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There exist very few results on mixing for non-stationary processes. However, mixing is often required in
statistical inference for non-stationary processes such as time-varying ARCH (tvARCH) models. In this
paper, bounds for the mixing rates of a stochastic process are derived in terms of the conditional densities
of the process. These bounds are used to obtain the α, 2-mixing and β-mixing rates of the non-stationary
time-varying ARCH(p) process and ARCH(∞) process. It is shown that the mixing rate of the time-varying
ARCH(p) process is geometric, whereas the bound on the mixing rate of the ARCH(∞) process depends
on the rate of decay of the ARCH(∞) parameters. We note that the methodology given in this paper is
applicable to other processes.

Keywords: 2-mixing; absolutely regular (β-mixing) ARCH(∞); conditional densities; strong mixing
(α-mixing); time-varying ARCH

1. Introduction

Mixing is a measure of dependence between elements of a random sequence that has a wide
range of theoretical applications (see [7] and below). One of the most popular mixing measures
is α-mixing (also called strong mixing), where the α-mixing rate of the non-stationary stochastic
process {Xt } is defined as a sequence of coefficients α(k) such that

α(k) = sup
t∈Z

sup
H∈σ(Xt ,Xt−1,...)

G∈σ(Xt+k,Xt+k+1,...)

|P(G ∩ H) − P(G)P (H)|. (1)

{Xt } is called α-mixing if α(k) → 0 as k → ∞. α-mixing has several applications in statistical
inference. For example, if {α(k)} decays sufficiently fast to zero as k → ∞, then, among other
results, it is possible to show asymptotic normality of sums of {Xk} (see [12], Chapter 24), as
well as exponential inequalities for such sums (see [4]), asymptotic normality of kernel-based
nonparametric estimators (see [4]) and consistency of change point detection schemes of non-
linear time series (see [16]). The notion of 2-mixing is related to strong mixing, but is a weaker
condition as it measures the dependence between two random variables and not the entire tails.
2-mixing is often used in statistical inference, for example, deriving rates in nonparametric re-
gression (see [4]). The 2-mixing rate can be used to derive bounds for the covariance between
functions of random variables, say cov(g(Xt ), g(Xt+k)) (see [24]), which is usually not possible
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when only the correlation structure of {Xk} is known. The 2-mixing rate of {Xk} is defined as a
sequence α̃(k) which satisfies

α̃(k) = sup
t∈Z

sup
H∈σ(Xt )

G∈σ(Xt+k)

|P(G ∩ H) − P(G)P (H)|. (2)

It is clear that α̃(k) ≤ α(k). A closely related mixing measure, introduced in [39] is β-mixing
(also called absolutely regular mixing). The β-mixing rate of the stochastic process {Xt } is de-
fined as a sequence of coefficients β(k) such that

β(k) = sup
t∈Z

sup
{Hj }∈σ(Xt ,Xt−1,...)

{Gj }∈σ(Xt+k,Xt+k+1,...)

∑
i

∑
j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|, (3)

where {Gi} and {Hj } are finite partitions of the sample space �. {Xt } is called β-mixing if
β(k) → 0 as k → ∞. It can be seen that this measure is slightly stronger than α-mixing (since
an upper bound for β(k) immediately gives a bound for α(k) due to the fact that β(k) ≥ α(k)).

Despite the versatility of mixing, its main drawback is that, in general, it is difficult to derive
bounds for α(k), α̃(k) and β(k). However, the mixing bounds of some processes are known.
Chanda [9], Gorodetskii [20], Athreya and Pantula [1] and Pham and Tran [32] show strong
mixing of the MA(∞) process. Feigin and Tweedie [13] and Pham [31] have shown geometric
ergodicity of bilinear processes (we note that stationary geometrically ergodic Markov chains
are geometrically α-mixing, 2-mixing and β-mixing; see, e.g., [14]). More recently, Tjostheim
[38] and Mokkadem [30] have shown geometric ergodicity for a general class of Markovian
processes. The results in [30] have been applied in [6] to show geometric ergodicity of stationary
ARCH(p) and GARCH(p, q) processes, where p and q are finite integers. Related results on
mixing for GARCH(p, q) processes can be found in [8,25,26,35] (for an excellent review) and
[14,27] (where mixing of ‘nonlinear’ GARCH(p, q) processes is also considered). Most of these
these results are proved by verifying the Meyn–Tweedie conditions (see [13] and [28]) and, as
mentioned above, are derived under the premise that the process is stationary (or asymptotically
stationary) and Markovian. Clearly, if a process is non-stationary, then the aforementioned results
do not hold. Therefore, for nonstationary processes, an alternative method to prove mixing is
required.

The main aim of this paper is to derive a bound for (1), (2) and (3) in terms of the den-
sities of the process plus an additional term, which is an extremal probability. These bounds
can be applied to various processes. In this paper, we will focus on ARCH-type processes and
use the bounds to derive mixing rates for time-varying ARCH(p) (tvARCH) and ARCH(∞)

processes. The ARCH family of processes is widely used in finance to model the evolution of
returns on financial instruments; we refer the reader to the review article of [18] for a comprehen-
sive overview of mathematical properties of ARCH processes and a list of further references. It is
worth mentioning that Hörmann [23] and Berkes et al. [3] have considered a different type of de-
pendence, namely a version of the m-dependence moment measure, for ARCH-type processes.
The stationary GARCH(p, q) model tends to be the benchmark financial model. However, in
certain situations, it may not be the most appropriate model. For example, it cannot adequately
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explain the long memory seen in the data or change according to shifts in the world economy.
Therefore, attention has recently been paid to tvARCH models (see, e.g., [11,15,16,29]) and
ARCH(∞) models (see [17,19,33,37]). The derivations of the sampling properties of some of
the aforementioned papers rely on quite sophisticated assumptions on the dependence structure,
in particular, on their mixing properties.

We will show that, due to the p-Markovian nature of the time-varying ARCH(p) process, the
α-mixing, 2-mixing and β-mixing bounds have the same geometric rate. The story is different for
ARCH(∞) processes, where the mixing rates can be different and vary according to the rate of
decay of the parameters. An advantage of the approach presented in this paper is that these meth-
ods can readily be used to establish mixing rates of several time series models. This is especially
useful in time series analysis, for example, change point detection schemes for nonlinear time
series, where strong mixing of the underlying process is often required. The price we pay for the
flexibility of our approach is that the assumptions under which we work are slightly stronger than
the standard assumptions required to prove geometric mixing of the stationary GARCH process.
However, the conditions do not rely on proving irreducibility (which is usually required when
showing geometric ergodicity) of the underlying process, which can be difficult to verify.

In Section 2, we derive a bound for the mixing rate of general stochastic processes, in terms of
the differences of conditional densities. In Section 3, we derive mixing bounds for time-varying
ARCH(p) processes (where p is finite). In Section 4, we derive mixing bounds for ARCH(∞)

processes. Proofs which are not in the main body of the paper can be found in the Appen-
dix and the accompanying technical report, available at http://stats.lse.ac.uk/fryzlewicz/mixing/
tvARCH_mixing.pdf.

2. Some mixing inequalities for general processes

2.1. Notation

For k > 0, let Xt−k
t = (Xt , . . . ,Xt−k); if k ≤ 0, then Xt−k

t = 0. Let ys = (ys, . . . , y0). Let ‖ · ‖
denote the �1-norm. Let � denote the sample space. The σ -algebra generated by Xt, . . . ,Xt+r

is denoted F t
t+r = σ(Xt , . . . ,Xt+r ).

