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A time-varying empirical spectral process indexed by classes of functions is defined for locally stationary
time series. We derive weak convergence in a function space, and prove a maximal exponential inequality
and a Glivenko–Cantelli-type convergence result. The results use conditions based on the metric entropy of
the index class. In contrast to related earlier work, no Gaussian assumption is made. As applications, quasi-
likelihood estimation, goodness-of-fit testing and inference under model misspecification are discussed.
In an extended application, uniform rates of convergence are derived for local Whittle estimates of the
parameter curves of locally stationary time series models.
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1. Introduction

In recent years, several methods have been derived for locally stationary time series models, that
is, for models which can locally be approximated by stationary processes. Out of the large lit-
erature, we mention the work of Priestley (1965) on oscillatory processes, Dahlhaus (1997) on
locally stationary processes, Neumann and von Sachs (1997) on wavelet estimation of evolution-
ary spectra, Nason, von Sachs and Kroisandt (2000) on a wavelet-based model of evolutionary
spectra and more recent work such as Davis, Lee and Rodriguez-Yam (2005) on piecewise sta-
tionary processes, Fryzlewicz, Sapatinas and Subba Rao (2006) on locally stationary volatility
estimation and Sakiyama and Taniguchi (2004) on discriminant analysis for locally stationary
processes.

In this paper, we emphasize the relevance of the empirical spectral process for locally sta-
tionary time series. During the last decade, the theory of empirical processes has developed
considerably and the number of statistical problems approached by utilizing concepts from em-
pirical process theory is steeply increasing. In this paper, we show how large parts of the existing
methodology on empirical processes can fruitfully be used for time series analysis of locally
stationary processes. In our set-up, the role of the empirical distribution of i.i.d. data is taken
over by the empirical time-varying spectral measure. This generalizes a similar approach for sta-
tionary time series (cf. Dahlhaus (1988), Mikosch and Norvaisa (1997), Fay and Soulier (2001)).
An overview of these methods and some references to the existing literature on empirical process
techniques in other settings may be found in Dahlhaus and Polonik (2002).
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In Section 2, we introduce the empirical spectral process indexed by classes of functions,
derive its convergence (including a functional central limit theorem) and prove a maximal expo-
nential inequality and a Glivenko–Cantelli-type convergence result. These results use conditions
based on the metric entropy of the index class.

The empirical spectral process plays a key role in many statistical applications. In Section 3,
we briefly discuss parametric quasi-likelihood estimation, nonparametric quasi-likelihood esti-
mation, inference under model misspecification by stationary models and local estimates. An
extended application is given in Section 4, where uniform rates of convergence are derived for
local Whittle estimates of the parameter curves of locally stationary time series models.

Although our concept is based on empirical process techniques in the frequency domain, there
exist many applications in the time domain. Section 3 and Section 4 contain many examples in
the time domain, particularly with time-varying ARMA models.

The empirical spectral process for locally stationary processes has also been briefly considered
in Dahlhaus and Polonik (2006) in the special context of nonparametric estimation. In compari-
son to that paper, we also consider here the case of non-Gaussian processes and use weaker as-
sumptions on the underlying process. We mention that the assumptions on the underlying process
are very weak, allowing for jumps in the parameter curves by assuming bounded variation instead
of continuity in the time direction.

All proofs are deferred without further reference to Section 5.

2. The time-varying empirical spectral process

In this section, we define the empirical spectral process and derive its properties including a func-
tional central limit theorem and a maximal exponential inequality.

2.1. Locally stationary processes

Locally stationary processes were introduced in Dahlhaus (1997) by using a time-varying spec-
tral representation. In contrast to this, in this paper, we use a time-varying MA(∞)-representation
and formulate the assumptions in the time domain. As in nonparametric regression, we rescale
the functions in time to the unit interval in order to achieve a meaningful asymptotic theory. The
following assumptions on the locally stationary process are the same as those used in Dahlhaus
and Polonik (2006). They are more general than, for example, in Dahlhaus (1997) since the
parameter curves are allowed to have jumps.

Let

V (g) = sup

{
m∑

k=1

|g(xk) − g(xk−1)| : 0 ≤ x0 < · · · < xm ≤ 1, m ∈ N

}
(1)

be the total variation of a function g on [0,1] and for some κ > 0, let

�(j) :=
{

1, |j | ≤ 1,
|j | log1+κ |j |, |j | > 1.
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Assumption 2.1. Xt,n (t = 1, . . . , n) has a representation

Xt,n =
∞∑

j=−∞
at,n(j) εt−j (2)

satisfying the following conditions:

sup
t,n

|at,n(j)| ≤ K

�(j)
(3)

and there exist functions a(·, j) : (0,1] → R with

sup
u

|a(u, j)| ≤ K

�(j)
, (4)

sup
j

n∑
t=1

∣∣∣∣at,n(j) − a

(
t

n
, j

)∣∣∣∣ ≤ K, (5)

V (a(·, j)) ≤ K

�(j)
. (6)

The εt are assumed to be independent and identically distributed with Eεt ≡ 0 and Eε2
t ≡ 1. In

addition, we assume that all moments of εt exist and set κ4 := cum4(εt ).

Remark 2.2. (i) The rather complicated construction with different coefficients at,n(j) and
a( t

n
, j) is necessary since we need, on the one hand, a certain smoothness in the time direc-

tion (guaranteed by bounded variation of the functions a(u, j)) and on the other hand, a class
which is rich enough to cover interesting examples. For instance, Proposition 2.4 implies that
the process Xt,n = φ( t

n
)Xt−1,n + εt has a representation of the form (1). However, the proof of

Proposition 2.4 reveals that this Xt,n does not have a representation of the form

Xt,n =
∞∑

j=−∞
a

(
t

n
, j

)
εt−j . (7)

(ii) The time-varying MA(∞)-representation (2) can easily be transformed into a time-varying
spectral representation as used, for example, in Dahlhaus (1997). If the εt are assumed to be
stationary, then there exists a Cramér representation

εt = 1√
2π

∫ π

−π

exp(iλt)dξ(λ),

where ξ(λ) is a process with mean 0 and orthonormal increments (cf. Brillinger (1981)). Let

At,n(λ) :=
∞∑

j=−∞
at,n(j) exp(−iλj). (8)
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Then

Xt,n = 1√
2π

∫ π

−π

exp(iλt)At,n(λ)dξ(λ). (9)

If (5) is replaced by the stronger condition

sup
t

∣∣∣∣at,n(j) − a

(
t

n
, j

)∣∣∣∣≤ K

n�(j)
,

then it follows that

sup
t,λ

∣∣∣∣At,n(λ) − A

(
t

n
, λ

)∣∣∣∣≤ Kn−1, (10)

which was assumed in Dahlhaus (1997). Conversely, if we start with (9) and (10), then the con-
ditions of Assumption 2.1 can be derived from adequate smoothness conditions on A(u,λ).

Definition 2.3 (Time-varying spectral density and covariance). The function

f (u,λ) := 1

2π
|A(u,λ)|2

with

A(u,λ) :=
∞∑

j=−∞
a(u, j) exp(−iλj)

is the time-varying spectral density and

c(u, k) :=
∫ π

−π

f (u,λ) exp(iλk)dλ =
∞∑

j=−∞
a(u, k + j)a(u, j) (11)

is the time-varying covariance of lag k at rescaled time u.

For a deeper understanding of the time-varying covariance, see also Proposition 5.4.
A simple example of a process Xt,n which fulfills the above assumptions is Xt,n = φ( t

n
)Yt ,

where Yt = ∑j a(j)εt−j is stationary with |a(j)| ≤ K/�(j) and φ is of bounded variation.
From the following proposition, it follows that time-varying ARMA (tvARMA) models whose
coefficient functions are of bounded variation are locally stationary in the above sense. The result
is proved in Appendix.

Proposition 2.4 (tvARMA). Consider the system of difference equations

p∑
j=0

αj

(
t

n

)
Xt−j,n =

q∑
k=0

βk

(
t

n

)
σ

(
t − k

n

)
εt−k, (12)
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where εt are i.i.d. with Eεt = 0, E|εt | < ∞, α0(u) ≡ β0(u) ≡ 1 and αj (u) = αj (0), βk(u) =
βk(0) for u < 0. If all αj (·) and βk(·), as well as σ 2(·), are of bounded variation and∑p

j=0 αj (u)zj �= 0 for all u and all 0 < |z| ≤ 1 + δ for some δ > 0, then there exists a solu-
tion of the form

Xt,n =
∞∑

j=0

at,n(j) εt−j

which fulfills (3)–(6) of Assumption 2.1. The time-varying spectral density is given by

f (u,λ) = σ 2(u)

2π

|∑q

k=0 βk(u) exp(iλk)|2
|∑p

j=0 αj (u) exp(iλj)|2 .

2.2. Convergence of the empirical spectral process

The empirical spectral process is defined by

En(φ) = √
n
(
Fn(φ) − F(φ)

)
, (13)

where

F(φ) =
∫ 1

0

∫ π

−π

φ(u,λ)f (u,λ)dλdu (14)

and

Fn(φ) = 1

n

n∑
t=1

∫ π

−π

φ

(
t

n
, λ

)
Jn

(
t

n
, λ

)
dλ (15)

with the pre-periodogram

Jn

(
t

n
, λ

)
= 1

2π

∑
k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk). (16)

If X[t+1/2+k/2],nX[t+1/2−k/2],n is regarded as a (raw) estimate of c( t
n
, k), then Jn(

t
n
, λ) can be

regarded as a (raw) estimate of f ( t
n
, λ). However, in order to become consistent, Jn(

t
n
, λ) needs

to be smoothed in time and frequency directions. The pre-periodogram Jn was first defined by
Neumann and von Sachs (1997).

Many statistics occurring in the analysis of non-stationary time series can be written as func-
tionals of Fn(φ). Several examples are discussed in Section 3 and Section 4.

We first prove a central limit theorem for En(φ) under the assumption that we have bounded
variation in both components of φ(u,λ). Besides the definition in (1), we need a definition in
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two dimensions. Let

V 2(φ) = sup

{
�,m∑

j,k=1

|φ(uj , λk) − φ(uj−1, λk) − φ(uj , λk−1) + φ(uj−1, λk−1)| :

0 ≤ u0 < · · · < u� ≤ 1; −π ≤ λ0 < · · · < λm ≤ π; �,m ∈ N

}
.

For simplicity, we set

‖φ‖∞,V := sup
u

V (φ(u, ·)), ‖φ‖V,∞ := sup
λ

V (φ(·, λ)),

‖φ‖V,V := V 2(φ) and ‖φ‖∞,∞ := sup
u,λ

|φ(u,λ)|.

Theorem 2.5. Suppose Assumption 2.1 is fulfilled and φ1, . . . , φk are functions with ‖φj‖∞,V ,
‖φj‖V,∞, ‖φj‖V,V and ‖φj‖∞,∞ being finite (j = 1, . . . , k). Then

(En(φj ))j=1,...,k
D→ (E(φj ))j=1,...,k,

where (E(φj ))j=1,...,k is a Gaussian random vector with mean 0 and

cov(E(φj ),E(φk))

= 2π

∫ 1

0

∫ π

−π

φj (u,λ) [φk(u,λ) + φk(u,−λ)]f 2(u,λ)dλdu

+ κ4

∫ 1

0

(∫ π

−π

φj (u,λ1)f (u,λ1)dλ1

)(∫ π

−π

φk(u,λ2)f (u,λ2)dλ2

)
du.

