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Optimal rates of aggregation in classification
under low noise assumption
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In the same spirit as Tsybakov, we define the optimality of an aggregation procedure in the problem of
classification. Using an aggregate with exponential weights, we obtain an optimal rate of convex aggregation
for the hinge risk under the margin assumption. Moreover, we obtain an optimal rate of model selection
aggregation under the margin assumption for the excess Bayes risk.
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1. Introduction

Let (X ,A) be a measurable space. We consider a random variable (X,Y ) on X × {−1,1} with

probability distribution denoted by π . Denote by P X the marginal of π on X and by η(x)
def=

P(Y = 1|X = x) the conditional probability function of Y = 1, knowing that X = x. We have n

i.i.d. observations of the couple (X,Y ) denoted by Dn = ((Xi, Yi))i=1,...,n. The aim is to predict
the output label Y for any input X in X from the observations Dn.

We recall some usual notation for the classification framework. A prediction rule is a mea-
surable function f :X �−→ {−1,1}. The misclassification error associated with f is

R(f ) = P
(
Y �= f (X)

)
.

It is well known (see, e.g., Devroye et al. [14]) that

min
f :X �−→{−1,1}

R(f ) = R(f ∗) def= R∗,

where the prediction rule f ∗, called the Bayes rule, is defined by

f ∗(x)
def= sign

(
2η(x) − 1

) ∀x ∈X .

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn), measur-
able with respect to Dn and X with values in {−1,1}, that assigns to the sample Dn a prediction
rule f̂n(·,Dn) :X �−→ {−1,1}. A key characteristic of f̂n is the generalization error E[R(f̂n)],
where

R(f̂n)
def= P

(
Y �= f̂n(X)|Dn

)
.
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The aim of statistical learning is to construct a classifier f̂n such that E[R(f̂n)] is as close to
R∗ as possible. Accuracy of a classifier f̂n is measured by the value E[R(f̂n) − R∗], called the
excess Bayes risk of f̂n. We say that the classifier f̂n learns with the convergence rate ψ(n),
where (ψ(n))n∈N is a decreasing sequence, if there exists an absolute constant C > 0 such that
for any integer n, E[R(f̂n) − R∗] ≤ Cψ(n).

Given a convergence rate, Theorem 7.2 of Devroye et al. [14] shows that no classifier can learn
at least as fast as this rate for any arbitrary underlying probability distribution π . To achieve rates
of convergence, we need a complexity assumption on the set which the Bayes rule f ∗ belongs to.
For instance, Yang [36,37] provide examples of classifiers learning with a given convergence rate
under complexity assumptions. These rates cannot be faster than n−1/2 (cf. Devroye et al. [14]).
Nevertheless, they can be as fast as n−1 if we add a control on the behavior of the conditional
probability function η at the level 1/2 (the distance |η(·)−1/2| is sometimes called the margin).
For the problem of discriminant analysis, which is close to our classification problem, Mammen
and Tsybakov [25] and Tsybakov [34] have introduced the following assumption.

(MA) Margin (or low noise) assumption. The probability distribution π on the space X ×
{−1,1} satisfies MA(κ) with 1 ≤ κ < +∞ if there exists c0 > 0 such that

E[|f (X) − f ∗(X)|] ≤ c0
(
R(f ) − R∗)1/κ

, (1)

for any measurable function f with values in {−1,1}.
According to Tsybakov [34] and Boucheron et al. [7], this assumption is equivalent to a control

on the margin given by

P[|2η(X) − 1| ≤ t] ≤ ctα ∀0 ≤ t < 1.

Several example of fast rates, that is, rates faster than n−1/2, can be found in Blanchard et al.
[5], Steinwart and Scovel [31,32], Massart [26], Massart and Nédélec [28], Massart [27] and
Audibert and Tsybakov [1].

The paper is organized as follows. In Section, 2 we introduce definitions and procedures which
are used throughout the paper. Section 3 contains oracle inequalities for our aggregation proce-
dures w.r.t. the excess hinge risk. Section 4 contains similar results for the excess Bayes risk.
Proofs are postponed to Section 5.

2. Definitions and procedures

2.1. Loss functions

Convex surrogates φ for the classification loss are often used in algorithm (Cortes and Vapnic
[13], Freund and Schapire [15], Lugosi and Vayatis [24], Friedman et al. [16], Bühlman and Yu
[8], Bartlett et al. [2,3]). Let us introduce some notation. Take φ to be a measurable function
from R to R. The risk associated with the loss function φ is called the φ-risk and is defined by

A(φ)(f )
def= E[φ(Yf (X))],
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where f :X �−→ R is a measurable function. The empirical φ-risk is defined by

A(φ)
n (f )

def= 1

n

n∑
i=1

φ(Yif (Xi))

and we denote by A(φ)∗ the infimum over all real-valued functions inff :X �−→R A(φ)(f ).
Classifiers obtained by minimization of the empirical φ-risk, for different convex losses, have

been proven to have very good statistical properties (cf. Lugosi and Vayatis [24], Blanchard et
al. [6], Zhang [39], Steinwart and Scovel [31,32] and Bartlett et al. [3]). A wide variety of clas-
sification methods in machine learning are based on this idea, in particular, on using the convex

loss φ(x)
def= max(1 − x,0) associated with support vector machines (Cortes and Vapnik [13],

Schölkopf and Smola [30]), called the hinge loss. The corresponding risk is called the hinge
risk and is defined by

A(f )
def= E

[
max

(
1 − Yf (X),0

)]
,

for any measurable function f :X �−→ R. The optimal hinge risk is defined by

A∗ def= inf
f :X �−→R

A(f ). (2)

It is easy to check that the Bayes rule f ∗ attains the infimum in (2) and that

R(f ) − R∗ ≤ A(f ) − A∗, (3)

for any measurable function f with values in R (cf. Lin [23] and generalizations in Zhang [39]
and Bartlett et al. [3]), where we extend the definition of R to the class of real-valued functions
by R(f ) = R(sign(f )). Thus, minimization of the excess hinge risk, A(f ) − A∗, provides a
reasonable alternative for minimization of the excess Bayes risk, R(f ) − R∗.

2.2. Aggregation procedures

Now, we introduce the problem of aggregation and the aggregation procedures which will be
studied in this paper.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values in {−1,1}. The
problem of model selection type aggregation, as studied in Nemirovski [29], Yang [38], Catoni
[10,11] and Tsybakov [33], consists of the construction of a new classifier f̃n (called an aggre-
gate) which approximately mimics the best classifier among f̂1, . . . , f̂M . In most of these papers
the aggregation is based on splitting the sample into two independent subsamples, D1

m and D2
l ,

of sizes m and l, respectively, where m + l = n. The first subsample, D1
m, is used to construct

the classifiers f̂1, . . . , f̂M and the second subsample, D2
l , is used to aggregate them, that is to

construct a new classifier that mimics, in a certain sense, the behavior of the best among the
classifiers f̂j , j = 1, . . . ,M .