2.2. Some mixing inequalities

Let us suppose that {Xt } is an arbitrary stochastic process. In this section, we derive some bounds
for α(k), α̃(k) and β(k). To do this, we will consider bounds for

sup
H∈F t−r1

t ,G∈F t+k
t+k+r2

|P(G ∩ H) − P(G)P (H)| and

sup
{Hj }∈F t−r1

t ,{Gi }∈F t+k
t+k+r2

∑
i,j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|,

http://stats.lse.ac.uk/fryzlewicz/mixing/tvARCH_mixing.pdf
http://stats.lse.ac.uk/fryzlewicz/mixing/tvARCH_mixing.pdf
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where r1, r2 ≥ 0 and {Gi} and {Hi} are partitions of �. In the proposition below, we give a bound
for the mixing rate in terms of conditional densities. Similar bounds for linear processes have
been derived in [9] and [20] (see also [12], Chapter 14). However, the bounds in Proposition 2.1
apply to any stochastic process and it is this generality that allows us to use the result in later
sections, where we derive mixing rates for ARCH-type processes.

Proposition 2.1. Let us suppose that the conditional density of Xt+k
t+k+r2

given X
t−r1
t exists and

denote it as f
Xt+k

t+k+r2
|Xt−r1

t
. For η = (η0, . . . , ηr1) ∈ (R+)r1+1, define the set

E = {ω;Xt−r1
t (ω) ∈ E }, where E = {(ν0, . . . , νr1); for all |νj | ≤ ηj }. (4)

For all r1, r2 ≥ 0 and η, we then have

sup
H∈F t−r1

t ,G∈F t+k
t+k+r2

|P(G ∩ H) − P(G)P (H)|

(5)

≤ 2 sup
x∈E

∫
R

r2+1

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy + 4P(Ec)

and

sup
{Hj }∈F t−r1

t ,{Gj }∈F t+k
t+k+r2

∑
i,j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|

(6)

≤ 2
∫

R
r2+1

sup
x∈E

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy + 4P(Ec),

where {Gi} and {Hj } are finite partitions of �. Letting Wt+1
t+k−1 be a random vector that is

independent of X
t−r1
t , we then have

sup
H∈F t−r1

t ,G∈F t+k
t+k+r2

|P(G ∩ H) − P(G)P (H)|

(7)

≤ 2
r2∑

s=0

sup
x∈E

EW

(
sup

ys−1∈Rs

∫
R

Ds,k,t (ys |ys−1,W,x)dys

)
+ 4P(Ec)

and

sup
{Hj }∈F t−r1

t ,{Gj }∈F t+k
t+k+r2

∑
i,j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|

(8)

≤ 2
r2∑

s=0

EW

(
sup

ys−1∈Rs

∫
R

sup
x∈E

Ds,k,t (ys |ys−1,W,x)dys

)
+ 4P(Ec),
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where EW(g(W)) = ∫
g(w)fW (w)dw, fW(w) is the density of w, D0,k,t (y0|y−1,w,x) =

|fs,k,t (ys |w,x) − fs,k,t (ys |w,0)| and, for s ≥ 1,

Ds,k,t (ys |ys−1,w,x) = ∣∣fs,k,t (ys |ys−1,w,x) − fs,k,t (ys |ys−1,w,0)
∣∣ (9)

with the conditional density of Xt+k given (W t+1
t+k−1,X

t−r1
t ) denoted f0,k,t , the conditional

density of Xt+k+s given (X t+k
t+k+s−1,W

t+1
t+k−1,X

t−r1
t ) denoted fs,k,t , x = (x0, . . . , x−r2) and

w = (wk, . . . ,w1).

Proof. This can be found in Appendix A.1. �

Since the above bounds hold for all vectors η ∈ (R+)r1+1 (note that η defines the set E; see
(4)), by choosing the η which balances the integral and P(Ec), we obtain an upper bound for the
mixing rate.

The main application of the inequality in (7) is to processes which are ‘driven’ by the in-
novations (e.g., linear and ARCH-type processes). If Wt+1

t+k−1 is the innovation process, it

can often be shown that the conditional density of Xt+k+s given (X t+k
t+k+s−1,W

t+1
t+k−1,X

t−r1
t )

can be written as a function of the innovation density. Deriving the density of Xt+k+s given
(Xt+k

t+k+s−1,W
t+1
t+k−1,X

t−r1
t ) is not a trivial task, but it is often possible. In the subsequent sec-

tions, we will apply Proposition 2.1 to obtain bounds for the mixing rates.
The proof of Proposition 2.1 can be found in the Appendix, but we give a brief outline of it

here. Let

H = {ω;Xt−r1
t (ω) ∈ H}, G = {ω;Xt+k

t+k+r2
(ω) ∈ G}. (10)

It is straightforward to show that |P(G ∩ H) − P(G)P (H)| ≤ |P(G ∩ H ∩ E) − P(G ∩
E)P (H)| + 2P(Ec). The advantage of this decomposition is that when we restrict X

t−r1
t to

the set E (i.e., not large values of X
t−r1
t ), we can obtain a bound for |P(G ∩ H ∩ E) − P(G ∩

E)P (H)|. More precisely, by using the inequality

inf
x∈E

P(G|Xt−r1
t = x)P (H ∩ E) ≤ P(G ∩ H ∩ E) ≤ sup

x∈E
P(G|Xt−r1

t = x)P (H ∩ E),

we can derive upper and lower bounds for P(G∩H ∩E)−P(G∩E)P (H) which depend only
on E and not H and G, and thus obtain the bounds in Proposition 2.1.

It is worth mentioning that by using (7), one can establish mixing rates for time-varying linear
processes (such as the tvMA(∞) process considered in [10]). Using (7) and techniques similar
to those used in Section 4, mixing bounds can be obtained for the tvMA(∞) process.

In the following sections, we will derive the mixing rates for ARCH-type processes, where one
of the challenging aspects of the proof is establishing a bound for the integral difference in (9).
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3. Mixing for the time-varying ARCH(p) process

3.1. The tvARCH process

In [15], it is shown that the tvARCH process can be used to explain the commonly observed
stylized facts in financial time series (such as the empirical long memory). A sequence of random
variables {Xt } is said to come from the squares of a time-varying ARCH(p) process if it satisfies
the representation

Xt = Zt

(
a0(t) +

p∑
j=1

aj (t)Xt−j

)
, (11)

where {Zt } are independent, identically distributed (i.i.d.) positive random variables, where
E(Zt ) = 1 and aj (·) are positive parameters. It is worth comparing (11) with the squared
tvARCH process used in the statistical literature. Unlike the squared tvARCH process con-
sidered in, for example, [11] and [15], we have not placed any smoothness conditions on the
time-varying parameters {aj (·)}. The smoothness conditions assumed in [11] and [15] are used
in order to carry out parameter estimation. However, in this paper, we are dealing with mixing
of the process, which does not require such strong assumptions. The assumptions that we re-
quire are stated below. From now on, with a slight abuse of terminology, we will call the squared
tvARCH process simply the tvARCH process.

Assumption 3.1. (i) For some δ > 0, supt∈Z

∑p

j=1 aj (t) ≤ 1 − δ.
(ii) inft∈Z a0(t) > 0 and supt∈Z a0(t) < ∞.

(iii) Let fZ denote the density of Zt . For all a > 0, we have
∫ |fZ(u)−fZ(u[1+a])|du ≤ Ka

for some finite K independent of a.
(iv) Let fZ denote the density of Zt . For all a > 0, we have

∫
sup0≤τ≤a |fZ(u) − fZ(u[1 +

τ ])|du ≤ Ka for some finite K independent of a.