Remark 2.6. (i) We mention that Theorem 5.3 contains a similar statement under a different set
of conditions which is obtained as a by-product of our calculations. Furthermore, we mention
that Theorem 2.5 also holds if a data taper is used, that is, if Fn(φ) and F(φ) are defined as
in (43) and (42) (in that case, we also need Assumption 5.1 and cov(E(φj ),E(φk)) must be

replaced by c
(h)
E (φj ,φk) as defined in Theorem 5.3). For simplicity, we consider the tapered case

only in Section 5.
(ii) In contrast to earlier results (cf. Dahlhaus and Neumann (2001), Lemma 2.1), the as-

sumptions on φ(u,λ) and f (u,λ) are very weak. In particular, we allow for non-continuous
behavior.

(iii) In the stationary case where φj (u,λ) = φ̃j (λ) and f (u,λ) = f̃ (λ), this is the classical
central limit theorem for the weighted periodogram (see Example 3.3 below).

(iv) The limit behavior for complex-valued φj can easily be derived from Theorem 2.5 by
considering the real and imaginary parts separately.

In Theorem 2.11, a functional central limit theorem indexed by function spaces and in The-
orem 2.12 a Glivenko–Cantelli-type theorem are proved. The central ingredient of their proofs
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will be an exponential inequality for the empirical spectral process and a maximal inequality
derived in the next subsection.

2.3. A maximal exponential inequality

Let

ρ2(φ) :=
(∫ 1

0

∫ π

−π

φ(u,λ)2 dλdu

)1/2

,

(17)

ρ2,n(φ) :=
(

1

n

n∑
t=1

∫ π

−π

φ

(
t

n
, λ

)2

dλ

)1/2

and

Ẽn(φ) := √
n
(
Fn(φ) − EFn(φ)

)
. (18)

Theorem 2.7 (Exponential inequality). Suppose Assumption 2.1 is fulfilled with E|εt |k ≤ Ck
ε

for all k ∈ N. We then have, for all η > 0,

P
(|Ẽn(φ)| ≥ η

)≤ c1 exp

(
−c2

√
η

ρ2,n(φ)

)
(19)

with some constants c1, c2 > 0 independent of n.

Remark 2.8. (i) In the Gaussian case, it is possible to omit the
√· in (19) or to prove a Bernstein-

type inequality which is even stronger (cf. Dahlhaus and Polonik (2006), Theorem 4.1).
(ii) The assumption E|εt |k ≤ Ck

ε for all k ∈ N is strong in that it implies finite exponential mo-
ments for εt . On the other hand, with the above exponential inequality, this leads to a very strong
finite-sample result for a large class of locally stationary processes (remember that the assump-
tions made on the smoothness of the parameter curves are very weak). The strong assumptions
on εt make sense for obtaining the uniform bounds of the empirical spectral process and the
functional central limit theorem below. Furthermore, they will lead to a very strong uniform rate
of convergence result in Theorem 4.1.

(iii) To treat the bias EFn(φ) − F(φ), we set F+(φ) := 1
n

∑n
t=1

∫ π
−π φ( t

n
, λ)f ( t

n
, λ)dλ. We

then we have (see proof of Theorem 2.7 and Remark 2.8)

√
n|EFn(φ) − F+(φ)| ≤ Kρ2,n(φ), (20)

√
n|F+(φ) − F(φ)| ≤ K√

n
(‖φ‖V,∞ + ‖φ‖∞,∞) (21)

and

ρ2,n(φ)2 ≤ ρ2(φ)2 + 4π

n
‖φ‖V,∞‖φ‖∞,∞, (22)
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leading, for example, to the exponential inequality

P
(|En(φ)| ≥ η

)≤ c′
1 exp

{
−c′

2
η1/2

(ρ2(φ) + (1/
√

n)‖φ‖V,∞ + (1/
√

n)‖φ‖∞,∞ )1/2

}
. (23)

An alternative inequality used later is

√
n|EFn(φ) − F+(φ)| ≤ K

logn√
n

‖φ‖∞,V + K√
n
‖φ‖∞,∞. (24)

The above exponential inequality is the core of the proof of the following result which then leads
to stochastic equicontinuity of the empirical spectral process. Analogously to standard empirical
process theory, stochastic equicontinuity is crucial for proving tightness.

As for the standard empirical process, the results for the function-indexed empirical spectral
process (En(φ),φ ∈ �) are derived under conditions on the richness of �, measured by the
metric entropy. For each ε > 0, the covering number of � with respect to the norm ρ2 is defined
by

N(ε,�,ρ2) = inf{n ≥ 1 :∃φ1, . . . , φn ∈ � such that

∀φ ∈ �∃1 ≤ i ≤ n with ρ2(φ − φi) ≤ ε}
and the metric entropy of � with respect to ρ2 By

H(ε,�,ρ2) = logN(ε,�,ρ2). (25)

Usually, the metric entropy is not known exactly, only upper bounds are known. These upper
bounds are usually of the form H(ε,�,ρ2) ≤ Cε−r or N(ε,�,ρ2) ≤ Cε−r with C, r > 0. For
the results below, we assume

H(ε,�,ρ2) ≤ H̃�(ε)

with an upper bound H̃�(·) which is assumed to be continuous and strictly decreasing.

Remark. In standard empirical process theory, so-called bracketing covering numbers are of-
ten used instead. Here, we do not use bracketing covering numbers since the empirical spectral
process is not monotone in φ.

Let

τ∞,V := sup
φ∈�

‖φ‖∞,V , τV,∞ := sup
φ∈�

‖φ‖V,∞,

τV,V := sup
φ∈�

‖φ‖V,V and τ∞,∞ := sup
φ∈�

‖φ‖∞,∞.

In order to avoid further technical assumptions, the following results assume measurability of all
random quantities without further mentioning it.
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Theorem 2.9 (Maximal inequality). Suppose Assumption 2.1 is fulfilled with E|εt |k ≤ Ck
ε for

all k ∈ N. Suppose that � is such that τ∞,V , τV,∞, τV,V and τ∞,∞ are finite. Let

τ2 := sup
φ∈�

ρ2(φ).

There then exists a set Bn (independent of �) with limn→∞ P(Bn) = 1 and a constant L (inde-
pendent of � and n) such that for all η satisfying

η ≥ 26Lmax{τ∞,V , τV,∞, τV,V , τ∞,∞} (logn)3

√
n

(26)

and

η ≥ 72

c2
2

∫ α

0
H̃�(s)2 ds with α := H̃−1

�

(
c2

4

√
η

τ2

)
, (27)

we have

P

(
sup
φ∈�

|Ẽn(φ)| > η,Bn

)
≤ 3c1 exp

{
−c2

4

√
η

τ2

}
(28)

and

P

(
sup
φ∈�

|En(φ)| > η,Bn

)
≤ 3c1 exp

{
−c2

4

√
η

τ2

}
(29)

with some constants c1, c2 > 0 independent of n.

Remark 2.10. (i) A maximal inequality for {Ẽn(φ),φ ∈ �}, assuming Gaussian innovations,
can be found in Dahlhaus and Polonik (2006). The additional Gaussian assumption enables a
weakening of the crucial assumption (27), essentially replacing

∫ α

0 H̃ 2
�(s)ds by

∫ α

0 H̃�(s)ds.

Related to that, the resulting exponential inequality is stronger, replacing
√

η
τ

in the exponent

of (28) by η
τ

. The proof in the present non-Gaussian case is much more complicated. It is an
open question as to whether the same result as in the Gaussian case can also be obtained for
non-Gaussian processes.

(ii) The restriction to the set Bn has several advantages. First, it allows for replacing ρ2,n(φ)

by ρ2(φ) (more precisely, by τ2 = supφ∈� ρ2(φ)) which makes the results much simpler. Fur-
thermore, extra terms due to the bias, as in (23), can be avoided. For many results, the set Bn

means no restriction, particularly if the probability of an event is calculated as for equicontinuity.
The set Bn is given in (72) and it is shown in Lemma 5.9 that P(Bc

n) = O(n−1). For this reason,
Bn may be removed from (28) and (29) by adding an O(n−1) term to the right-hand side of these
quantities. However, for many applications, this would not be sufficient.

(iii) c1 and c2 are the constants from (19). The minimal choice of L is L = max{K1, K2,K},
where K1,K2 > 0 are from Lemma 5.8 and K is the constant from (21) and (24).



10 R. Dahlhaus and W. Polonik

2.4. A functional central limit theorem and a GC-type result

Theorems 2.5 and 2.9 are the main ingredients for deriving the following weak convergence result
for the process {En(φ); φ ∈ �} in the space �∞(�) of uniformly bounded (real-valued) functions
on �, that is, with ‖g‖� := supφ∈� |g(φ)|, we have �∞(�) = {g :� → R; ‖g‖� < ∞}.

Theorem 2.11 (Functional limit theorem). Suppose Assumption 2.1 is fulfilled with E|εt |k ≤
Ck

ε for all k ∈ N. Furthermore let � be such that τ∞,V , τV,∞, τV,V and τ∞,∞ are finite. If, in
addition, ∫ 1

0
H̃�(s)2 ds < ∞, (30)

then we have

En(·) → E(·) weakly in �∞(�)

as n → ∞, where {E(φ), φ ∈ �} denotes a tight, mean zero Gaussian process with covariance
structure as given in Theorem 2.5.

Weak convergence in the above theorem means that E∗α(En) → Eα(E) as n → ∞ for every
bounded, continuous real-valued function α on �∞(�) equipped with the supremum norm, where
E∗ denotes outer expectation. This Hoffman–Jørgensen-type formulation of weak convergence
avoids measurability considerations for the process {En(φ), φ ∈ �}. Measurability of En might
become problematic, particularly if � is not separable. Nevertheless, this notion of weak conver-
gence allows the application of useful probabilistic tools such as continuous mapping theorems.
For more details, we refer to van der Vaart and Wellner (1996).

Finally, we mention our conjecture that it should be possible to prove another version of the
above central limit theorem under much weaker moment assumptions on the εt if the class � is
smaller (by avoiding the use of the maximal inequality for proving equicontinuity).

As another application of the maximal inequality, we now prove a Glivenko–Cantelli-type
theorem for the empirical spectral process. Here, we allow for a class � = �n which may be
increasing with n. We set τ

(n)
∞,V := supφ∈�n

‖φ‖∞,V , etc.

Theorem 2.12. Suppose Assumption 2.1 is fulfilled with E|εt |k ≤ Ck
ε for all k ∈ N. Sup-

pose further that �n is such that τ
(n)
∞,V , τ

(n)
V,∞, τ

(n)
V,V and τ

(n)∞,∞ are of order o( n

log3 n
), τ

(n)
2 :=

supφ∈�n
ρ2(φ) = o(

√
n) and ∫ 1

0
H̃�n(s)

2 ds = o
(√

n
)
.

Then

sup
φ∈�n

|Fn(φ) − F(φ)| = sup
φ∈�n

∣∣∣∣ 1√
n

En(φ)

∣∣∣∣ P→ 0.
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3. Applications

In this section, we give several examples for the statistic Fn(φ). In all cases, the results from
Section 2 can be applied. As a non-trivial application, the uniform convergence of local Whittle
estimates is proved in the next section.

