
equal to 0, whereas the left-hand side is positive. We now turn to the case where k = 	s + 1
.
Since 21/(s+1) ≥ 1 and 	s + 1
 − (s + 1) ≤ 1, the right-hand side is bounded by 1, that is,(	s + 1
 − (s + 1)

)(
2 − 21/(s+1)

) ≤ 1, s > 1.

A lower bound for the left-hand side on the domain s > 1, is attained in the limit as s ↓ 1 and
equals 3(

√
2 − 1) = 1.2426 . . . , that is,

sk
(
21/(s+1) − 1

) = s	s + 1
(21/(s+1) − 1
) ≥ 3

(√
2 − 1

)
, s > 1.

This shows that the above claim holds and hence that the Poisson approximation holds both for
k = �s + 1� and k = 	s + 1
. �

With the verification of the above claim the proof of Proposition 4.4 is complete. �

4.5. The case s ∈ S , the special set

In this section, we will prove Theorem 2.2. To this end, we fix sj ∈ S and write k = �sj + 1�,

so that k + 1 = 	sj + 1
. Let N
(n)
k = N

(n)
k (zn(x)) denote the number of paths from 1 to n of

length k and with weight at most zn(x), with zn(·) given by (4.19), and similarly we denote by
M

(n)
k = M

(n)
k (zn(y)) the number of paths from 1 to n of length k + 1 and with weight at most

zn(y), where zn(y) is given by the right-hand side of (4.19), with t replaced by y and k by k + 1.
Note that the change from k to k + 1 is for many aspects irrelevant, because for s = sj , we have
gs(k) = gs(k + 1). We are therefore, in particular, allowed to use the same quantity zn(y) in the
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definition of M
(n)
k . We show below that the total variation distance between N

(n)
k + M

(n)
k and a

Poisson variable with mean μ
(n)
k (x, y) = E[N(n)

k + M
(n)
k ] converges to 0 as n → ∞; that is, we

show that

dTV
(
N

(n)
k + M

(n)
k ,Poi

(
μ

(n)
k (x, y)

)) → 0. (4.32)

Let us first prove that (4.32) implies Theorem 2.2.

Proof of Theorem 2.2 assuming (4.32). The convergence in total variation in (4.32) implies
that

P
(
Wk(n) > zn(x),Wk+1(n) > zn(y)

) = P
(
N

(n)
k = 0,M

(n)
k = 0

) = P
(
N

(n)
k + M

(n)
k = 0

)
→ P

(
Poi(μk(x, y)) = 0

)
,

where, by (4.22), μk(x, y) = limn→∞ μ
(n)
k (x, y) = limn→∞ E[N(n)

k ] + E[M(n)
k ] = λk(x) +

λk+1(y), and where we define

λl(z) = ale
z, l ≥ 1, z ∈ R. (4.33)

Thus, comparing with (4.23),

lim
n→∞ P

(
Wk(n) > zn(x),Wk+1(n) > zn(y)

)
(4.34)

= lim
n→∞ P

(
Wk(n) > zn(x)

)
lim

n→∞ P
(
Wk+1(n) > zn(y)

)
,

and consequently, we see that the events {Wk(n) > zn(x)} and {Wk+1(n) > zn(y)} are asymptoti-
cally independent. It is then straightforward to conclude that the minimum of the normalized pair
(Wk(n),Wk+1(n)), where the normalization is as in the left-hand side of part (a) of Theorem 2.2
converges in distribution to the minimum of the independent pair(

�k/(k − 1),�k+1/k
)
.

The lower bound for (logn)sWk(n) of Theorem 4.2 and the tightness of Hn (see (4.7)) again com-
pletes the proof of part (b), the hopcount part, and subsequently also part (a), of Theorem 2.2. �

In order to prove (4.32), we again rely on the Poisson approximation in [5]. Set Tk(n) =
Sk(n) ∪ Sk+1(n), the index set of all paths from 1 to n having either k or k + 1 edges, where, as
before, k = �sj + 1�. To denote that the length of a path is equal to k, we give it a subscript k and
write αk for an element of Sk(n). For αk ∈ Sk(n), we denote by

Iαk
= Iαk

(zn(x)) = 1{ws(αk)≤zn(x)},

whereas for a path αk+1 ∈ Sk+1(n), we define

Iαk+1 = Iαk+1(zn(y)) = 1{ws(αk+1)≤zn(y)},
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so that

p
(n)
k (x) = P

(
ws(αk) ≤ zn(x)

) = Fk(zn(x))

p
(n)
k+1(y) = P

(
ws(αk+1) ≤ zn(y)

) = Fk+1(zn(y)).