We note that Assumption 3.1(i)–(ii) guarantees that the ARCH process has a Volterra expan-
sion as a solution (see [11], Section 5). Assumption 3.1(iii)–(iv) is a type of Lipschitz condition
on the density function and is satisfied by various well-known distributions, including the chi-
squared distributions. We now consider a class of densities which satisfy Assumption 3.1(iii)–
(iv). Suppose that f ′

Z is bounded, that after some finite point m the derivative f ′ declines
monotonically to zero and satisfies

∫ |yf ′
Z(y)|dy < ∞. In this case,

∫ ∞

0
sup

0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])|du

≤
∫ m

0
sup

0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])|du +
∫ ∞

m

sup
0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])|du

≤ a

(
m2 sup

u∈R

|f ′
Z(u)| +

∫ ∞

m

u|f ′
Z(u)|du

)
≤ Ka



326 P. Fryzlewicz and S. Subba Rao

for some finite K independent of a, hence Assumption 3.1(iii)–(iv) is satisfied.
We use Assumption 3.1(i)–(iii) to obtain the strong mixing rate (2-mixing and α-mixing) of

the tvARCH(p) process, and the slightly stronger conditions Assumption 3.1(i)–(ii) and (iv) to
obtain the β-mixing rate of the tvARCH(p) process. We mention that in the case that {Xt } is
a stationary, ergodic time series, [14] have shown geometric ergodicity, which they show im-
plies β-mixing, under the weaker condition that the distribution function of {Zt } can have some
discontinuities.

3.2. The tvARCH(p) process and the Volterra series expansion

In this section, we derive a Volterra series expansion of the tvARCH process (see also [17]).
These results allow us to apply Proposition 2.1 to the tvARCH process. We first note that the in-
novations Zt+1

t+k−1 and X
t−p+1
t are independent random vectors. Hence, comparing with Proposi-

tion 2.1, we are interested in obtaining the conditional density of Xt+k given Zt+1
t+k−1 and X

t−p+1
t

(denoted f0,k,t ) and the conditional density of Xt+k+s given Xt+k
t+k+s−1,Z

t+1
t+k−1 and X

t−p+1
t (de-

noted fs,k,t ). We use these expressions to obtain a bound for Ds,k,t (defined in (9)), which we
use to derive a bound for the mixing rate. We now represent {Xt } in terms of {Zt }. To do this, we
define

At =

⎛
⎜⎜⎜⎜⎝

a1(t)Zt a2(t)Zt . . . ap(t)Zt

1 0 . . . 0
0 1 . . . 0

. . . . . .
. . .

...

0 0 1 0

⎞
⎟⎟⎟⎟⎠ , Ãt =

⎛
⎜⎜⎜⎜⎝

a1(t) a2(t) . . . ap(t)

1 0 . . . 0
0 1 . . . 0

. . . . . .
. . .

...

0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

bt = (a0(t)Zt ,0, . . . ,0)′ and X
t−p+1
t = (Xt ,Xt−1, . . . ,Xt−p+1)

′.

Using this notation, we have the relation X
t+k−p+1
t+k = At+kX

t+k−p

t+k−1 +bt+k . We note that the vec-
tor representation of ARCH and GARCH processes has been used in [2,5,36] in order to obtain
some probabilistic properties for ARCH-type processes. Now iterating, the relation k times (to
get X

t+k−p+1
t+k in terms of X

t−p+1
t ), we have

X
t+k−p+1
t+k = bt+k +

k−2∑
r=0

[
r−1∏
i=0

At+k−i

]
bt+k−r−1 +

[
k−1∏
i=0

At+k−i

]
X

t−p+1
t ,

where we set [∏−1
i=0 At+k−i] = Ip (Ip denotes the p × p-dimensional identity matrix). We use

this expansion below.

Lemma 3.1. Let us suppose that Assumption 3.1(i) is satisfied. For s ≥ 0, we then have

Xt+k+s = Zt+k+s{Ps,k,t (Z) + Qs,k,t (X)}, (12)
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where Z = Zt+1
t+k ; for s = 0 and n > t , we have P0,k,t (Z) = a0(t + k) + [Ãt+k ×∑n−t−2

r=0
∏r

i=1 At+k−ibt+k−r−1]1, Q0,k,t (X) = [Ãt+k

∏k−1
i=1 At+k−iX

t−p+1
t ]1 ([·]1 denotes the

first element of a vector).
For 1 ≤ s ≤ p,

Ps,k,t (Z) = a0(t + k + s) +
s−1∑
i=1

ai(t + k + s)Xt+k+s−i

+
p∑

i=s

ai(t + k + s)Zk+s−i

×
{

a0(t + k + s − i) (13)

+
[
Ãt+k+s−i

k+s−i∑
r=1

{
r∏

d=0

At+k+s−i−d

}
bt+k+s−i−r

]
1

}
,

Qs,k,t (Z,X) =
[

p∑
i=s

ai(t + k + s)Zk+s−i Ãt+k+s−i

{
k+s−i∏
d=0

At+k+s−i−dX
t−p+1
t

}]
1

and for s > p, we have Ps,k,t (Z) = a0(t + k + s) + ∑p

i=1 ai(t + k + s)Xt+k+s−i and
Qs,k,t (Z,X) ≡ 0. We note that Ps,k,t (·) and Qs,k,t (·) are positive random variables and for
s ≥ 1, Ps,k,t (·) is a function of Xt+k

t+k+s−1 (but this has been suppressed in the notation).

Proof. This is found in Appendix A.2. �

By using (12), we now show that the conditional density of Xt+k+s given Xt+k
t+k+s−1,Z

t+1
t+k−1

and X
t−p+1
t is a function of the density of Zt+k+s . It is clear from (12) that Zt+k+s can be

expressed as Zt+k+s = Xt+k+s

Ps,k,t (Z)+Qs,k,t (Z,X)
. Therefore, it is straightforward to show that

fs,k,t (ys |ys−1, z, x) = 1

Ps,k,t (z) + Qs,k,t (z, x)
fZ

(
ys

Ps,k,t (z) + Qs,k,t (z, x)

)
. (14)

3.3. Strong mixing of the tvARCH(p) process

The aim of this section is to prove geometric mixing of the tvARCH(p) process without ap-
pealing to geometric ergodicity. Naturally, the results in this section also apply to stationary
ARCH(p) processes.

In the following lemma, we use Proposition 2.1 to obtain bounds for the mixing rates. It is
worth mentioning that the techniques used in the proof below can be applied to other Markov
processes.
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Lemma 3.2. Suppose that {Xt } is a tvARCH process which satisfies (11). For any η =
(η0, . . . , η−p+1) ∈ (R+)p , we then have

sup
G∈F t+k∞ ,H∈F −∞

t

|P(G ∩ H) − P(G)P (H)|

≤ 2
p−1∑
s=0

sup
x∈E

∫
EZ

(
sup

ys−1∈Rs

∫
R

Ds,k,t (ys |ys−1,Z, x)dys

)
(15)

+ 4
p−1∑
j=0

P(|Xt−j | ≥ η−j+1)

and

sup
{Hj }∈F −∞

t ,{Gj }∈F t+k∞

∑
i,j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|

≤ 2
p−1∑
s=0

sup
x∈E

EZ

(
sup

ys−1∈Rs

∫
R

sup
x∈E

Ds,k,t (ys |ys−1,Z, x)dys

)
(16)

+ 4
p−1∑
j=0

P(|Xt−j | ≥ η−j+1),

where z = (z1, . . . , zk−1) and {Gi} and {Hj } are partitions of � and EZ(g(Z)) = ∫
g(z) ×∏k−1

i=1 fZ(zi)dzi .

Proof. This can be found in Appendix A.2. �

To obtain a mixing rate for the tvARCH(p) process, we need to bound the integral in (15),
then obtain the set E which minimizes (15). We will start by bounding Ds,k,t , which, we recall,
is based on the conditional density fs,k,t (defined in (14)).

Lemma 3.3. Let Ds,k,t and Qs,k,t be defined as in (9) and (13), respectively.

(i) Supposing that Assumption 3.1(i)–(iii) holds, then for all x ∈ (R+)p , we have

p−1∑
s=0

∫
EZ

(
sup

ys−1∈Rs

∫
Ds,k,t (ys |ys−1,Z, x)dys

)
≤ K

E[Qs,k,t (Z, x)]
inft∈Z a0(t)

(17)
≤ K(1 − δ̃)k‖x‖,

where K is a finite constant and 0 < δ̃ ≤ δ < 1 (δ is defined in Assumption 3.1(i)).
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(ii) Supposing that Assumption 3.1(i)–(ii) and (vi) hold, then for any set E (defined as in (4)),
we have

p−1∑
s=0

EZ

(
sup

ys−1∈Rs

∫
sup
x∈E

Ds,k,t (ys |ys−1,Z, x)dys

)
≤ sup

x∈E
K(1 − δ̃)k‖x‖. (18)

Proof. This can be found in Appendix A.2. �

We now use the lemmas above to show geometric mixing of the tvARCH process.