Example 3.1 (Parametric quasi-likelihood estimation). In Dahlhaus (2000), it has been shown
that

Ln(θ) := 1

4π

1

n

n∑
t=1

∫ π

−π

{
log 4π2fθ

(
t

n
, λ

)
+ Jn(t/n,λ)

fθ (t/n,λ)

}
dλ (31)

is an approximation to −log Gaussian likelihood of a locally stationary process. The above likeli-
hood is a generalization of the Whittle likelihood (Whittle (1953)) to locally stationary processes.
An example for a locally stationary process with finite-dimensional parameter θ is the tvARMA
process from Proposition 2.4 with coefficient functions being polynomials in time. Proving the
asymptotic properties of

θ̂n := arg min
θ∈�

Ln(θ)

is greatly simplified by using the above properties of the empirical spectral process. We give a
brief sketch. Let

L(θ) := 1

4π

∫ 1

0

∫ π

−π

{
log 4π2fθ (u,λ) + f (u,λ)

fθ (u,λ)

}
dλdu (32)

be (up to a constant) the asymptotic Kullback–Leibler divergence between the true process and
the fitted model (cf. Dahlhaus (1996), Theorem 3.4 ff) and

θ0 := arg min
θ∈�

L(θ)

the best approximating parameter from � (this is the true parameter if the model is correctly
specified). We have

Ln(θ) − L(θ) = 1√
n
En

(
1

4π
f −1

θ

)
+ Rlog(fθ )

with

Rlog(fθ ) := 1

4π

∫ π

−π

[
1

n

n∑
t=1

logfθ

(
t

n
, λ

)
−
∫ 1

0
logfθ (u,λ)du

]
dλ. (33)

Thus, ignoring the Rlog-term, uniform convergence follows from the Glivenko–Cantelli-type
Theorem 2.12. The Rlog-term can be treated as in Dahlhaus and Polonik (2006), Lemma
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A.2. If � is compact and the minimum θ0 is unique, this implies consistency of θ̂n. Let
∇ := ( ∂

∂θ1
, . . . , ∂

∂θd
)′. Then

√
n∇Ln(θ0) = En

(
1

4π
∇f −1

θ

)
and

∇2 Ln(θ) = 1√
n
En

(
1

4π
∇2f −1

θ

)
+ 1

n

n∑
t=1

1

4π

∫ π

−π

(
∇ logfθ

(
t

n
, λ

))(
∇ logfθ

(
t

n
, λ

))′
dλ.

The first term of ∇2 Ln(θ) converges uniformly to 0, while the second term converges for θ → θ0
to the Fisher information matrix. The usual Taylor expansion then gives a central limit theorem
for

√
n(θ̂n − θ0). For details about the result and examples, we refer to Dahlhaus (2000), The-

orem 3.1, the proof of which is greatly simplified by using the above arguments. Furthermore,
the present assumptions are weaker. Due to (36) below, the result also covers the misspecified
stationary case where the stationary Whittle likelihood is used with a stationary model but the
true process is only locally stationary.

Another application of the empirical spectral process is model selection for Whittle estimates.
In Van Bellegem and Dahlhaus (2006), a model selection criterion for semi-parametric model
selection has been derived. Furthermore, an upper bound for the risk has been proven by using
the exponential inequality for the empirical spectral process.

Example 3.2 (Nonparametric quasi-likelihood estimation). In Dahlhaus and Polonik (2006),
we have considered the corresponding nonparametric estimator

f̂n = arg min
g∈F

Ln(g)

with

Ln(g) = 1

n

n∑
t=1

1

4π

∫ π

−π

{
logg

(
t

n
, λ

)
+ Jn(t/n,λ)

g(t/n,λ)

}
dλ, (34)

where the contrast functional is now minimized over an ‘infinite-dimensional’ target class F of
spectral densities whose complexity is characterized by metric entropy conditions. The optimal
rate of convergence has been derived for sieve estimates in the Gaussian case by using a ‘peeling
device’ and ‘chaining’ together with an exponential inequality similar to the one in Theorem 2.7
(the exponential inequality is stronger due to the additional Gaussian assumption). It is an open
problem as to whether the optimal rates of convergence can also be achieved for full nonpara-
metric maximum likelihood estimates or (as in the present paper) without the assumption of
Gaussianity.

Example 3.3 (Stationary processes/model misspecification by stationary models). We start by
showing how several classical results for the stationary case can be obtained from the results
above. Let φ(u,λ) = φ̃(λ) be time invariant. Then

Fn(φ) =
∫ π

−π

φ̃(λ)
1

n

n∑
t=1

Jn

(
t

n
, λ

)
dλ. (35)
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However, we have

1

n

n∑
t=1

Jn

(
t

n
, λ

)
= 1

n

n∑
t=1

1

2π

∑
k

1≤[t+0.5+k/2],[t+0.5−k/2]≤n

X[t+0.5+k/2],nX[t+0.5−k/2],n exp(−iλk)

= 1

2π

n−1∑
k=−(n−1)

(
1

n

n−|k|∑
t=1

XtXt+|k|

)
exp(−iλk) (36)

= 1

2πn

∣∣∣∣∣
n∑

s=1

Xs exp(−iλs)

∣∣∣∣∣
2

= In(λ),

where In(λ) is the classical periodogram. Therefore, Fn(φ) is the classical spectral mean in the
stationary case with the following applications:

(i) φ(u,λ) = φ̃(λ) = I[0,μ](λ) gives the empirical spectral measure;
(ii) φ(u,λ) = φ̃(λ) = 1

4π∇f −1
θ (λ) is the score function of the Whittle likelihood (similar to

Example 3.1 above);
(iii) φ(u,λ) = φ̃(λ) = cosλk is the empirical covariance estimator of lag k.

Theorem 2.5 gives, in all cases, the asymptotic distribution – both in the stationary case and in
the misspecified case where the true underlying process is only locally stationary. In case (i)
Theorem 2.11 leads to a functional central limit theorem on C[0,π] with the supremum-norm.
If φ̃(λ) is a kernel, we obtain a kernel estimate of the spectral density (see the remark below).

Example 3.4 (Local estimates). There is an even larger variety of local estimates – some of them
are listed below. The asymptotic distribution of these estimates is not covered by Theorem 2.5
since the function φ(u,λ) depends on n in this case. However, in all cases, the uniform rate of
convergence of these estimators may be derived by using the maximal inequality in Theorem 2.9.
A detailed example is given in the next section where the uniform rate of convergence of local
Whittle estimates is derived ((iii) below).

For a short overview, let kn(x) = 1
bn

K( x
bn

) be some kernel with bandwidth bn. Then

(i) φ(u,λ) = kn(u − u0) kn(λ − λ0) gives an estimator of the time-varying spectral density
f (u0, λ0);

(ii) φ(u,λ) = kn(u − u0) cosλk gives a local estimator of the covariance function c(u0, k);

(iii) φ(u,λ) = kn(u − u0)
1

4π∇f −1
θ (λ) is the score function of the local Whittle estimator of

the parameter curve θ(u0).

4. Uniform convergence of local Whittle estimates

We now study kernel estimates for parameter curves of locally stationary processes and derive
uniform consistency from the Glivenko–Cantelli-type Theorem 2.12 (see (39) below) and a uni-
form rate of convergence from the maximal inequality in Theorem 2.9. We investigate locally
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stationary processes where the time varying spectral density is of the form f (u,λ) = fθ(u)(λ)

with θ(u) ∈ � ⊆ Rd for all u ∈ [0,1]. An example is the tvARMA process from Proposition 2.4.
Let

θ̂n(u) := arg min
θ∈�

Ln(u, θ)

with

Ln(u, θ) := 1

4π

1

n

n∑
t=1

1

bn

K

(
u − t/n

bn

) ∫ π

−π

{
log 4π2fθ (λ) + Jn(t/n,λ)

fθ (λ)

}
dλ. (37)

We assume that the kernel K has compact support on [− 1
2 , 1

2 ] and is of bounded variation with∫ 1/2
−1/2 xK(x)dx = 0 and

∫ 1/2
−1/2 K(x)dx = 1. Furthermore, let bn → 0 and nbn → ∞ as n → ∞.

In case of a tvAR(p) process, θ̂n(u) is the solution of the local Yule–Walker equations:
Let ĉn(u, k) := 1

n

∑
t

1
bn

K(
u−t/n

bn
)X[t+1/2+k/2],nX[t+1/2−k/2],n (cf. Proposition 5.4), Cn(u) =

(̂cn(u,1), . . . , ĉn(u,p))′ and �n(u) = {̂cn(u, i − j)}i,j=1,...,p . If θ̂n(u) = (̂α1(u), . . . ,

α̂p(u), σ̂ 2(u))′, then it is not difficult to show that

(̂α1(u), . . . , α̂p(u))′ = −�n(u)−1Cn(u)

and

σ̂ 2(u) = ĉn(u,0) +
p∑

k=1

α̂k(u) ĉn(u, k).

We now derive a uniform rate of convergence for θ̂n(u). Let ∇ :=( ∂
∂θ1

, . . . , ∂
∂θd

)′, ‖ · ‖2 be the

�2-norm and ‖A‖spec := supx∈Cn
‖Ax‖2‖x‖2

be the spectral norm (where A is an n × n matrix).

Theorem 4.1. Suppose Assumption 2.1 is fulfilled with E|εt |k ≤ Ck
ε for all k ∈ N and time-

varying spectral density f (u,λ) = fθ0(u)(λ). Suppose, further,

(i) θ is identifiable from fθ (i.e., fθ (λ) = fθ ′(λ) for all λ implies θ = θ ′) and θ0(u) lies in
the interior of the compact parameter space � ⊆ Rd for all u;

(ii) θ0(·) is differentiable with Lipschitz continuous derivative;
(iii) fθ (λ) is twice differentiable in θ ; f −1

θ (λ) and the components of ∇fθ (λ) and ∇2fθ (λ)

are uniformly bounded in λ and θ and uniformly Lipschitz continuous in λ;
(iv) the minimal eigenvalue of I (θ) := 1

4π

∫ π
−π(∇ logfθ (λ))(∇ logfθ (λ))′ dλ is bounded

away from 0 uniformly in θ .

We then have, for bnn � (logn)6,

sup
u∈[bn/2 ,1−bn/2]

‖θ̂n(u) − θ0(u)‖2 = Op

(
1√
bnn

+ b2
n

)
,

that is, for bn ∼ n−1/5, we obtain the uniform rate Op(n−2/5).
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Remark 4.2. (i) We conjecture that a similar result also holds in case of model misspecification
where the model spectral density fθ0(u)(λ) is only an approximation to the true spectral density
f (u,λ).

(ii) It is possible to extend the above result to a wider range of smoothness classes as, for
example, in Moulines, Priouret and Roueff (2005). This is not too difficult since only the esti-
mation of the second summand of (41) below needs to be improved in an obvious way (and the
kernel K needs to be replaced by a higher order kernel).

(iii) For tvAR(p) processes, it follows from Theorem 4 in Moulines, Priouret and Roueff
(2005) that the above rate is the optimal rate of convergence.

(iv) Of course, the assumption E|εt |k ≤ Ck
ε for all k ∈ N is restrictive in comparison with

what one would expect for standard estimation results based on spectral analysis. It is the price
that must be paid for a uniform convergence result with optimal rate and an elegant proof with
the maximal exponential inequality.

Proof of Theorem 4.1. We begin by noting that the difficult parts of the following proof are
handled by using the empirical spectral process and applying Theorems 2.9 and 2.12. We start
by proving consistency. We have, with

L(u, θ) := 1

4π

∫ π

−π

{
log 4π2fθ (λ) + f (u,λ)

fθ (λ)

}
dλ,

Ln(u, θ) − L(u, θ) = 1√
n
En

(
1

bn

K

(
u − ·
bn

)
⊗ 1

4π
f −1

θ

)

+ 1

4π

∫ π

−π

∫ 1

0

1

bn

K

(
u − v

bn

)
f (v,λ) − f (u,λ)

fθ (λ)
dv dλ

+ 1

4π

∫ π

−π

log 4π2fθ (λ)dλ

(
1

n

n∑
t=1

1

bn

K

(
u − t/n

bn

)
− 1

)
.