Writing α for αk or αk+1, we denote by I ∗(α) ⊆ Tk(n) the set of paths (not including α) which
have at least one edge in common to α, and by S ∗(α) ⊆ Tk(n) the set of paths that do not overlap
on any edge with α. Finally, let

Zα =
∑

βk∈I ∗(α)

1{ws(βk)≤zn(x)} +
∑

βk+1∈I ∗(α)

1{ws(βk+1)≤zn(y)}.

The total variation distance in (4.32) is bounded by

∑
α∈Sk(n)[(p(n)

k (x))2 + p
(n)
k (x)E[Zα] + E[IαZα]]

μ
(n)
k (x, y)

+
∑

α∈Sk+1(n)[(p(n)
k+1(y))2 + p

(n)
k+1(y)E[Zα] + E[IαZα]]

μ
(n)
k (x, y)

.

Since

μ
(n)
k (x, y) = p

(n)
k (x)|Sk(n)| + p

(n)
k+1(y)|Sk+1(n)| ≥ max

{
p

(n)
k (x)|Sk(n)|,p(n)

k+1(y)|Sk+1(n)|},
we conclude from the proof of Proposition 4.4 that

∑
α∈Sk(n)[(p(n)

k (x))2 + p
(n)
k (x)E[Zα]]

μ
(n)
k (x, y)

+
∑

α∈Sk+1(n)[(p(n)
k+1(y))2 + p

(n)
k+1(y)E[Zα]]

μ
(n)
k (x, y)

→ 0.

Hence, it remains to prove that∑
α∈Sk(n) E[IαZα] + ∑

α∈Sk+1(n) E[IαZα]
μ

(n)
k (x, y)

→ 0. (4.35)

We next decompose E[IαZα] into the part where β has k or k + 1 edges, that is,

E[IαZα] =
∑

βk∈I ∗(α)

P(Iα = 1, Iβk
= 1) +

∑
βk+1∈I ∗(α)

P(Iα = 1, Iβk+1 = 1).

By making this decomposition, as well as differentiating between the number of edges of α,
the numerator in (4.35) splits into 4 different double sums. The two double sums running over
the index sets α ∈ Sk(n),βk ∈ I ∗(α) and α ∈ Sk+1(n),βk+1 ∈ I ∗(α) are treated in the proof of
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Proposition 4.4, apart from the small change that zn(x) and zn(y) are now possibly different.
Since zn(x)/zn(y) → 1, it is straightforward to adapt the argument. Below, we will show that∑

α∈Sk(n)

∑
βk+1∈I ∗(α) P(Iα = 1, Iβk+1 = 1)

μ
(n)
k (x, y)

→ 0. (4.36)

The terms with α ∈ Sk+1(n) and βk ∈ I ∗(α) are identical, apart from the fact that x and y are
interchanged. Thus, (4.36) completes the proof of (4.32).

To prove (4.36), we write, as in (4.28),

∑
βk+1∈I ∗(α)

P(Iα = 1, Iβk+1 = 1) =
k−1∑
j=1

|I ∗
k+1,j (α)|p(n)

k+1,j (x, y),

where I ∗
k+1,j (α) ⊂ Tk(n) consists of the set of paths of length k +1 which overlap with α, which

has length k, in exactly j edges, while

p
(n)
k+1,j (x, y) = P

(
Xk,k ≤ zn(x),Xk+1,j ≤ zn(y)

)
,

where, similarly as in the proof of Proposition 4.4, we now write Xk,k = ∑k
r=1 E−s

r , while

Xk+1,j = ∑j

r=1 E−s
r + ∑k+1

r=j+1 Ẽ−s
r ,1 ≤ j ≤ k − 1.

By adapting the Laplace method-type argument used in the proof of Lemma 4.6, it is readily
verified that for z1, z2 ↓ 0 such that limz1→0 z2/z1 = 1, and k ≥ 3 and 1 ≤ j ≤ k − 1, we have

P(Xk,k ≤ z1,Xk+1,j ≤ z2) = exp
(−z

−p

1 [(k − j)ν + j + 1]p+1(1 + o(1)
))

, (4.37)

where, as before, ν = 21/(p+1). By (4.30) (zn(x))−p ∼ (k − 1) logn/(k1+p). Further, since s ∈
S , we have that (zn(y))−p ∼ logn/((k + 1)1+p) = (k − 1) logn/(k1+p). Thus, limn→∞ zn(y)/

zn(x) = 1, as required.
We conclude that in order for (4.36) to hold, we need to show that n2k−j−1p

(n)
k+1,j (t) → 0, or

equivalently that

exp

(
− logn

[
(k − 1)

((
1 − j

k

)
ν + j + 1

k

)p+1

− (2k − j − 1)

])
→ 0, 1 ≤ j ≤ k − 1.