Theorem 3.1. (i) Supposing that Assumption 3.1(i)–(iii) holds, then

sup
G∈σ(Xt+k∞ )

H∈σ(X−∞
t )

|P(G ∩ H) − P(G)P (H)| ≤ Kαk.

(ii) Supposing that Assumption 3.1(i)–(ii) and (iv) hold, then

sup
{Hj }∈σ(X−∞

t )

{Gj }∈σ(Xt+k∞ )

∑
i

∑
j

|P(Gi ∩ Hj) − P(Gi)P (Hj )| ≤ Kαk

for any
√

1 − δ < α < 1, where K is a finite constant independent of t and k.

Proof. We will use (15) to prove (i). Equation (17) gives a bound for the integral differ-
ence in (15); therefore, all that remains is to bound the probabilities in (15). To do this, we
first use Markov’s inequality, to give

∑p−1
j=0 P(|Xt−j | ≥ η−j ) ≤ ∑p−1

j=0 E|Xt−j |η−1
−j . By us-

ing the Volterra expansion of Xt (see [11], Section 5), it can be shown that supt∈Z E|Xt | ≤
(supt∈Z a0(t))/(1 − supt∈Z

∑p

j=1 aj (t)). Using these bounds and substituting (17) into (15)
gives, for every η ∈ (R+)p , the bound

sup
G∈σ(Xt+k∞ )

H∈σ(X−∞
t )

|P(G ∩ H) − P(G)P (H)| ≤ 2
K(1 − δ̃)k

∑p−1
j=0 η−j

inft∈Z a0(t)
+ 4K

p−1∑
j=0

1

η−j

.

We observe that the right-hand side of the above is minimized when η−j = (1 − δ̃)k/2 (for 0 ≤
j ≤ (p − 1)), which gives the bound

sup
H∈σ(X−∞

t )

G∈σ(Xt+k∞ )

|P(G ∩ H) − P(G)P (H)| ≤ K

√
(1 − δ̃)k.

Since the above is true for any 0 < δ̃ < δ, (ii) is true for any α which satisfies
√

1 − δ < α < 1,
thus giving the result.
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To prove (ii), we use an identical argument, but using the bound in (18) instead of (17). We
omit the details. �

Remark 3.1. We observe that K and α defined in the above theorem are independent of t . There-
fore, under Assumption 3.1(i)–(iii), we have α(k) ≤ Kαk (α-mixing, defined in (1)) and under
Assumption 3.1(i)–(ii) and (iv), β(k) ≤ Kαk (β-mixing, defined in (3)) for all

√
1 − δ < α < 1.

Moreover, since σ(Xt+k) ⊂ σ(Xt+k, . . . ,Xt+p−1) and σ(Xt ) ⊂ σ(Xt , . . . ,Xt−p+1), the 2-
mixing rate is also geometric with α̃(k) ≤ Kαk (α̃(k) defined in (2)).

4. Mixing for ARCH(∞) processes

In this section, we derive mixing rates for the ARCH(∞) process. We first define the process and
state the assumptions that we will use.

4.1. The ARCH(∞) process

The ARCH(∞) process has many interesting features, which are useful in several applications.
For example, under certain conditions on the coefficients, the ARCH(∞) process can exhibit
‘near long memory’ behaviour (see [17]). The squares of the ARCH(∞) process satisfy the
representation

Xt = Zt

(
a0 +

∞∑
j=1

ajXt−j

)
, (19)

where Zt are i.i.d. positive random variables with E(Zt ) = 1 and aj are positive parameters.
With a slight abuse of terminology, we will call the squared ARCH(∞) process an ARCH(∞)

process. It is worth mentioning that the GARCH(p, q) process has an ARCH(∞) representation,
where the aj decay geometrically with j . Giraitis and Robinson [19], Robinson and Zaffaroni
[34] and Subba Rao [37] consider parameter estimation for the ARCH(∞) process.

We will use Assumption 3.1 and the assumptions below.

Assumption 4.1. (i) We have
∑∞

j=1 aj < 1 − δ and a0 > 0.
(ii) For some ν > 1, E|Xt |ν < ∞ (we note that this is fulfilled if [E|Zν

0 |]1/ν
∑∞

j=1 aj < 1).

Giraitis et al. [17] have shown that under Assumption 4.1(i), the ARCH(∞) process has a
stationary solution and a finite mean (i.e., supt∈Z E(Xt ) < ∞). It is worth mentioning that since
the ARCH(∞) process has a stationary solution, the shift t plays no role when obtaining mixing
bounds, that is, supG∈σ(Xk+t ),H∈σ(Xt )

|P(G ∩ H) − P(G)P (H)| = supG∈σ(Xk),H∈σ(X0)
|P(G ∩

H) − P(G)P (H)|. Furthermore, the conditional density of Xt+k given Zt+1
t+k−1 and X−∞

t is not
a function of t . Hence, in the section below, we let f0,k denote the conditional density of Xt+k

given (Zt+1
t+k−1 and X−∞

t ) and for s ≥ 1, let fs,k denote the conditional density of Xt+k+s given

(Xt+k
t+k+s−1,Z

t
t+k−1 and X−∞

t ).
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4.2. The ARCH(∞) process and the Volterra series expansion

We now write Xk in terms of Z1
k−1 and X = (X0,X−1, . . .) and use this to derive the conditional

densities f0,k and fs,k . It can be seen from the result below (equation (20)) that, in general, the
ARCH(∞) process is not Markovian.

Lemma 4.1. Suppose that {Xt } satisfies (19). Then

Xk = P0,k(Z)Zk + Q0,k(Z,X)Zk, (20)

where

P0,k(Z) =
[
a0 +

k∑
m=1

∑
k=jm>···>j1>0

(
m−1∏
i=1

aji+1−ji

)(
m−1∏
i=1

Zji

)]
,

(21)

Q0,k(Z,X) =
k∑

r=1

{
k∑

m=1

∑
k=jm>···>j1=r

(
m−1∏
i=1

aji+1−ji

)(
m−1∏
i=1

Zji

)}
dr(X).

Furthermore, setting Q0,k = 0 for k ≥ 1, we have that Q0,k(Z,X) satisfies the recursion
Q0,k(Z,X) = ∑k

j=1 aj Q0,k−j (Z,X)Zk−j +dk(X), where dk(X) = ∑∞
j=0 ak+jX−j (for k ≥ 1).

Proof. This can be found in Appendix A.3 of the technical report. �

We will use the result above to derive the 2-mixing rate. To derive α and β mixing, we require
the density of Xk+s given Xk

k+s−1, Z1
k−1 and X−∞

0 , which uses the following lemma.

Lemma 4.2. Suppose that {Xt } satisfies (19). For s ≥ 1, we then have

Xk+s = Zk+s{Ps,k(Z) + Qs,k(Z,X)},

where Ps,k(Z) = a0 +
s∑

j=1

ajXk+s−j +
∞∑

j=s+1

ajZk+s−j P0,k+s−j (Z), (22)

Qs,k(Z,X) =
k+s∑

j=s+1

ajZk+s−j Q0,k+s−j (Z,X) + dk+s(X).