We now apply Theorem 2.12 with �n = { 1
bn

K(u−·
bn

) ⊗ 1
4π

f −1
θ |u ∈ [bn/2,1 − bn/2], θ ∈ �}.

It is straightforward to show that N(ε,�n,ρ2) ≤ K /(b
(d+4)/2
n εd+2), that is

∫ 1
0 H̃�n(s)

2 ds =
O((logbn)

2).
Furthermore, τ

(n)
∞,V , τ

(n)
V,∞, τ

(n)
V,V and τ

(n)∞,∞ are of order O(b−1
n ) and τ

(n)
2 = supφ∈�n

ρ2(φ) =
O(b

−1/2
n ). Thus, for bnn ≥ log4 n, Theorem 2.12 implies that

sup
u∈[bn/2 ,1−bn/2]

sup
θ∈�

|Ln(u, θ) − L(u, θ)| P→ 0. (38)

The identifiability condition implies that θ0(u) is the unique minimum of L(u, θ) for all u. By
using standard arguments, we can therefore conclude that

sup
u∈[bn/2 ,1−bn/2]

‖θ̂n(u) − θ0(u)‖2
P→ 0. (39)
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We now derive the rate of convergence by using the maximal inequality. We have, for each u,

Zn(u) := ∇Ln(u, θ̂n(u)) − ∇Ln(u, θ0(u)) = ∇2 Ln(u, θ̄n(u))
(
θ̂n(u) − θ0(u)

)
(40)

with |θ̄n(u) − θ0(u)| ≤ |θ̂n(u) − θ0(u)|. The main term on the left-hand side is

∂

∂θj

Ln(u, θ0(u))

(41)

= 1√
n
En(φn) +

∫ π

−π

∫ 1

0

1

bn

K

(
u − v

bn

)(
fθ0(v)(λ) − fθ0(u)(λ)

) ∂

∂θj

f −1
θ (λ)|θ=θ0(u) dv dλ

with φn(v,λ) := 1
bn

K(u−v
bn

) 1
4π

∂
∂θj

f −1
θ (λ)|θ=θ0(u). We apply the maximal inequality of Theo-

rem 2.9 to the class �n = { 1
bn

K(u−·
bn

) ⊗ 1
4π

∂
∂θj

f −1
θ |u ∈ [bn/2,1−bn/2], θ ∈ �}. Again, we can

show N(ε,�n,ρ2) = K / (b
(d+4)/2
n εd+2), that is,

∫ 1
0 H̃�n(s)

2 ds = O((logbn)
2). Furthermore,

τ
(n)
∞,V , τ

(n)
V,∞, τ

(n)
V,V and τ

(n)∞,∞ are of order O(b−1
n ) and τ

(n)
2 = supφ∈�n

ρ2(φ) ∼ b
−1/2
n . We now

apply Theorem 2.9 with η = τ2 δ for arbitrary δ. If bnn � log6 n, then the conditions (26) and
(27) are fulfilled and we obtain

P

(
sup

φ∈�n

|En(φ)| > τ2 δ, Bn

)
≤ 3c1 exp

{
−c2

4

√
δ

}
and, as a consequence,

sup
φ∈�n

∥∥∥∥ 1√
n

En(φ)

∥∥∥∥= Op

(
1√
bnn

)
.

The smoothness conditions (ii) and (iii) imply that the second summand of (41) can be uniformly
bounded by O(b2

n), that is, we obtain

sup
u∈[bn/2,1−bn/2]

‖∇Ln(u, θ0(u))‖2 = Op

(
1√
bnn

+ b2
n

)
.

If θ̂n(u) lies on the boundary of � for some u, then ‖θ̂n(u) − θ(u)‖2 ≥ κ for some κ > 0 and,
by (39),

P

(
sup

u∈[bn/2 ,1−bn/2]
‖∇Ln(u, θ̂n(u))‖2 > δ

1√
bnn

)

≤ P

(
sup

u∈[bn/2,1−bn/2]
‖∇Ln(u, θ̂n(u))‖2 > 0

)

≤ P

(
sup

u∈[bn/2,1−bn/2]
‖θ̂n(u) − θ0(u)‖2 ≥ κ

)
→ 0,
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implying that supu∈[bn/2,1−bn/2] ‖Zn(u)‖2 = Op( 1√
bnn

). In order to obtain the assertion of the

theorem from (40), we now prove that the minimal eigenvalue of the matrix ∇2 Ln(u, θ̄n(u)) is
bounded away from 0 uniformly in θ in probability. We have

∇2 Ln(u, θ) = 1√
n
En

(
1

bn

K

(
u − ·
bn

)
⊗ 1

4π
∇2f −1

θ

)

+ 1

n

n∑
t=1

1

bn

K

(
u − t/n

bn

)
1

4π

∫ π

−π

(∇ logfθ (λ))(∇ logfθ (λ))′ dλ.

Since fθ is twice differentiable in θ with Lipschitz continuous second derivative in λ we obtain,
exactly as above from Theorem 2.12 for bnn ≥ log4 n and i, j = 1, . . . , d ,

sup
u∈[bn/2 ,1−bn/2]

sup
θ∈�

∣∣∣∣ 1√
n

En

(
1

bn

K

(
u − ·
bn

)
⊗ 1

4π

∂2

∂θi ∂θj

f −1
θ

)∣∣∣∣ P→ 0.

Therefore, also,

sup
u∈[bn/2,1−bn/2]

∥∥∥∥ 1√
n
En

(
1

bn

K

(
u − ·
bn

)
⊗ 1

4π
(∇2f −1

θ )|θ=θ̄n(u)

)∥∥∥∥
spec

P→ 0.

Since the minimal eigenvalue of I (θ) := 1
4π

∫ π
−π(∇ logfθ (λ))(∇ logfθ (λ))′ dλ is bounded from

below by λmin(I ) > 0 uniformly in θ , this implies that

P
(

sup
u∈[bn/2 ,1−bn/2]

‖∇2 Ln(u, θ̄n(u))−1‖spec ≤ 2

λmin(I )

)
→ 1.

Since

‖θ̂n(u) − θ0(u)‖2 ≤ ‖∇2 Ln(u, θ̄n(u))−1‖spec‖Zn(u)‖2,

this implies the result. �

5. Proofs: CLT and exponential inequality

In this section, we provide the proofs for the results of Section 2. In particular, we derive the
asymptotic behavior of the moments of the empirical spectral process.

First, we extend the definitions of Section 2 to tapered data X
(hn)
t,n = hn(

t
n
) · Xt,n, where

hn : (0,1] → [0,∞) is a data taper (with hn(·) = I(0,1](·) being the non-tapered case of Sec-
tion 2). This is done for three reasons:

(i) The main reason is that all proofs are greatly simplified since the data taper now auto-
matically takes care of the range of summation (hn(t/n) is zero for all t outside the observation
domain {1, . . . , n}). The consideration of arbitrary tapers hn instead of the ‘no-taper’ I(0,1] does
not introduce any extra technical complexity at all.
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(ii) By using tapers which are different from 0 only on a segment of the observation domain,
one may construct localized estimators. This is of great importance, although we will not discuss
it in the present paper.

(iii) The use of a data taper in the periodogram is standard for stationary time series. It leads
to a better small-sample performance in the presence of strong peaks in the spectrum. It may turn
out that this also holds in the present situation (which requires further investigation).

As before, the empirical spectral process is defined by E
(hn)
n (φ) := √

n (F
(hn)
n (φ) − F (hn)(φ)),

where

F (hn)(φ) :=
∫ 1

0
h2

n(u)

∫ π

−π

φ(u,λ)f (u,λ)dλdu (42)

and

F (hn)
n (φ) := 1

n

n∑
t=1

∫ π

−π

φ

(
t

n
, λ

)
J (hn)

n

(
t

n
, λ

)
dλ, (43)

now with the tapered pre-periodogram

J (hn)
n

(
t

n
, λ

)
= 1

2π

∑
k:1≤[t+1/2±k/2]≤n

X
(hn)
[t+1/2+k/2],nX

(hn)
[t+1/2−k/2],n exp(−iλk). (44)

We mention that in some cases, a rescaling may be necessary for J
(hn)
n (u,λ) to become a (pre-)

estimate of f (u,λ).
Throughout this appendix the superscript (hn) will be dropped in many situations for

notational convenience, that is, we will use Fn(φ), F(φ) and En(φ).

Assumption 5.1. The data taper hn : (0,1] → [0,∞) fulfills supn V (hn) ≤ C and supu,n hn(u) ≤
C for some C < ∞. Furthermore, loghn(·) is concave.

The assumption that loghn(·) is concave is very mild (note that even log(xm) is concave). We
need the following notation. With

φ̂(u, j) :=
∫ π

−π

φ(u,λ) exp(iλj)dλ, (45)

we define

ρ∞(φ) :=
∞∑

j=−∞
sup
u

|φ̂(u, j)| and v�(φ) :=
∞∑

j=−∞
V (φ̂(·, j)). (46)

We mention that

sup
u,λ

|φ(u,λ)| ≤ 1

2π
ρ∞(φ) and ρ2(φ) ≤ 1√

2π
ρ∞(φ).

The idea now is to prove the CLT in Theorem 2.5 by the convergence of all cumulants. The con-
vergence of the cumulants is derived below under the assumptions ρ∞(φ) < ∞ and v�(φ) < ∞.
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Unfortunately, these assumptions are not fulfilled for functions of bounded variation as assumed
in Theorem 2.5. Therefore, its proof also uses certain approximation arguments (cf. proof of
Theorem 2.5). The following CLT is a by-product which follows immediately from the cumulant
calculations below. It is of independent interest since the result does not follow from Theorem 2.5
(the condition ρ∞(φ) < ∞ does not imply bounded variation in the λ-direction; furthermore, the
conditions may be easier to check in some situations).

Assumption 5.2. Suppose φ : [0,1] × [−π,π] → R fulfills ρ∞(φ) < ∞ and v�(φ) < ∞.

Theorem 5.3. Suppose Assumptions 2.1, 5.1 and 5.2 hold with a data taper h independent of n.
Then (

E(h)
n (φj )

)
j=1,...,k

D→ (
E(h)(φj )

)
j=1,...,k

,

where (E(h)(φj ))j=1,...,k is a Gaussian random vector with mean 0 and cov(E(h)(φj ),

E(h)(φk)) = c
(h)
E (φj ,φk) with

c
(h)
E (φj ,φk) := 2π

∫ 1

0
h4(u)

∫ π

−π

φj (u,λ) [φk(u,λ) + φk(u,−λ)]f 2(u,λ)dλdu

+ κ4

∫ 1

0
h4(u)

(∫ π

−π

φj (u,λ1)f (u,λ1)dλ1

)(∫ π

−π

φk(u,λ2)f (u,λ2)dλ2

)
du.

Proof. The result follows from the convergence of all cumulants which is proved in
Lemma 5.5(ii), Lemma 5.6(ii) and Lemma 5.7(iii). �

In the same way, one may arrive at a central limit theorem with (‖hn‖−1
2 En(φj ))j=1,...,k for

hn dependent on n (under additional assumptions), for example, for hn(·) = I[u0−bn/2,u0−bn/2](·)
(segment estimate). This will be studied in future work.

For the following proofs, we first need a result on the behavior (decay) of the covariances of
the process. The case hn(·) = I(0,1](·) gives the results for the ordinary covariances.