In this paper, we will not consider the sample splitting and will concentrate only on the
construction of aggregates (following Juditsky and Nemirovski [18], Tsybakov [33], Birgé [4],
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Bunea et al. [9]). Thus, the first subsample is fixed and, instead of classifiers f̂1, . . . , f̂M , we have
fixed prediction rules f1, . . . , fM . Rather than working with a part of the initial sample we will
suppose, for notational simplicity, that the whole sample Dn of size n is used for the aggregation
step instead of a subsample D2

l .
Let F = {f1, . . . , fM} be a finite set of real-valued functions, where M ≥ 2. An aggregate is

a real-valued statistic of the form

f̃n =
∑
f ∈F

w(n)(f )f,

where the weights (w(n)(f ))f ∈F satisfy

w(n)(f ) ≥ 0 and
∑
f ∈F

w(n)(f ) = 1.

Let φ be a convex loss for classification. The Empirical Risk Minimization aggregate (ERM) is
defined by the weights

w(n)(f ) =
{

1, for one f ∈ F such that A
(φ)
n (f ) = min

g∈F
A

(φ)
n (g),

0, for all other f ∈ F ,
∀f ∈ F .

The ERM aggregate is denoted by f̃
(ERM)
n .

The averaged ERM aggregate is defined by the weights

w(n)(f ) =
{

1/N, if A
(φ)
n (f ) = min

g∈F
A

(φ)
n (g),

0, otherwise,
∀f ∈ F ,

where N is the number of functions in F minimizing the empirical φ-risk. The averaged ERM
aggregate is denoted by f̃

(AERM)
n .

The Aggregation with Exponential Weights aggregate (AEW) is defined by the weights

w(n)(f ) = exp(−nA
(φ)
n (f ))∑

g∈F exp(−nA
(φ)
n (g))

∀f ∈ F . (4)

The AEW aggregate is denoted by f̃
(AEW)
n .

The cumulative AEW aggregate is an on-line procedure defined by the weights

w(n)(f ) = 1

n

n∑
k=1

exp(−kA
(φ)
k (f ))∑

g∈F exp(−kA
(φ)
k (g))

∀f ∈F .

The cumulative AEW aggregate is denoted by f̃
(CAEW)
n .

When F is a class of prediction rules, intuitively, the AEW aggregate is more robust than the
ERM aggregate w.r.t. the problem of overfitting. If the classifier with smallest empirical risk is
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overfitted, that is, if it fits too many to the observations, then the ERM aggregate will be overfitted.
But, if other classifiers in F are good classifiers, then the aggregate with exponential weights will
consider their “opinions” in the final decision procedure and these opinions can balance with the
opinion of the overfitted classifier in F , which can be false because of its overfitting property.
The ERM only considers the “opinion” of the classifier with the smallest risk, whereas the AEW
takes into account all of the opinions of the classifiers in the set F .

The exponential weights, defined in (4), can be found in several situations. First, one can check
that the solution of the minimization problem

min

(
M∑

j=1

λjA
(φ)
n (fj ) + ε

M∑
j=1

λj logλj :
M∑

j=1

λj ≤ 1, λj ≥ 0, j = 1, . . . ,M

)
(5)

for all ε > 0 is

λj = exp(−(A
(φ)
n (fj ))/ε)∑M

k=1 exp(−(A
(φ)
n (fk))/ε)

∀j = 1, . . . ,M.

Thus, for ε = 1/n, we find the exponential weights used for the AEW aggregate. Second, these
weights can also be found in the theory of prediction of individual sequences (cf. Vovk [35]).

2.3. Optimal rates of aggregation

Now, we introduce a concept of optimality for an aggregation procedure and for rates of aggre-
gation, in the same spirit as in Tsybakov [33] (where the regression problem is treated). Our aim
is to prove that the aggregates introduced above are optimal in the following sense. We denote
by Pκ the set of all probability measures π on X × {−1,1} satisfying MA(κ).

Definition 1. Let φ be a loss function. The remainder term γ (n,M,κ,F ,π) is called an optimal
rate of model selection type aggregation (MS-aggregation) for the φ-risk if the two following
inequalities hold:

(i) ∀F = {f1, . . . , fM}, there exists a statistic f̃n, depending on F , such that ∀π ∈ Pκ , ∀n ≥ 1,

E
[
A(φ)(f̃n) − A(φ)∗] ≤ min

f ∈F
(
A(φ)(f ) − A(φ)∗) + C1γ (n,M,κ,F ,π); (6)

(ii) ∃F = {f1, . . . , fM} such that for any statistic f̄n, ∃π ∈ Pκ , ∀n ≥ 1

E
[
A(φ)(f̄n) − A(φ)∗] ≥ min

f ∈F
(
A(φ)(f ) − A(φ)∗) + C2γ (n,M,κ,F ,π). (7)

Here, C1 and C2 are positive constants which may depend on κ . Moreover, when these two
inequalities are satisfied, we say that the procedure f̃n, appearing in (6), is an optimal
MS-aggregate for the φ-risk. If C denotes the convex hull of F and if (6) and (7) are satis-
fied with minf ∈F (A(φ)(f ) − A(φ)∗) replaced by minf ∈C(A(φ)(f ) − A(φ)∗), then we say that
γ (n,M,κ,F ,π) is an optimal rate of convex aggregation type for the φ-risk and f̃n is an
optimal convex aggregation procedure for the φ-risk.
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In Tsybakov [33], the optimal rate of aggregation depends only on M and n. In our case, the
residual term may be a function of the underlying probability measure π , of the class F and of
the margin parameter κ . Note that, without any margin assumption, we obtain

√
(logM)/n for

the residual, which is free from π and F . Under the margin assumption, we obtain a residual
term dependent of π and F and it should be interpreted as a normalizing factor in the ratio

E[A(φ)(f̄n) − A(φ)∗] − minf ∈F (A(φ)(f ) − A(φ)∗)
γ (n,M,κ,F ,π)

.

In that case, our definition does not imply the uniqueness of the residual.