Proof. This can be found in Appendix A.3 of the technical report. �

Using (20) and (22), for all s ≥ 0, we have that Zk+s = Xk+s

Ps,k(Z)+Qs,k(Z,X)
, which leads to the

conditional densities

fs,k(ys |ys−1, z, x) = 1

Ps,k(z) + Qs,k(z, x)
fZ

(
ys

Ps,k(z) + Qs,k(z, x)

)
. (23)
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In the proofs below, Q0,k(1 k−1, x) plays a prominent role. By using the recursion in Lemma 4.1
and (23), setting x = X−∞

0 and noting that E(Qs,k(Z, x)) = Qs,k(1 k−1, x), we obtain the recur-

sion Q0,k(1 k−1, x) = ∑k
j=1 aj+s Q0,k−j (1 k−j−1, x) + dk+s(x). We use this to obtain a solution

for Q0,k(1k−1, x) in terms of {dk(x)}k in the lemma below.

Lemma 4.3. Suppose that {Xt } satisfies (19) and Assumption 4.1 is fulfilled. There then ex-
ists {ψj } such that for all |z| ≤ 1, we have (1 − ∑∞

j=1 aj z
j )−1 = ∑∞

j=0 ψjz
j . Furthermore,

if
∑

j |jαaj | < ∞, then [22] have shown that
∑

j |jαψj | < ∞. For k ≤ 0, set dk(x) = 0 and
Q0,k(1k−1, x) = 0. For k ≥ 1, Q0,k(1k−1, x) then has the solution

Q0,k(1k−1, x) =
∞∑

j=0

ψjdk−j (x) =
k−1∑
j=0

ψjdk−j (x) =
k−1∑
j=0

ψj

{ ∞∑
i=0

ak−j+ix−i

}
, (24)

where x = (x0, x−1, . . .).

Proof. This appears in Appendix A.3 of the technical report. �

4.3. Mixing for ARCH(∞) processes

In this section, we show that the mixing rates are not necessarily geometric and depend on the
rate of decay of the coefficients {aj } (we illustrate this in the following example). Furthermore,
for ARCH(∞) processes, the strong mixing rate and 2-mixing rate can be different.

Example 4.1. Let us consider the ARCH(∞) process, {Xt }, defined in (19). Giraitis et al.
[17] have shown that if aj ∼ j−(1+δ) (for some δ > 0) and [E(Z2

t )]1/2 ∑∞
j=1 aj < 1, then

| cov(X0,Xk)| ∼ k−(1+δ). That is, the absolute sum of the covariances is finite, but ‘only just’
if δ is small. If Zt < 1, it is straightforward to see that Xt is a bounded random variable and by
using Ibragimov’s inequality (see [21]), we have

| cov(X0,Xk)| ≤ C sup
A∈σ(X0),B∈σ(Xk)

|P(A ∩ B) − P(A)P (B)|

for some C < ∞. Noting that | cov(X0,Xk)| = O(k−(1+δ)), this gives a lower bound of
O(k−(1+δ)) on the 2-mixing rate.

To obtain the mixing rates we will use Proposition 2.1, this result requires bounds on Ds,k =
|fs,k(ys |ys−1, z, x) − fs,k(ys |ys−1, z,0)| and its integral.

Lemma 4.4. Suppose that {Xt } satisfies (19) and let Ds,k and Q0,k(·) be defined as in (9) and
(21), respectively. If Assumptions 3.1(iii) and 4.1 are fulfilled, then

EZ

(∫
|f0,k(y|Z,x) − f0,k(y|Z,0)|dy

)
(25)

≤ Q0,k(1 k−1, x)

a0
=

k−1∑
j=0

|ψj |
{ ∞∑

i=0

ak−j+ix−i

}
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and, for s ≥ 1,

EZ

(
sup

ys−1∈Rs

∫
Ds,k(ys |ys−1,Z, x)dys

)
(26)

≤ 1

a0

{
k+s∑

j=s+1

aj

k+s−j∑
l=0

|ψl |
∞∑
i=0

ak+s−j−l+ix−i +
∞∑
i=0

ak+s+ix−i

}
.

If Assumptions 3.1(iv) and 4.1 are fulfilled and E is defined as in (4), then

EZ

(
sup

ys−1∈Rs

∫
sup
x∈E

Ds,k(ys |ys−1,Z, x)dys

)
(27)

≤ 1

a0

{
k+s∑

j=s+1

aj

k+s−j∑
l=0

|ψl |
∞∑
i=0

ak+s−j−l+iη−i +
∞∑
i=0

ak+s+iη−i

}
,

where x = (x0, x−1, . . .) is a positive vector.

Proof. This can be found in Appendix A.3 of the technical report. �

We require the following simple lemma to prove the theorem below.

Lemma 4.5. If {ci}, {di} and {η−i} are positive sequences, then

inf
η

{ ∞∑
i=0

(ciη−i + diη
−ν
−i )

}
= (

ν1/(1+ν) + ν−ν/(ν+1)
) ∞∑

i=0

c
ν/(ν+1)
i d

1/(ν+1)
i . (28)

Proof. This appears in Appendix A.3 of the technical report. �

In the following theorem, we obtain α-mixing and β-mixing bounds for the ARCH(∞)

process.

Theorem 4.1. Suppose that {Xt } satisfies (19).

(a) Suppose Assumptions 3.1(iii) and 4.1 hold. We then have

sup
G∈F k∞,H∈F −∞

0

|P(G ∩ H) − P(G)P (H)|

≤ K(ν)

∞∑
i=0

[
1

a0

∞∑
s=0

k+s∑
j=s+1

aj

k+s−j∑
l=0

|ψl |ak+s−j−l+i (29)

+ 1

a0

∞∑
s=0

ak+s+i

]ν/(ν+1)

[E|X0|ν]1/(ν+1),
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where K(ν) = 3(ν1/(1+ν) + ν−ν/(ν+1)).
(i) If the parameters of the ARCH(∞) process satisfy |aj | ∼ j−δ and |ψj | ∼ j−δ (ψj

defined in Lemma 4.3), then we have

sup
G∈F k∞,H∈F −∞

0

|P(G ∩ H) − P(G)P (H)| ≤ K · [k(k + 1)−δ̃+3 + (k + 1)−δ̃+2],

where δ̃ = δ × ( ν
ν+1 ).

(ii) If the parameters of the ARCH(∞) process satisfy |aj | ∼ δj and ψj ∼ δj , where
0 < δ < 1 (an example is the GARCH(p, q) process), then we have

sup
G∈F k∞,H∈F 0−∞

|P(G ∩ H) − P(G)P (H)| ≤ C · k · δk/2,

where C is a finite constant.
(b) If Assumptions 3.1(iv) and 4.1 hold, then we have

sup
{Gi }∈F k∞,{Hj }∈F −∞

0

∑
i

∑
j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|

≤ K(ν)

∞∑
i=0

[
1

a0

∞∑
s=0

k+s∑
j=s+1

aj

k+s−j∑
l=0

|ψl |ak+s−j−l+i (30)

+ 1

a0

∞∑
s=0

ak+s+i

]ν/(ν+1)

[E|X0|ν]1/(ν+1),

where {Gi} and {Hj } are partitions of �. We mention that the bounds for the α-mixing
rates for different orders of {aj } and {ψj } derived in (i) also hold for the β-mixing rate.

Proof. We first prove (a). We use the fact that

sup
G∈F k∞,H∈F −∞

0

|P(G ∩ H) − P(G)P (H)| = lim
n→∞ sup

G∈F k
k+n

H ∈ F −∞
0 |P(G ∩ H) − P(G)P (H)|

and find a bound for each n. By using (5) to bound supG∈F k
k+n,H∈F −∞

0
|P(G∩H)−P(G)P (H)|,

we see that for all sets E (as defined in (4)), we have

sup
G∈F k

k+n,H∈F−∞
0

|P(G ∩ H) − P(G)P (H)|

≤ 2 sup
x∈E

n∑
s=0

EZ

(
sup

ys−1∈Rs

{∫
Ds,k(ys |ys−1,Z, x)dys

})
(31)

+ 4P(X0 > η0 or, . . . ,X−n > η−n).
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To bound the integral in (31), we use (26) to obtain

sup
x∈E

n∑
s=0

EZ

(
sup

ys−1∈Rs

∫
R

Ds,k(ys |ys−1,Z, x)dys

)

= 1

a0

n∑
s=0

{
k+s∑

j=s+1

aj

k+s−j∑
l=0

|ψl |
∞∑
i=0

ak+s−j−l+iη−i +
∞∑
i=0

ak+s+iη−i

}
.