Proposition 5.4. Suppose Assumptions 2.1 and 5.1 hold. We then have, for all k, k1, k2 ∈ Z with
some K independent of k, k1, k2 and n,

sup
t

∣∣cov
(
X

(hn)
t,n ,X

(hn)
t+k,n

)∣∣ ≤ K

�(k)
, (47)

sup
u

|c(u, k)| ≤ K

�(k)
, (48)

n∑
t=1

∣∣∣∣cov
(
X

(hn)
t+k1,n

X
(hn)
t−k2,n

)− hn

(
t

n

)2

c

(
t

n
, k1 + k2

)∣∣∣∣ ≤ K

(
1 + min{|k1|, n}

�(k1 + k2)

)
, (49)

V (c(·, k)) ≤ K

�(k)
. (50)
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Proof. From (11) and (4), we have

c(u, k) =
∞∑

j=−∞
a(u, j + k) a(u, j) with sup

u
|a(u, j)| ≤ K

�(j)
.

Therefore, (48) follows from the relation

∞∑
j=−∞

1

�(k + j)

1

�(j)
≤ K

�(k)
(51)

which is easily established. Furthermore, we have, with k = k1 + k2,

cov
(
X

(hn)
t+k1,n

,X
(hn)
t−k2,n

)= hn

(
t + k1

n

)
hn

(
t − k2

n

) ∞∑
j=−∞

at+k1,n(j + k) at−k2,n(j).

For k1 = k and k2 = 0, this gives (47) by using (3). Replacing hn(
t+k1

n
), hn(

t−k2
n

), at+k1,n(j + k)

and at−k2,n(j) by hn(
t
n
), hn(

t
n
), a( t

n
, j + k) and a( t

n
, j), respectively, gives (49). For example,

the last replacement step has, with (5) and (6), the upper bound

n∑
t=1

∣∣∣∣∣hn

(
t

n

)
hn

(
t

n

) ∞∑
j=−∞

a

(
t

n
, j + k

)(
at−k2,n(j) − a

(
t

n
, j

))∣∣∣∣∣
≤ K

∞∑
j=−∞

1

�(j + k)

n∑
t=1

∣∣∣∣at−k2,n(j) − a

(
t

n
, j

)∣∣∣∣
≤ K

∞∑
j=−∞

1

�(j + k)

(
1 + |k2|

�(j)

)

= K

(
1 + |k2|

�(k)

)
.

Since |k2| ≤ |k| + |k1|, we obtain (49) for |k1| ≤ n. For |k1| > n, the result follows since then
cov(X

(hn)
t+k1,n

,X
(hn)
t−k2,n

) is equal to 0. (50) is obtained in the same way. �

A trick which greatly simplifies the following proofs is to set at,n(j) = 0 for t /∈ {1, . . . , n}
and j ∈ Z, a(u, j) = 0 for u /∈ (0,1] and j ∈ Z, φ(u,λ) = 0 for u /∈ (0,1] and λ ∈ [−π,π] and
hn(u) = 0 for u /∈ (0,1]. With this convention, (3)–(6), (47)–(50) continue to hold for u ∈ R,
t ∈ Z, V (f ) now denoting the total variation over R and t in (5) and (49) ranging from −∞ to
∞. Furthermore, the summation range of k in (16) and t in (15) can be extended from −∞ to
∞. Therefore, all summation ranges are from −∞ to ∞ in the following proofs unless otherwise
indicated.

We also set ã(j) = supu |a(u, j)|, φ̃(j) = max{supu |φ̂(u, j)|, supu |φ̂(u,−j)|} and c̃(j) =
supu |c(u, j)|.
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Lemma 5.5. (i) Suppose Assumptions 2.1 and 5.1 hold and φ : [0,1] × [−π,π] → R is a func-
tion possibly depending on n. We then have, with K > 0,

∣∣EF (hn)
n (φ) − F (hn)(φ)

∣∣≤ K

n

∑
|k|≤n

φ̃(k) + K
∑
|k|>n

φ̃(k)
1

�(k)
+ K

n

∑
k

V (c(·, k))
1

�(k)
.

(ii) If, in addition, φ is independent of n and fulfills Assumption 5.2, then

EE(hn)
n (φ) = O(n−1/2).

Proof. (i) We have

F (hn)
n (φ) = 1

2πn

n∑
t=1

∑
k

φ̂

(
t

n
,−k

)
X

(hn)
[t+1/2+k/2],n X

(hn)
[t+1/2−k/2],n. (52)

We therefore obtain from Proposition 5.4

EF (hn)
n (φ) = 1

2πn

∑
t, |k|≤n

φ̂

(
t

n
,−k

)
cov
(
X

(hn)
[t+1/2+k/2],n,X

(hn)
[t+1/2−k/2],n

)
(53)

= 1

2πn

∑
t,k

h2
n

(
t

n

)
φ̂

(
t

n
,−k

)
c

(
t

n
, k

)
+ R

with

|R| ≤ K

n

∑
|k|≤n

φ̃(k)

[
1 + min(|k|, n)

�(k)

]
+ K

∑
|k|>n

φ̃(k)
1

�(k)
≤ K

n
ρ∞(φ). (54)

Furthermore,∣∣∣∣∣ 1

2πn

∑
t,k

h2
n

(
t

n

)
φ̂

(
t

n
,−k

)
c

(
t

n
, k

)
− F(φ)

∣∣∣∣∣
≤
∣∣∣∣∣ 1

2π

∑
t,k

∫ 1/n

0

[
h2

n

(
t

n

)
φ̂

(
t

n
,−k

)
c

(
t

n
, k

)
(55)

− h2
n

(
t − 1

n
+ x

)
φ̂

(
t − 1

n
+ x,−k

)
c

(
t − 1

n
+ x, k

)]
dx

∣∣∣∣∣
≤ K

2πn

∑
k

[V (φ̂(·,−k))c̃(k) + φ̃(k)V (c(·, k)) + φ̃(k)c̃(k)]

leading to the result. (ii) follows immediately. �
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Lemma 5.6. (i) Suppose Assumptions 2.1 and 5.1 hold and φ1, φ2 : [0,1] × [−π,π] → R are
functions possibly depending on n. We then have

cov
(
E(hn)

n (φ1),E
(hn)
n (φ2)

)= c
(hn)
E (φ1, φ2) + Rn

with

|Rn| ≤ K

n

∑
k1,k2

φ̃1(k1)φ̃2(k2)

[
1 + min{|k1|, n}

�(k1 + k2)

]

+ K

n

∑
k1,k2,k3

[φ̃1(k1)V (φ̂2(·, k2))V (φ̂1(·, k1))φ̃2(k2)]min{|k1| + |k2| + |k3|, n}
�(k3)�(k1 + k2 + k3)

+ K

n

∑
k1,k2

[φ̃1(k1)V (φ̂2(·, k2)) + V (φ̂1(·, k1))φ̃2(k2)]
[

1

�(k1)
+ 1

�(k2)

]
,

where the last term can be omitted if Xt,n is Gaussian.
(ii) If φ1 and φ2 are independent of n and fulfill Assumption 5.2, then Rn = o(1).

Proof. (i) We have, with (52),

cov
(
E(hn)

n (φ1),E
(hn)
n (φ2)

)
= n cov

(
F (hn)

n (φ1),F
(hn)
n (φ2)

)
= 1

(2π)2n

∑
t1,t2,k1,k2

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t2

n
,−k2

)
× [cov

(
X

(hn)
[t1+1/2+k1/2],n,X

(hn)
[t2+1/2+k2/2],n

)
× cov

(
X

(hn)
[t1+1/2−k1/2],n,X

(hn)
[t2+1/2−k2/2],n

)
(56)

+ cov
(
X

(hn)
[t1+1/2+k1/2],nX

(hn)
[t2+1/2−k2/2],n

)
× cov

(
X

(hn)
[t1+1/2−k1/2],nX

(hn)
[t2+1/2+k2/2],n

)
+ cum

(
X

(hn)
[t1+1/2+k1/2],n,X

(hn)
[t1+1/2−k1/2],n,

X
(hn)
[t2+1/2+k2/2],n,X

(hn)
[t2+1/2−k2/2],n

)]
.

Let k3 := t1 − t2 + [k1/2 + 1/2] − [k2/2 + 1/2]. By using Proposition 5.4, we replace the first
summand in [. . .] by hn(

t1
n
)4c( t1

n
, k3)c(

t1
n
, k3 + k2 − k1). The remainder can be bounded by

K

n

∑
k1,k2,k3

[
φ̃1(k1)φ̃2(k2)

{
1 + min{|k1|, n}

�(k3)

}
1

�(k3 + k2 − k1)

+ φ̃1(k1)φ̃2(k2)
1

�(k3)

{
1 + min{|k1|, n}

�(k3 + k2 − k1)

}]
.
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(51) implies that this is bounded as asserted. Therefore, the first term is equal to

1

(2π)2n

∑
t1,k1,k2,k3

hn

(
t1

n

)4

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t1 + ko

n
,−k2

)
(57)

× c

(
t1

n
, k3

)
c

(
t1

n
, k3 + k2 − k1

)
+ Rn,

where ko = −k3 +[k1/2 + 1/2]− [k2/2 + 1/2]. Replacing φ̂2(
t1+ko

n
,−k2) by φ̂2(

t1
n
,−k2) yields

the error term

K

n

∑
k1,k2,k3

φ̃(k1)c̃(k3)c̃(k3 + k2 − k1)
∑

t

∣∣∣∣φ̂2

(
t + ko

n
,−k2

)
− φ̂2

(
t

n
,−k2

)∣∣∣∣
which is also bounded as claimed. As in (55), we now replace the 1

n

∑
t1

sum in (58) (with
ko = 0) by the integral over [0, 1] with the same replacement error. Direct calculation (or repeated
application of Parseval’s equality) yields

1

(2π)2

∫ 1

0
h4

n(u)
∑

k1,k2,k3

φ̂1(u,−k1) φ̂2(u,−k2) c(u, k3) c(u, k3 + k2 − k1)du

= 2π

∫ 1

0
h4

n(u)

∫ π

−π

φ1(u,λ)φ2(u,−λ)f (u,λ)2 dλdu.

The second term in (56) is treated in the same way. With the representation Xt,n =∑∞
j=−∞ at,n

(t − j)εj and the abbreviations t+ν = t+ν (tν, kν) = [tν + 1/2 + kν/2], t−ν = t−ν (tν, kν) = [tν +
1/2 − kν/2], the third term is equal to

κ4

(2π)2n

∑
t1,t2, k1, k2

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t2

n
,−k2

)

×
∑

i

hn

(
t+1
n

)
hn

(
t−1
n

)
hn

(
t+2
n

)
hn

(
t−2
n

)
× at+1 ,n(t

+
1 − i) at−1 ,n(t

−
1 − i) at+2 ,n(t

+
2 − i) at−2 ,n(t

−
2 − i).