Remark 1. Observe that a linear function achieves its maximum over a convex polygon at one
of the vertices of the polygon. The hinge loss is linear on [−1,1] and C is a convex set, thus MS-
aggregation or convex aggregation of functions with values in [−1,1] are identical problems
when we use the hinge loss. That is, we have

min
f ∈F

A(f ) = min
f ∈C

A(f ). (8)

3. Optimal rates of convex aggregation for the hinge risk

Take M functions f1, . . . , fM with values in [−1,1]. Consider the convex hull C = Conv(f1, . . . ,

fM). We want to mimic the best function in C using the hinge risk and working under the margin
assumption. We first introduce a margin assumption w.r.t. the hinge loss.

(MAH) Margin (or low noise) assumption for hinge risk. The probability distribution π on
the space X × {−1,1} satisfies the margin assumption for hinge risk MAH(κ) with parameter
1 ≤ κ < +∞ if there exists c > 0 such that

E[|f (X) − f ∗(X)|] ≤ c
(
A(f ) − A∗)1/κ (9)

for any function f on X with values in [−1,1].
Proposition 1. The assumption MAH(κ) is equivalent to the margin assumption MA(κ).

In what follows, we will assume that MA(κ) holds and thus also that MAH(κ) holds.
The AEW aggregate of M functions f1, . . . , fM with values in [−1,1], introduced in (4) for a

general loss, has a simple form for the case of the hinge loss, given by

f̃n =
M∑

j=1

w(n)(fj )fj ,

(10)

where w(n)(fj ) = exp(
∑n

i=1 Yifj (Xi))∑M
k=1 exp(

∑n
i=1 Yifk(Xi))

∀j = 1, . . . ,M.

In Theorems 1 and 2, we state the optimality of our aggregates in the sense of Definition 1.



1006 G. Lecué

Theorem 1 (Oracle inequality). Let κ ≥ 1. We assume that π satisfies MA(κ). We denote by C
the convex hull of a finite set F of functions f1, . . . , fM with values in [−1,1]. Let f̃n be either
of the four aggregates introduced in Section 2.2. Then, for any integers M ≥ 3, n ≥ 1, f̃n satisfies
the inequality

E[A(f̃n) − A∗] ≤ min
f ∈C

(
A(f ) − A∗)

+ C

(√
minf ∈C(A(f ) − A∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1))
,

where C = 32(6 ∨ 537c ∨ 16(2c + 1/3)) for the ERM, AERM and AEW aggregates with κ ≥ 1,
c > 0 is the constant in (9) and C = 32(6 ∨ 537c ∨ 16(2c + 1/3))(2 ∨ (2κ − 1)/(κ − 1) for the
CAEW aggregate with κ > 1. For κ = 1, the CAEW aggregate satisfies

E
[
A

(
f̃ (CAEW)

n

) − A∗] ≤ min
f ∈C

(
A(f ) − A∗)

+ 2C

(√
minf ∈C(A(f ) − A∗) logM

n
+ (logM) logn

n

)
.

Theorem 2 (Lower bound). Let κ ≥ 1 and let M,n be two integers such that 2 log2 M ≤ n. We
assume that the input space X is infinite. There exists an absolute constant C > 0, depending
only on κ and c, and a set of prediction rules F = {f1, . . . , fM} such that for any real-valued
procedure f̄n, there exists a probability measure π satisfying MA(κ), for which

E[A(f̄n) − A∗] ≥ min
f ∈C

(
A(f ) − A∗)

+ C

(√
(minf ∈C A(f ) − A∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1))
,

where C = cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c > 0 is the constant in (9).

Combining the exact oracle inequality of Theorem 1 and the lower bound of Theorem 2, we
see that the residual √

(minf ∈C A(f ) − A∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1)

(11)

is an optimal rate of convex aggregation of M functions with values in [−1,1] for the hinge loss.
Moreover, for any real-valued function f , we have max(1 − yψ(f (x)),0) ≤ max(1 − yf (x),0)

for all y ∈ {−1,1} and x ∈ X , thus

A(ψ(f )) − A∗ ≤ A(f ) − A∗, where ψ(x) = max
(−1,min(x,1)

)
, ∀x ∈ R. (12)
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Thus, by aggregating ψ(f1), . . . ,ψ(fM), it is easy to check that

√
(minf ∈F A(ψ(f )) − A∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1)

,

is an optimal rate of model-selection aggregation of M real-valued functions f1, . . . , fM w.r.t. the
hinge loss. In both cases, the aggregate with exponential weights, as well as ERM and AERM,
attains these optimal rates and the CAEW aggregate attains the optimal rate if κ > 1. Applica-
tions and learning properties of the AEW procedure can be found in Lecué [20,21] (in particular,
adaptive SVM classifiers are constructed by aggregating only (logn)2 SVM estimators). In The-
orem 1, the AEW procedure satisfies an exact oracle inequality with an optimal residual term
whereas in Lecué [21] and Lecué [20] the oracle inequalities satisfied by the AEW procedure
are not exact (there is a multiplying factor greater than 1 in front of the bias term) and in Lecué
[21], the residual is not optimal. In Lecué [20], it is proved that for any finite set F of functions
f1, . . . , fM with values in [−1,1] and any ε > 0, there exists an absolute constant C(ε) > 0 such
that, for C the convex hull of F ,

E
[
A

(
f̃ (AEW)

n

) − A∗] ≤ (1 + ε)min
f ∈C

(
A(f ) − A∗) + C(ε)

(
logM

n

)κ/(2κ−1)

. (13)

This oracle inequality is good enough for several applications (see the examples in Lecué [20]).
Nevertheless, (13) can be easily deduced from Theorem 1 using Lemma 3 and may be inefficient
for constructing adaptive estimators with exact constants (because of the factor greater than 1
in front of minf ∈C(A(f ) − A∗)). Moreover, oracle inequalities with a factor greater than 1 in
front of the oracle minf ∈C(A(f ) − A∗) do not characterize the real behavior of the technique of
aggregation which we are using. For instance, for any strictly convex loss φ, the ERM procedure
satisfies (cf. Chesneau and Lecué [12])

E
[
A(φ)

(
f̃ (ERM)

n

) − A(φ)∗] ≤ (1 + ε) min
f ∈F

(
A(φ)(f ) − A(φ)∗) + C(ε)

logM

n
. (14)

But, it has been recently proven, in Lecué [22], that the ERM procedure cannot mimic the oracle
faster than

√
(logM)/n, whereas, for strictly convex losses, the CAEW procedure can mimic the

oracle at the rate (logM)/n (cf. Juditsky et al. [19]). Thus, for strictly convex losses, it is better
to use the aggregation procedure with exponential weights than ERM (or even penalized ERM
procedures (cf. Lecué [22])) to mimic the oracle. Non-exact oracle inequalities of the form (14)
cannot tell us which procedure is better to use since both ERM and CAEW procedures satisfy
this inequality.