Now, by using Markov’s inequality, we have that P(X0 > η0 or, . . . ,X−n ≥ η−n) ≤∑n
i=0

E(|Xi |ν )
ην−i

. Substituting this and the above into (31) and letting n → ∞ gives

sup
G∈F k∞,H∈F −∞

0

|P(G ∩ H) − P(G)P (H)|

≤ inf
η

[
2

a0

∞∑
s=0

{
k+s∑

j=s+1

aj

k+s−j∑
l=0

|ψl |
∞∑
i=0

ak+s−j−l+iη−i (32)

+
∞∑
i=0

ak+s+iη−i

}
+ 4E|X0|ν

∞∑
i=0

η−ν
−i

]
,

where η = (η0, η−1, . . .).
We now use (28) to minimize (32), which gives us (29). The proof of (i) can be found in the

technical report. It is straightforward to prove (ii) using (28).
The proof of (b) is very similar to the proof of (a), but uses (27) rather than (26). We omit the

details. �

Remark 4.1. Under the assumptions of Theorem 4.1(a), we have a bound for the α-mixing
rate, that is, α(k) ≤ ζ(k), where ζ(k) = K[ 1

a0

∑∞
s=0

∑k+s
j=s+1 aj

∑k+s−j

l=0 |ψl |ak+s−j−l+i +
1
a0

∑∞
s=0 ak+s+i]ν/(ν+1). Under the assumptions of Theorem 4.1(a), the β-mixing coefficient is

bounded by β(k) ≤ ζ(k).

In the following theorem, we consider a bound for the 2-mixing rate of an ARCH(∞) process.

Theorem 4.2. Suppose that {Xt } satisfies (19) and that Assumption 3.1(iii) and 4.1 hold. We
then have

sup
G∈σ(Xk),H∈F −∞

0

|P(G ∩ H) − P(G)P (H)|
(33)

≤ K(ν)

∞∑
i=0

[
1

a0

k−1∑
j=0

aj |ψj |ak−j+i

]ν/(ν+1)

[E|X0|ν]1/(ν+1),

where K(ν) = 3(ν1/(1+ν) + ν−ν/(ν+1)).
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If the parameters of the ARCH(∞) process satisfy aj ∼ j−δ and |ψj | ∼ j−δ (ψj defined in
Lemma 4.3), then we have

sup
G∈σ(Xk),H∈F −∞

0

|P(G ∩ H) − P(G)P (H)| ≤ K · k(k + 1)−δ̃+1, (34)

where δ̃ = δ × ( ν
ν+1 ).

Proof. We use a similar proof to that of Theorem 4.1. The integral difference is replaced with
the bound in (25) and we again use Markov’s inequality: together they give the bound

sup
G∈σ(Xk),H∈F −∞

0

|P(G ∩ H) − P(G)P (H)|
(35)

≤ inf
η

[
2

1

a0

k−1∑
j=0

|ψj |
{ ∞∑

i=0

ak−j+iη−i

}
+ 4E|X0|ν

∞∑
i=0

1

ην−i

]
.

Finally, to obtain (33) and (34), we use (35) and a proof similar to that of Theorem 4.1(i). We
omit the details. �

Remark 4.2. Comparing (34) and Theorem 4.1(i), we see that the 2-mixing bound is of a smaller
order than the strong mixing bound.

In fact, it could well be that the 2-mixing bound is of a smaller order than Theorem 4.2(i).
This is because Theorem 4.2(i) gives a bound for supG∈σ(Xk),H∈σ(X0,X−1,...)

|P(G ∩ H) −
P(G)P (H)|, whereas the 2-mixing bound restricts the σ -algebra of the left tail to σ(X0). How-
ever, we have not been able to show this and this is a problem that requires further consideration.

Appendix: Proofs

A.1. Proof of Proposition 2.1

We will use the following three lemmas to prove Proposition 2.1.

Lemma A.1. Let G ∈ F t+k
t+k+r2

= σ(Xt+k
t+k+r2

) and H,E ∈ F t−r1
t = σ(X

t−r1
t ) (where E is de-

fined in (4)), and use the notation of Proposition 2.1. We then have

|P(G ∩ H ∩ E) − P(G ∩ E)P (H)|
≤ 2P(H) sup

x∈E

∣∣P(G|Xt−r1
t = x) − P(G|Xt−r1

t = 0)
∣∣ (36)

+ inf
x∈E

P(G|Xt−r1
t = x){P(H)P (Ec) + P(H ∩ Ec)}.
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Proof. To prove the result, we first observe that

P(G ∩ H ∩ E) = P
(
Xt+k

t+k+r2
∈ G,X

t−r1
t ∈ (H ∩ E )

)
=

∫
H∩E

∫
G

dP(X
t−r1
t ≤ y,Xt+k

t+k+r2
≤ x)

=
∫

H∩E

{∫
G

dP(Xt+k
t+k+r2

≤ y|Xt−r1
t = x)

}
dP(X

t−r1
t ≤ x)

=
∫

H∩E
P(Xt+k

t+k+r2
∈ G|Xt−r1

t = x)dP(X
t−r1
t ≤ x).

Therefore, by using the above and the fact that P(H ∩ E) ≤ P(H), we obtain the following
inequalities:

inf
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H ∩ E)

(37)≤ P(G ∩ H ∩ E) ≤ sup
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H)

and

inf
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (E)

(38)≤ P(G ∩ E) ≤ sup
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (E).

Subtracting (37) from (38) and using P(H ∩ E) = P(H) − P(H ∩ Ec) gives the inequalities

P(G ∩ H ∩ E) − P(G ∩ E)P (H)

≤ sup
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H) (39)

− inf
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H) + P(Ec)P (H),

P (G ∩ H ∩ E) − P(G ∩ E)P (H)

≥ inf
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H) (40)

− sup
x∈E

P(Xt+k
t+k+r2

∈ G|Xt−r1
t = x)P (H) − P(Ec ∩ H).

Combining (39) and (40), we obtain

|P(G ∩ H ∩ E) − P(G ∩ E)P (H)|
≤ P(H)

∣∣∣sup
x∈E

P(G|Xt−r1
t = x) − inf

x∈E
P(G|Xt−r1

t = x)

∣∣∣ (41)

+ inf
x∈E

P(G|Xt−r1
t = x){P(H)P (Ec) + P(H ∩ Ec)}.
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Using the triangle inequality, we have∣∣∣sup
x∈E

P(G|Xt−r1
t = x) − inf

x∈E
P(G|Xt−r1

t = x)

∣∣∣ ≤ 2 sup
x∈E

|P(G|Xt−r1
t = x) − P(G|Xt−r1

t = 0)|.

Substituting the above into (41) gives (36), as required. �

We now obtain a bound for the first term on the right-hand side of (36).

Lemma A.2. Let f
Xt+k

t+k+r2
|Xt−r1

t
denote the density of Xt+k

t+k+r2
given X

t−r1
t and G and H be

defined as in (10). Then,

∣∣P(G|Xt−r1
t = x) − P(G|Xt−r1

t = 0)
∣∣ ≤

∫
G

D0,k,t (y|x)dy. (42)

Let Wt+1
t+k−1 be a random vector which is independent of X

t−r1
t and let fW denote the density of

Wt+1
t+k−1. If G ∈ σ(Xt+k), then

∫
G

∣∣f
Xt+k |Xt−r1

t
(y|x) − f

Xt+k |Xt−r1
t

(y|0)
∣∣dy ≤ EW

(∫
R

D0,k,t (y|W,x)dy

)
(43)

and if G ∈ σ(Xt+k
t+k+r2

), then

∫
G

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy

(44)

≤
r2∑

s=0

EW

(
sup
ys−1

∫
Gs

Ds,k,t (ys |ys−1,w,x)dys

)
.