By using Assumption 2.1 and (51), we now replace this by

κ4

(2π)2 n

∑
t1,t2, k1, k2

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t2

n
,−k2

)

×
∑

i

hn

(
t1

n

)2

hn

(
t2

n

)2

a

(
t1

n
, t+1 − i

)
(58)

× a

(
t1

n
, t−1 − i

)
a

(
t2

n
, t+2 − i

)
a

(
t2

n
, t−2 − i

)
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with replacement error Kn−1∑
k1,k2

φ̃1(k1)φ̃2(k2). We now replace the term a( t2
n
, t−2 − i) in the

above expression by a(
t1
n
, t−2 − i), leading, with the substitutions d = t2 − t1 and j = i − t1, to a

replacement error of

K

n

∑
k1, k2

φ̃1(k1)φ̃2(k2)

×
∑
d,j

1

�([ 1
2 + k1

2 ] − j)

1

�([ 1
2 − k1

2 ] − j)

1

�([d + 1
2 + k2

2 ] − j)

×
∑
t1

∣∣∣∣a( t1 + d

n
,

[
d + 1

2
− k2

2

]
− j

)
− a

(
t1

n
,

[
d + 1

2
− k2

2

]
− j

)∣∣∣∣.
The last sum is bounded by |d|V (a(·, [d + 1

2 − k2
2 ] − j)), leading to the upper bound

K

n

∑
k1, k2

φ̃1(k1)φ̃2(k2)

×
∑
d,j

|[d + 1
2 + k2

2 ] − j | + |[d + 1
2 − k2

2 ] − j | + |[ 1
2 + k1

2 ] − j | + |[ 1
2 − k1

2 ] − j |
�([ 1

2 + k1
2 ] − j) �([ 1

2 − k1
2 ] − j) �([d + 1

2 + k2
2 ] − j) �([d + 1

2 − k2
2 ] − j)

≤ K

n

∑
k1, k2

φ̃1(k1)φ̃2(k2)

for the replacement error. In the same way, we replace (59) by

κ4

(2π)2 n

∑
t1, t2, k1, k2

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t1

n
,−k2

)

×
∑

i

hn

(
t1

n

)4

a

(
t1

n
, t+1 − i

)
(59)

× a

(
t1

n
, t−1 − i

)
a

(
t1

n
, t+2 − i

)
a

(
t1

n
, t−2 − i

)

= κ4

(2π)2n

∑
t1

hn

(
t1

n

)4 ∑
k1, k2

φ̂1

(
t1

n
,−k1

)
φ̂2

(
t1

n
,−k2

)
c

(
t1

n
, k1

)
c

(
t1

n
, k2

)

with replacement error Kn−1∑
k1,k2

φ̃1(k1)[φ̃2(k2)+V (φ̂2(·, k2))][ 1
�(k1)

+ 1
�(k2)

]. As in (55), we

now replace the 1
n

∑
t1

sum by the integral over [0, 1]. Application of Parseval’s equality gives
the final form of the fourth order cumulant term.

(ii) Considering the cases |k| ≤ √
n and |k| > √

n separately shows that

1

n

∑
k

min{|k|, n}φ̃i (k) = o(1) and
1

n

∑
k

min{|k|, n} 1

�(k)
= o(1). (60)
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This implies that the first term of Rn tends to zero. Since

min{|k1| + |k2| + |k3|, n}
≤ 2 min{|k1 + k2 + k3|, n} + 2 min{|k1|, n} + 2 min{|k3|, n}

and |V (φ̂i(·, k))| ≤ K , the third term of Rn also tends to zero. �

We now set

ρ
(hn)
2,n (φ) :=

(
1

n

n∑
t=1

hn

( [t + 1/2]
n

)4 ∫ π

−π

φ

(
t

n
, λ

)2

dλ

)1/2

. (61)

Note that ρ
(hn)
2,n (φ) = ρ2,n(φ) in the non-tapered case where hn(·) = I(0,1](·).

Lemma 5.7. Suppose Assumptions 2.1 and 5.1 hold and φ1, . . . , φ� : [0,1] × [−π,π] → R are
functions possibly depending on n.

(i) If � ≥ 2, then

∣∣cum
(
E(hn)

n (φ1), . . . ,E
(hn)
n (φ�)

)∣∣≤ Kn1−�/2ρ
(hn)
2,n (φ1) ρ

(hn)
2,n (φ2)

�∏
j=3

ρ∞(φj )

with a constant K independent of n.
(ii) If � ≥ 2 and, in addition, E|εt |k ≤ Ck

ε for all k ∈ N for the εt from Assumption 2.1, then

∣∣cum
(
E(hn)

n (φ1), . . . ,E
(hn)
n (φ�)

)∣∣≤ K�(2�)!
�∏

j=1

ρ
(hn)
2,n (φj ) (62)

with a constant K independent of n and �.
(iii) If � ≥ 3 and φ1, . . . , φ� are independent of n and fulfill Assumption 5.2, then∣∣cum

(
E(hn)

n (φ1), . . . ,E
(hn)
n (φ�)

)∣∣= O(n1−�/2).

Proof. (i) We have, with (52),

cum
(
E(hn)

n (φ1), . . . ,E
(hn)
n (φ�)

)
= n�/2 cum

(
F (hn)

n (φ1), . . . ,F
(hn)
n (φ�)

)
= 1

(2π)�n�/2

∑
t1,...,t�

∑
k1,...,k�

φ̂1

(
t1

n
,−k1

)
· · · φ̂�

(
t�

n
,−k�

)
× cum

(
X

(hn)
[t1+1/2+k1/2],nX

(hn)
[t1+1/2−k1/2],n,

. . . ,X
(hn)
[t�+1/2+k�/2],nX

(hn)
[t�+1/2−k�/2],n

)
.
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We now use the representation Xt,n =∑∞
j=−∞ at,n(t − j) εj and obtain, with the product theo-

rem for cumulants (cf. Brillinger (1981), Theorem 2.3.2) and the abbreviations t+ν = t+ν (tν, kν) =
[tν + 1/2 + kν/2], t−ν = t−ν (tν, kν) = [tν + 1/2 − kν/2], that this is equal to

1

(2π)�n�/2

×
∑

t1,...,t�

∑
k1,...,k�

φ̂1

(
t1

n
,−k1

)
· · · φ̂�

(
t�

n
,−k�

)

×
∑

i1,...,i�, j1,...,j�

�∏
ν=1

[
hn

(
t+ν
n

)
hn

(
t−ν
n

)
at+ν ,n(t

+
ν − iν) at−ν ,n(t

−
ν − jν)

]

×
∑

{P1,...,Pm} i.p.

m∏
j=1

cum(εs |s ∈ Pj ),

where the last sum is over all indecomposable partitions (i.p.) {P1, . . . ,Pm} of the table

i1 j1
.

.

.

i� j�

(63)

with |Pν | ≥ 2 (since EX(t) = 0). Using the upper bound supt |at,n(j)| ≤ K
�(j)

gives

∣∣cum
(
E(hn)

n (φ1), . . . ,E
(hn)
n (φ�)

)∣∣
≤ Kn−�/2

∑
t1,...,t�

∑
k1,...,k�

∣∣∣∣φ̂1

(
t1

n
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)
· · · φ̂�

(
t�

n
,−k�

)∣∣∣∣
×

�∏
ν=1

[
hn

(
t+ν
n

)
hn

(
t−ν
n

)]
(64)

×
∑

i1,...,i�, j1,...,j�

�∏
ν=1

[
1

�(t+ν − iν)

1

�(t−ν − jν)

]

×
∑

{P1,...,Pm} i.p.

m∏
j=1

|cum(εs |s ∈ Pj )|.
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Concavity of loghn(·) implies that hn(
t+ν
n

) hn(
t−ν
n

) ≤ h2
n(

[tν+1/2]
n

). The Cauchy–Schwarz inequal-
ity (with squares of φ1 and φ2) now leads to the upper bound

Kn−�/2

{ ∑
t1,...,t�

∑
k1,...,k�

[
φ̂1

(
t1

n
,−k1

)
h2

n

( [t1 + 1/2]
n

)]2

φ̃3(k3) · · · φ̃�(k�)

×
∑

i1,...,i�,j1,...,j�

�∏
ν=1

[
1

�(t+ν − iν)

1

�(t−ν − jν)

]
(65)

×
∑

{P1,...,Pm} i.p.

m∏
j=1

|cum(εs |s ∈ Pj )|
}1/2{

similar term

}1/2

which, by using (51), is bounded by

Kn−�/2

{∑
t1

∑
k1,...,k�

[
φ̂1

(
t1

n
,−k1

)
h2

n

( [t1 + 1/2]
n

)]2

φ̃3(k3) · · · φ̃�(k�)

×
∑

i1,...,i�, j1,...,j�

1

�(t+1 − i1)

1

�(t−1 − j1)

�∏
ν=2

1

�(kν − iν + jν)
(66)

×
∑

{P1,...,Pm} i.p.

m∏
j=1

|cum(εs |s ∈ Pj )|
}1/2{

similar term

}1/2

.

Note that the term cum (εs |s ∈ Pj ) leads to the restriction that all iν, jν ∈ Pj are equal. We now
sum over the remaining indices from k2, i1, . . . , i�, j1, . . . , j�, leading, due to the indecompos-
ability of the partition and the fact that 1/�(j) ≤ K , to the upper bound

Kn−�/2

{∑
t1

∑
k1, k3,...,k�

[
φ̂1

(
t1

n
,−k1

)
h2

n

( [t1 + 1/2]
n

)]2

φ̃3(k3) · · · φ̃�(k�)

}1/2

×
{

similar term

}1/2

≤ Kn1−�/2ρ
(hn)
2,n (φ1) ρ

(hn)
2,n (φ2)

�∏
j=3

ρ∞(φj )

and therefore to the result.
In (ii), the generic constant K needs to be independent of �. Again, we have (64) (with K

replaced by K�). Remember that the term cum (εs |s ∈ Pj ) leads to the restriction that all iν, jν ∈
Pj are equal. We denote this index by i(j) (j = 1, . . . ,m).
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We start by considering the case where � is even. For each fixed partition {P1, . . . ,Pm}, we
can renumber the indices {1, . . . , �} in such a way that for every j ∈ {1, . . . ,m}, there exists at
least one even ν ∈ {1, . . . , �} and one odd ν ∈ {1, . . . , �} such that i(j) = iν or i(j) = jν . This can
be derived from the indecomposability of the partition and the fact that |Pk| ≥ 2 for all k. The
Cauchy–Schwarz inequality now yields as an upper bound for (64)

K� n−�/2
∑

{P1,...,Pm}i.p.

m∏
j=1

|cum(εs |s ∈ Pj )|

×
{ ∑

t1,...,t�

∑
k1,...,k�

∏
ν even

[
φ̂ν

(
tν

n
,−kj

)
h2

n

( [tν + 1/2]
n

)]2

(67)

×
∑

i(1),...,i(m)

�∏
ν=1

[
1

�(t+ν − iν)

1

�(t−ν − jν)

]}1/2

×
{

the same term with . . .
∏
j odd

. . .

}1/2

,

where iν = i(j) if iν ∈ Pj and jν = i(j) if jν ∈ Pj . By using relation (51), we have

∑
tν ,kν

1

�(t+ν − iν)

1

�(t−ν − jν)
≤ K

∑
kν

1

�(kν − iν + jν)
≤ K,

that is, the first bracket in (67) is bounded by

K�

{ ∑
tν ,kν ;ν even

∏
ν even

[
φ̂ν

(
tν

n
,−kν

)
h2

n

( [tν + 1/2]
n

)]2

×
∑

i(1),...,i(m)

∏
ν even

[
1

�(t+ν − iν)

1

�(t−ν − jν)

]}1/2

≤ K�n�/4
∏

ν even

ρ
(hn)
2,n (φν).

The same applies for the second bracket in (67). Since the number of indecomposable partitions
is bounded by 4� (2�)!, we obtain (62).