It is interesting to note that the rate of aggregation (11) depends on both the class F and π

through the term minf ∈C A(f )−A∗. This is different from the regression problem (cf. Tsybakov
[33]), where the optimal aggregation rates depend only on M and n. Three cases can be consid-
ered, where M(F ,π) denotes minf ∈C(A(f ) − A∗) and M may depend on n (i.e., for function
classes F depending on n):
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1. If M(F ,π) ≤ a(
logM

n
)κ/(2κ−1), for an absolute constant a > 0, then the hinge risk of our

aggregates attains minf ∈C A(f ) − A∗ with the rate (
logM

n
)κ/(2κ−1), which can be logM/n

in the case k = 1;
2. If a(

logM
n

)κ/(2κ−1) ≤ M(F ,π) ≤ b for some constants a, b > 0, then our aggregates mim-

ic the best prediction rule in C with a rate slower than (
logM

n
)κ/(2κ−1), but faster than

((logM)/n)1/2;

3. If M(F ,π) ≥ a > 0, where a > 0 is a constant, then the rate of aggregation is
√

logM
n

, as
in the case of no margin assumption.

We can explain this behavior by the fact that not only κ , but also minf ∈C A(f ) − A∗, measures
the difficulty of classification. For instance, in the extreme case where minf ∈C A(f ) − A∗ = 0,

which means that C contains the Bayes rule, we have the fastest rate (
logM

n
)κ/(2κ−1). In the worst

cases, which are realized when κ tends to ∞ or minf ∈C(A(f ) − A∗) ≥ a > 0, where a > 0 is an

absolute constant, the optimal rate of aggregation is the slow rate
√

logM
n

.

4. Optimal rates of MS-aggregation for the excess risk

We now provide oracle inequalities and lower bounds for the excess Bayes risk. First, we can
deduce, from Theorem 1 and 2, ‘almost optimal rates of aggregation’ for the excess Bayes risk
achieved by the AEW aggregate. Second, using the ERM aggregate, we obtain optimal rates of
model selection aggregation for the excess Bayes risk.

Using inequality (3), we can derive, from Theorem 1, an oracle inequality for the excess Bayes
risk. The lower bound is obtained using the same proof as in Theorem 2.

Corollary 1. Let F = {f1, . . . , fM} be a finite set of prediction rules for an integer M ≥ 3 and
κ ≥ 1. We assume that π satisfies MA(κ). Denote by f̃n either the ERM, the AERM or the AEW
aggregate. For any number a > 0 and any integer n, f̃n then satisfies

E[R(f̃n) − R∗] ≤ 2(1 + a) min
j=1,...,M

(
R(fj ) − R∗)

(15)

+ [
C + (C2κ/a)1/(2κ−1)

]( logM

n

)κ/(2κ−1)

,

where C = 32(6∨537c∨16(2c+1/3)). The CAEW aggregate satisfies the same inequality with
C = 32(6 ∨ 537c ∨ 16(2c + 1/3))(2 ∨ (2κ − 1)/(κ − 1) when κ > 1. For κ = 1, the CAEW
aggregate satisfies (15), where we need to multiply the residual by logn.

Moreover, there exists a finite set of prediction rules F = {f1, . . . , fM} such that, for any
classifier f̄n, there exists a probability measure π on X × {−1,1} satisfying MA(κ), such that,
for any n ≥ 1, a > 0,

E[R(f̄n) − R∗] ≥ 2(1 + a) min
f ∈F

(
R(f ) − R∗) + C(a)

(
logM

n

)κ/(2κ−1)

,
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where C(a) > 0 is a constant depending only on a.

Due to Corollary 1, (
logM

n

)κ/(2κ−1)

is an almost optimal rate of MS-aggregation for the excess risk and the AEW aggregate achieves
this rate. The word “almost” is used here because minf ∈F (R(f ) − R∗) is multiplied by a con-
stant greater than 1. Oracle inequality (15) is not exact since the minimal excess risk over F is
multiplied by the constant 2(1 + a) > 1. This is not the case when using the ERM aggregate, as
explained in the following theorem.

Theorem 3. Let κ ≥ 1. We assume that π satisfies MA(κ). We denote by F = {f1, . . . , fM} a
set of prediction rules. The ERM aggregate over F satisfies, for any integer n ≥ 1,

E
[
R

(
f̃ (ERM)

n

) − R∗] ≤ min
f ∈F

(
R(f ) − R∗)

+ C

(√
minf ∈F (R(f ) − R∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1))
,

where C = 32(6 ∨ 537c0 ∨ 16(2c0 + 1/3)) and c0 is the constant appearing in MA(κ).

Using Lemma 3, we can deduce the results of Herbei and Wegkamp [17] from Theorem 3.
Oracle inequalities under MA(κ) have already been stated in Massart [27] (cf. Boucheron et al.
[7]), but the remainder term obtained is worse than the one obtained in Theorem 3.

According to Definition 1, combining Theorem 3 and the following theorem, the rate

√
minf ∈F (R(f ) − R∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1)

is an optimal rate of MS-aggregation w.r.t. the excess Bayes risk. The ERM aggregate achieves
this rate.

Theorem 4 (Lower bound). Let M ≥ 3 and n be two integers such that 2 log2 M ≤ n and κ ≥ 1.
Assume that X is infinite. There exists an absolute constant C > 0 and a set of prediction rules
F = {f1, . . . , fM} such that for any procedure f̄n with values in R, there exists a probability
measure π satisfying MA(κ), for which

E[R(f̄n) − R∗] ≥ min
f ∈F

(
R(f ) − R∗)

+C

(√
(minf ∈F R(f ) − R∗)1/κ logM

n
+

(
logM

n

)κ/(2κ−1))
,
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where C = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c0 is the constant appearing in

MA(κ).

5. Proofs

Proof of Proposition 1. Since, for any function f from X to {−1,1}, we have 2(R(f )−R∗) =
A(f ) − A∗, it follows that MA(κ) is implied by MAH(κ).

Assume that MA(κ) holds. We first explore the case κ > 1, where MA(κ) implies that there
exists a constant c1 > 0 such that P(|2η(X) − 1| ≤ t) ≤ c1t

1/(κ−1) for any t > 0 (cf. Boucheron
et al. [7]). Let f be a function from X to [−1,1]. We have, for any t > 0,

A(f ) − A∗ = E[|2η(X) − 1||f (X) − f ∗(X)|]
≥ tE

[|f (X) − f ∗(X)|1|2η(X)−1|≥t

]
≥ t

(
E[|f (X) − f ∗(X)|] − 2P

(|2η(X) − 1| ≤ t
))

≥ t
(
E[|f (X) − f ∗(X)|] − 2c1t

1/(κ−1)
)
.