Proof. The proof of (42) is clear from the definition of Ds,k,t , hence we omit the details.
To prove (43), we first note that by independence of Wt+1

t+k−1 and X
t−r2
t , we have that

f
W |Xt−r1

t
(w|x) = fW(w), where f

W |Xt−r1
t

is the conditional density of Wt+1
t+k−1 given X

t−r1
t .

Therefore, we have

f
Xt+k |Xt−r1

t
(y|x) =

∫
Rk−1

f
Xt+k |W,X

t−r1
t

(y|w,x)fW (w)dw =
∫

Rk−1
f0,k,t (y|w,x)fW (w)dw.

Substituting the above into
∫

G |f
Xt+k |Xt−r1

t
(y|x) − f

Xt+k |Xt−r1
t

(y|0)|dy and using the definition

of EW now gives (43).
To prove (44), we note that, by using the same argument used to prove (43), we have

f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) =

∫
Rk−1

fW(w)

r2∏
s=0

fs,k,t (ys |ys−1,w,x)dw. (45)
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Now, repeatedly subtracting and adding fs,k,t gives

f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)

=
r2∑

s=0

∫
Rk−1

fW(w)

{
s−1∏
a=0

fa,k,t (ya|ya−1,w,x)

}
(46)

×
{

r2∏
b=s+1

fb,k,t (yb|yb−1,w,0)

}

× {fs,k,t (ys |ys−1,w,x) − fs,k,t (ys |ys−1,w,0)}dw.

Therefore, taking the integral of the above over G gives∫
G

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy

≤
r2∑

s=0

∫
Rk−1

fW(w)

{[
s−1∏
a=0

∫
Ga

fa,k,t (ya|ya−1,w,x)dya

(47)

×
r2∏

b=s+1

∫
Gb

fb,k,t (yb|yb−1,w,x)dyb

]

× sup
ys−1

∫
Gs

∣∣fs,k,t (ys |ys−1,w,x) − fs,k,t (ys |ys−1,w,0)
∣∣dys

}
dw.

Next, we observe that since Gj ⊂ R and
∫

R
fs,k,t (ys |ys−1,w,x)dys = 1, we have

(
∏s−1

a=0

∫
Ga

fa,k,t (ya|ya−1,w,x)dya)(
∏r2

b=s+1

∫
Gb

fb,k,t (yb|yb−1,w,x)dyb) ≤ 1. Finally, sub-
stituting this bound into (47) gives (44). �

The following lemma will be used to show β-mixing and uses the above lemmas.

Lemma A.3. Suppose that {Gi} ∈ F t+k
t+k+r2

, {Hj } ∈ F t−r1
t and {Gi} and {Hj } are partitions

of �. We then have

∑
i,j

|P(Gi ∩ Hj ∩ E) − P(Gi ∩ E)P (Hj )|
(48)

≤ 2
∑

i

sup
x∈E

∣∣P(Gi |Xt−r1
t = x) − P(Gi |Xt−r1

t = 0)
∣∣ + 2P(Ec) and

∑
i,j

|P(Gi ∩ Hj ∩ Ec) − P(Gi ∩ Ec)P (Hj )| ≤ 2P(Ec). (49)



340 P. Fryzlewicz and S. Subba Rao

Proof. Substituting the inequality in (36) into
∑

i,j |P(Gi ∩Hj ∩E)−P(Gi ∩E)P (Hj )| gives

∑
i,j

|P(Gi ∩ Hj ∩ E) − P(Gi ∩ E)P (Hj )|

≤ 2
∑
j

P (Hj )
∑

i

sup
x∈E

∣∣P(Gi |Xt−r1
t = x) − P(Gi |Xt−r1

t = 0)
∣∣ (50)

+
∑
i,j

inf
x∈E

P(Gi |Xt−r1
t = x){P(Hj )P (Ec) + P(Hj ∩ Ec)}.

The sets {Hj } are partitions of �, hence
∑

i P (Hj ) = 1 and
∑

i P (Hj ∩ Ec) ≤ 1. Using these
observations together with (50) gives (48).

Inequality (49) immediately follows from the fact that {Hj } and {Gi} are disjoint sets. �

Using the above three lemmas, we can now prove Proposition 2.1.

Proof of Proposition 2.1, equation (5). It is straightforward to show that

|P(G ∩ H) − P(G)P (H)| ≤ |P(G ∩ H ∩ E) − P(G ∩ E)P (H)|
+ |P(G ∩ H ∩ Ec) − P(G ∩ Ec)P (H)|.

Now, by substituting (42) into (36) and using the above, we get

|P(G ∩ H) − P(G)P (H)| ≤ 2 sup
x∈E

∫
G

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy

+ inf
x∈E

P(G|Xt−r1
t = x){P(H)P (Ec) + P(H ∩ Ec)}

+ P(G ∩ H ∩ Ec) + P(G ∩ Ec)P (H).

Finally, by using the facts that G ⊂ R
r2+1, P(G∩H ∩Ec) ≤ P(Ec), P(G∩Ec)P (H) ≤ P(Ec)

and infx∈E P(G|Xt−r1
t = x) ≤ 1, we obtain (5). �

Proof of Proposition 2.1, equation (6). It is worth noting that the proof of (6) is similar to the
proof of (5). Using (48) and the same arguments as those in the proof of (5), we have∑

i,j

|P(Gi ∩ Hj) − P(Gi)P (Hj )|

≤ 2
∑

i

sup
x∈E

∫
Gi

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy + 4P(Ec)

(51)
≤ 2

∑
i

∫
Gi

sup
x∈E

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy + 4P(Ec)

≤ 2
∫

R
r2+1

sup
x∈E

∣∣f
Xt+k

t+k+r2
|Xt−r1

t
(y|x) − f

Xt+k
t+k+r2

|Xt−r1
t

(y|0)
∣∣dy + 4P(Ec),
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where Hj = {ω;Xt−r1
t (ω) ∈ Hj } and Gi = {ω;Xt+k

t+k+r2
(ω) ∈ Gi}, which gives (6). �

Proof of Proposition 2.1, equation (7). To prove the result, we substitute the bound in (44) into
(5) to obtain (7). �

Proof of Proposition 2.1, equation (8). To prove (8), we substitute (44) into (6) to obtain (8). �

A.2. Proofs in Section 3

Proof of Lemma 3.1. We first prove (12) with s = 0. Suppose that k ≥ 1. Focusing on the first
element of X

t+k−p+1
t+k in (12) and factoring out Zt+k gives

Xt+k = Zt+k

{
a0(t + k) +

[
Ãt+k

k−2∑
r=0

r∏
i=1

At+k−i (Z)bt+k−r−1(Z)

]
1

+
[
Ãt+k

{
k−1∏
i=1

At+k−i (Z)

}
X

t−p+1
t

]
1

}
,

which is (12) (with s = 0). To prove (12) for 1 ≤ s ≤ p, we note that using the tvARCH(p)

representation in (11) and (12) for s = 0 gives

Xt+k+s = Zt+k+s

{
a0(t + k + s) +

s−1∑
i=1

ai(t + k + s)Xt+k+s−i +
p∑

i=s

ai(t + k + s)Xt+k+s−i

}

= Zt+k+s{Ps,k,t (Z) + Qs,k,t (Z,X)},

where Ps,k,t and Qs,k,t are defined in (13). Hence, this gives (12). Since aj (·) and Zt are positive,
it is clear that Ps,k,t and Qs,k,t are positive random variables. �

Proof of Lemma 3.2. We first note that since {Xt } satisfies a tvARCH(p) representation
(p < ∞) it is p-Markovian, hence for any r2 > p, the σ -algebras generated by Xt+k

t+k+r2
and

(Z
t+k+p
t+k+r2

,Xt+k
t+k+p−1) are the same. Moreover, by using the fact that for all τ > t , Zτ is indepen-

dent of Xt , we have

sup
G∈F t+k∞ ,H∈F −∞

t

|P(G ∩ H) − P(G)P (H)|
(52)

= sup
G∈F t+k

t+k+p−1,H∈F t−p+1
t

|P(G ∩ H) − P(G)P (H)|.
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Now, by using the above, Proposition 2.1, equation (7), and the fact that Zt+1
t+k−1 and X

t−p+1
t are

independent, for any set E (defined as in (4)), we have

sup
G∈F t+k

t+k+p−1,H∈F t−p+1
t

|P(G ∩ H) − P(G)P (H)|

≤ 2 sup
x∈E

p−1∑
s=0

EZ

(
sup

y
s−1

∈Rs

∫
Ds,k,t (ys |ys−1, z, x)dys

)
(53)

+ 4P(Xt > η0 or, . . . ,Xt−p+1 > η−p+1).