The case where � is odd is a bit more involved. For each partition {P1, . . . ,Pm} with m < �, the
result follows as in the case of � even. For m = �, we can renumber the indices {1, . . . , �} such that
each Pν contains exactly one element of {iν, jν} and {iν+1, jν+1} (where i�+1 = i1, j�+1 = j1).
For simplicity, we treat the case where Pν = {iν, jν+1} (ν = 1, . . . , �) (the other cases follow
analogously). We obtain, with the Cauchy–Schwarz inequality as an upper bound for each parti-
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tion in (64),

K�n−�/2
∑
t�,k�

{ ∑
t1,...,t�−1

∑
k1,...,k�−1

∏
j even

[
φ̂j

(
tj

n
,−kj

)
h2

n

( [tj + 1/2]
n

)]2

×
∑

i1,...,i�

�∏
ν=1

[
1

�(t+ν − iν)

1

�(t−ν − iν−1)

]}1/2

×
{

the same term with . . .
∏

j=1,3,...,�−2

. . .

}1/2

,

where i0 = i�. By using relation (51), this is bounded by

K�

{
�−2∏
j=2

ρ
(hn)
2,n (φj )

}
n−3/2

∑
t�,k�

∣∣∣∣φ̂�

(
t�

n
,−k�

)
h2

n

( [t� + 1/2]
n

)∣∣∣∣
×
{ ∑

t�−1,k�−1

φ̂�−1(
t�−1
n

,−k�−1)
2 h2

n(
[t�−1+1/2]

n
)

�(t−� − t+�−1)

}1/2

×
{∑

t1,k1

φ̂1(
t1
n
,−k1)

2 h2
n(

[t1+1/2]
n

)

�(t+� − t−1 )

}1/2

.

The Cauchy–Schwarz inequality now yields, with (51),

K�

{
�−2∏
j=2

ρ
(hn)
2,n (φj )

}
ρ

(hn)
2,n (φ�)

× n−1

{ ∑
t1,k1,t�−1,k�−1

∑
t�,k�

φ̂�−1(
t�−1
n

,−k�−1)
2 h2

n(
[t�−1+1/2]

n
)

�(t−� − t+�−1)

× φ̂1(
t1
n
,−k1)

2 h2
n(

[t1+1/2]
n

)

�(t+� − t−1 )

}1/2

≤ K�

{
�∏

j=1

ρ
(hn)
2,n (φj )

}
,

which finally leads to (ii).
(iii) Follows from (i) since ρ

(hn)
2,n (φ)2 ≤ Kρ2(φ)2 + K

n
ρ∞(φ) supjV (φ̂(·, j)). �
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Proof of Theorem 2.5. We have, for each φj (denoted by φ for simplicity) and k �= 0,

φ̂(u, k) =
∫ 2π

0

exp(−ikλ) − 1

ik
φR(u, dλ),

where φR(u,dλ) is the signed measure corresponding to φR(u,λ) := limμ↓λ φR(u,μ) (since φ

is of bounded variation in λ, the limit exists; for the same reason, φR(u,dλ) is a signed measure).
This implies, for k �= 0,

sup
u

|φ̂(u, k)| ≤ K

|k| sup
u

V (φ(u, ·)) = K

|k| ‖φ‖∞,V and

(68)

V (φ̂(·, k)) ≤ K

|k| ‖φ‖V,V

and, for k = 0,

sup
u

|φ̂(u,0)| ≤ 2π‖φ‖∞,∞ and V (φ̂(·,0)) ≤ 2π‖φ‖V,∞.

Thus, ρ∞(φ) is not necessarily bounded and Theorem 5.3 cannot be applied. The trick now is to
smooth φ(u,λ) in the λ-direction and to prove asymptotic normality instead for the resulting se-
quence of approximations: Let k(x) := 1√

2π
exp{− 1

2x2} be the Gaussian kernel, kb(x) := 1
b
k( x

b
)

and

φn(u,λ) =
∫ ∞

−∞
kb(λ − μ)φ(u,μ)dμ

with b = bn → 0 as n → ∞ (where φ(u,μ) = 0 for |μ| > π). We have

φ̂n(u, k) = φ̂(u, k) k̂b(k) (69)

with k̂b(k) = exp(−k2b2/2). We obtain, from Lemma 5.7(i),

nvar[Fn(φn) − Fn(φ)] ≤ K

n

n∑
t=1

∞∑
k=−∞

(
φ̂n

(
t

n
, k

)
− φ̂

(
t

n
, k

))2

(70)

≤ K
∑

k

[exp(−k2b2/2) − 1]2

k2
.

Since |1 − exp(−k2b2/2)| ≤ min{1, k2b2

2 }, this is bounded by

K
∑

|k|≤1/b

k2b4

4
+ K

∑
|k|>1/b

1

k2
= O(b),

which implies that

√
n
({Fn(φn) − EFn(φn)} − {Fn(φ) − EFn(φ)}) P→ 0. (71)
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We now derive a CLT for
√

n(Fn(φj,n) − EFn(φj,n))j=1,...,k by applying Lemma 5.6(i) and
Lemma 5.7(i). We obtain from (68) and (69) that

sup
k

|k| φ̃n(k) ≤ K‖φ‖∞,V and sup
k

|k|V (φ̂n(·, k)) ≤ K‖φ‖V,V .

Furthermore, we have

ρ∞(φn) ≤ 2π‖φ‖∞,∞ + K‖φ‖∞,V

∞∑
k=1

1

|k| exp(−k2b2/2)

≤ K
(‖φ‖∞,∞ + log(b−1)‖φ‖∞,V

)
and, with hn(·) := I(0,1](·),

ρ
(hn)
2,n (φn)

2 = ρ2,n(φn)
2 ≤ ρ2(φn)

2 + 1

n
ρ∞(φn) sup

k

V (φ̂n(·, k))

≤ ρ2(φ)2 + O

(
log(b−1)

n

)
.

Therefore, the remainder term Rn in Lemma 5.6(i) and the higher cumulants in Lemma 5.7(i)
converge to zero if we choose, for example, b = 1

n
. Furthermore,

c
(hn)
E (φj,n,φk,n) = c

(I(0,1])
E (φj ,φk) + O(b1/2) (i, j = 1, . . . , k).

This follows easily by application of the Cauchy–Schwarz inequality and supu

∫
(φj,n(u,λ) −

φj (u,λ))2 dλ = O(b) (obtained with the Parseval formula as in (70)) and
∫
(φj,n(u,λ))2 dλ ≤ K .

This gives the required CLT and, with (71), also the CLT for
√

n(Fn(φj )−EFn(φj ) )j=1...,k . We
obtain from (54) and (55) that

√
n|EFn(φ) − F(φ)| ≤ K

‖φ‖∞,∞ + (logn)‖φ‖∞,V + ‖φ‖V,∞ + ‖φ‖V,V√
n

= o(1),

which finally proves Theorem 2.5. �

Proof of Theorem 2.7 and Remark 2.8. We obtain, from Lemma 5.7(ii) for the �th order cu-
mulant in the case � ≥ 2,

|cum�(En(φ))| ≤ K�(2�)!ρ2,n(φ)�.

This implies, as on page 82 of Dahlhaus (1988), that

E|(En(φ))�| ≤ (2K)�(2�)!ρ2,n(φ)�.

The result now follows in the same way as in the proof of Lemma 2.3 in Dahlhaus (1988).
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We now prove the inequalities in Remark 2.8: We obtain, from the proof of Lemma 5.5 and an
application of the Cauchy–Schwarz inequality,

√
n|EFn(φ) − F+(φ)| ≤ √

nρ2,n(φ)

×
(

1

n

n∑
t=1

{∑
|k|≤n

[
cov
(
X

(hn)
[t+1/2+k/2],n,X

(hn)
[t+1/2−k/2],n

)− c

(
t

n
, k

)]2

+
∑
|k|>n

c

(
t

n
, k

)2
})1/2

.

Application of Proposition 5.4 yields that the term in the bracket is of order n−1/2, leading to
(20). (21) and (22) follow by straightforward calculation, noting that Assumption 2.1 implies that
supu,λ |f (u,λ)| ≤ ∞. (24) follows from an upper bound of (54) obtained by using (68). �

Proof of Theorem 2.9. The proof uses a chaining technique as in Alexander (1984). Let

Bn =
{

max
t=1,...,n

|Xt,n| ≤ 2 logn

}
. (72)

Lemma 5.9 gives limn→∞ P(Bn) = 1. We will replace φ by

φ∗
n(u,λ) = n

∫ u

u−1/n

φ(v,λ)dv (with φ(v,λ) = 0 for v < 0). (73)

The reason for doing so is that otherwise we would need the exponential inequality (19) to hold
with ρ2(φ) instead of ρ2,n(φ). Such an inequality does not hold. Instead, we exploit the following
property of φ∗

n :

ρ 2
2,n(φ

∗
n) = 1

n

n∑
t=1

∫ π

−π

φ∗
n

(
t

n
, λ

)2

dλ = 1

n

n∑
t=1

∫ π

−π

(
n

∫ t/n

(t−1)/n

φ(u,λ)du

)2

dλ

(74)

≤
n∑

t=1

∫ π

−π

∫ t/n

(t−1)/n

φ2(u,λ)dudλ = ρ 2
2 (φ).

Define

Ẽ∗
n(φ) := Ẽn(φ

∗
n) = √

n(Fn − EFn)(φ
∗
n). (75)

Since the assertion and the proof of Theorem 2.7 are for n fixed, we obtain from (19),

P(|Ẽ∗
n(φ)| ≥ η) ≤ c1 exp

(
−c2

√
η

ρ2(φ)

)
. (76)
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On Bn, we have, by using Lemma 5.8 and Lemma 5.9, that

|Ẽ∗
n(φ) − Ẽn(φ)| ≤ √

n |Fn(φ
∗
n) − Fn(φ)| + √

n |EFn(φ
∗
n) − EFn(φ)|

≤ 4K1

(
‖φ‖V,V

(logn)3

n1/2
+ ‖φ‖V,∞

(logn)2

n1/2

)
+ K2‖φ‖V,∞

1

n1/2

and therefore, with (26),

sup
φ∈�

|Ẽ∗
n(φ) − Ẽn(φ)| ≤ η

2
. (77)

Thus,

P

(
sup
φ∈�

|Ẽn(φ)| > η, Bn

)
≤ P

(
sup
φ∈�

|Ẽ∗
n(φ)| > η

2
, Bn

)
.

Let α := H̃−1
� (c2

4

√
η
τ2

). We obtain, for any sequence (δj )j with α = δ0 > δ1 > · · · > 0, where

δj+1 ≤ δj /2 with ηj+1 := 9
c2

2
δj+1 H̃�(δj+1)

2,

η

4
≥ 18

c2
2

∫ α

0
H̃�(s)2 ds ≥ 18

c2
2

∞∑
j=0

(δj+1 − δj+2) H̃�(δj+1)
2 ≥

∞∑
j=0

ηj+1. (78)

For each number δj , choose a finite subset Aj corresponding to the definition of the cover-
ing numbers N(δj ,�,ρ2). In other words, the set Aj consists of the smallest possible number
Nj = N(δj ,�,ρ2) of midpoints of ρ2-balls of radius δj such that the corresponding balls cover
�. Now, telescope

Ẽ∗
n(φ) = Ẽ∗

n(φ0) +
∞∑

j=0

Ẽ∗
n(φj+1 − φj ), (79)

where the φj are the approximating functions to φ from Aj , that is, ρ2(φ − φj ) < δj . The above
equality holds on Bn because Lemma 5.8 implies that

sup
φ∈�

|Ẽ∗
n(φ − φj )| ≤ 5K3 n (logn)2 sup

φ∈�

ρ2(φ − φj )

≤ 5K3n(logn)2 δj → 0 for all n.