For t0 = ((κ − 1)/(2c1κ))κ−1
E[|f (X) − f ∗(X)|]κ−1, we obtain

A(f ) − A∗ ≥ (
(κ − 1)/(2c1κ)

)κ−1
κ−1

E[|f (X) − f ∗(X)|]κ .

For the case κ = 1, MA(1) implies that there exists h > 0 such that |2η(X) − 1| ≥ h a.s.
Indeed, if for any N ∈ N

∗ (the set of all positive integers), there exists AN ∈A (the σ -algebra on
X ) such that P X(AN) > 0 and |2η(x) − 1| ≤ N−1,∀x ∈ AN , then, for

fN(x) =
{−f ∗(x), if x ∈ AN ,

f ∗(x), otherwise,

we obtain R(fN) − R∗ ≤ 2P X(AN)/N and E[|fN(X) − f ∗(X)|] = 2P X(AN), and there is no
constant c0 > 0 such that P X(AN) ≤ c0P

X(AN)/N for all N ∈ N
∗. So, assumption MA(1) does

not hold if no h > 0 satisfies |2η(X) − 1| ≥ h a.s. Thus, for any f from X to [−1,1], we have
A(f ) − A∗ = E[|2η(X) − 1||f (X) − f ∗(X)|] ≥ hE[|f (X) − f ∗(X)|]. �

Proof of Theorem 1. We start with a general result which says that if φ is a convex loss, then
the aggregation procedures with the weights w(n)(f ), f ∈F , introduced in (4) satisfy

A(φ)
n

(
f̃ (AEW)

n

) ≤ A(φ)
n

(
f̃ (ERM)

n

) + logM

n
and A(φ)

n

(
f̃ (AERM)

n

) ≤ A(φ)
n

(
f̃ (ERM)

n

)
. (16)

Indeed, take φ to be a convex loss. We have φ(Y f̃n(X)) ≤ ∑
f ∈F w(n)(f )φ(Yf (X)), thus

A(φ)
n (f̃n) ≤

∑
f ∈F

w(n)(f )A(φ)
n (f ).
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Any f ∈ F satisfies

A(φ)
n (f ) = A(φ)

n

(
f̃ (ERM)

n

) + n−1(log
(
w(n)

(
f̃ (ERM)

n

)) − log
(
w(n)(f )

))
,

thus, by averaging this equality over the w(n)(f ) and using
∑

f ∈F w(n)(f ) log(
w(n)(f )

M−1 ) =
K(w|u) ≥ 0, where K(w|u) denotes the Kullback–Leibler divergence between the weight-
s w = (w(n)(f ))f ∈F and the uniform weights u = (1/M)f ∈F , we obtain the first inequality
of (16). Using the convexity of φ, we obtain a similar result for the AERM aggregate.

Let f̃n be either the ERM, the AERM or the AEW aggregate for the class F = {f1, . . . , fM}.
In all cases, we have, according to (16),

An(f̃n) ≤ min
i=1,...,M

An(fi) + logM

n
. (17)

Let ε > 0. We consider D = {f ∈ C :A(f ) > AC +2ε}, where AC
def= minf ∈C A(f ). Let x > 0.

If

sup
f ∈D

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x
≤ ε

AC − A∗ + 2ε + x

then, for any f ∈ D, we have

An(f ) − An(f
∗) ≥ A(f ) − A∗ − ε(A(f ) − A∗ + x)

AC − A∗ + 2ε + x
≥ AC − A∗ + ε,

because A(f ) − A∗ ≥ AC − A∗ + 2ε. Hence,

P

[
inf

f ∈D
(
An(f ) − An(f

∗)
)
< AC − A∗ + ε

]
(18)

≤ P

[
sup
f ∈D

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x
>

ε

AC − A∗ + 2ε + x

]
.

According to (8), for f ′ ∈ {f1, . . . , fM} such that A(f ′) = minj=1,...,M A(fj ), we have AC =
inff ∈C A(f ) = inff ∈{f1,..,fM } A(f ) = A(f ′). According to (17), we have

An(f̃n) ≤ min
j=1,...,M

An(fj ) + logM

n
≤ An(f

′) + logM

n
.

Thus, if we assume that A(f̃n) > AC + 2ε, then, by definition, we have f̃n ∈ D and thus there
exists f ∈ D such that An(f ) − An(f

∗) ≤ An(f
′) − An(f

∗) + (logM)/n. According to (18),
we have

P[A(f̃n) > AC + 2ε]

≤ P

[
inf

f ∈D
An(f ) − An(f

∗) ≤ An(f
′) − An(f

∗) + logM

n

]
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≤ P

[
inf

f ∈D
An(f ) − An(f

∗) ≤ AC − A∗ + ε

]

+ P

[
An(f

′) − An(f
∗) ≥ AC − A∗ + ε − logM

n

]

≤ P

[
sup
f ∈C

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x
>

ε

AC − A∗ + 2ε + x

]

+ P

[
An(f

′) − An(f
∗) ≥ AC − A∗ + ε − logM

n

]
.

If we assume that

sup
f ∈C

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x
>

ε

AC − A∗ + 2ε + x
,

then there exists f = ∑M
j=1 wjfj ∈ C (where wj ≥ 0 and

∑
wj = 1) such that

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x
>

ε

AC − A∗ + 2ε + x
.

The linearity of the hinge loss on [−1,1] leads to

A(f ) − A∗ − (An(f ) − An(f
∗))

A(f ) − A∗ + x

=
∑M

j=1 wj [A(fj ) − A∗ − (An(fj ) − An(f
∗))]∑M

j=1 wj [A(fj ) − A∗ + x]

and, according to Lemma 2, we have

max
j=1,...,M

A(fj ) − A∗ − (An(fj ) − An(f
∗))

A(fj ) − A∗ + x
>

ε

AC − A∗ + 2ε + x
.