This follows from the convexity of the function x �→ xp+1 and the facts that 1 < ν = 21/(p+1) < 2
and p > 0, since, for 1 ≤ j ≤ k − 1,

(2k − j − 1)

k − 1
=

(
2 − j − 1

k − 1

)
≤

((
1 − j − 1

k

)
ν + j − 1

k

)p+1

=
((

1 − j

k

)
ν + j + 1

k
+ ν − 2

k

)p+1

<

((
1 − j

k

)
ν + j + 1

k

)p+1

.

This proves (4.36), and thus completes the proof of (4.32).
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4.6. Multipoint distance limits

In this section, we indicate how to prove Corollary 2.3 for 2 multipoint distances. The case for
general m follows similarly.

More precisely, let W̃
(12)
n , W̃

(13)
n denote the recentered and rescaled optimal weights between 1

and 2 and 1 and 3. Recall, for any fixed t ∈ R, the function zn(t) from (4.19), where we take
k = k∗(s). For j = 2,3 and any t ∈ R, let N

j,(n)
k (zn(t)) denote the number of paths between 1

and j having k edges whose weight is less than zn(t).
The proof of Corollary 2.3 will be an adaptation of the proof of Theorem 2.2 in Section 4.5,

and we start by recalling some results we have proved and shall rely on. Recall that we have
already proved that, as n → ∞,

λ
(n)
k (t) = E

[
N

j,(n)
k (zn(t))

] → λk(t),

where λk(t) = aket is defined in (4.33) and

dTV
(
N

j,(n)
k (zn(t)),Poi(λk(t))

) → 0.

For any fixed x, y ∈ R, define

N∗
n = N

2,(n)
k (zn(x)) + N

3,(n)
k (zn(y)). (4.38)

Below, we shall show that

N∗
n

d−→ Poi
(
λk(x) + λk(y)

)
. (4.39)

Then the argument leading to (4.34) implies that W̃
(12)
n and W̃

(13)
n are asymptotically indepen-

dent, so that

lim
n→∞ P

(
W̃ (12)

n > x, W̃ (13)
n > y

) → exp
(−λk(x) − λk(y)

)
,

establishing the result we want. We next sketch how to prove (4.39).

Sketch of proof of (4.39). Fix any path α with k edges between 1 and 2 and path β with k edges
between 1 and 3. Since the argument is quite close to the proof of Theorem 2.2, we shall keep
the discussion brief and focus on the differences. We again rely on the total variation bound in
Theorem 4.5 that implies

dTV
(
N∗

n ,Poi
(
λ

(n)
k (x) + λ

(n)
k (y)

)) ≤ (I) + (II) + (III)

λ
(n)
k (x) + λ

(n)
k (y)

.

Here,

(I) = p
(n)
k (x)λ

(n)
k (x) + p

(n)
k (y)λ

(n)
k (y),

(II) = λ
(n)
k (x)

(
E

[
Z(1,2)

α

] + E
[
Z(1,3)

α

]) + λ
(n)
k (y)

(
E

[
Z

(1,2)
β

] + E
[
Z

(1,3)
β

])
,

(III) = E
[
IαZ(1,2)

α + IαZ(1,3)
α + IαZ

(1,2)
β + IαZ

(1,3)
β

]
,
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where, as in (4.25),

Iα = 1{|ws(α)|≤zn(x)}, Iβ = 1{|ws(β)|≤zn(y)},

while, writing I ∗
1,2(α) for the set of paths from 1 to 2, which overlap with α, and I ∗

1,3(α) for the
set of paths from 1 to 3, which overlap with α (and similarly for β),

Z(1,2)
α =

∑
γ∈I ∗

1,2(α)

1{|ws(γ )|≤zn(x)}, and Z(1,3)
α =

∑
γ∈I ∗

1,3(α)

1{|ws(γ )|≤zn(y)},

and similarly for Z
(1,2)
β and Z

(1,3)
β . Now, we have already shown that the terms (I) and (II) divided

by λ
(n)
k (x) + λ

(n)
k (y) vanish as n → ∞. Thus, to complete the proof we just need to show that,

as n → ∞,

E[IαZ
(1,2)
α ]

λ
(n)
k (x) + λ

(n)
k (y)

→ 0,

as well as the corresponding other three terms of (III). This is a minor adaptation of the proof
of (4.36), and we omit the details. �
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