Thus,

P

(
sup
φ∈�

|Ẽ∗
n(φ)| >

η

2
, Bn

)

≤ P

(
sup
φ∈�

|Ẽ∗
n(φ0)| >

η

4

)
+

∞∑
j=0

NjNj+1 sup
φ∈�

P
( |Ẽ∗

n(φj+1 − φj )| > ηj+1
)

= I + II.
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Hence, using exponential inequality (76), we have, by definition of α, that

I ≤ c1 exp

{
H̃�(α) − c2

2

√
η

τ2

}
= c1 exp

{
−c2

4

√
η

τ2

}
. (80)

In order to estimate II, we need a particular definition of the δj . We set

δj+1 = sup

{
x :x ≤ δj /2 ; H̃�(x) ≥ H̃�(δj ) + 1√

j + 1

}
.

Since
∑j+1

�=1
1√
�

≥ ∫ j+1
0

1√
x

dx = 2
√

j + 1 ≥ 2 log(j + 1), we obtain for term II

II ≤
∞∑

j=0

c1 exp

{
2H̃�(δj+1) − c2

√
9/c2

2δj+1 H̃�(δj+1)2

δj+1

}

≤
∞∑

j=0

c1 exp {−H̃�(δj+1)} ≤
∞∑

j=0

c1 exp{−H̃�(α) − 2 log(j + 1)}

= c1 exp

{
−c2

4

√
η

τ2

} ∞∑
j=1

1

j2
≤ 2c1 exp

{
−c2

4

√
η

τ2

}
.

This implies the maximal inequality (28). To prove (29), we note that |En(φ) − Ẽn(φ)| =√
n |EFn(φ) − F(φ)|, that is, instead of (77) on Bn, we obtain, with (81), (82), (21), (24) and

(26),

sup
φ∈�

|Ẽ∗
n(φ) − En(φ)| ≤ 13Lmax{τ∞,V , τV,∞, τV,V , τ∞,∞} (logn)3

√
n

≤ η

2
.

The rest of the proof is the same, that is, we also obtain (29). �

Proof of Theorem 2.11. To prove weak convergence of En, we have to show weak convergence
of the finite-dimensional distributions and asymptotic equicontinuity in probability of En (cf. van
der Vaart and Wellner (1996), Theorems 1.5.4 and 1.5.7). Convergence of the finite-dimensional
distributions has been shown in Theorem 2.5. Asymptotic equicontinuity means that for every
ε, η > 0, there exists a τ2 > 0 such that

lim inf
n

P

(
sup

ρ2(φ,ψ)<τ2

|En(φ − ψ)| > η

)
< ε.

In order to see this, we apply Theorem 2.9. For fixed η > 0, there exists a τ2 > 0 small enough
such that (27) holds. To see this, notice that α → 0 as τ2 → 0 and hence, using assumption (30),
it follows that the integral on the right-hand side of (27) also tends to zero if τ2 → 0. As η > 0 is
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fixed, (26) holds for n large enough. Hence, we obtain, with Bn from (72), for τ2 small enough,

lim inf
n

P

(
sup

ρ2(φ,ψ)<τ2

|En(φ − ψ)| > η

)

≤ lim inf
n

P

(
sup

ρ2(φ,ψ)<τ2

|En(φ − ψ)| > η, Bn

)
+ lim

n
P (Bc

n)

≤ 3c1 exp

{
−c2

4

√
η

τ2

}
< ε. �

Proof of Theorem 2.12. Let δ > 0. The assumptions of Theorem 2.9 are fulfilled for η = δ
√

n

and n sufficiently large. For those n, we obtain, from Theorem 2.9,

P

(
sup

φ∈�n

|Fn(φ) − F(φ)| > δ

)
= P

(
sup

φ∈�n

|En(φ)| > δ
√

n

)

≤ 3c1 exp

{
−c2

4

√
δ
√

n

τ
(n)
2

}
+ P(Bc

n) → 0.
�

Lemma 5.8 (Properties of Fn(φ∗
n)). Suppose Assumption 2.1 is fulfilled and φ∗

n(u,λ) =
n
∫ u

u−1/n
φ(v,λ)dv (with φ(v,λ) = 0 for v < 0). We then have, with X(n) := maxt=1,...,n |Xt,n|,

|Fn(φ) − Fn(φ
∗
n)| ≤ K1X

2
(n)

(
‖φ‖V,V

logn

n
+ ‖φ‖V,∞

1

n

)
, (81)

|EFn(φ) − EFn(φ
∗
n)| ≤ K2‖φ‖V,∞

1

n
, (82)

|Fn(φ
∗
n) − EFn(φ

∗
n)| ≤ K3

(√
nX2

(n) + 1
)
ρ2(φ). (83)

Proof. We have, with (68),

|Fn(φ) − Fn(φ
∗
n)| =

∣∣∣∣∣1n
n∑

t=1

∫ π

−π

(
φ

(
t

n
, λ

)
− φ∗

n

(
t

n
, λ

))
Jn

(
t

n
, λ

)
dλ

∣∣∣∣∣
≤ O

(
X2

(n)

) n∑
t=1

1

n

n∑
k=−n

n

∫ t/n

(t−1)/n

∣∣∣∣φ̂( t

n
,−k

)
− φ̂(u,−k)

∣∣∣∣du

≤ O
(
X2

(n)

)1

n

n∑
k=−n

V (φ̂(·, k))

≤ K1X
2
(n)

(
V 2(φ)

logn

n
+ sup

λ

V (φ(·, λ))
1

n

)
.
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Furthermore, we obtain, with Proposition 5.4 and (68),

|EFn(φ) − EFn(φ
∗
n)| ≤ 1

2π

1

n

n∑
t=1

n∑
k=−n

n

∫ t/n

(t−1)/n

∣∣∣∣φ̂( t

n
,−k

)
− φ̂(u,−k)

∣∣∣∣du

× ∣∣cov(X[t+1/2+k/2],n,X[t+1/2−k/2],n
∣∣

≤ K2 sup
λ

V (φ(·, λ))
1

n
.

(83) has been proven in Lemma A.3 of Dahlhaus and Polonik (2006). �

Lemma 5.9. Suppose Assumption 2.1 is fulfilled with E|εt |k ≤ Ck
ε for all k ∈ N. Let X(n) :=

maxt=1,...,n |Xt,n|. We then have

P
(
X(n) > 2 logn

)= O(n−1).

That is, we have P(Bc
n) = O(n−1) for the set Bn from (72) (used in Theorem 2.9).

Proof. From (3), we have supt,n

∑∞
j=−∞ |at,n(j)| < m0 < ∞. The monotone convergence the-

orem and Jensen’s inequality then imply

E|Xt,n|k ≤ E

( ∞∑
j=−∞

|at,n(j)| |εt−j |
)k

≤ mk
0E

( ∞∑
j=−∞

|at,n(j)|
m0

|εt−j |k
)

≤ mk
0C

k
ε ,

leading to

P
(
X(n) > 2 logn

) ≤ n max
t=1,...,n

P(Xt,n > 2 logn)

≤ n
E e|Xt,n|

e2 logn
≤ 1

n

∞∑
k=0

mk
0 Ck

ε

k! ≤ 1

n
em0Cε → 0.

�

Appendix: Proof of Proposition 2.4

We only give the proof for tvAR processes (q = 0). The extension to tvARMA processes is then
straightforward. The proof is similar to that of Künsch (1995), who proved the existence of a
solution of the form (2) under the assumption that the functions αi(u) are continuous. Let

α(u) =

⎛⎜⎜⎜⎜⎝
−α1(u) −α2(u) . . . . . . −αp(u)

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 1 0

⎞⎟⎟⎟⎟⎠
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and α(u) = α(0) for u < 0. Since det(λEp − α(u)) = λp(
∑p

j=0 αj (u)λ−j ), it follows that

δ(α(u)) ≤ 1
1+δ

for all u where δ(A) := max{|λ| :λ eigenvalue of A}. Let

at,n(j) =
(

j−1∏
�=0

α

(
t − �

n

))
11

σ

(
t − j

n

)
and

Xt,n =
∞∑

j=0

at,n(j) εt−j .

It is easy to check that Xt,n is a solution of (12) provided the coefficients are absolutely sum-
mable.

To prove this, we note (cf. Householder (1964), page 46) that for every ε > 0 and u ∈ [0,1],
there exists a matrix M(u) with

‖α(u)‖M(u) ≤ δ(α(u)) + ε, (84)

where ‖A‖M := sup{‖Ax‖M :‖x‖M = 1} and ‖x‖M = ‖M−1x‖1 =∑p

i=1 |(M−1x)i |. Since the
αi(u) are functions of bounded variation (i.e., the difference of two monotonic functions), there
exists for all ε > 0 a finite partition of intervals I1 ∪· · ·∪Im = [0,1] such that |αi(u)−αi(v)| < ε

for all i whenever u,v are in the same Ik . Let Mk := M(uk) for an arbitrary uk ∈ Ik . Therefore,
m (and the partition) can be chosen such that

‖α(v)‖Mk
≤ ρ :=

(
1 + δ

2

)−1

< 1 for all v ∈ Ik. (85)

We now replace the first interval I1 by I1 ∪ (−∞,0) (remember that α(u) = α(0) for u < 0).
There exists a constant c0 such that ‖B‖1 :=∑i,j |Bi,j | ≤ c0‖B‖Mk

for all k. For t and n fixed,

we now define Lk := {� ≥ 0 : t−�
n

∈ Ik} and Lk,j := Lk ∩ {0, . . . , j − 1}. Then

|at,n(j)| =
∣∣∣∣∣
(

j−1∏
�=0

α

(
t − �

n

))
11

σ

(
t − j

n

)∣∣∣∣∣≤
∥∥∥∥∥

j−1∏
�=0

α

(
t − �

n

)∥∥∥∥∥
1

σ

(
t − j

n

)

≤
m∏

k=1

∥∥∥∥∥ ∏
�∈Lk,j

α

(
t − �

n

)∥∥∥∥∥
1

σ

(
t − j

n

)

≤ cm
0

m∏
k=1

∥∥∥∥∥ ∏
�∈Lk,j

α

(
t − �

n

)∥∥∥∥∥
Mk

σ

(
t − j

n

)

≤ cm
0 sup

u
σ (u)

m∏
k=1

ρ|Lk,j | = Kρj (since m is fixed),
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that is, we have proven (3). Since ‖α( t−k
n

) − α( t
n
)‖1 =∑p

i=1 |αi(
t−k
n

) − αi(
t
n
)|, we obtain, with

similar arguments and

a(u, j) := (α(u)j )11σ(u),

n∑
t=1

∣∣∣∣at,n(j) − a

(
t

n
, j

)∣∣∣∣
≤

n∑
t=1

j−1∑
k=1

∥∥∥∥∥α
(

t

n

)k(
α

(
t − k

n

)
− α

(
t

n

)) j−1∏
�=k+1

α

(
t − �

n

)∥∥∥∥∥
1

σ

(
t − j

n

)

+
n∑

t=1

∥∥∥∥α( t

n

)j∥∥∥∥
1

∣∣∣∣σ( t − j

n

)
− σ

(
t

n

)∣∣∣∣
≤

n∑
t=1

j−1∑
k=1

c0ρ
k

p∑
i=1

∣∣∣∣αi

(
t − k

n

)
− αi

(
t

n

)∣∣∣∣cm
0 ρj−1−k

≤ Kj2ρj−1,

that is, (5). (4) and (6) follow similarly. �
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