Finally, using the fact that P(Xt > η0 or Xt−1 > η−1, . . . ,Xt−p+1 > η−p+1) ≤ ∑p−1
j=0 P(Xt−j >

η−j ) gives (15).
The proof of (16) is similar to the proof above, but uses (8) instead of (7), so we omit the

details. �

We require the following simple lemma to prove Lemmas 3.3 and 4.4.

Lemma A.4. If Assumption 3.1(iii) is satisfied, then, for any positive A and B , we have∫
R

∣∣∣∣ 1

A + B
fZ

(
y

A + B

)
− 1

A
fZ

(
y

A

)∣∣∣∣dy ≤ K

(
B

A
+ B

A + B

)
. (54)

If Assumption 3.1(iv) is satisfied, then, for any positive A, positive continuous function
B : Rr2+1 → R and set E (defined as in (4)), we have∫

R

sup
x∈E

∣∣∣∣ 1

A + B(x)
fZ

(
y

A + B(x)

)
− 1

A
fZ

(
y

A

)∣∣∣∣dy ≤ K sup
x∈E

(
B(x)

A
+ B(x)

A + B(x)

)
. (55)

Proof. To prove (54), we observe that∫
R

∣∣∣∣ 1

A + B
fZ

(
y

A + B

)
− 1

A
fZ

(
y

A

)∣∣∣∣dy = I + II,

where

I =
∫

R

1

A + B

∣∣∣∣fZ

(
y

A + B

)
− fZ

(
y

A

)∣∣∣∣dy and II =
∫

R

(
1

A + B
− 1

A

)
fZ

(
y

A

)
.

To bound I , we note that by changing variables with u = y/(A + B) and under Assump-
tion 3.1(iii), we get

I ≤
∫

R

∣∣∣∣fZ(u) − fZ

(
u

(
1 + B

A

))∣∣∣∣du ≤ K
B

A
.

It is straightforward to show that II ≤ B
A+B

. Hence, the bounds for I and II give (54).
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The proof of (55) is the same as above, but uses Assumption 3.1(iv) instead of Assump-
tion 3.1(iii), so we omit the details. �

Proof of Lemma 3.3. We first show that

sup
ys−1∈Rs

∫
Ds,k,t (ys |ys−1, z, x)dys ≤ K

inft∈Z a0(t)
Qs,k,t (z, x) (56)

and use this to prove (17). We note that when x = 0, Qs,k,t (z,0) = 0 and fs,k,t (ys |ys−1, z,0) =
Ps,k,t (z)

−1fZ(
ys

Ps,k,t (z)
). Therefore, using (14) gives

Ds,k,t (ys |ys−1, z, x) =
∣∣∣∣ 1

Ps,k,t (z) + Qs,k,t (z, x)
fZ

(
ys

Ps,k,t (z) + Qs,k,t (z, x)

)

− 1

Ps,k,t (x)
fZ

(
ys

Ps,k,t (z)

)∣∣∣∣.
Now, recalling that Ps,k,t and Qs,k,t are both positive and setting A = Ps,k,t (z), B = Qs,k,t (z, x)

and using (54), we have

∫
R

Ds,k,t (ys |ys−1, z, x)dys ≤ K

( Qs,k,t (z, x)

Ps,k,t (z)
+ Qs,k,t (z, x)

Ps,k,t (z) + Qs,k,t (z, x)

)
.

Finally, since Ps,k,t (z) > inft∈Z a0(t), we have
∫

R
Ds,k,t (ys |ys−1, z, x)dys ≤ K

Qs,k,t (z,x)

inft∈Z a0(t)
, thus

giving (56). By using (56), we now prove (17). Substituting (56) into the integral on the left-hand
side of (17), using the fact that E[Qs,k,t (Z, x)] = Qs,k,t (1k−1, x) and substituting (56) into (15)
gives

EZ

(
sup

ys−1∈Rs

∫
R

Ds,k,t (ys |ys−1,Z, x)dys

)
≤ K

E[Qs,k,t (Z, x)]
inft∈Z a0(t)

= K
Qs,k,t (1k−1, x)

inft∈Z a0(t)
. (57)

We now find a bound for Qs,k,t . By the definition of Qs,k,t in (13) and using the matrix norm
inequality [Ax]1 ≤ K‖A‖spec‖x‖ (‖ · ‖spec is the spectral norm), we have

Qs,k,t (1 k−1, x) =
p∑

i=s+1

ai(t + k + s)

[
At+k+s−i

k+s−i∑
r=1

{
k+s−i∏
d=0

At+k+s−i−d

}
x

]
1

≤ K

inft∈Z a0(t)

p∑
i=s

ai(t + k + s)

∥∥∥∥∥At+k+s−i

{
k−1∏
d=0

At+k+s−i−d

}∥∥∥∥∥
spec

‖x‖.

To bound the above, we note that by Assumption 3.1(i), supt∈Z

∑p

j=1 aj (t) ≤ (1 − δ), there-

fore there exists a δ̃, where 0 < δ̃ < δ < 1 and such that, for all t , we have ‖At+k+s−i ×
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{∏k−1
d=0 At+k+s−i−d}‖spec ≤ K(1 − δ̃)k+1 for some finite K . Combining all of this gives

Qs,k,t (1k−1, x) ≤ K

inft∈Z a0(t)

p∑
i=s

ai(t + k + s)

∥∥∥∥∥At+k+s−i

{
k+s−i∏
d=0

At+k+s−i−d

}∥∥∥∥∥
spec

‖x‖
(58)

≤ K

inft∈Z a0(t)

p∑
i=s

ai(t + k + s)(1 − δ̃)k+s−i‖x‖.

Substituting the above into (57) gives (17).
We now prove (18). We use the same proof to show (56), but apply (54) instead of (55) to

obtain

sup
ys−1∈Rs

∫
sup
x∈E

Ds,k,t (ys |ys−1, z, x)dys ≤ K

inft∈Z a0(t)
sup
x∈E

Qs,k,t (z, x).

By substituting the above into (16) and using the same proof to prove (17), we obtain

p−1∑
s=0

∫ k−1∏
i=1

fZ(zi) sup
ys−1∈Rs

{∫
R

sup
x∈E

Ds,k,t (ys |ys−1, z, x)dys

}
dz

(59)

≤ K
E[supx∈E Qs,k,t (Z, x)]

inft∈Z a0(t)
.

Since Qs,k,t (Z, x) is a positive function and supx∈E Qs,k,t (Z, x) = Qs,k,t (Z,η), we have
E[supx∈E Qs,k,t (Z, x)] ≤ supx∈E E[Qs,k,t (Z, x)] = supx∈E Qs,k,t (1 k−1, x). Hence, by using
(58), we have

E[supx∈E Qs,k,t (Z, x)]
inft∈Z a0(t)

≤ K(1 − δ̃)k‖x‖
inft∈Z a0(t)

.

Substituting the above into (59) gives (18). �
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