We now use the relative concentration inequality of Lemma 5 to obtain

P

[
max

j=1,...,M

A(fj ) − A∗ − (An(fj ) − An(f
∗))

A(fj ) − A∗ + x
>

ε

AC − A∗ + 2ε + x

]

≤ M

(
1 + 8c(AC − A∗ + 2ε + x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

8c(AC − A∗ + 2ε + x)2x1/κ

)

+ M

(
1 + 16(AC − A∗ + 2ε + x)

3nεx

)
exp

(
− 3nεx

16(AC − A∗ + 2ε + x)

)
.
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Using Proposition 1 and Lemma 4 to upper bound the variance term and applying Bernstein’s
inequality, we get

P

[
An(f

′) − An(f
∗) ≥ AC − A∗ + ε − logM

n

]

≤ exp

(
− n(ε − (logM)/n)2

4c(AC − A∗)1/κ + (8/3)(ε − (logM)/n)

)

for any ε > (logM)/n. We take x = AC − A∗ + 2ε, then, for any (logM)/n < ε < 1, we have

P
(
A(f̃n) > AC + 2ε

)
≤ exp

(
− n(ε − logM/n)2

4c(AC − A∗)1/κ + (8/3)(ε − (logM)/n)

)

+ M

(
1 + 32c(AC − A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

32c(AC − A∗ + 2ε)1/κ

)

+ M

(
1 + 32

3nε

)
exp

(
−3nε

32

)
.

Thus, for 2(logM)/n < u < 1, we have

E[A(f̃n) − AC] ≤ 2u + 2
∫ 1

u/2

[
T1(ε) + M

(
T2(ε) + T3(ε)

)]
dε, (19)

where

T1(ε) = exp

(
− n(ε − (logM)/n)2

4c((AC − A∗)/2)1/κ + (8/3)(ε − (logM)/n)

)
,

T2(ε) =
(

1 + 64c(AC − A∗ + 2ε)1/κ

21/κnε2

)
exp

(
− 21/κnε2

64c(AC − A∗ + 2ε)1/κ

)

and

T3(ε) =
(

1 + 16

3nε

)
exp

(
−3nε

16

)
.

Set β1 = min(32−1, (2148c)−1, (64(2c + 1/3))−1), where the constant c > 0 appears in
MAH(κ). Consider separately the following cases, (C1) and (C2).

(C1) The case AC − A∗ ≥ (logM/(β1n))κ/(2κ−1). Denote by µ(M) the solution of µ =
3M exp(−µ). We have (logM)/2 ≤ µ(M) ≤ logM . Take u such that (nβ1u

2)/(AC −
A∗)1/κ = µ(M). Using the definitions of case (C1) and µ(M), we get u ≤ AC − A∗.
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Moreover, u ≥ 4(logM)/n, thus

∫ 1

u/2
T1(ε)dε ≤

∫ (AC−A∗)/2

u/2
exp

(
− n(ε/2)2

(4c + 4/3)(AC − A∗)1/κ

)
dε

+
∫ 1

(AC−A∗)/2
exp

(
− n(ε/2)2

(8c + 4/3)ε1/κ

)
dε.

Using Lemma 1 and the inequality u ≤ AC − A∗, we obtain

∫ 1

u/2
T1(ε)dε ≤ 64(2c + 1/3)(AC − A∗)1/κ

nu
(20)

× exp

(
− nu2

64(2c + 1/3)(AC − A∗)1/κ

)
.

We have 128c(AC − A∗ + u) ≤ nu2. Thus, using Lemma 1, we get

∫ 1

u/2
T2(ε)dε ≤ 2

∫ (AC−A∗)/2

u/2
exp

(
− nε2

64c(AC − A∗)1/κ

)
dε

+ 2
∫ 1

(AC−A∗)/2
exp

(
−nε2−1/κ

128c

)
dε (21)

≤ 2148c(AC − A∗)1/κ

nu
exp

(
− nu2

2148c(AC − A∗)1/κ

)
.

We have u ≥ 32(3n)−1, so

∫ 1

u/2
T3(ε)dε ≤ 64

3n
exp

(
−3nu

64

)
(22)

≤ 64(AC − A∗)1/κ

3nu
exp

(
− 3nu2

64(AC − A∗)1/κ

)
.

From (20), (21), (22) and (19), we obtain

E[A(f̃n) − AC] ≤ 2u + 6M
(AC − A∗)1/κ

nβ1u
exp

(
− nβ1u

(AC − A∗)1/κ

)
.

The definitions of u leads to E[A(f̃n) − AC] ≤ 4
√

(AC−A∗)1/κ logM
nβ1

.

(C2) The case AC −A∗ ≤ (logM/(β1n))κ/(2κ−1). We now choose u such that nβ2u
(2κ−1)/κ =

µ(M), where β2 = min(3(32(6c + 1))−1, (256c)−1,3/64). Using the definition of case
(C2) and µ(M), we get u ≥ AC − A∗. Using Lemma 1 and u > 4(logM)/n, u ≥
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2(32c/n)κ/(2κ−1) and u > 32/(3n), respectively, we obtain

∫ 1

u/2
T1(ε)dε ≤ 32(6c + 1)

3nu1−1/κ
exp

(
− 3nu2−1/κ

32(6c + 1)

)
,

(23)∫ 1

u/2
T2(ε)dε ≤ 128c

nu1−1/κ
exp

(
−nu2−1/κ

128c

)

and ∫ 1

u/2
T3(ε)dε ≤ 64

3nu1−1/κ
exp

(
−3nu2−1/κ

64

)
. (24)

From (23), (24) and (19), we obtain

E[A(f̃n) − AC] ≤ 2u + 6M
exp(−nβ2u

(2κ−1)/κ )

nβ2u1−1/κ
.

The definition of u yields E[A(f̃n) − AC] ≤ 4(
logM
nβ2

)κ/(2κ−1).

Finally, we obtain

E[A(f̃n) − AC] ≤ 4




(
logM

nβ2

)κ/(2κ−1)

, if AC − A∗ ≤
(

logM

nβ1

)κ/(2κ−1)

,√
(AC − A∗)1/κ logM

nβ1
, otherwise.

For the CAEW aggregate, it suffices to upper bound the sums by integrals in the following in-
equality to get the result:

E
[
A

(
f̃ (CAEW)

n

) − A∗] ≤ 1

n

n∑
k=1

E
[
A

(
f̃

(AEW)
k

) − A∗]

≤ min
f ∈C

A(f ) − A∗ + C

{√
(AC − A∗)1/κ logM

(
1

n

n∑
k=1

1√
k

)

+ (logM)κ/(2κ−1) 1

n

n∑
k=1

1

kκ/(2κ−1)

}
.

�

Proof of Theorem 2. Let a be a positive number, F be a finite set of M real-valued
functions and f1, . . . , fM be M prediction rules (which will be carefully chosen in what fol-
lows). Using (8), taking F = {f1, . . . , fM} and assuming that f ∗ ∈ {f1, . . . , fM}, we ob-
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tain

inf
f̂n

sup
π∈Pκ

(
E[A(f̂n) − A∗] − (1 + a) min

f ∈Conv(F)

(
A(f ) − A∗))

(25)
≥ inf

f̂n

sup
π∈P

κf ∗∈{f1,...,fM }
E[A(f̂n) − A∗],

where Conv(F) is the set made of all convex combinations of elements in F . Let N be
an integer such that 2N−1 ≤ M , x1, . . . , xN be N distinct points of X and w be a posi-
tive number satisfying (N − 1)w ≤ 1. Denote by P X the probability measure on X such
that P X({xj }) = w, for j = 1, . . . ,N − 1, and P X({xN }) = 1 − (N − 1)w. We consid-
er the cube � = {−1,1}N−1. Let 0 < h < 1. For all σ = (σ1, . . . , σN−1) ∈ � we consid-
er

ησ (x) =
{

(1 + σjh)/2, if x = x1, . . . , xN−1,
1, if x = xN .

For all σ ∈ �, we denote by πσ the probability measure on X ×{−1,1} having P X for marginal
on X and ησ for conditional probability function.

Assume that κ > 1. We have P(|2ησ (X) − 1| ≤ t) = (N − 1)w1h≤t for any 0 ≤ t < 1. Thus,
if we assume that (N − 1)w ≤ h1/(κ−1), then P(|2ησ (X) − 1| ≤ t) ≤ t1/(κ−1) for all 0 ≤ t < 1.
Thus, according to Tsybakov [34], πσ belongs to Pκ .

We denote by ρ the Hamming distance on �. Let σ,σ ′ ∈ � be such that ρ(σ,σ ′) = 1. Denote
by H the Hellinger distance. Since H 2(π⊗n

σ ,π⊗n
σ ′ ) = 2(1 − (1 − H 2(πσ ,πσ ′)/2)n) and

H 2(πσ ,πσ ′) = w

N−1∑
j=1

(√
ησ (xj ) −

√
ησ ′(xj )

)2 + (√
1 − ησ (xj ) −

√
1 − ησ ′(xj )

)2

= 2w
(
1 −

√
1 − h2

)
,

the Hellinger distance between the measures π⊗n
σ and π⊗n

σ ′ satisfies

H 2(π⊗n
σ ,π⊗n

σ ′ ) = 2
(
1 − (

1 − w
(
1 −

√
1 − h2

))n)
.

Take w and h such that w(1 − √
1 − h2) ≤ n−1. Then, H 2(π⊗n

σ ,π⊗n
σ ′ ) ≤ β = 2(1 − e−1) < 2

for any integer n.
Let σ ∈ � and f̂n be an estimator with values in [−1,1] (according to (12), we consider only

estimators in [−1,1]). Using MA(κ), we have, conditionally on the observations Dn and for
π = πσ ,

A(f̂n) − A∗ ≥ (
cEπσ [|f̂n(X) − f ∗(X)|])κ ≥ (cw)κ

(
N−1∑
j=1

|f̂n(xj ) − σj |
)κ

.
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Taking here the expectations, we find Eπσ [A(f̂n) − A∗] ≥ (cw)κEπσ [(∑N−1
j=1 |f̂n(xj ) − σj |)κ ].

Using Jensen’s inequality and Lemma 6, we obtain

inf
f̂n

sup
σ∈�

(
Eπσ [A(f̂n) − A∗]) ≥ (cw)κ

(
N − 1

4e2

)κ

. (26)

Now take w = (nh2)−1, N = �logM/ log 2� and h = (n−1�logM/ log 2�)(κ−1)/(2κ−1). Re-
place w and N in (26) by these values. Thus, from (25), there exist f1, . . . , fM (the first
2N−1 are sign(2ησ − 1) for σ ∈ � and any choice is allowed for the remaining M − 2N−1)
such that, for any procedure f̄n, there exists a probability measure π satisfying MA(κ), such
that E[A(f̂n) − A∗] − (1 + a)minj=1,...,M(A(fj ) − A∗) ≥ C0(

logM
n

)κ/(2κ−1), where C0 =
cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1).

Moreover, according to Lemma 3, we have

a min
f ∈C

(
A(f ) − A∗) + C0

2

(
logM

n

)κ/(2κ−1)

≥
√

2−1a1/κC0

√
(minf ∈C A(f ) − A∗)1/κ logM

n
.

Thus,

E[A(f̂n) − A∗] ≥ min
f ∈C

(
A(f ) − A∗) + C0

2

(
logM

n

)κ/(2κ−1)

+
√

2−1a1/κC0

√
(AC − A∗)1/κ logM

n
.

For κ = 1, we take h = 1/2. Then, |2ησ (X) − 1| ≥ 1/2 a.s., so πσ ∈MA(1). It then suffices to
take w = 4/n and N = �logM/ log 2� to obtain the result.

Proof of Corollary 1. The result follows from Theorems 1 and 2. Using inequality (3), Lemma
3 and the fact that for any prediction rule f , we have A(f )−A∗ = 2(R(f )−R∗), for any a > 0,
with t = a(AC − A∗) and v = (C2(logM)/n)κ/(2κ−1)a−1/(2κ−1), we obtain the result. �

Proof of Theorem 3. Denote by f̃n the ERM aggregate over F . Let ε > 0. Denote by Fε the set
{f ∈F : R(f ) > RF + 2ε}, where RF = minf ∈F R(f ).

Let x > 0. If

sup
f ∈Fε

R(f ) − R∗ − (Rn(f ) − Rn(f
∗))

R(f ) − R∗ + x
≤ ε

RF − R∗ + 2ε
,
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then the same argument as in Theorem 1 yields Rn(f )−Rn(f
∗) ≥ RF −R∗ + ε for any f ∈ Fε .

So, we have

P

[
inf

f ∈Fε

Rn(f ) − Rn(f
∗) < RF − R∗ + ε

]

≤ P

[
sup

f ∈Fε

R(f ) − R∗ − (Rn(f ) − Rn(f
∗))

R(f ) − R∗ + x
>

ε

RF − R∗ + 2ε + x

]
.

We consider f ′ ∈ F such that minf ∈F R(f ) = R(f ′). If R(f̃n) > RF + 2ε, then f̃n ∈ Fε , so
there exists g ∈Fε such that Rn(g) ≤ Rn(f

′). Hence, using the same argument as in Theorem 1,
we obtain

P[R(f̃n) > RF + 2ε] ≤ P

[
sup
f ∈F

R(f ) − R∗ − (Rn(f ) − Rn(f
∗))

R(f ) − R∗ + x
≥ ε

RF − R∗ + 2ε + x

]

+ P[Rn(f
′) − Rn(f

∗) > RF − R∗ + ε].
We complete the proof by using Lemma 5, the fact that for any f from X to {−1,1}, we have

2(R(f ) − R∗) = A(f ) − A∗, and the same arguments as those developed at the end of the proof
of Theorem 1. �

Proof of Theorem 4. Using the same argument as the one used in the beginning of the proof of
Theorem 2, we have, for all prediction rules f1, . . . , fM and a > 0,

sup
g1,...,gM

inf
f̂n

sup
π∈Pκ

(
E[R(f̂n) − R∗] − (1 + a) min

j=1,...,M

(
R(gj ) − R∗))

≥ inf
f̂n

sup
π∈Pκ

f ∗∈{f1,...,fM }

E[R(f̂n) − R∗].

Consider the set of probability measures {πσ ,σ ∈ �} introduced in the proof of Theorem 2.
Assume that κ > 1. Since for any σ ∈ � and any classifier f̂n, we have, by using MA(κ),

Eπσ [R(f̂n) − R∗] ≥ (c0w)κEπσ

[(
N−1∑
j=1

|f̂n(xj ) − σj |
)κ]

,

using Jensen’s inequality and Lemma 6, we obtain

inf
f̂n

sup
σ∈�

(
Eπσ [R(f̂n) − R∗]) ≥ (c0w)κ

(
N − 1

4e2

)κ

.

By taking w = (nh2)−1, N = �logM/ log 2� and h = (n−1�logM/ log 2�)(κ−1)/(2κ−1), there
exist f1, . . . , fM (the first 2N−1 are sign(2ησ − 1) for σ ∈ � and any choice is allowed for the
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remaining M − 2N−1) such that for any procedure f̄n, there exists a probability measure π satis-
fying MA(κ), such that E[R(f̂n)−R∗]− (1+a)minj=1,...,M(R(fj )−R∗) ≥ C0(

logM
n

)κ/(2κ−1),

where C0 = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1). Moreover, according to Lemma 3, we

have

a min
f ∈F

(
R(f ) − R∗

)
+ C0

2

(
logM

n

)κ/(2κ−1)

≥
√

a1/κC0/2

√
(minf ∈F R(f ) − R∗)1/κ logM

n
.

The case κ = 1 is treated in the same way as in the proof of Theorem 2.

Lemma 1. Let α ≥ 1 and a, b > 0. An integration by parts yields

∫ +∞

a

exp(−btα)dt ≤ exp(−baα)

αbaα−1
.

Lemma 2. Let b1, . . . , bM be M positive numbers and a1, . . . , aM some numbers. We have

∑M
j=1 aj∑M
j=1 bj

≤ max
j=1,...,M

(
aj

bj

)
.

�

Proof.

M∑
j=1

bj max
k=1,...,M

(
ak

bk

)
≥

M∑
j=1

bj

aj

bj

=
M∑

j=1

aj .

�

Lemma 3. Let v, t > 0 and κ ≥ 1. The concavity of the logarithm yields

t + v ≥ t1/(2κ)v(2κ−1)/(2κ).

Lemma 4. Let f be a function from X to [−1,1] and π a probability measure on X × {−1,1}
satisfying MA(κ) for some κ ≥ 1. Denote by V the symbol of variance. We have

V
(
Y

(
f (X) − f ∗(X)

)) ≤ c
(
A(f ) − A∗)1/κ

and

V
(
1Yf (X)≤0 − 1Yf ∗(X)≤0

) ≤ c
(
R(f ) − R∗)1/κ

.
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Lemma 5. Let F = {f1, . . . , fM} be a finite set of functions from X to [−1,1]. Assume that π

satisfies MA(κ) for some κ ≥ 1. We have, for any positive numbers t, x and any integer n,

P

[
max
f ∈F

Zx(f ) > t

]
≤ M

((
1 + 8cx1/κ

n(tx)2

)
exp

(
− n(tx)2

8cx1/κ

)
+

(
1 + 16

3ntx

)
exp

(
−3ntx

16

))
,

where the constant c > 0 appears in MAH(κ) and Zx(f ) = A(f )−An(f )−(A(f ∗)−An(f ∗))
A(f )−A∗+x

.

Proof. For any integer j , consider the set Fj = {f ∈ F : jx ≤ A(f ) − A∗ < (j + 1)x}. Using
Bernstein’s inequality, Proposition 1 and Lemma 4 to upper bound the variance term, we obtain

P

[
max
f ∈F

Zx(f ) > t

]

≤
+∞∑
j=0

P

[
max
f ∈Fj

Zx(f ) > t

]

≤
+∞∑
j=0

P

[
max
f ∈Fj

A(f ) − An(f ) − (
A(f ∗) − An(f

∗)
)
> t(j + 1)x

]

≤ M

+∞∑
j=0

exp

(
− n[t (j + 1)x]2

4c((j + 1)x)1/κ + (8/3)t (j + 1)x

)

≤ M

(+∞∑
j=0

exp

(
−n(tx)2(j + 1)2−1/κ

8cx1/κ

)
+ exp

(
−(j + 1)

3ntx

16

))

≤ M

(
exp

(
−nt2x2−1/κ

8c

)
+ exp

(
−3ntx

16

))

+ M

∫ +∞

1

(
exp

(
−nt2x2−1/κ

8c
u2−1/κ

)
+ exp

(
−3ntx

16
u

))
du.

Lemma 1 leads to the result.

Lemma 6. Let {Pω/ω ∈ �} be a set of probability measures on a measurable space (X ,A),
indexed by the cube � = {0,1}m . Denote by Eω the expectation under Pω and by ρ the Hamming
distance on �. Assume that

∀ω,ω′ ∈ �/ρ(ω,ω′) = 1, H 2(Pω,Pω′) ≤ α < 2,

Then,

inf
ŵ∈[0,1]m

max
ω∈�

Eω

[
m∑

j=1

|ŵj − wj |
]

≥ m

4

(
1 − α

2

)2

.
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�

Proof. Obviously, we can replace infŵ∈[0,1]m by (1/2) infŵ∈{0,1}m since for all w ∈ {0,1} and
ŵ ∈ [0,1], there exists w̃ ∈ {0,1} (e.g., the projection of ŵ on to {0,1}) such that |ŵ − w| ≥
(1/2)|w̃ − w|. We then use Theorem 2.10 of Tsybakov [33], page 103. �
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